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We derive the probability for a newly formed binary black hole (BBH) to undergo an eccentric
gravitational wave (GW) merger during binary-single interactions inside a stellar cluster. By in-
tegrating over the hardening interactions such a BBH must undergo before ejection, we find that
the observable rate of BBH mergers with eccentricity > 0.1 at 10 Hz relative to the rate of circular
mergers can be as high as ∼ 5% for a typical globular cluster (GC). This further suggests that BBH
mergers forming through GW captures in binary-single interactions, eccentric or not, are likely to
constitute ∼ 10% of the total BBH merger rate from GCs. Such GW capture mergers can only
be probed with an N-body code that includes General Relativistic corrections, which explains why
recent Newtonian cluster studies not have been able to resolve this population. Finally, we show
that the relative rate of eccentric BBH mergers depends on the compactness of their host clus-
ter, suggesting that an observed eccentricity distribution can be used to probe the origin of BBH
mergers.

I. INTRODUCTION

Gravitational waves (GWs) from merging binary black
holes (BBHs) have been observed [1–5], but their astro-
physical origin is still unknown. Several formation chan-
nels and sites have been proposed in the literature, in-
cluding stellar clusters [6–14], isolated field binaries [15–
19], galactic nuclei [20–24], active galactic nuclei discs
[25–27], as well as primordial black holes [28–31], how-
ever, how to observationally distinguish them from each
other has shown to be a major challenge. For this, several
recent studies have explored to which degree the distribu-
tions of BBH spins and orbital eccentricities might differ
between different models [32, 33], as these are quantities
that can be extracted from the observed GW waveform
[34–37]. In general, for BBH merges evolved in isolation
one finds the spins to be preferentially aligned with the
orbit [38] and eccentricity to be indistinguishable from
zero, whereas dynamically assembled BBH mergers will
have random spin orientations, and a non-zero probabil-
ity for appearing eccentric at observation [20, 29, 39, 40].
For such studies it has especially become clear that im-
plementing General Relativistic (GR) effects is extremely
important, .e.g, GR precession and spin-orbit coupling
affect both the eccentricity [41] and the BBH spins [42]
in secular evolving systems, where GW emission in few-
body scatterings is essential for resolving the fraction of
highly eccentric mergers [39, 43]. Despite this impor-
tance, many recent studies are still based on purely New-
tonian codes.
In this paper we study the evolution of BBHs under-

going hardening binary-single interactions inside a dense
stellar cluster, and how the inclusion of GR corrections
affect both the dynamical history of the BBHs and their
GW merger distribution. We especially follow the GW
mergers that form during the hardening binary-single in-
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teractions through GW captures [e.g., 39, 40]. By inte-
grating over the binary-single interactions a typical BBH
undergoes inside its host cluster, we derive that the rate
of BBHmergers forming during binary-single interactions
with an eccentricity > 0.1 at 10 Hz (eccentric mergers)
relative to the rate of classically ejected BBH mergers
(circular mergers) can be as high as ∼ 5% for a typi-
cal GC. This rate is within observable limits, suggesting
that the eccentricity distribution of BBH mergers can be
used to constrain their origin. We note that the binary-
single GW captures that lead to this large fraction of
eccentric mergers only can be probed when GR effects
are included in the N -body equation-of-motion (EOM),
which explains why recent Newtonian Monte-Carlo (MC)
cluster studies not have been able to resolve this popu-
lation [e.g., 11, 44]. In fact, we explicitly prove in this
paper that a Newtonian code will always underestimate
the eccentric fraction by a factor of ∼ 100.

Our present study further suggests that GW capture
mergers forming during three-body interactions, eccen-
tric or not, are likely to constitute ∼ 10% of the total
observable BBH merger rate from GCs. This population
is currently unexplored, but is likely to play a key role
in constraining the time dependent dynamical state of
BHs in clusters, as it might leave unique imprints across
frequencies observable by both the ‘Laser Interferome-
ter Space Antenna’ (LISA) and the ‘Laser Interferometer
Gravitational-Wave Observatory’ (LIGO).

