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The test mass suspensions of cryogenic gravitational-wave detectors such as the KAGRA project
are tasked with extracting the heat deposited on the optics. These suspensions have a non-uniform
temperature, requiring the calculation of thermal noise in non-equilibrium conditions. While it is
not possible to describe the whole suspension system with one temperature, the local temperature
at every point in the system is still well defined. We therefore generalize the application of the
fluctuation-dissipation theorem to mechanical systems, pioneered by Saulson and Levin, to non-
equilibrium conditions in which a temperature can only be defined locally. The result is intuitive
in the sense that the thermal noise in the observed degree of freedom is given by averaging the
temperature field, weighted by the dissipation density associated with that particular degree of
freedom. After proving this theorem we apply the result to examples of increasing complexity: a
simple spring, the bending of a pendulum suspension fiber, and a model of the KAGRA cryogenic
suspension. We conclude by outlining the application to non-equilibrium thermo-elastic noise.

PACS numbers: 42.79.Bh, 95.55.Ym, 04.80.Nn, 05.40.Ca

I. INTRODUCTION

State of the art gravitational-wave detectors like KA-
GRA [1], Virgo [2] and Advanced LIGO [3] are limited
by various types of thermal noise across a large fraction
of their observation band. Of particular interest in this
context are coating thermal noise of the test masses and
thermal noise of the suspension system [4–8].
According to the fluctuation-dissipation theorem [9,

10], any form of energy dissipation will lead to an associ-
ated noise source: Brownian thermal noise for mechanical
dissipation, and thermo-elastic noise for diffusion losses.
Saulson [11], Levin [12, 13] and others [14, 15] applied the
fluctuation-dissipation theorem to mechanical systems.
They however assumed the whole system is in thermal
equilibrium.
KAGRA, as well as some concepts of future gravita-

tional wave observatories [16–19], plans to use cryogenic
cooling of the test masses to further reduce the thermal
noise. This however means that the suspension system -
additionally tasked with heat extraction - no longer can
be described by a single temperature. As a result, some
confusion has arisen in the community on how exactly
to describe thermal noise when temperature is only lo-
cally defined. In this paper we attempt to clear up this
confusion, and give an explicit form of the fluctuation-
dissipation theorem valid for non-equilibrium, but sta-
tionary conditions.
We start with the fluctuation-dissipation theorem in

its various forms in section II. We then continue with
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discussing its limitations (section III), and deriving the
theorem (section IV). Next we look at various systems
of increased complexity: a simple suspension fiber, and
the KAGRA suspension model where Brownian thermal
noise is dominant (section V). Finally, we outline the
application to thermo-elastic noise (section VI).

II. THE THEOREM

The most practical form of the fluctuation theorem
goes back to Levin’s papers [12, 13]. They explicitly re-
late the thermal noise at a given frequency seen by a read-
out mechanism such as an interferometer to the loss seen
in the associated degree of freedom when driven at the
given frequency. Both papers however assume one equi-
librium temperature for the whole system. We show in
this paper that for a system that is only in local thermal
equilibrium this theorem can be generalized as described
in the following paragraphs.
We are interested in the thermal noise associated with

the degree of freedom x =
∫

q(~r)y(~r)d3r, where y(~r) de-
scribes the microscopic displacement of the system, and
q(~r) are readout weights. The single-sided (i.e. only posi-
tive frequencies) displacement power spectral density S1

xx

of this degree of freedom x is then given by

S1
xx(f) =

8kB
ω2

∫

d3r
wdiss(~r, f)

F 2
0

T (~r) . (1)

Here T (~r) is the stationary temperature profile, ω = 2πf
is the angular frequency, and wdiss(~r, f) is the power dis-
sipation density associated with driving the system with
the external (generalized) force profile

