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Algebraic Ansätze for the Poincaré-covariant Bethe-Salpeter wave functions of the pion and kaon
are used to calculate their light-front wave functions (LFWFs), parton distribution amplitudes
(PDAs), parton quasi-DAs (PqDAs), valence parton distribution functions (PDFs), and parton
quasi-DFs (PqDFs). The LFWFs are broad, concave functions; and the scale of flavour-symmetry
violation in the kaon is roughly 15%, being set by the ratio of emergent masses in the s-and u-quark
sectors. PqDAs computed with longitudinal momentum Pz = 1.75 GeV provide a semiquantitatively
accurate representation of the objective PDA; but even with Pz = 3 GeV, they cannot provide
information about this amplitude’s endpoint behaviour. On the valence-quark domain, similar
outcomes characterise PqDFs. In this connection, however, the ratio of kaon-to-pion u-quark PqDFs
is found to provide a good approximation to the true PDF ratio on 0.4 . x . 0.8, suggesting that
with existing resources computations of ratios of parton quasidistributions can yield results that
support empirical comparison.

I. INTRODUCTION

Since the discovery of quarks in deep inelastic scatter-
ing (DIS) experiments at the Stanford Linear Accelerator
Center [1–3], parton distributions have occupied a cen-
tral role in high-energy nuclear and particle physics; and
today there is a vast international programme aimed at
their measurement. Such measurements are possible ow-
ing to the existence of factorisation theorems [4], which
entail that the cross-sections for various processes can
be written as the convolution of a piece calculable using
QCD perturbation theory and a parton distribution func-
tion (PDF), which is independent of the process used.
PDFs are therefore a characterising property of the cho-
sen hadronic target. This means they are also essen-
tially nonperturbative, i.e. their calculation is a problem
in strong QCD, with sound results demanding the use of
a nonperturbative method with a traceable connection to
QCD. The extent and importance of this computational
challenge is canvassed elsewhere [5–7].

An ab initio approach to strong QCD is provided
by the numerical simulation of lattice-regularised QCD
(lQCD). However, a given PDF is mathematically de-
fined as an expectation value of some bilocal operator
evaluated along a light-like line, an object which can-
not be evaluated using the methods of lQCD. This ap-
proach only provides access to the expectation value of
local operators, i.e., in this context, to the Mellin mo-
ments of the PDF. That would not be an issue if every
moment were accessible because a probability distribu-
tion is completely determined once all its moments are
known. However, discretised spacetime does not possess
the full rotational symmetries of the Euclidean contin-
uum. Hence, only the lowest three non-trivial moments

∗ leichang@nankai.edu.cn
† cdroberts@anl.gov

can readily be calculated; and they are insufficient to sup-
port a model-independent reconstruction of the PDF. A
number of paths are being pursued to circumvent this
problem [8–12].

Herein, using continuum methods in quantum field the-
ory, we explore some aspects of the large Pz (longitudinal-
momentum) approach to the lQCD computation of par-
ton distributions [9], viz. since the maximum value of Pz
is bounded in any lQCD simulation, what is the lowest
value of Pmax

z for which the quasidistribution provides
a realistic sketch of the true distribution; and given a
Pmax
z quasidistribution, is it possible to extract reliable

information about the true distribution? These issues are
considered, e.g. in Refs. [13, 14] using spectator models
of the proton. We, on the other hand, choose to focus
on the pion and kaon because there has been significant
progress in the continuum computation of the distribu-
tion amplitudes and functions of these systems in recent
years [15–32] and first lQCD results on some of their
quasidistributions are now available [33, 34]. Our discus-
sion complements the analysis in Refs. [35, 36]; and where
common themes are addressed, our results will typically
be seen to confirm those therein.

Sec. II describes the framework used to represent π-
and K-mesons as bound states in quantum field theory,
specifying the elements at an hadronic scale, ζH ∼ 1 GeV.
Herein, we do not consider perturbative QCD evolution
[37–43]: such evolution doesn’t affect our comparisons
between quasi-distributions and their associated light-
front distribution functions, which are all made at the
same scale. Section III focuses on π and K leading-twist
light-front wave functions, their derived parton distribu-
tion amplitudes and attendant quasidistributions, intro-
ducing general formulae and providing numerical illus-
trations. The kindred analysis of valence-dressed-quark
parton quasidistribution functions (PqDFs) is presented
in Sec. IV. We conclude in Sec. V.
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II. PION AND KAON BOUND STATES

Many insights into the character of the pion and kaon
have been drawn using the following simple expressions
for the relevant dressed-quark propagators and Bethe-
Salpeter amplitudes [16, 21, 22, 25]:

Sf (k) = [−iγ · k +Mf ]∆(k2,M2
f ) , (1a)

nGΓG(k;PG) = iγ5

∫ 1

−1

dw ρG(w)∆̂(k2
w,Λ

2) , (1b)

where Mf is the dressed-quark mass evaluated in the
neighbourhood k2 ' 0, f = u, s (we work in the isospin
symmetric limit, so Mu = Md); ∆(s, t) = 1/[s + t],

∆̂(s, t) = t∆(s, t); kw = k + (w/2)P , with P 2 =
−m2

G, G = π,K; and ρG=π,K(w) is a spectral weight
whose form, in association with the mass-scale Λ, deter-
mines the pointwise behaviour of the associated meson’s
Bethe-Salpeter amplitude, with nG the related canon-
ical normalisation constant. One of the strengths of
these Ansätze is that they can be chosen to ensure
that a primarily algebraic computation yields results
which are pointwise similar to the most sophisticated
predictions currently available for parton distribution
amplitudes and functions, PDAs and PDFs. Notably,
our approach to the continuum bound-state problem is
Poincaré-covariant and hence, with complete generality,
we may write

PG = (0, 0, Pz, iEP ) , EP = [P 2
z +m2

G]
1
2 . (2)

One branch of our analysis will focus on the leading-
twist two-dressed-parton distribution amplitudes of the
π- and K-mesons, the computation of which requires a
projection onto the light-front of the given meson’s (un-
amputated) Bethe-Salpeter wave function. Working with
the K+ meson as an illustration, this wave function can
always be written [44] (kK− = k − PK/2)

χK(kK− ;PK) = Su(k)ΓK(kK− ;PK)Ss(k − P ) ; (3)

and the part which contributes to the leading-twist
(twist-two) PDA is readily computed:

nKχ(2)
K (kK− ;PK) = M (k;PK)

∫ 1

−1

dw ρK(w)D(k;PK) ,

(4a)

M (k;PK) = −γ5[γ · PKMu + γ · k(Mu −Ms)

+ σµνkµPKν ] , (4b)

D(k;PK) = ∆(k2,M2
u)∆((k − P )2,M2

s )

× ∆̂(k2
w−1,Λ

2) . (4c)

One may now introduce two Feynman parameters,
combine the denominators into a single quadratic form,
and thereby arrive at:

χ
(2)
K (kK− ;PK) = M (k;PK)

∫ 1

0

dα 2 XK(α;σ3(α)) , (5)

with σ = (k − αPK)2 + Ω2
K , where

Ω2
K = vM2

u + (1− v)Λ2

+ (M2
s −M2

u)
(
α− 1

2 [1− w][1− v]
)

+ (α[α− 1] + 1
4 [1− v][1− w2])M2

K , (6)

XK(α;σ3) =

[∫ 1−2α

−1

dw

∫ 1

1+ 2α
w−1

dv

+

∫ 1

1−2α

dw

∫ 1

w−1+2α
w+1

dv

]
ρK(w)

nK
Λ2

σ3
, (7)

and the integration variables α, v trace their origin to
the Feynman parameters. Formulae for the π-meson are
readily obtained by setting s→ d, mK → mπ, and using
isospin symmetry.

As has long been known [45] and is demonstrated for
parton distributions in, e.g. Refs. [19, 20, 23, 27, 46], dis-
tinctions between the K- and π-mesons are driven by
dynamical chiral symmetry breaking (DCSB), expressed
in Eq. (6) by the difference between the dressed s- and u
quark masses: (M2

s −M2
u).

III. LIGHT-FRONT WAVE FUNCTIONS AND
PARTON QUASIDISTRIBUTION AMPLITUDES

A. Algebraic Analysis

The pseudoscalar meson’s leading-twist two-dressed-
parton light-front wave function (LFWF) can be written:

fKψ
↑↓
K (x, k2

⊥) = trCD

∫
dk‖

δxn(kK)γ5γ · nχ(2)
K (kK− ;PK) ,

(8)

where fK is the kaon’s leptonic decay constant; the trace
is over colour and spinor indices;

∫
dk‖

= (1/π)
∫
dk3dk4;

δxn(kK) = δ(n · k − xn · PK); and n is a light-like four-
vector, n2 = 0, n · PK = −mK . The twist-two PDA
follows immediately:

ϕK(x) =
1

16π3

∫
d2k⊥ψ

↑↓
K (x, k2

⊥) , (9a)∫ 1

0

dxϕK(x) = 1 . (9b)

Consider now the following Mellin moments:

〈xm〉Ψ↑↓K =

∫ 1

0

dxxm ψ↑↓K (x, k2
⊥) (10a)

=
1

fKn · P

∫
dk‖

[
n · k
n · P

]m
γ5γ · nχ(2)

K (kK− ;PK)

(10b)

=
12

fK

∫ 1

0

dααm YK(α;σ2
⊥) , (10c)
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where we have used Eqs. (5)–(7), and

YK(α;σ2
⊥) = [Mu(1− α) +Msα]XK(α;σ2

⊥) , (11)

σ⊥ = k2
⊥ + Ω2

K . Comparing Eqs. (10a) and (10c), it is
apparent that

ψ↑↓K (x, k2
⊥) =

12

fK
YK(x;σ2

⊥) , (12)

where α → x in Eqs. (6), (7). The π-meson formula is
obvious by analogy. The compactness of these results is
one merit of the algebraic Ansätze in Eqs. (1).