Throughout the paper we assume that all three inter-
acting BHs have the same mass m, and that the total
initial energy of the three-body system is dominated by
that of the initial target binary; a limit formally known
as the hard binary (HB) limit [45, 46]. We only discuss
effects from dynamical GW emission, which appears in
the post-Newtonian (PN) expansion formalism at the 2.5
order [47]. The lower PN terms leading to precession are
important for describing secular systems [48], but not the
chaotic ones we consider in this work [39, 40].
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II. ECCENTRIC CAPTURE DISTANCES

There are two characteristic pericenter distances re-
lated to the formation of eccentric BBH mergers: the
distance at which the GW peak frequency of a BBH has
a certain value f , denoted by rf , and the distance from
which a BBH can undergo a GW capture and still have
a non-negligible eccentricity ef when its GW peak fre-
quency is f , denoted by rEM, where ‘EM’ is short for
‘Eccentric Merger’. In the resonating three-body prob-
lem [40], a third relevant distance also exists, namely the
characteristic distance from which two of the three inter-
acting BHs will be able to undergo a GW capture during
the interaction without being interrupted by the bound
single, referred to as rcap. As shown in [49], the distance
rcap does not equal a constant value, in contrast to rf and
rEM, but differs between each of the temporarily lived
BH pairs, also referred to as intermediate state (IMS)
BBHs [40, 49], assembled during the resonating three-
body state. In this paper we assume that rcap > rEM, i.e.,
we work in the limit where all IMS BBHs with pericenter
distance rp ≤ rEM also undergo a GW capture merger.
This is an excellent approximation for LIGO sources, but
not necessarily for LISA sources, due to their difference in
frequency sensitivity. In the following three paragraphs
we estimate rf (GW frequency distance), rEM (Eccen-
tric merger distance), and rcap (GW capture distance),
respectively. For further descriptions of the resonating
three-body problem with and without GR we refer the
reader to [40, 43, 49–52].

A. GW frequency distance rf

The GW peak frequency f of a BBH with SMA a
and eccentricity e, can be approximated by that found
from assuming the two BHs are on a circular orbit with
a SMA equal to the pericenter distance rp = a(1 − e)
[53]. Using that the emitted GW frequency is two times
the Keplerian orbital frequency follows directly that f ≈

π−1
√

2Gm/r3f . For a BBH to emit GWs with peak fre-

quency f , its pericenter distance must therefore be,

rf ≈

(

2Gm

f2π2

)1/3

. (1)

As a result, if a BBH has a pericenter distance rp ≤
rf (f = 10 Hz) then it will emit GWs at a frequency
f ≥ 10 Hz and therefore be immediately observable by
an instrument similar to LIGO. As the relevant distance
rf for LIGO is ≪ a for all realistic astrophysical sys-
tems, the corresponding BBH eccentricity will therefore
be extremely high, as indeed found using numerical PN
scattering experiments [43]. Such GW sources are said
to be born in the LIGO band [43].
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FIG. 1. Formation of an eccentric BBH GW merger during a
resonating binary-single interaction between three equal mass
BHs. The location of the eccentric GW capture merger is de-
noted by ‘GW capture’, where the initial paths of the incom-
ing BBH and single BH, are denoted by ‘Binary’ and ‘Single’,
respectively. The GW capture forms as a result of GW emis-
sion during a close encounter between two of the three BHs
while they temporarily form a bound three-body state. Such
GW capture mergers often appear highly eccentric at 10 Hz.

B. Eccentric merger distance rEM

A BBH that forms with an initial pericenter distance
rp > rf is not immediately observable at GW frequency
f . For that, its pericenter distance must decrease, which
naturally happens through GW emission during inspiral
[54]. However, in that process, the BBH also undergoes
significant circularization [54], and will as a result gen-
erally appear with a relative low eccentricity once the
GW peak frequency is f . To estimate the characteris-
tic pericenter distance rEM for which the eccentricity is
ef at frequency f , we make use of the analytical rela-
tion between the time evolving pericenter distance and
eccentricity derived in [54],

rp(e) = rf × F (e)/F (ef ), (2)

where F (e) denotes the function,

F (e) =
e12/19

1 + e

(

1 +
121

304
e2
)870/2299

. (3)

We have here normalized the expression for rp(e) such
that rp = rf when e = ef . Using that the eccentricity of
a typical IMS BBH at the time of its formation is close
to unity, as rEM ≪ a, one finds that rEM is simply given
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by Equation (2) evaluated in the limit for which e → 1,

rEM ≈ rf ×
1

2F (ef)

(

425

304

)870/2299

. (4)

For ef = 0.1 follows that rEM/rf ≈ 2.7, i.e., GW capture
mergers with an initial rp up to about three times the
distance rf will appear eccentric at the time of observa-
tion for an instrument similar to LIGO. Note here that
this ratio is independent of the frequency f .