F (~r, t) = F0q(~r) cos(2πft)), (2)
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where F0 is an arbitrary normalization of the drive am-
plitude that drops out in Eq. (1). This version of the
Fluctuation-Dissipation theorem is identical to the one
in [12], except that the temperature profile T (~r) is in-
side the dissipation integral. In this form the theorem is
applicable to any form of thermal noise, that is in par-
ticular Brownian thermal noise due to mechanical loss,
as well as thermo-elastic noise due to heat diffusion. In
the latter case the generalized driving force is a driving
entropy, or heat load.
For a mechanical loss the dissipation density wdiss(~r, f)

can be rewritten in terms of loss angle φ(~r, f) and max-
imal elastic energy density umax(~r, f) via wdiss(~r, f) =
ωumax(~r, f)φ(~r, f), resulting in

S1
xx(f) =

8kB
ω

∫

d3r
umax(~r, f)

F 2
0

φ(~r, f)T (~r). (3)

While this full, continuum-mechanics-based approach
is certainly applicable to test mass suspension systems in
gravitational-wave interferometers, it is often more use-
ful to describe such a system with only a finite number
of degrees of freedom. In that case it is not possible to
assign one temperature to each degree of freedom. In-
stead we need to split up the system’s impedance matrix
Z, relating the velocity vector v and force vector F via

Zv = F, (4)

into individual pieces Zl assigned to a single temperature
Tl, as well as the free particle impedance Zfree:

Z = Zfree +
∑

l

Zl. (5)

That this is possible will become clear when expand-
ing the system size to include the normally ignored lo-
cal degrees of freedom, see section IV. The free particle
impedance is an imaginary diagonal matrix of the form
Zfree,kk = iωmk, where mk is the effective mass of the

kth degree of freedom, and hence we have Zfree+Z
†
free =

0, meaning that it is non-dissipative († denotes the com-
plex conjugate and transposed matrix). With this defini-
tion the (single-sided) force power spectral density matrix
becomes

S1
FF

(f) = 2kB
∑

l

Tl

(

Zl + Z
†
l

)

, (6)

while the (single-sided) displacement power spectral den-
sity matrix is given by

S1
xx
(f) =

2kB
ω2

∑

l

TlZ
−1

(

Zl + Z
†
l

)

Z−1†. (7)

The sum in Eq. (7) is equivalent to the dissipation-
density-weighted integral over the volume in Eq. (1). It
is worth noting that while Eqs. (1) and (3) seem to im-
ply that the displacement thermal noise power is linear

in the loss parameter, Eq. (7) makes it clear that a high
amount of dissipation will change the system’s response
to the thermal force noise. This dependence is implicit
in the definition of the dissipation density wdiss(~r, f). Fi-
nally, if all temperatures Tl are identical, the sum in Eq.

(7) reduces to T (Z−1 + Z−1†), which is familiar from
the equilibrium form of the fluctuation dissipation theo-
rem. The same simplification is not possible in the non-
equilibrium case because fundamentally the force noise is
local in origin.

III. LIMITATIONS

When a heat flow is present in a system, it is in princi-
ple possible to convert a significant fraction of that energy
to large-scale mechanical motion - that is, after all, the
definition of a heat engine. Maybe the best example is
the Sterling engine. However, from a noise point of view,
a heat engine is an instability in one degree of freedom
of the mechanical system due to the presence of a heat
flow. It can only occur because the mechanical motion
in that degree of freedom can affect the heat flow, and
the modulated heat flow in turn drives the mechanical
degree of freedom. In other words, we need a reciprocal
mechanism from the mechanical motion to the heat flow.
A suspension system in a gravitational-wave interfer-

ometer, to a very good approximation, is designed to
avoid such feed-back to the heat flow. We thus will as-
sume for this paper that the heat flow, and therefore
the temperature profile, is stationary and independent of
the mechanical state. However, should such a feed-back
mechanism exist in the considered system — even when
it is too weak to drive the system into instability — it
can be modeled as a modified equation of motion for the
associated thermal degree of freedom.
An additional limitation is related to the assumption

that the temperature is well-defined locally. This is com-
monly assumed for heat flow calculations in a technical
apparatus, and means that we can find small, but finite
volume elements which are in thermal equilibrium. The
literature on non-equilibrium thermodynamics refers to
this as local thermodynamic equilibrium (LTE), or near-
equilibrium conditions. Under LTE conditions the dif-
ferent operational ways to define temperature (kinetic
temperature, configurational temperature, etc) all agree
locally [20].
In practice LTE conditions imply that all degrees of

freedom of the thermal bath relevant for one volume el-
ement have to be spatially localized. While this is typi-
cally a good assumption for the macroscopic suspension
systems used in gravitational-wave interferometers, there
are obvious exceptions. One example is interaction with a
radiation field that can have a very different temperature
from the local equilibrium temperature. In that situation
we could still generalize the fluctuation-dissipation the-
orem by adding extra impedance terms to Eq. (5) and
associating them with the radiation temperature.
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IV. DERIVATION