Combining Eqs. (8), (9a), a twist-two dressed-parton
quasi-DA (PqDA) is obtained via the replacement n→ ñ,
ñ = (0, 0, 1, 0), viz.

fK ϕ̃K(x) = trCD

∫
dk

δxñ(kK) γ5γ · ñ χ(2)
K (kK− ;PK) , (13)

where δxñ(kK) = δ(ñ · k−xñ ·PK); and
∫
dk

is a Poincaré-
invariant definition of the four-dimensional integral. Fol-
lowing a series of steps similar to those used above, one
arrives directly at the following result:

ϕ̃K(x) =
Pz

16π3

∫ 1

0

dα

∫ ∞
−∞

dk ψ↑↓K (α, k2 + (x− α)2P 2
z ) .

(14)

The expression for ϕ̃π(x) is obvious by analogy and
matches Eq. (20) in Ref. [11].

B. Numerical Illustrations

1. Wave Functions

It is now possible to study the Pz-evolution of the
pointwise-form of meson PqDAs and chart their connec-
tion with the objective PDA. To proceed, it is neces-
sary to specify the parameters and spectral densities in
Eq. (1). For the latter, we use

uG ρG(w) =
1

2bG0

[
sech2([w − wG0 ]/[2bG0 ])

+sech2([w + wG0 ]/[2bG0 ])
]

[1 + wvG] , (15)

where bG0 , wG0 , vG, are parameters, and uG is a derived
constant that ensures unit normalisation of the density.
This form is compact and yet has sufficient flexibility to
produce pion and kaon valence-quark PDAs and PDFs
whose features are consistent with contemporary predic-
tions.

Regarding the parameters, we choose Mu = 0.31 GeV,
matching the infrared scale of the u-quark mass func-
tion obtained using modern gap-equation kernels [47]; set
Ms = 1.2Mu, which is typical of the size obtained in phe-
nomenologically efficacious continuum analyses [23, 48];

float Λπ,K to fit the leptonic decay constants:

fπ =
1

n · Pπ
trCD

∫
dk

γ5γ · nχπ(kπ−;Pπ) , (16a)

fK =
1

n · PK
trCD

∫
dk

γ5γ · nχK(kK− ;PK) , (16b)

where mπ = 0.14 GeV, mK = 0.49 GeV; and choose
bG0 , wG0 such that the meson PDAs are broad, concave
functions whose lowest nontrivial Mellin moments match
those obtained in modern analyses [7]:

〈(2x− 1)2〉ϕπ :=

∫ 1

0

dx (2x− 1)2ϕπ(x) ≈ 0.25 , (17a)

〈2x− 1〉ϕK ≈ −0.04 , 〈(2x− 1)2〉ϕK ≈ 0.25 . (17b)

With

Λπ bπ0 wπ0 vπ ΛK bK0 wK0 vK
Mu 0.1 0.73 0 2Λπ bπ0 0.95 0.16

(18)

we obtain fπ = 0.092 GeV, fK = 0.11 GeV, in agreement
with experiment [49], and satisfy Eqs. (17). Recall that in
connection with quantities that undergo QCD evolution,
our models should be understood as producing results
valid at an hadronic scale, ζH ∼ 1 GeV.

The pion and kaon leading-twist dressed-parton
LFWFs, obtained using Eqs. (1), (12), (15), (18), are
depicted in Fig. 1. Considered as a function of x, with
k2
⊥ fixed, these wave functions are broad and concave.

Conversely, at fixed x, they fall as 1/k4
⊥ on k2

⊥ �
Λ2
G. In QCD, the behaviour is 1/k2

⊥ (up to ln k2
⊥-

corrections). Our model’s decay rate is amplified because
Eq. (1b) retains only the γ5 piece of the pseudoscalar me-
son Bethe-Salpeter amplitude. Two additional “pseu-
dovector” Dirac structures are prominent in symmetry-
preserving solutions of the Bethe-Salpeter equations for
light pseudoscalars [48]; and the omission of these com-
ponents produces the 1/k4

⊥ decay at ultraviolet momenta
[50]. This has a benefit: all integrals appearing herein
are convergent. Restoring the pseudovector components,
the LFWFs recover the 1/k2

⊥ decay characteristic of me-
son wave functions in QCD. Consideration of regularisa-
tion and renormalisation is then necessary; but that is
straightforward and has no material effect on our discus-
sion, which is why we exploit the simplicity of Eq. (1b).

