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Joint electromagnetic and gravitational-wave (GW) observation is a major goal of both the GW
astronomy and electromagnetic astronomy communities for the coming decade. One way to accom-
plish this goal is to direct follow-up of GW candidates. Prompt electromagnetic emission may fade
quickly, therefore it is desirable to have GW detection happen as quickly as possible. A leading
source of latency in GW detection is the whitening of the data. We examine the performance of
a zero-latency whitening filter in a detection pipeline for compact binary coalescence (CBC) GW
signals. We find that the filter reproduces signal-to-noise ratio (SNR) sufficiently consistent with
the results of the original high-latency and phase-preserving filter for both noise and artificial GW
signals (called “injections”). Additionally, we demonstrate that these two whitening filters show
excellent agreement in χ2 value, a discriminator for GW signals.
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I. INTRODUCTION

Detecting gravitational wave signals from coalescing
compact objects such as neutron stars and black holes is a
primary goal for ground-based gravitational-wave detec-
tors. The advanced LIGO [1] and advanced Virgo grav-
itational wave detectors [2] have successfully detected
gravitational waves from several black hole binaries [3–
6] following the initial binary black hole discovery of
GW150914 [7]. Most recently, LIGO and Virgo detected
the first ever neutron star collision, known as GW170817
[8]. Quite remarkably, GW170817 was detected in co-
incidence with a short gamma-ray burst (SGRB), which
has long been expected to be one of the most promising
electromagnetic (EM) counterpart candidates to binary
neutron star mergers [9]. Furthermore, subsequent elec-
tromagnetic emission spanning from radio up to X-ray
was detected within hours to weeks after the GW emis-
sion [10].
The association of GW170817 with electromagnetic

transients across many wavelengths and the discoveries
that followed were initiated by the rapid identification
of the gravitational wave signal by the GstLAL detec-
tion pipeline [11]. Until the detection of GW170817, the
question of what data processing latency is required, sci-
entifically, for such a GW detection system to be most ef-
fective at enabling multimessenger astrophysics has been
open. Theoretical work on GRB models has proposed a
vast range of the time delay between GW emission and
the onset of the following SGRB, from <10 s [12] to 103 s
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to 104 s [13]. Now it is known the time lag is approxi-
mately 2 s [8], which motivates achieving alert latencies
below 2 s.

Within the low-latency analysis paradigm, the GW de-
tection problem consists of three main stages: data cal-
ibration and distribution, candidate identification, and
alert distribution [11, 14]. The GstLAL project (publicly
available in [15]) began in 2009 in order to produce near
zero-latency gravitational wave candidate identification
[14]. The GstLAL candidate identification achieved la-
tencies of approximately one minute in advanced LIGO’s
first observing run. For example, the binary black hole
known as GW151226 was detected within 70 seconds [3]
by the GstLAL-based compact binary coalescence detec-
tion pipeline. Also, the GstLAL has inspired related
works to pursue a low-latency search for CBC GW sig-
nals, such as J. Luan, et al. [16], which proposes an
algorithm to reduce computational cost for matched fil-
tering by introducing chains of Infinite Impulse Response
filters.

This work addresses one of the open questions put for-
ward in [14] for how to achieve theoretically zero latency
candidate event identification, namely, data whitening,
which was the largest source of candidate identification
latency for the GstLAL pipeline in advanced LIGO’s first
observing run. Data whitening is just one part Gst-
LAL’s modular framework for gravitational wave candi-
date event identification which also includes matched fil-
tering an orthogonal decomposition of gravitational wave
templates [17], and using a multidimensional likelihood
ratio based ranking statistic to distinguish noise from sig-
nal [18]. The overarching pipeline is described in [11] and
we will not elaborate further on the pipeline here.