Once we assume a stationary temperature field T (~r),
each volume element of the mechanical system has a well
defined temperature. Any sufficiently localized mechan-
ical sub-system with no long-range interactions thus can
be described using a single temperature and the tra-
ditional fluctuation-dissipation theorem. The key for
deriving the non-equilibrium version of the fluctuation-
dissipation theorem given by Eq. (1) through (7) is thus
to expand the mechanical system’s number of degrees of
freedom. The interactions of all individual degrees of
freedom become sufficiently localized to be described by
a single temperature in the expansion. For this enlarged
system we can then write down the impedance matrix,
splitting off the dissipation-free part Zfree, as

Z = Zfree +
∑

l

Zl = Zfree +

∫

z(~r)d3r. (8)

In the sum the index l runs over pairs of interacting de-
grees of freedom - typically physical neighbors. Note that
we can express the impedance Z (but not its inverse Z−1)
as sum of partial impedances because the individual in-
teraction forces are additive. Because the origin of those
interactions are all localized, we can write this sum as
an integral over the system’s volume by introducing the
impedance matrix density z(~r). It describes all interac-
tions in the system due to the volume element d3r. To
illustrate this idea, it can be helpful to look at the exam-
ple of a simple spring (as we will in section VA), where
the volume integral in Eq. (8) is an integral over the vol-
ume of the elastic material of the spring, or equivalently
a sum over the infinitesimal sub-springs.
Each one of the volume elements d3r is now giving rise

to an interaction, and thus also produces a force ther-
mal noise. Since we assume LTE conditions, this volume
element has a unique temperature T (~r), there is no ambi-
guity as to what temperature we should use, and we can
apply the thermal equilibrium form of the fluctuation-
dissipation theorem. Thus, the force power spectral den-
sity matrix due to the volume element d3r, described by
index l, is given by

S1
FF,l(f) = 2kBTl

(

Zl + Z
†
l

)

, (9)

or, using the integral notation,

s1
FF

(f, ~r)d3r = 2kBT (~r)
(

z(~r) + z†(~r)
)

d3r. (10)

Furthermore, because it originates from independent in-
teractions, the force noise from each volume element is
uncorrelated with the force noise from any other element.
Thus we can sum up the force power spectral density
matrices from all volume elements, resulting in Eq. (6).
Equation (7) then follows by applying the mechanical
system response (Eq. (4)) to the thermal driving force.
In our derivation of Eqs. (6) and (7) it was instructive

to expand the system to include localized degrees of free-
dom. However, we should point out that all we needed

for the proof was an expansion of the total impedance
matrix in terms of contributions from regions of well de-
fined temperature. In other word, we can also perform
this calculation using a simplified set of global degrees of
freedom such as for example the 3 positions and 3 an-
gles of a test mass in a pendulum suspension. We then
just need to write the impedance matrix of the system
as a sum of terms originating from a region of constant
temperature, and Eqs. (6) and (7) will remain valid.
To conclude the proof, we need to show that the inte-

gral form of Eq. (1) also follows from Eq. (7). We note
that

S1
xx(f) = qTS1

xx
(f)q, (11)

where we wrote the readout weights q(~r) in discrete form
as real-valued column vector q, and therefore get

S1
xx(f) =

2kB
ω2

∫

T (~r)
[

qTZ−1
(

z(~r) + z†(~r)
)

Z−1†q

]

d3r,

(12)
where we used the integral form of Eq. (7). The dissi-
pation density wdiss(~r, f) for a system moving with the
velocity vector v is given by

wdiss(~r, f) = v†(f)
(

z(~r) + z†(~r)
)

v(f). (13)