The lower panel of Fig. 1 reveals that the K+ LFWF is
distorted, with its maximum located at (x = 0.44, k2

⊥ =
0), viz. displaced relative to that of ψπ and thereby indi-
cating that the dressed s̄-quark carries a larger fraction of
the kaon’s momentum than the u-quark. As noted else-
where [19, 20, 23, 27, 46], the magnitude of this SU(3)-
flavour-symmetry breaking shift (' 15%) is set by DCSB
mass-scales, as expressed, e.g. in Ms/Mu = 1.2.

Having obtained the leading-twist LFWFs, one may
compute the two-dressed-parton distribution amplitudes
using Eq. (9a), with the results depicted in Fig. 2. Con-
sistent with the LFWFs, the PDAs are broad, concave
functions. Notably, although our models for the π and
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FIG. 1. Leading-twist two-dressed-parton light-front wave
functions of the pion (upper panel) and kaon (lower panel).
Each is normalised such that

∫
dxd2k⊥ψ

↑↓(x, k2⊥) = 1.

0 0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

x

ϕ
(x
)

FIG. 2. Leading-twist two-dressed-parton distribution am-
plitudes for the pion (solid, blue) and kaon (dashed, green)
computed from the LFWFs in Fig. 1 using Eq. (9a).

K are simple, they yield PDAs that agree qualitatively
and semiquantitatively with results computed using more
sophisticated approaches [7, 16, 19, 23, 29, 31]. The peak
in the kaon PDA lies at x = 0.44.

Notwithstanding the fact that a Poincaré-covariant
Bethe-Salpeter wave function expressed in the standard
manner, Eq. (3), cannot in principle produce a LFWF of

0 0.2 0.4 0.6 0.8 1
0.96

1.0

1.04
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1.12

1.16

x

ψ
π
(x
,k
fix
ed

2
)/
ϕ
π
(x
)

0 0.2 0.4 0.6 0.8 1
0.2

0.6
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1.4

x
ψ
K
(x
,k
fix
ed

2
)/
ϕ
K
(x
)

FIG. 3. Upper panel – x-dependence of the ratio in Eq. (20),
computed for the π-meson with k2⊥/GeV2 = 0 (solid, red),
0.2 (dot-dashed, blue) 0.8 (long-dashed, green), 3.2 (dashed,
purple). Lower panel – same for kaon. For a factorising wave

function, this ratio would be unity: R ψϕ
G ≡ 1, which is the

dotted (black) line in both panels.

the form ψ(x, k2
⊥) ∼ ψ1(x)ψ2(k2

⊥), such a product Ansatz
is often used to produce numerical estimates of various
quantities. Given a hadron G, it is typically introduced
thus:

ψG(x, k2
⊥)

factorised Ansatz
= ϕG(x)ψF (k2

⊥) , (19)

with ψF , the k2
⊥ profile function, often chosen to pro-

vide exponential decay. In order to judge the accuracy
of estimates obtained therewith, Fig. 3 depicts the ratio:

R ψϕ
G =

ψ̂↑↓G (x, k2
⊥)

ϕG(x)
, (20)

evaluated at a number of k2
⊥-values and normalised at

each such that
∫
dx ψ̂↑↓G (x, k2

⊥) = 1. If a product Ansatz

were a good approximation, then R ψϕ
G ≡ 1.

The upper panel of Fig. 3 depicts the ratio in Eq. (20)
obtained for the pion, G = π. It is not unity; and the
discrepancy grows with increasing momentum until k2

⊥ ≈
1 GeV2, whereafter the ratio has a fairly static profile. On
the other hand, the departure from unity is not great: the
L1-deviation saturates at approximately 2%. One might
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FIG. 4. Upper panel – x-dependence of the pion’s
PqDA, computed with Pz/GeV = 1 (short-dashed, red), 1.75
(dashed, purple), 2.4 (dot-dashed, blue), 3.0 (solid, green).
Lower panel – same for kaon. The dotted (black) curve in
both panels is the appropriate PDA from Fig. 2; and the thin
vertical lines at x = 0, 1 highlight the boundaries of support
for a physical PDA.

therefore argue that Eq. (19), with appropriate power-law
behaviour for ψF (k2

⊥), could be quantitatively useful for
integrated properties of the pion and serve as a fair guide
to the pointwise behaviour of ψπ(x, k2

⊥). One should nev-
ertheless bear in mind that any product Ansatz will be
poorest on the domain of greatest correlation between
the independent variables; and owing to momentum con-
straints within bound-states, that domain is the neigh-
bourhood of the endpoints, x = 0, 1, as evident in Fig. 3.