In this work, we describe how the data whitening filter



2

can be optimized in terms of latency. In particular, we
implement a zero-latency algorithm with a linear finite-
impulse-response (FIR) filter. We use the minimum-
phase FIR filter approximation technique described by
Damera-Venkata, et al. in [19]. Other algorithms for
whitening filter approximation are available, for exam-
ple [20–24]. In principle, the zero-latency algorithm can
be used by any GW data-analysis pipeline. For the
study presented here we used the GstLAL [11] detection
pipeline and note that this whitening algorithm was used
during the detection of GW170817. In order to verify the
suitability of the zero latency whitening algorithm, we
compare relevant parameters of simulated gravitational
wave candidates, namely SNR and χ2, to the original
frequency-domain whitening algorithm. Since, as will be
shown below, we find the Damera-Venkata, et al., al-
gorithm to meet the needs of low-latency searches for
compact-object mergers, we have not investigated the
performance of other techniques at this time.
This paper is organized as follows. In Section II, we

give an overview of statistical method to analyze CBC
GW signals and the comparison between the frequency-
domain and zero-latency whitening algorithms. In Sec-
tion III, we present the performance tests of the zero-
latency whitening filter, including the comparison to the
original whitening filter. Lastly, we conclude in Section
IV.

II. METHOD

A. Matched filtering and χ2 test

One statistic used to estimate the detection signifi-
cance of GW signals is the signal-to-noise ratio (SNR),
ρ, computed using a matched filter [25]. For the cali-
brated strain data s(t) and a template waveform h(t),
the output of the matched filter is

z = (s(t), h(t)) ≡ 4

∫ ∞

0

h̃∗(f)s̃(f)

Sn(f)
df, (1)

where Sn(f) is the one-sided power spectral density of
the detector strain noise. ρ is defined as the output of
the matched filter in the case of a normalized GW signal

ρ ≡ z

σ
, (2)

where

σ2 ≡ (h(t), h(t)). (3)

Additionally, strain data contain noise transients
which do not obey a Gaussian distribution and may ac-
cidentally produce high ρ. Such non-Gaussian transient
(referred to as “glitches”) are distinct from real GW sig-
nals in that they do not have the morphology of the tem-
plate h(t). Making use of this distinction, we employ

another statistic, χ2, defined below, in order to distin-
guish the transients [11]. The time-dependent SNR of
data is compared with that expected from the a real sig-
nal using the auto-correlation function of the template at
its time of peak amplitude, R(t). A χ2 value is computed
for each trigger using the time-dependent SNR ρ(t), the
peak SNR ρp at the timestamp of tp, the noise-weighted
auto-correlation function of a template R(t).

χ2 ≡ 1

µ

∫ tp+δt

tp−δt

|ρ(t)− ρpR(t)|2 dt (4)

where

ρ(t) ≡ 4

σ

∫ ∞

0

h̃∗(f)s̃(f)

Sn(f)
e2πif(t−tp) df (5)

R(t) ≡ 4

σ2

∫ ∞

0

|h̃(f)|2
Sn(f)

e2πif(t−tp) df (6)

The factor µ is to normalize the χ value for a well-fit
signal. The time window δt is a tunable parameter.
Both SNR and χ2 values are used to derive a likelihood

ratio necessary for ranking triggers [18].

B. Frequency-domain whitening filter

As can be seen in (1), a matched filter is interpreted

simply as an inner product between s̃(f) and h̃∗(f) with

the weight of 1/
√

Sn(f) for each. This weighting process
is called “whitening”, named after the fact that the trans-
formation ideally returns only white noise. Referring to
Fig. 1, the power spectrum density (PSD) of 32 s chunks
of input data is measured for the subsequent whitening
(i). Since the discrete Fourier transform (DFT) processes
a chunk of a time series as if it were a periodic infinite
series, we apply a Hann window function (ii) to suppress
discontinuities on the boundaries of each period. These
discontinuities will lead to click noise in the whitened
data and may produce fake GW signals. Furthermore,
in order to prevent any remaining discontinuity on the
boundaries, some additional samples around the 32 s time
series have been filled with zeros after applying the hann
window. Then, the spectrum of the Hann-windowed
block is computed (iii) and the block is whitened with the
PSD (iv). After the inverse DFT (v), we further apply
a Tukey window (vi). The purpose of this windowing is
to suppress time-domain leakage which appears through
the whitening and IDFT. The above procedure is repeat-
edly applied for every 32 s block with a 50% overlap and
the PSD is updated every 16 s. In the end, all whitened
data chunks, each of which is separately processed, are
added with a consecutive 16 s shift in order to output a
continuous time series of the whitened data (vii). The
algorithm’s main drawback is latency. Since a 32 s block
is processed all at once every 16 s, the latency depends on
the sample’s location in the block, and can be anywhere
from 16 s to 32 s.
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FIG. 1. A schematic diagram of the frequency-domain
whitening algorithm. Each numbered process corresponds to
the numbers mentioned in Section II B. Wh(t) and Wt(t) rep-
resent Hann and Tukey window functions, respectively.