Using the definition of impedance, Eq. (4), and driving
the system with a force F(t) = F0q cos(2πft)) we find

wdiss(~r, f) =
F 2
0

4

[

qTZ−1†
(

z(~r) + z†(~r)
)

Z−1q

]

. (14)

We note that Newton’s third law implies that all
impedance matrices are symmetric, zT (~r) = z(~r) and
ZT = Z. Since q is real, this implies

wdiss(~r, f) =
F 2
0

4

[

qTZ−1
(

z(~r) + z†(~r)
)

Z−1†q

]

, (15)

which, together with Eq. (12), proves Eq. (1).

V. APPLICATION

Here we apply the theorem to three systems such as a
simple spring, a suspension fiber, and the KAGRA sus-
pension.

A. A simple spring

First we discuss the thermal noise of a simple spring
with a non-constant temperature profile attached to a
test particle. The spring is divided to n pieces and each
piece except for the test particle has the small mass of
ml, l = 1, ..., n − 1. We label the total spring constant
K and the test particle mass mn = M(≫ ml). At every
point l = 1, ..., n we define displacement, spring constant,
and temperature as xl, k̄l, and Tl. The spring constant is
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a complex value and consists of the real value kl as well
as the loss angle φl as k̄l = kl(1 + iφl).
The total potential energy of the whole system Vtotal

is given by

Vtotal =
1

2

∑

l

kl(xl − xl−1)
2, (16)

where x0 = 0. The equation of motion of each piece is
given by

−mlω
2xl = −

∂Vtotal

∂xl

+ Fl, (17)

where Fl is the external force added to ml, specifically










−m1ω
2x1 + k̄1x1 + k̄2(x1 − x2) = F1

−mlω
2xl + k̄l(xl − xl−1)− k̄l+1(xl+1 − xl) = Fl

−Mω2xn + k̄n(xn − xn−1) = Fn,

(18)

where we have written down the cases l = 1 and l = n
explicitly, and take l = 2, ..., n − 1 for the middle equa-
tion. We now set the small mass of the spring m to
zero, which eliminates the internal excitation degrees of
freedom by moving them to an infinitely large frequency.
The impedance of the system is then

iωZ =

















k̄1 + k̄2 −k̄2
−k̄2 k̄2 + k̄3 −k̄3

−k̄3 k̄3 + k̄4
. . .

. . .
. . . −k̄n
−k̄n k̄n −Mω2

















,

(19)
where a blank implies that the matrix element is zero.
Since each individual spring element l has a unique tem-
perature Tl, this equation not only describes the full
impedance matrix Z , but also splits it up into a sum of
individual pieces, with each piece being associated with
a unique temperature, as required by Eq. (5).
Assuming that the spring constant and the loss angle

of all pieces are the same, kl = k and φl = φ, the force
power spectral density matrix can be calculated using
Eq. (6) as

S1
FF

(f) =
4kBkφ

ω

















T1 + T2 −T2

−T2 T2 + T3 −T3

−T3 T3 + T4

. . .
. . .

. . . −Tn

−Tn Tn

















.

(20)
Describing the inverse of the impedance matrix in terms
of row vectors ζT

l as Z−1 = (ζT
1 ; ζT

2 ; ζT
3 ; · · · ; ζT

n ), the
displacement spectral density of the last (n-th) piece, i.e.
the test particle, can be written as

S1
nn(f) =

2kB
ω2

ζT
n

∑

l

Tl

(

Zl + Z
†
l

)

ζ∗
n, (21)

where the last (n-th) row vector is given by

ζT
n =

iω

k(1 + iφ)− nMω2

(

1 2 3 · · · n
)

. (22)

Noting that k = nK, the displacement spectral density
can be calculated as

S1
nn(f) =

4kB
ωn

∑

l

Tl

Kφ

(K −Mω2)2 +K2φ2
. (23)

This result means that the average temperature of the
whole system contributes to the displacement of thermal
noise. Since the dissipation in this example is uniform
across the spring, this result is expected based on Eq.
(1).