The situation is somewhat different for the kaon. De-
picted in the lower panel of Fig. 3, the ratio departs from
unity by as much as 70%. The L1-deviation is 15% at
k2
⊥ = 0, initially drops with increasing k2

⊥, but increases
on k2

⊥ & 0.1 GeV2 to reach a limiting value of ≈ 20%. In
such circumstances, with a well-chosen power-law form
for ψF , Eq. (19) might provide a fair indication of in-
tegrated kaon properties, but it can only at best be a
sketchy guide to pointwise features of ψK(x, k2

⊥).

2. Parton Quasi-Distribution Amplitudes

Eq. (14) can now be used to compute pion and kaon
PqDAs, with the results depicted in Fig. 4. Focusing first
on the pion (upper panel), it is evident that the result
obtained with Pz = 1.0 GeV does not closely resemble
ϕπ(x): the L1-difference between the two curves is 42%
and the (2x−1)2-moment obtained by integrating ϕ̃π(x)
on x ∈ [0, 1] is just 33% of the objective value.1

The step to Pz = 1.75 GeV brings material improve-
ment, so that the ϕ̃π(x) provides a qualitatively sound
approximation to ϕπ(x): the L1-difference between the
two curves is 18%, the (2x − 1)2-moment is 78% of the
objective value, and one can reasonably conclude that
the target PDA is a broad, concave function.

Further increments in Pz, however, do not bring much
improvement. For example, with Pz = 3.0 GeV, the L1-
difference between the PqDA and the PDA is 10% and
the (2x−1)2-moment is 85% of the objective value. This
outcome is a reflection of the fact that once the perturba-
tive domain is entered, evolution in QCD is logarithmic.

It is noteworthy, too, that the pointwise forms of ϕ̃π(x)
leak significantly from the domain 0 < x < 1. This
prevents a determination of the target PDAs endpoint
behaviour even with Pz = 3 GeV. That behaviour is
crucial because it fixes the magnitude of the leading-
order, leading-twist perturbative QCD results for nu-
merous observables [43] and hence sets the benchmark
against which existing and foreseen experiments aimed
at testing solid QCD predictions must be compared
[18, 24, 28, 31, 51]. Notably, in order to reach Pz ≈ 3 GeV
in a lQCD simulation, one would need a lattice with
roughly 48 spatial sites and a spacing of 0.06 fm.

The leakage does disappear within increasing Pz; but
Pz & 3 GeV describes the perturbative domain, within
which, as remarked above, evolution toward the objective
PDA is logarithmic and hence the process is very slow.
For example, using as a guide the PqDA’s value at x = 1,
which must be zero if the endpoint behavior is correct,
then Pz & 60 GeV is required to ensure ϕ̃(x = 1) . 0.05.

Turning attention now to the kaon PqDAs, there are
similarities with the pion case. Using Pz = 1.75 GeV,
ϕ̃K(x) provides some reliable qualitative information
about ϕK(x): the L1-difference between the two curves is
28%, the PqDA peaks at x = 0.45, and its (2x− 1)1 mo-
ment is 75% of the objective value. On the other hand,
the (2x−1)2-moment is just 29% of the goal. Once again,
incrementing Pz does not greatly improve the situation.
Using Pz = 3.0 GeV, the L1-difference between ϕ̃K(x)
and ϕK(x) is 20%, the PqDA peaks at x = 0.43, the
(2x− 1)1 moment is 82% of the objective value, but the

1 The objective value for this moment is 0.25, Eq. (17). On physical
grounds [19], the pion’s (2x−1)2-moment should lie between the
conformal limit value, 1/5, and the result obtained using ϕπ(x) =
constant, viz. 1/3. Using ϕ̃π(x;Pz = 1 GeV), the moment de-
fined here takes the value 0.22: (0.22− 1/5)/(0.25− 1/5) = 0.33.
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FIG. 5. ϕ̃K−(x) − ϕ̃K+(x), computed with Pz/GeV = 1
(short-dashed, red), 1.75 (dashed, purple), 2.4 (dot-dashed,
blue), 3.0 (solid, green). The dotted (black) curve is the result
obtained with the objectiveK± PDAs; the long-dashed (slate-
blue) curve is the function δM (x) in Eqs. (21); and the thin
vertical lines at x = 0, 1 highlight the boundaries of support
for a physical PDA.

(2x − 1)2-moment is only 35% of the goal. In this case,
reducing the L1-difference between ϕ̃K(x) and ϕK(x) to
10% would require Pz ≈ 20 GeV.