C. Time-domain whitening filter

FIR-filter-based algorithm

Here, we present an alternative FIR-filter-based al-
gorithm to the frequency-domain whitening described
above. For the given LIGO strain data, the square root
of the inverse PSD is employed to construct the FIR of
a linear-phase filter shown in Fig. 3. Therefore, it is pos-
sible to replace step (iv) in Fig. 1 with this FIR filter. It
should be noted that due to its peak location, the FIR-
filter-based algorithm still has a latency of 16 s. Fig. 2 is
amplitude and phase responses of the filter. The phase
response shows no phase shift during this whitening pro-
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FIG. 2. The amplitude phase response of the linear-phase
whitening filter. The Nyquist frequency is 2048Hz.

cess, which guarantees preserving the phase of the data.

Zero-latency algorithm

According to the discussion in the previous paragraph,
the peak of the filter must be moved to the left for the
latency reduction. It is not possible to change the filter’s
latency without changing the whitening transformation.
The result will be an approximation of the original filter.
We adopt the technique of Damera-Venkata et al. [19]
which derives a minimum-phase approximation of the de-
sired filter by applying a discrete Hilbert transform to the
logarithm of a given magnitude response. Using more
samples for the given magnitude response, one can more
accurately approximate the magnitude response of the
computed minimum-phase filter. The result is shown in
Fig. 5. In both Fig. 3, 5, the time origin can be uniquely
determined by the requirement that the timestamps at
which artificial GWs (called “injections”) are recovered
be preserved (described in Section. III C and Fig. 12,
13). Thus, Fig. 5 indicates that the FIR filter does not
use any information of future input samples, which is the
reason why it is called a “zero-latency whitening filter”.1

1 We ignore the computation time as the time require to compute

each output sample is significantly less than the sample period
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FIG. 3. The impulse response of the original whitening filter.
This is symmetric about its peak. Negative times indicate the
filter requires data from the future for its evaluation, meaning
the output must be delayed with respect to the input. In this
case, the latency is 16 s.

As described in Section II B, this whitening filter is
equally applied to both of the templates and the strain
data. This can be expressed by writing (1) as

z = 4

∫ ∞

0

(

h̃(f)√
Sn

)∗
(

s̃(f)√
Sn

)

df. (7)

The desired whitening transformation is a frequency-
dependent scale factor (

√

Sn(f) is real-valued, it does
not alter phases). We approximate this transformation
with a purely causal FIR filter. The difference between
the actual transformation and the desired transforma-
tion can be described by introducing an error factor in
the frequency domain representation. If 1/

√

Sn(f) is

the transformation we wish to apply to h̃(f) and s̃(f),

let δ
√

Sn(f)/
√

Sn(f) be the transformation performed
by the causal FIR approximation, so

z = 4

∫ ∞

0

(

h̃(f)√
Sn

δ
√

Sn

)∗
(

s̃(f)√
Sn

δ
√

Sn

)

df (8)

= 4

∫ ∞

0

(

h̃(f)√
Sn

)∗
(

s̃(f)√
Sn

)

∣

∣

∣
δ
√

Sn

∣

∣

∣

2

df. (9)

of the data stream.
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FIG. 4. The amplitude and phase response of the minimum-
phase whitening filter. The Nyquist frequency is 2048Hz.
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FIG. 5. The impulse response of the zero-latency whitening
filter. The impulse response is zero for all negative times,
indicating that this filter is purely causal.
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FIG. 6. Magnitude of auto-correlation of output stream from
the zero-latency whitening filter. It should be noted that this
does not show any peak at the frequency of ∼ 100Hz.
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FIG. 7. Histogram of the output’s amplitude. The depar-
ture of the observed counts from the expected counts outside
(−5, 5) is due to the presence of non-Gaussian “glitches” in
the interferometer data.