B. A suspension fiber

Next, we calculate the thermal noise of a suspension
fiber. As with the case of a simple spring, the suspension
fiber is divided to n pieces and each n − 1 piece and
the n-th mass has the mass of m and M . The angle of
l-th piece against vertical direction is defined by θl ≡
(xl − xl−1)/∆z, where xl is the displacement of the l-th
fiber along horizontal axis and ∆z is the length of the
l-th fiber. The total potential energy can be written as

Vtotal =

n+1
∑

l=1

mlg∆z

2

l
∑

k=1

θ2l +

n+1
∑

l=1

ĒlI

2∆z
(θl − θl−1)

2, (24)

where Ēl ≡ El(1 + iφl) is the complex Young’s modulus
of the fiber, I =

∫

x2dA is the area moment of inertia in
the direction of the horizontal axis, and g representing
gravitational acceleration. The first term derives from
the gravity potential of each piece and the second term
derives from the elastic energy of each fiber. We set the
boundary condition of θ0 = θn+1 = 0 and θ1 = x1/∆z.
In other words, the upper clamp point is fixed, and the
fiber is completely vertical at the upper and lower clamp
points. While other boundary conditions are possible for
a single fiber, this choice is required for the case of four-
fiber suspensions as in the case of KAGRA.

The total impedance of the system can be calculated
from the equations of motion as in the case of a simple
spring. Here we again assume that the Young’s modulus
of the fiber El, and in particular it’s loss angle φl, are
independent of the position along the fiber. Using our
boundary conditions, the equations of motion on the 1-
st, 2-nd, a generic i-th, (n − 1)-th, and n-th piece are
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given by






































































































































−mω2x1 +
Mg

∆z
(2x1 − x2)

+
E(1 + iφ)I

∆z3
(6x1 − 4x2 + x3) = F1

−mω2x2 +
Mg

∆z
(−x1 + 2x2 − x3)

+
E(1 + iφ)I

∆z3
(−4x1 + 6x2 − 4x3 + x4) = F2

−mω2xi +
Mg

∆z
(−xi−1 + 2xi − xi+1)

+
E(1 + iφ)I

∆z3
(xi−2 − 4xi−1 + 6xi + 4xi+1 + xi) = Fi

−mω2xn−1 +
Mg

∆z
(−xn−2 + 2xn−1 − xn)

+
E(1 + iφ)I

∆z3
(xn−3 − 4xn−2 + 6xn−1 − 3xn) = Fn−1

−Mω2xn +
Mg

∆z
(−xn−1 + xn)

+
E(1 + iφ)I

∆z3
(xn−2 − 3xn−1 + 2xn) = Fn.

(25)

Dividing total impedance into three parts

Ztotal = Zfree + Zgrav + Zelas, (26)

they can be written as

iωZfree =













−mω2

−mω2

−mω2

. . .

−Mω2













,

(27)

iωZgrav ≃
Mg

∆z

















2 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 1

















, (28)

iωZelas =
E(1 + iφ)I

∆z3



















6 −4 1

−4 6 −4
. . .

1 −4 6
. . . 1

. . .
. . .

. . . −3
1 −3 2



















, (29)

Here we do not consider m in Zfree to be zero in order to
recover the violin modes of the fiber. Note that we could
choose not to set the loss angles φl of all fiber pieces to
be the same. In that case Eq. (29) becomes a sum of
matrices over individual segments l, each with its own
associated temperature Tl. This is similar to Eq. (20),
and as expected based on Eq. (5).

FIG. 1. Discrete and continuous calculation of the suspension
thermal noise of a fiber. We set M = 1 kg, the length of
the fiber L = 30 cm, the radius of the fiber r = 0.5 mm,
φ = 1 × 10−2, and T = 300 K. The material of the fiber is
assumed to be sapphire. In the discrete calculation the fiber
is divided to 100 pieces.