In closing this subsection we return to SU(3)-
flavour-symmetry violation in the kaon PqDAs, plotting
[ϕ̃K−(x)− ϕ̃K+(x)]/2 in Fig. 5. Evidently, using modest
values of Pz, the PqDAs provide a fair pointwise descrip-
tion of the true difference on x ∈ [0.3, 0.7]. Again, how-
ever, the behaviour on large domains near the endpoints
is poorly represented. The figure also displays

δM (x) =
(Mu −Ms)(1− x) + x(Ms −Mu)

Mu +Ms
, (21a)

≈ (fπ − fK)(1− x) + x(fK − fπ)

fπ + fK
. (21b)

The comparison of δM (x) with [ϕ̃K−(x)− ϕ̃K+(x)] high-
lights that the scale of flavour-symmetry breaking in
the kaon distribution amplitudes measures differences
between the emergent masses of s- and u-quarks in
the Standard Model. The analogue of Eq. (21a) pro-
duced using Higgs-generated current-masses is an order-
of-magnitude too large at the PqDAs’ extrema.

IV. PARTON QUASIDISTRIBUTION
FUNCTIONS

A. Algebraic Analysis: PqDFs

In describing valence-dressed-quark parton distribu-
tion functions at an hadronic scale, ζH , the impulse-
approximation (handbag diagram) is inadequate be-
cause it omits contributions from the gluons which bind

valence-quarks into a hadron. A remedy for this flaw is
described and used to compute pion and kaon valence-
quark distribution functions in Refs. [21, 25]. Using the
kaon as an illustration:

uKV (x) = trCD

∫
dk

δxn(PK)

× [n · ∂kHu(k;PK)]Hs(k;PK) , (22a)

sKV (x) = uKV (1− x) , (22b)

where n · ∂k = nµ(∂/∂kµ),

Hu(k;PK) = Γ̄K(kK− ;−PK)Su(k) , (23a)

Hs(k;PK) = ΓK(kK− ;PK)Ss(k − PK) , (23b)

with Γ̄(kK− , PK) = C†Γ̄(−kK− , PK)TC, where C is the

charge conjugation matrix and (·)T denotes a transposed
matrix. Expressions for analogous distributions in the π
are obtained by changing s→ d.

Canonical normalisation of the kaon’s Bethe-Salpeter
amplitudes ensures∫ 1

0

dxuKV (x) = 1 =

∫ 1

0

dx sKV (x) . (24)

Consequently, using Eq. (22b), one finds immediately:

1 =

∫ 1

0

dxx[uKV (x) + sKV (x)] . (25)

In obtaining these results, one must use mathemati-
cal features of the matrix trace, properties of propaga-
tors and Bethe-Salpeter amplitudes under charge conju-
gation, and the following identity: for n2 = 0,

0 = trCD

∫
dk

δxn(PK)n · ∂k[Hu(k;PK)Hs(k;PK)] . (26)

Arriving at a parton quasi-DF extension of Eqs. (22) is
almost as straightforward as making the transition from
PDAs to PqDAs, described in Sec. (III A): one has

ũKV (x) = trCD

∫
dk

δxñ(PK)

× [ñ · ∂kHu(k;PK)]Hs(k;PK)− S(x) , (27a)

s̃KV (x) = ũKV (1− x) , (27b)

S(x) = 1
2 trCD

∫
dk

δxñ(PK)

× ñ · ∂k[Hu(k;PK)Hs(k;PK)] . (27c)

Analogous to the procedure in Sec. (III A), the primary
step is simply n → ñ in the PDF formulae. However,
the correction term, S(x), is also needed. Its presence
is suggested by the role of Eq. (26) in ensuring momen-
tum conservation; and it guarantees, inter alia, Eq. (27b).
Once again, analogous distributions in the π are obtained
by replacing s→ d.
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Using Eqs. (27), one may readily establish∫ ∞
−∞

dx̃ ũKV (x̃) =

∫ 1

0

dxuKV (x) = 1 , (28a)∫ ∞
−∞

dx̃ s̃KV (x̃) =

∫ 1

0

dx sKV (x) = 1 , (28b)∫ ∞
−∞

dx̃ x̃[ũKV (x̃) + s̃KV (x̃)]

=

∫ 1

0

dxx[uKV (x) + sKV (x)] = 1 . (28c)

Evidently, Eqs. (27) define purely valence quark quasidis-
tributions.

B. Numerical Illustrations: PqDFs

We now use Eqs. (1), (15), (18), (22) to compute the
pion and kaon PqDFs. The calculation is straightfor-
ward, following the pattern in Sec. 1: one uses Feynman
parametrisation to combine denominator products into a
single quadratic form, Cauchy’s theorem to evaluate the
k4 integral, direct evaluation for

∫
d2k⊥, and finally nu-

merical integration over the Feynman parameters. The
results are depicted in Fig. 6. (The objective PDFs were
obtained using the approach described in Ref. [25] and
checked using the overlap representation [52].)