C. GW capture distance rcap

The characteristic pericenter distance from which two
of the three interacting BHs can undergo a GW cap-
ture merger, rcap, is that for which the GW energy
loss integrated over one pericenter passage, ∆Ep(rp) ≈

(85π/12)G7/2c−5m9/2r
−7/2
p (see [55]), is comparable to

the total energy of the three-body system [49, 50] that
in the HB limit is that of the initial target binary,
EB(a) ≈ Gm2/(2a) (see [40]). Solving for the pericenter
distance for which ∆Ep(rcap) = EB(a), one now finds
[50],

rcap ≈ Rm × (a/Rm)
2/7

, (5)

where Rm denotes the Schwarzschild radius of a BH with
mass m. As described in the introduction to Section II,
rcap is not a fixed distance, but varies throughout the res-
onating state [40, 49], the normalization of the estimate
given by the above Equation (5) is therefore only approx-
imate. However, to get a sense of the relevant scale, one
finds for m = 20M⊙ and a = 1 au that rcap/Rm ≈ 100,
i.e., for these values if two of the three BHs pass each
other within a distance of ∼ 100 × Rm, then they are
likely to undergo a GW capture merger. For a more ex-
tensive solution and description of the problem, where
the varying capture distance is taken into account, we
refer the reader to [49]. An example of a GW capture
forming during a resonating binary-single interaction is
shown in Figure 1.

III. ECCENTRIC MERGER PROBABILITY

The total probability for a BBH to undergo an eccen-
tric GW capture merger during binary-single interactions
(Figure 1) inside a cluster (Figure 2), can be estimated by
simply summing up the probability for each of the hard-
ening interactions the BBH must undergo before ejection
from the cluster is possible. In the sections below we es-
timate this integrated probability, show how it depends
on the properties of the host cluster, and compare it to
other BBH merger types. For our calculations we assume
that the probability for the BBH in question to undergo
a merger before ejection is possible ≪ 1, which allow
us to express the total probability for any merger type

as a simple uncorrelated sum over the interactions. As
later derived in Section III D 2, and illustrated in Section
IV, this assumption is valid for standard GC systems,
but will break down for dense nuclear star clusters. The
process of BBH hardening and cluster ejection is further
illustrated and described in Figure 2.

A. A single interaction

We first estimate the probability for an IMS BBH to
form and undergo a GW capture merger with an initial
rp ≤ rEM, during an interaction between a BBH with
initial SMA a, and a single incoming BH. We generally
refer to this probability as PEM(a). For this, we start by
noting that the SMA of each formed IMS BBH, denoted
by aIMS, is similar to the SMA of the initial target bi-
nary, i.e., aIMS ≈ a. For a BBH to form with an initial
rp < rEM its eccentricity at formation must therefore be
> eEM, where eEM = 1 − rEM/a. The probability for
a single IMS BBH to form with rp < rEM is therefore
equal to that of forming with e > eEM, which is given by
(1 − e2EM) ≈ 2(1 − eEM) = 2rEM/a, under the assump-
tion that the eccentricity distribution follows a so-called
thermal distribution P (e) = 2e [45]. By weighting with
the average number of IMS BBHs forming during a HB
binary-single interaction, denoted here by NIMS, one now
finds,

PEM(a) ≈
2rEM

a
×NIMS. (6)

We note here that NIMS in the collisionless non-
relativistic HB limit is independent of both the absolute
mass scale and the initial SMA [46, 56]. As rcap ≪ a, we
can therefore take NIMS to be constant in this work. Its
value can be analytically estimated by using that the nor-
malized orbital energy distribution of binaries assembled
in three-body interactions approximately follows [45, 57],

P (EB) ≈ (7/2)EB(a)
7/2 × E

−9/2
B , (7)

Following this approach, the number NIMS is simply
equal to the probability for an assembled BBH to have
EB < EB(a) (single is bound) divided by the probability
for EB > EB(a) (single is unbound). These probabili-
ties can be found from integrations of Equation (7), from
which follows that NIMS ≈ (max(aIMS)/a)