With this total impedance, we can calculate the ther-
mal noise of a suspension fiber numerically. First of
all, we demonstrate the validity of the calculation with
the simple situation. Assuming that the temperature
is constant, we compare the displacement thermal noise
from discrete calculation of 7 and continuous calculation
of [21]. The result is shown in Fig. 1. The floor level of
the noise, the resonant frequencies of the pendulum mode
and violin modes are different by less than 1%, around
1% and 2%, respectively. The values are reasonable be-
cause the number of pieces is n = 100 and the precision
should be on the order of 1/n. The first peak around
1 Hz is the pendulum mode, while the peaks at 140 Hz
and higher harmonics are the violin modes of the fiber.
Next we look at non-uniform temperature distribu-

tions. To get an intuitive understanding of the physics
involved, we start with plotting the elastic energy distri-
bution in Fig. 2 for two examples: i) A frequency below
the pendulum mode frequency. The fiber is mostly bend-
ing near the clamp point and the test mass attachment
point, while the center of the fiber is not deformed. And
ii) a frequency between violin modes. The dips corre-
spond to nodes of the induced motion, where again the
fiber is not deformed. The traces are calculated using
the continuous model derived in [21], which describes the
elastic energy distribution along the position of the fiber,
but agree with our discrete model.
To demonstrate the effect of non-uniform temperature

distributions we start with an extreme, although un-
physical example. We assume an elevated temperature
(300 K) for only the middle section of the fiber, as illus-
trated in the inset of Fig. 3. The main part of that figure
shows the thermal noise for this temperature distribu-
tion, calculated using our discrete model (solid blue), as
well using the continuous model (dotted green). For ref-
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FIG. 2. Elastic energy distribution along the suspension fiber
for two frequencies, 0.5 Hz and 400 Hz. The distributions
are calculated using the continuous model derived in [21], but
agree with our discrete model. The two traces illustrate that
different frequencies have the mechanical losses that domi-
nates at different locations along the fiber, in accordance with
Eq. (3).

erence the figure also shows the thermal noise for a uni-
form temperature of 300 K along the fiber (dotted red).
This is the same trace as in Fig. 1. Compared to this red
trace, the noise level at low frequencies is improved sig-
nificantly because the energy loss of the pendulum mode
comes from the large distortion around the clamp point
and attachment point, where temperature is much lower
than that at the center. Compared with low frequencies,
the noise of violin modes does not change significantly
because some of the antinodes of the energy distribution
profile lie in the 300 K region. Finally, the blue and green
traces agree within the numerical uncertainties, validat-
ing our discrete model and Eq. 1.

C. The KAGRA suspension

The main test masses of KAGRA are suspended by
an eight-stage pendulum called Type-A system. The
last four-stage payload of the Type-A system is cooled
down to cryogenic temperatures and is called a cryopay-
load [22]. Here we calculate the thermal noise of the KA-
GRA cryopayload for the input test mass (ITM). Brow-
nian thermal noise is considered since it is dominant as
compared with thermo-elastic noise.
Figure 4 shows the schematic of the KAGRA cryopay-

load. The platform is suspended from upper room tem-
perature stages. The marionette is suspended from the
platform with 1 maraging steel fiber. The intermediate
mass (IM, 20.8 kg) is suspended from the marionette with
4 copper beryllium (CuBe) fibers (26.1 cm long, 0.6 mm
dia.). Finally, the sapphire test mass (TM, 22.7 kg) is
suspended from the 4 sapphire blades (0.1 kg) attached
to the intermediate mass with 4 sapphire fibers (35 cm

FIG. 3. Discrete and continuous calculation of the suspension
thermal noise with a non-uniform temperature distribution.
To highlight the effect on the thermal noise power spectrum
we chose the extreme temperature distribution shown in the
inset, with non-zero temperature only in the middle third sec-
tion of the fiber. The blue solid line shows the result of the
discrete calculation. The green dotted line shows the contin-
uous result. For reference, the red dotted line shows the same
noise as in Fig. 1, i.e. for a uniform temperature everywhere
along the fiber. The parameters are all the same as for the
previous simulation, except for the number of discrete fiber
sections, which is set to n = 500.

platform

MN

IM (16 K)

MNR

IMR

RMTM (22 K)