A cursory comparison between Figs. 4 and 6 reveals
that a valence-quark PqDF is typically a better approxi-
mation to the objective result than a PqDA at any given
value of Pz. Looking closer at the pion (Fig. 6, upper
panel), the L1-differences are 19% (Pz = 1 GeV), 9%
(Pz = 1.75 GeV), 5% (Pz = 2.4 GeV), 4% (Pz = 3 GeV).
This series indicates that even with Pz = 1 GeV, the
pion’s valence-quark PqDF delivers a qualitatively sound
approximation to the true result; and the step to Pz =
1.75 GeV brings noticeable improvement; but, as with
the PqDAs, improvement is slow on Pz > 1.75 GeV.

Similar, too, is the pointwise behaviour of the valence-
quark PqDFs in the neighbourhood of the endpoints: as
with the PqDAs, the PqDFs leak significantly from the
domain 0 < x < 1. This is important because one of
the earliest predictions of the QCD parton model, aug-
mented by features of perturbative QCD (pQCD), is that
the valence-quark distribution function in a pseudoscalar
meson behaves as follows [53–58]:

qGV (x; ζH)
large x∼ (1− x)2+γ , (29)

where γ & 0 is an anomalous dimension. Verification of
Eq. (29) is an important milestone on the path toward
confirmation of QCD as the theory of strong interac-
tions [5]. In this connection we recall that Ref. [59] (the
E615 experiment) reported a pion valence-quark PDF ob-
tained via a leading-order pQCD analysis of their data,
viz. uπV (x) ∼ (1 − x), seemingly a marked contradic-
tion of Eq. (29). Subsequent computations using con-
tinuum methods appropriate to QCD bound-states [60]
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FIG. 6. Upper panel – Pion’s dressed-valence u-quark PqDF
at the hadronic scale, computed with Pz/GeV = 1 (short-
dashed, red), 1.75 (dashed, purple), 2.4 (dot-dashed, blue),
3.0 (solid, green). Lower panel – Same for kaon. The dotted
(black) curve in both panels is the associated objective PDF,
computed using Eqs. (1), (15), (18), (22); and the thin vertical
lines at x = 0, 1 highlight the boundaries of support for a
physical valence-quark PDF.

confirmed Eq. (29) and eventually prompted reconsider-
ation of the E615 analysis, with the result that at next-
to-leading order and including soft-gluon resummation
[61, 62], the E615 data can be viewed as being consis-
tent with Eq. (29). New data are essential in order to
check this reappraisal of the E615 data and settle the
controversy. This goal is a focus of an approved tagged
DIS experiment at the Thomas Jefferson National Ac-
celerator Facility (JLab) [63–65]. Such data could also
be obtained with the common muon proton apparatus
for structure and spectroscopy (COMPASS) detector at
CERN [66, 67] and at a future electron ion collider (EIC)
[68, 69].

These observations emphasise that quantitatively reli-
able lQCD results bearing upon Eq.(29) would be very
valuable. However, the challenge to delivering such out-
comes using PqDFs is highlighted by Fig. 7. On a domain
of valence-quark x, this figure compares the pion PqDFs
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FIG. 7. Pion PqDFs on x > 0.7, i.e. a valence-quark domain:
Pz/GeV = 1.75 (dashed, purple), 3.0 (solid, green). Dotted
(black) curve, objective PDF, uπV (x), whose large-x behaviour
is given in Eq. (30); dot-dash-dashed (brown) curve, rhs of
Eq. (30); and dot-dot-dashed (orange) curve, a PDF that is
pointwise near-equivalent to uπV (x), but which is ∝ (1 − x)1

at large x. (The thin vertical line at x = 1 marks the upper
bound on the domain of support for a physical valence-quark
PDF.)

in the upper panel of Fig. 6 with the objective PDF:

uπV (x)
x>0.95
≈ 113 (1− x)2, (30)

and another curve, whose x ∈ [0, 1] L1-difference from
the objective valence-quark PDF is just 2%, but which
is ∝ (1− x)1 at large-x. Evidently, even the Pz = 3 GeV
PqDF is unable to distinguish between these two distinc-
tively different results. (That x > 0.9 is required before
(1−x)2 behaviour is manifest in the pion’s valence-quark
distribution was remarked upon earlier [5].)

We now redirect our attention to kaon valence-quark
PqDFs. As with kaon PqDAs, there are similarities
with the pion. For instance, L1-differences are 25%
(Pz = 1 GeV), 12% (Pz = 1.75 GeV), 8% (Pz = 2.4 GeV),
6% (Pz = 3 GeV), indicating, again, that even with Pz =
1 GeV, the kaon’s PqDF delivers a qualitatively sound ap-
proximation to uKV (x); the step to Pz = 1.75 GeV brings
noticeable improvement, but changes are slow thereafter.
The remarks made in connection with the pion PqDFs’
large-x behaviour hold with equal force for the kaon.