7/2, where
max(aIMS) denotes the maximum value of aIMS. The
ratio max(aIMS)/a is between 2− 3 (an exact value can-
not be derived, as our framework breaks down when the
three-body state no longer can be described by a binary
with a bound single [49]), which then translates to an
NIMS between 10 ∼ 40. Using a large set of isotropic
three-body scatterings we determined its average value
to be NIMS ≈ 20, which is the value we will use through-
out the paper.
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B. Integrating over hardening interactions

The majority of BBHs in a cluster are formed with an
initial a, denoted by ain, that is greater than the maxi-
mum a that leads to a dynamical ejection of the BBH out
of the cluster through a binary-single interaction (we de-
termine this value later in the paper), a value we refer to
as aej. A newly formed BBH will therefore typically have
to undergo several hardening binary-single interactions,
each of which slightly decreases its SMA, before ejec-
tion from the cluster is possible. During each of these
interactions there is a finite probability for two of the
three BHs to undergo an eccentric GW capture merger,
implying that the relative number of eccentric mergers
forming per BBH is larger than the number evaluated at,
e.g., aej. The eccentric merger fraction must therefore be
larger than the recently reported 1 ∼ 2% by [43, 49]. In
the paragraphs below we estimate the expected increase
from including the dynamical hardening process.

1. Binary-single hardening process

We start by considering a single BBH, and assume
that its SMA per interaction changes from a (before the
binary-single interaction) to δa (after the interaction),
where δ < 1 (see Figure 2). We note here that δ can be
considered a constant in the HB limit, due to the scale
free nature of the problem [46]. A representative value
for δ can be found by the use of the binary energy distri-

bution P (EB) ∝ E
−9/2
B introduced in Equation (7). By

changing variable from EB to δ, one finds that the mean
value of δ, denoted here by 〈δ〉, is given by,

〈δ〉 =
7

2

∫ 1

0

δ7/2dδ =
7

9
. (8)

For simplicity, we will therefore use δ = 7/9 throughout
the paper when evaluating actual numbers; however, we
do note that to estimate the true expectation values of
the different observables we consider in this paper the
full distribution of δ must in principle be used. This is
not easy, but we do hope to improve on this in upcom-
ing studies. Finally, it is worth noting that the average
value of EB, found by simply integrating over EBP (EB),
is given by 〈EB〉 = (7/5)EB(a), which implies that the
average fractional increase in binding energy per binary-
single interaction is 7/5 − 1 = 0.4. This estimate is in
full agreement with that found from numerical scatter-
ings experiments [14], which validates at least this part
of our approach.
Following this approach, each binary-single interaction

therefore releases an amount of energy equal to ∆Ebs =
(1/δ− 1)×EB(a), which relates to the recoil velocity the
BBH receives in the three-body center-of-mass (COM)
as ∆Ebs = 3mv2B, where vB is the BBH recoil velocity
defined at infinity. When a is such that vB > vesc, where
vesc denotes the escape velocity of the cluster, then, per

definition, the BBH escapes. By assuming that vesc is
about the velocity dispersion of the cluster, one can write
the ratio between the HB limit for a [46], denoted by aHB,
and the ejection value aej by,

aHB

aej
≈

9

1/δ − 1
. (9)

We note here that this is a lower limit as vesc in general
is slightly greater than the dispersion value. For δ =
7/9 one finds aHB/aej ≈ 30, i.e., a binary formed with
a = aHB needs to decrease its SMA by a factor of ∼ 30
before its binding energy is large enough for the three-
body recoil to eject it form the cluster.

Finally, the number of binary-single interactions re-
quired to bring a BBH from ain to aej, denoted by
Nbs(ain, aej), is given by,

Nbs(ain, aej) =

∫ ain

aej

1

1− δ

1

a
da =

1

1− δ
ln

(

ain
aej

)

, (10)

where we have used that da = −a(1 − δ)dNbs. For
δ = 7/9 one finds that Nbs(aHB, aej) ≈ 15, which illus-
trates the point that a BBH formed in a cluster generally
undergoes a non-negligible number of scatterings before
ejection (see [14, 58] for complementary descriptions of
the binary hardening and ejection process).