We see the matched filter output is insensitive to
arg δ

√
Sn, the phase errors arising from the causal FIR

approximation (shown in Fig. 4), it is sensitive only to
the amplitude errors. Fig. 6, 7, 8 show that the causal
FIR filter approximation succedes in whitening the data,
producing zero mean, unit variance, stationary (nearly)
white Gaussian noise, so the amplitude errors are not
significant.
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FIG. 8. The averaged power spectral density of output stream
from the zero-latency whitening filter. The data below 12Hz
are dropped off to ignore the effect of a high pass filter applied
before the whitening filter.

Smooth PSD tracking

In order to replace the whole algorithm in Fig. 1,
we have implemented an alternative method of the win-
dowing process along with the whitening transformation.
Specifically, we have allowed the PSD transition to occur
continuously. Here, we have created a function which re-
turns a linear combination of the newest and next newest
filters during their transition as described by (10). The
coefficient of the newer filter smoothly shifts from zero
to one, sample by sample, according to a sinusoidal func-
tion. The zero-latency algorithm applies this function
recursively any time a new whitening filter becomes avail-
able.

s′(t) =







































sold(t) (t < tup)

sold(t) cos
2 π

2
(t−tup)
∆ttr

+snew(t) sin
2 π

2
(t−tup)
∆ttr

(tup ≤ t < tup +∆ttr)

snew(t) (tup +∆ttr ≤ t)

(10)

where s′(t) is the resulting filter, sold,new is the FIR of
an older and newer filter respectively, t is the current
time stamp, tup is the time stamp when the PSD is up-
dated and ∆ttr is the duration of the filter transition.
Particularly, we set ∆ttr as 0.125 s in this work so that
the transition timescale lies outside the frequency band
of interest, which starts at 10Hz. Therefore, the detail
of the transition does not affect the detectability of GW
signals. Note that this method is not unique in the ap-
plication of a whitening filter but can be used for other
time-dependent filtering.
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III. TESTS

Unlike the frequency-domain algorithm described in
Section II B, the zero-latency whitening filter does not
conserve the phase of input data, which potentially harms
the GW detectability. Therefore, it is necessary to
demonstrate how significantly this change affects the re-
sulting SNR and χ2.
Here, we implement each of the zero-latency and

frequency-domain whitening filters in the CBC gstLAL
pipeline, which is compiled in LSC Algorithm Library
(LAL) [26]. The pipeline scans LIGO strain data for any
GW signal candidates (called “triggers”) and computes
SNR and χ2 for each trigger. In this work, we employ
strain data from H1 with a duration of 45 056 s (from
08:25:23 to 20:56:19 UTC on 2005/11/27) during the fifth
science run, called S5 [27]. A template bank is used span-
ning: component masses 3M⊙ ≤ m1,m2 ≤ 6M⊙; total
mass 6M⊙ ≤ Mtotal ≤ 12M⊙; a minimal match of 97%;
sampling frequency of 2048Hz; non-spinning waveform
to second post-Newtonian (PN) order. Along with sta-
tistical tests described below, we conduct two kinds of
tests, namely, a noise-based and an injection-based test.
In the noise-based test, the pipeline computes SNR and
χ2 from the strain data with no GW signal. Therefore,
all triggers in this test arise from detector noise which
accidentally produce higher SNR than the threshold. On
the other hand, the injection-based test requires artifi-
cial GW signals, and so we add injections to the same
strain data. An injection is generated once every 31.4 s
in the data, so the number of injections amounts to 1435.
These two tests examine the agreement between the two
whitening filters for noise and signals.