It has been argued that the ratio uKV (x)/uπV (x) serves
as a sensitive probe of the difference between the gluon
distributions in the pion and kaon [25], and that this dif-
ference can reveal much about the emergence of mass in
the Standard Model [70]. Experimental data on the ra-
tio is available [71], but one measurement is insufficient
for complete confidence. Newer data would be welcome,
in which connection tagged DIS at JLab might also be
useful [7, 72], as could the COMPASS detector at CERN
[66, 67] and a future EIC [68, 69]. With these things in
mind, in Fig. 8 we depict the ratio ũKV (x)/ũπV (x). Evi-
dently, for Pz ≥ 1.75 GeV, much as was the case with the
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FIG. 8. x-dependence of the PqDF ratio ũK/ũπ at the
hadronic scale, ζH , computed with Pz/GeV = 1 (short-
dashed, red), 1.75 (dashed, purple), 2.4 (dot-dashed, blue),
3.0 (solid, green). The dotted (black) curve is the associ-
ated objective ratio, uK/uπ, obtained using the dotted (black)
curves in Fig. 6. (The dotted (red) line is drawn at unity; and
the thin vertical lines at x = 0, 1 highlight the boundaries of
support for a physical valence-quark PDF.)

PqDA asymmetry depicted in Fig. 5, the ratio of PqDFs
is quantitatively a good approximation to the objective
ratio on a material domain, viz. 0.4 . x . 0.8. This
domain almost covers that upon which empirical data
is available. We therefore anticipate that contemporary
lQCD simulations could provide a sound prediction for
this ratio before next generation experiments are com-
pleted.

V. SUMMARY AND PERSPECTIVE

Employing a continuum approach to bound-states in
quantum field theory and practical algebraic Ansätze
for the Poincaré-covariant Bethe-Salpeter wave functions
of the pion and kaon, we computed the leading-twist
two-dressed-parton light-front wave functions (LFWFs),
ψ(x, k2

⊥); parton distribution amplitudes (PDAs), ϕ(x);
parton quasi-DAs (PqDAs), ϕ̃(x); valence parton distri-
bution functions (PDFs), uV (x); and parton quasi-DFs
(PqDFs), ũV (x), for these systems.

The LFWFs are broad, concave functions, with power-
law k2

⊥-decay. Whilst the pion’s LFWF is symmetric
about x = 1/2, ψK(x, k2

⊥) peaks at (x = 0.44, k2
⊥ =

0), expressing SU(3)-flavour-symmetry violation with a
magnitude determined by differences between dynami-
cal (not explicit) mass generation in the s- and u-quark
sectors. Looking closely at the LFWFs, we found that
a carefully constructed product Ansatz, viz. ψ(x, k2

⊥) ∼
ψ1(x)ψ2(k2

⊥), although flawed in principle, can provide
fair estimates of integrated π, K properties.

The LFWFs provide direct access to π and K PDAs
and PqDAs; and for each system the PqDA provides a
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semiquantitatively reliable representation of the associ-
ated PDA when computed using a longitudinal momen-
tum Pz = 1.75 GeV. However, improvements thereafter
are slow; and, notably, even with Pz = 3 GeV, the PqDA
cannot provide information about the true PDAs end-
point behaviour.

Regarding pion and kaon valence-quark PDFs and
PqDFs, we found that at any given Pz, a PqDF delivers
a better representation of the associated PDF than does
a PqDA of the objective PDA. In fact, even with Pz =
1 GeV the PqDF provides a qualitatively clear picture of
the PDF. However, as with PqDAs, differences between
PqDFs and PDFs diminish slowly on Pz > 1.75 GeV;
and, similarly, even with Pz = 3 GeV, PqDFs cannot be
used to determine the objective PDF’s large-x behaviour.
On the other hand, the ratio ũKV (x)/ũπV (x) does provide
a good approximation to uKV (x)/uπV (x) on 0.4 . x . 0.8,
in consequence of which we expect that contemporary
simulations of lattice-regularised QCD can deliver a rea-
sonable prediction for this ratio before next generation
experiments are completed.

It is natural to extend this analysis to the neutron and
proton, for which analogous algebraic Ansätze for the
bound-state Faddeev wave functions exist or can readily
be developed [73]. We anticipate that the outcome will

be qualitatively similar: in particular, that even using
modest values of Pz, a material valence-quark x-domain
will exist upon which ratios of PqDFs may provide sound
representations of the PDF ratios measured empirically
[74–77].
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