2. Eccentric mergers forming during hardening

We now estimate the probability for a BBH to un-
dergo a GW capture merger with an initial rp < rEM

(eccentric GW capture merger), during the binary-single
interactions that harden it from its initial SMA ain to
its final ejection value aej. A probability we refer to
as PEM(ain, aej). By using that the differential eccen-
tric merger probability can be written as dPEM(a) =
PEM(a)dNbs, together with da = −a(1 − δ)dNbs, one
finds,

PEM(ain, aej) =
1

1− δ

∫ ain

aej

PEM(a)

a
da ≈

PEM(aej)

1− δ
,

(11)
where for the last term we have assumed that ain ≫ aej.
As seen, in this limit PEM does not depend on ain, i.e., our
estimate is not strongly dependent on the initial condi-
tions of the BBH and how it exactly formed. For δ = 7/9,
we therefore conclude that our model, although idealized,
seems to robustly predict that the series of hardening
binary-single interactions the BBH must undergo before
ejection, leads to a relative increase in the eccentric GW
capture merger probability by a factor of ≈ 9/2, com-
pared to simply evaluating the probability at aej.
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FIG. 2. Illustration of a BBH undergoing hardening binary-
single interactions in a stellar cluster. Initially the BBH (la-
beled by ‘initial’) forms with a SMA aej < ain < aHB, either
dynamically or primordially, after which it sinks to the core
due to dynamical friction. The BBH here undergoes a HB
binary-single interaction, which classically concludes with the
BBH receiving a kick velocity vB that unbinds it from the
single and sends it back into the cluster. It then sinks back to
the core, after which the process repeats. Each of these HB
binary-single interactions gradually decreases the SMA of the
BBH, which correspondingly leads to increasing dynamical
kicks. When the SMA of the BBH reaches a ≈ aej, i.e., when
the dynamical kick velocity is about the escape velocity of
the cluster, then the following binary-single interaction will
eject the BBH out of the cluster (labeled by ‘ejected’), after
which it merges in isolation. However, if GW emission is in-
cluded in the N-body solver, then the BBH can also undergo
a GW capture merger inside the cluster core during one of its
hardening binary-single interactions, as illustrated in Figure
1. The grey insert circle shows a zoom in on the core region.
As described, the BBH here undergoes binary-single inter-
actions that either will lead to hardening (the SMA changes
from a to δa, labeled ‘hardening’), or a GW merger during the
interaction if GR effects are included (labeled ‘GW merger’).

C. Relation to cluster compactness

The value of PEM(ain, aej) depends on aej, which we
note in turn depends on the cluster environment through
its escape velocity vesc. By using the relations for ∆Ebs

presented back in Section III B 1, and that vB ≈ vesc
when a ≈ aej, per definition, one finds the following re-

lation,

aej ≈
1

6

(

1

δ
− 1

)

Gm

v2esc
. (12)

The probability PEM is therefore ∝ v2esc, leading to the
general result that the higher vesc is, the higher PEM is.
Using that the escape velocity relates to the cluster com-
pactness as v2esc ≈ GMC/RC, where MC and RC denote
the characteristic mass and radius of the cluster, respec-
tively, one finds,

PEM(ain, aej) ≈
12δNIMS

(1− δ)2
rEM

m
×

MC

RC

. (13)

This leads to the important conclusion that the fraction
of BBHs that undergoes an eccentric GW capture merger
before being ejected from the cluster, increases linearly
with the compactness of the cluster. Measuring the frac-
tion of eccentric to circular merges can therefore be used
to probe the environmental origin of BBH mergers, as
described later in Section IV.

In addition, this further suggests that GW capture
mergers could play a significant dynamical role in relative
compact clusters, as they are intrinsically formed inside
and bound to the cluster in contrast to the ejected popu-
lation. If this would lead to a run-away BH build up, or
unique GW observables, is straight forward to study with
full N -body simulations including PN effects (as with the
MC cluster studies [11, 13], recent N -body studies on BH
dynamics in clusters do not include PN terms [14]). We
reserve that for a future study.