4 CuBe fibers

4 sapphire blades4 sapphire fibers

considered area for thermal noise

FIG. 4. Schematic of the KAGRA cryopayload. Suspension
thermal noise on KAGRA derives from the surrounded area
by dotted lines. MN, MNR, IMR, and RM stand for mari-
onette, marionette recoil mass, intermediate recoil mass, and
recoil mass, respectively.

long, 1.6 mm dia.).
Aluminum heat links are attached to the marionette

and the marionette is cooled down to 15 K. Heat ab-
sorption of the laser beam and the thermal conductivity
of the fibers define the test mass temperature. The es-
timated temperature profile along the sapphire fiber is
plotted in Fig. 5. Here we assumed the temperatures
of the IM and the TM to be 16 K and 22 K respec-
tively, the incident beam power from the back surface of
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FIG. 5. Temperature distribution of the KAGRA sapphire
fibers suspending the test mass. This is derived by solving
a differential equation about the temperature function of the
cramp point. The boundary condition is T (z = 0) = 16 K,
and T (z = 0.35) = 22 K.

the input test mass to be 674 W, mirror substrate ab-
sorption to be 50 ppm/cm, and coating absorption to be
0.5 ppm [23]. This results in a nominal power loading of
0.724 W for the input test mass. We used the measured
thermal conductivity of the sapphire fiber in Ref. [24],
κ(T ) = 7.98× T 2.2 W/K/m.
We discuss horizontal suspension thermal noise includ-

ing the system below the CuBe fibers. It is enough to
consider only the pendulum mode at the second pendu-
lum consisting of the CuBe fibers and the IM because dis-
placement thermal noise deriving from the second pendu-
lum has dependence of f−4.5 above resonant frequency of
the differential pendulum mode (1.9 Hz), resulting in the
violin modes of CuBe fibers becoming negligible. There-
fore, 4 CuBe fibers can be regarded as effectively one
fiber, whose tension is 1/4 but the spring constant is 4
times larger. The horizontal potential is written as

Vhor =
1

2
kIM,hx

2
IM +

∑

µ=a,b,c,d

[

1

2
kbl,h,µ(xbl,µ − xIM)2

+
n+1
∑

l=1

mlg∆z

2

l
∑

k=1

θ2l,µ +
n+1
∑

l=1

Ēl,µI

2∆z
(θl,µ − θl−1,µ)

2

]

,

(30)

where kIM,h and kbl,h,µ are the horizontal spring con-
stant of the IM and blade springs, and xIM and xbl,µ are
the displacement, respectively. The labeling of a, b, c, d
means 4 blade springs and 4 sapphire fibers. The bound-
ary conditions are θ0,µ = θn+1,µ = 0 and θ1,µ = (x1,µ −
xbl,µ)/∆z. We can get the full horizontal thermal noise
by doing the same numerical calculation with this poten-
tial.
Similarly, we consider the vertical thermal noise below

CuBe fibers. A spring constant of a vertical bounce mode
can be described as kv = ES/L, where E is the Young’s

FIG. 6. Total suspension thermal noise of KAGRA in strain
considering the temperature distribution. The arm length of
KAGRA is 3 km. Horizontal and vertical resonant frequency
of the blade spring is assumed to be 2 kHz and 14.5 Hz (with
the suspended test mass), respectively. First two peaks come
from the common and differential pendulum mode. The peak
around 30 Hz is due to resonance of CuBe fiber bounce. The
resonant frequency of first violin mode is around 180 Hz. The
green dotted line shows suspension thermal noise using an
averaged temperature of the IM and TM. The dashed gray line
shows the level of other expected noise sources in KAGRA.

modulus, S is the surface area, and L is the length of the
fiber. Thus, 4 fibers can be regarded as one fiber with 4
times the surface area. The vertical potential is written
as

Vver =
1

2
kIM,vx

2
IM +

1

2
kbl,v(xbl − xIM)2

+
1

2

n
∑

l=1

ĒlS

∆z
(xl − xl−1)