A. Statistical tests

Fig. 6 and Fig. 7 show the auto-correlation and am-
plitude histogram created from an output stream of the
zero-latency whitening filter. For comparison, expected
curves are shown as dashed lines in the both figures,
each of which indicates a delta-function with some vari-
ance and a Gaussian distribution respectively. Both plots
show good agreement between the output and pure white
noise. In particular, there is no apparent peak of the
auto-correlation at around 100Hz, at which the ampli-
tude response shows its peak (See Fig. 4). Also, the av-
eraged power spectral density is shown in Fig. 8. The
spectrum is flatten throughout the shown frequency do-
main. Therefore, we conclude that the zero-latency algo-
rithm sufficiently functions as a whitening filter.

B. Noise-based test

In Fig. 9, we plot SNR and χ2 computed for each noise
trigger by the zero-latency whitening filter versus the

frequency-domain one. Here, we associate each coun-
terpart by spotting a pair of triggers within the end-time
window of 10−2 s and with identical component masses
(m1 and m2). The two whiteners produced triggers with
an SNR of 5 ∼ 60 and a χ2 of 10−1 ∼ 103. Fig. 9 presents
good agreement of both SNR and χ2 between the two
whitening filters.

C. Injection-based test

Fig. 10 shows SNR and χ2 computed with the zero-
latency whitening filter versus the frequency-domain one
in the presence of injections. Also, coalescence phase
for every injection is shown in Fig. 11. The coalescence
phase is a phase of injection waveform at the coalescence
time and determined by the ratio between cosine and sine
components of a chosen template. In this test, we first
simulate waveforms, based on a collection of parameters
chosen randomly from a given probability distribution:
m1 and m2 from a Gaussian distribution with the mean
of 4.5M⊙ and the standard deviation of 0.5M⊙; cosine of
the inclination chosen from a uniform distribution; non-
spinning waveform to second post-Newtonian (PN) order
with the cut-off frequency of 30Hz. Next, the pipeline
searches for and extracts injection by spotting the one
with the highest SNR among all located within 1 s of its
true end time. After the trigger extraction, SNR, χ2 and
coalescence phase of every injection trigger is recorded.
In the end, only those with an SNR less than 100 are
left to fit into the scatter plot, Fig. 10. The above proce-
dure is conducted for both whitening filters and we iden-
tify each counterpart by the end time of each injection.
We have also conducted a consistency test for an injec-
tion’s end time in the case of the two whitening filters.
Fig. 12, 13 show histograms of the discrepancy between
the true and estimated end time of each of the filters.
In the both figures, the central peak has a tail width of
∼100ms, which is consistent with the typical tail width
of the auto-correlation function of injected waveforms,
suggesting that the pipeline properly generates and ex-
tract the injections from the triggers. As a result of the
injection-based test, we find the SNR and χ2 computed
with the zero-latency whitening filter to agree with those
of the frequency-domain one. Although some triggers
indicate that the new whitening filter slightly underesti-
mates an SNR compared to the original one (See Fig. 10),
it will not harm the GW detectability since this case lies
in the higher SNR regime.

IV. CONCLUSION

We have applied and implemented an algorithm that
optimizes latency for the whitening filter in the CBC
data-analysis pipeline. Through statistical tests between
the frequency-domain and zero-latency whitening filters,
we have found that the two statistical values, SNR and
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FIG. 9. Scatter plots of SNR and χ2 computed by the frequency-domain and zero-latency FIR whiteners for noise triggers.
The value of SNR and χ2 range 5 − 60 and 0.2 − 103 respectively. We have associated a pair of triggers within the end-time
window of 10−2 s and with identical component masses, m1 and m2

χ2, are in sufficient agreement for both noise and injec-
tion triggers. As a result, we have achieved a 16 s latency
reduction in the whitening process. It should be noted
that this work has yielded the first confirmation that a
zero-latency whitening filter can be employed in the data-
analysis pipeline for CBC GW searches.
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