D. Three-body vs. two-body mergers

So far we have only considered the probability for a
BBH to undergo a merger inside the cluster during three-
body interactions; however, a non-negligible fraction of
the BBHs will undergo a two-body merger inside the clus-
ter between interactions, or outside the cluster after be-
ing ejected. In the sections below we start by comparing
the probability for a BBH to undergo an eccentric merger
inside the cluster doing three-body interactions to the
probability that an ejected BBH merger is eccentric. We
perform this comparison to illustrate the importance of
the three-body GW capture mergers considered in this
work, and thereby the inclusion of PN terms in the N -
body EOM. We then estimate the probability for a BBH
to undergo an isolated two-body merger between interac-
tions inside the cluster before dynamical ejection is pos-
sible. Finally we list how these different merger types
and outcomes scale with the BH mass and host cluster
properties.
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1. Importance of three-body mergers and PN terms

Cluster simulations that are based on Newtonian codes
[e.g., 11, 13], are in principle only able to probe the popu-
lation of BBHs that merge outside the cluster after being
dynamically ejected; however, the ejected BBHs are not
representative for the population of eccentric BBH merg-
ers [e.g., 43]. Recent Newtonian studies have therefore
underestimated the fraction of BBH mergers that will
appear eccentric at the time of observation. To quantify
how many more eccentric BBH mergers that is expected
to form when our considered GW capture mergers are
taken into account, we first use that the probability for
an ejected BBH to have rp < rEM, i.e. to appear with

an e > ef at frequency f , denoted here by P ej,bin
EM (aej),

is simply given by PEM(aej)/NIMS. This leads us to the
following ratio,

PEM(ain, aej)

P ej,bin
EM (aej)

=
NIMS

1− δ
≈ 100, (14)

which states that if one takes into account the eccentric
GW capture mergers then the probability for forming an
eccentric BBH merger is about two orders of magnitude

higher than one finds from only considering the ejected
BBH population. This clearly illustrates the importance
of including PN terms.

2. Isolated two-body mergers between interactions

Our approach for calculating the total probability for a
BBH to undergo an eccentric merger during its hardening
binary-single interactions, relies on the assumption that
the probability for it to undergo a merger before ejection
is ≪ 1. However, in very dense stellar systems aej will be
so low that the BBH has a non-negligible probability to
merge between its binary-single interactions before the
ejection limit is reached [e.g., 23]. In the following we
estimate the probability for a BBH to merge between
interactions integrated from ain to aej, a probability we
denote by PIM(ain, aej), where ‘IM’ is short for ‘Isolated
Merger’.
To estimate PIM(ain, aej) we first need to derive the

probability for that a BBH with SMA a undergoes an
isolated merger before its next binary-single interaction,
PIM(a). Using that the GW inspiral life time can be writ-
ten as tlife(a, e) ≈ tlife(a)(1−e2)7/2 [54], where tlife(a) de-
notes the ‘circular life time’ for which e = 0, and assum-
ing the BBH eccentricity distribution follows P (e) = 2e
[45], one finds that [49],

PIM(a) ≈







(tbs(a)/tlife(a))
2/7, tlife(a) > tbs(a)

1, tlife(a) ≤ tbs(a),
(15)

where tbs(a) denotes the the average time between
binary-single encounters at SMA a. The time tbs(a)

is to leading order inversely proportional to the BH
binary-single encounter rate, i.e., tbs(a) ≈ 1/Γbs ≈
(nsσbsvdisp)

−1, where ns is the number density of single
BHs, σbs is the binary-single interaction cross section,
and vdisp is the local velocity dispersion (See e.g. [49]).
With this expression for PIM(a), we can now estimate
PIM(ain, aej) by simply integrating PIM(a) over the BBH
hardening iteractions, in the same way as we estimated
PEM(ain, aej) in Section III B 2. Following this approach
we find,

PIM(ain, aej) ≈
1

1− δ

∫ ain

aej

PIM(a)

a
da ≈

7

10

PIM(aej)

1− δ
,

(16)
where for the last term we have assumed that ain ≫ aej.
The normalization of this expression is only approximate,
as we assume that each PIM(a) is uncorrelated and nei-
ther the local cluster environment nor the BBH change
properties between interactions. A similar expression was
derived in [23], but using a slightly different approach.
We will evaluate PIM(ain, aej) for different clusters and
BH masses in Section IV.