2, (31)

where kIM,h, kbl,v is the vertical spring constant of the
CuBe fibers and blade springs and x0 = xbl. These two
suspension thermal noises are shown in Fig. 6.
In Fig. 6 we also compare the full numerical result

to a simplified suspension thermal noise calculation that
uses the average temperature of the IM and TM. The
noise level between the two only differs by around 2%
in the frequency band of about 10 Hz to 50 Hz, where
suspension thermal noise contributes most to the total
noise. This result can be intuitively understood because
the elastic energy is symmetric and the upper and lower
edge of the fibers provide the largest contributions. We
thus conclude that for the practical purpose of predicting
KAGRA’s suspension thermal noise it is enough to aver-
age the IM and TM temperature and apply the equilib-
rium formulation of the fluctuation-dissipation theorem.
We assume that the loss angle and the Young’s mod-

ulus of fibers are uniform for simplicity in this section.
However, in fact, the loss angle can have frequency de-
pendence and both depend on the temperature. Even in
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the case, we can apply our theorem with each value of
them at corresponding point along the fiber.

VI. APPLICATION TO THERMO-ELASTIC

AND THERMO-REFRACTIVE NOISE

The non-equilibrium fluctuation-dissipation theorem
discussed above is also applicable to thermo-elastic and
thermo-refractive noise. However we now encounter the
complication that we need to calculate temperature fluc-
tuations in the presence of a temperature gradient, which
can prove challenging in practice. Nevertheless we can
outline the guiding principles here.

To calculate thermo-elastic and thermo-refractive noise
in a degree of freedom x =

∫

q(~r)T (~r)d3r, with q(~r) the
readout weights for the temperature field T (~r), the proce-
dure described by Levin [13] calls for driving the system
with the entropy density ds(~r, f) = F0q(~r) cos(2πft), and
calculating the power dissipated in the system by ther-
mal diffusion. Ignoring surface terms for simplicity, the
time derivative of the entropy density is given by (see e.g.
[25])

ṡ = ~j · ~∇
1

T
= −

~j · ~∇ lnT

T
. (32)

Thus the dissipation rate density q̇ due to diffusion is
given by

q̇ = T ṡ = −~j · ~∇ lnT . (33)

If we want to use this expression in non-equilibrium con-
ditions, there are two complications: i) Since the back-
ground temperature field can vary significantly, calcu-
lating the heat flow through the linearized expression
~j = −κ~∇T might not be adequate for the whole sys-
tem. This is why we intentionally avoided introducing
the thermal conductivity κ in Eqs. (32) and (33). ii)
The expression in Eq. (33) is non-zero for the background

heat flow since setting up a stationary temperature gra-
dient necessarily introduces stationary thermal dissipa-
tion. We can address item ii) by splitting heat flow and

temperature field into a stationary zeroth-order term, ~j0
and T0, and higher-order terms in the drive amplitude
F0. To find the dissipation relevant for the fluctuation-
dissipation theorem, we can then subtract the stationary
background dissipation:

wdiss(~r, f) =
〈

q̇ − q̇0

〉

. (34)

Here the 〈...〉 denotes cycle-averaging over one drive cy-
cle. Note that the linear terms in the drive amplitude F0

average to zero after one cycle, i.e. the dissipation wdiss is
quadratic in F0, as required by Eq. (1). This expression
for the dissipation density wdiss can then be used in Eq.
(1) to find the thermo-elastic and/or thermo-refractive
noise in the degree of freedom x.

VII. CONCLUSION

We expanded the application of the Fluctuation-
Dissipation theorem for mechanical systems to non-
equilibrium steady-state conditions in which the temper-
ature is only defined locally. We note that the require-
ment of a stationary background temperature field rules
out any feed-back from the mechanical motion to the heat
flow, which is what would occur in a heat engine. To cal-
culate the thermal noise, the correct weight for averaging
the temperature field is given by the dissipation density
of the mechanical system. For illustration purposes we
apply this result to a simple spring and a fiber suspension,
as well as to a model of the KAGRA gravitational-wave
interferometer suspension. We conclude that it is a good
approximation for accurate suspension thermal noise of
KAGRA to average temperatures at the upper and lower
edge of the fibers and use the equilibrium formulation.
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