E. Black hole merger scaling relations

We conclude this section by here presenting the rele-
vant scalings of the different BBH merger types described
so far including isolated mergers, GW capture mergers,
eccentric mergers, and ejected BBHs that merge within a
Hubble time. As above, we assume that the probability
for merger before ejection is ≪ 1, which allow us to treat
the different outcomes as uncorrelated. Solving for the
general case will be the topic of future studies.
First, the probability for a BBH to undergo an isolated

merger between interactions is given by Equation (15)
and (16), which also can be written as,

PIM(ain, aej) ∝ n−2/7
s m−6/7v22/7esc ∝ (MC/m)4/7v10/7esc ,

(17)
where for the last equality we have assumed that ns ∝
(MC/m)R−3

C . As seen, PIM(ain, aej) increases both with
the escape velocity, vesc, and with the number of single
BHs in the core, Ns. The rather surprising scaling with
Ns originates from that if Ns increases for a fixed vesc,
then the core have to expand which leads to a decrease in
the density and thereby the binary-single encounter rate.
The probability for that a BBH undergoes a GW cap-

ture merger during a binary-single interaction integrated
from ain to aej, denoted by Pcap(ain, aej), is proportional
to Equation (6), but with rcap from Equation (5) instead
of rEM [e.g., 49]. From this follows the relation,

Pcap(ain, aej) ∝ v10/7esc . (18)

As seen, Pcap(ain, aej) is surprisingly independent of the
BH mass m, the probability for a GW capture merger
to form during hardening depends therefore only on the
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compactness of the cluster. By comparing with PIM

from Equation (17), one finds Pcap/PIM ∝ (MC/m)−4/7,
which suggests that the number of binary-single GW cap-
ture mergers relative to the number of two-body isolated
mergers scales inversely with the number of BHs in the
core.

The probability for a GW capture merger to appear
eccentric at the time of observation is given by Equation
(11), which can be written as,

PEM(ain, aej) ∝ m−2/3v2esc. (19)

As described in Section IV below, the ratio between PEM

and the probability for that an ejected BBH undergoes a
merger within a Hubble time, denoted here by PHM(aej),
directly relates to the observable fraction of eccentric
mergers. The probability PHM(aej) is given by Equation
(15), but with the Hubble time tH as the time limit in-
stead of the binary-single encounter time tbs [49]. From
this follows the relation,

PHM(aej) ∝ m−2/7v16/7esc . (20)

This lead us to the ratio PEM/PHM ∝ m−8/21v
−2/7
esc ,

which suggests that the largest fraction of eccentric BBH
mergers is formed in interactions involving lower mass
BHs in clusters with a relative low velocity dispersion.
In the section below we include the correct normaliza-
tions, from which we are able to estimate the fraction of
eccentric BBH mergers observable by LIGO.

IV. RATE OF ECCENTRIC MERGERS

The relevant measure for using eccentric GW merg-
ers to constrain the formation environment of merging
BBHs, is not the absolute probability PEM, but instead
the fraction between the rate of eccentric and circular
mergers, as this is directly observable, whereas PEM it-
self is not (PEM might be indirectly observable if the in-
cluster GW capture mergers are able to significantly alter
the cluster dynamics, which could affect the overall BBH
merger rate, spin and mass distributions). For deriving
this fraction, we first need to estimate the probability
for an ejected BBH to merge within a Hubble time tH,
denoted here by P<tH

CM , where ‘CM’ refers to ‘Circular
Merger’ as the ejected population greatly dominates the
circular population. As described in Section III E this
probability is given by Equation (15), but with the Hub-
ble time tH instead of tbs [49]. By then assuming that
the average rate of binary-single interactions is approxi-
mately constant, one can now approximate the ratio be-
tween the present rate of eccentric mergers (forming dur-
ing binary-single interactions inside the cluster), ΓEM,
and circular mergers (dominated by the ejected popula-

tion), ΓCM, by

RE/C =
ΓEM

ΓCM

≈
1

1− δ

PEM(aej)

P<tH
CM (aej)

, (21)

as further described in [49]. The ratio RE/C evaluated
for the relevant LIGO values ef = 0.1 and f = 10 Hz is
shown with black contour lines in Figure 3, as a function
of cluster escape velocity vesc, and BH mass m, where
the green colored region roughly indicates where our es-
timate for PEM is valid (PIM(ain, aej) < 0.1 assuming
a constant single BH density of ns = 106 pc−3). As
seen, our model suggests that ∼ 5% of all observable
GW mergers originating from GCs will have an eccen-
tricity e > 0.1 when entering the LIGO band for BHs
with masses . 50 M⊙ assembled in a typical GC sys-
tem. In more dense environments, such as in galactic
nuclei where the escape velocity is significantly higher
[e.g., 59], our estimate breaks down as the probability
for the interacting BBHs to merge between encounters
before ejection is possible is close to unity (red colored
region). Eccentric mergers will still form in such dense
environments, but estimating their relative rate requires
higher order corrections to our formalism, which will be
the topic of future work. Some work has been done on
this limit by [23], but without the PN terms we have
shown to be crucial in this work.
Finally, we do note from Figure 3 that RE/C does not

take unique values across vesc and m, making it difficult
to accurately infer the environment based on RE/C alone.
However, it is possible to break this degeneracy by the
use of absolute rates, which illustrates both the promising
future and necessity for including GR terms in cluster
studies.

V. CONCLUSIONS

We have in this paper studied the dynamical and GR
evolution of BBHs undergoing three-body interactions in
dense clusters, from which we find that the rate of eccen-
tric BBH mergers observable by LIGO (eccentricity> 0.1
at 10 Hz) relative to the rate of circular BBH mergers is
likely to be ≈ 5% (see Figure 3), for standard GC sys-
tems. This eccentric population form through GW cap-
tures during resonating binary-single interactions (Figure
1), and can therefore only be resolved using an N -body
code that includes the 2.5 PN term, which accounts for
orbital energy dissipation through the emission of GWs
[e.g., 47]. This explains why recent Newtonian MC stud-
ies [e.g., 11], not have been able to resolve this pop-
ulation (See Section IIID 1). Therefore, despite what
have been concluded in the recent literature, our results
strongly suggest that eccentricity can be used to observa-
tionally distinguish different BBH merger channels from
each other. For example, if no eccentric BBH mergers are
observed in the first, say, 100 LIGO observations, then
the field binary channel are likely to be in favor of the
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FIG. 3. The black solid contours show the ratio
PEM(ain, aej)/P

<tH
CM (aej), evaluated for the relevant LIGO val-

ues ef = 0.1 and f = 10 Hz, as a function of the escape ve-
locity of the host cluster vesc (x-axis), and the BH mass m
(y-axis). As described in Section IV, this ratio approximately
equals the ratio between the present rate of eccentric GW cap-
ture mergers and ejected circular mergers, RE/C = ΓEM/ΓCM,
which observationally can be used to constrain the fraction of
all BBH mergers forming in clusters. As seen, the relative rate
of BBH mergers with e ≥ 0.1 at 10 Hz is ∼ 5% for a typical
GC, which interestingly suggests that eccentric LIGO sources
assembled in clusters will be relative frequent. The blue dotted
contours show the integrated probability for a given BBH to
undergo an isolated merger between encounters during hard-
ening from SMA ain to aej, PIM(ain, aej), derived in Section
IIID 2. For this estimate we have assumed that ns = 106 pc−3

and that vdisp ≈ vesc. The green region indicates where our
estimate of RE/C is valid (PIM(ain, aej) ≪ 0.1, i.e., merger be-
fore ejection is unlikely), the red region where it breaks down
(all BBHs will merge before ejection), and the grey region the
transition. As seen, our estimate is valid for classical GC sys-
tems, but corrections are needed for describing dense nuclear
star clusters.

GC channel. This greatly motivates recent work on ec-
centric wave forms [e.g., 35–37], and might be one of the
only reliable tests if the majority of BHs are born with
intrinsic small spin.

Our results further suggest that the rate of GW cap-
ture mergers forming during binary-single interactions,
eccentric or not (see Section II C), to the rate of ejected
mergers is higher than the ∼ 2% previously stated
[43, 49], as a newly formed BBH generally undergoes sev-
eral interactions before being ejected, and not only one.
The relative increase from this hardening process can be
found by integrating the capture probability Pcap from
ain to aej, similar to the procedure described in Section
III B 2, which evaluates to (7/5) × (1/(1 − δ)) ≈ 6 for
δ = 7/9, suggesting that GW capture mergers forming
during binary-single interactions are likely to constitute
∼ 10% of all observable BBH mergers assembled in GCs.
As noted by [49], the GW capture mergers will remain
bound to their host cluster if the GW kick is low, which
could lead to significant dynamical changes of the clus-
ter at especially early times where the GW capture sce-
nario likely dominates the BBH merger rate [49]. These
changes could propagate to what we observe today, im-
plying that GW captures might be indirectly probed even
if their current rate is low. This is straight forward to
study using a PN N -body code and will be the topic of
future studies.
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