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Numerical relativity codes that do not make assumptions on spatial symmetries most commonly
adopt Cartesian coordinates. While these coordinates have many attractive features, spherical co-
ordinates are much better suited to take advantage of approximate symmetries in a number of
astrophysical objects, including single stars, black holes and accretion disks. While the appearance
of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, es-
pecially in the absence of any symmetry assumptions, it has recently been demonstrated that these
problems can be avoided if the coordinate singularities are handled analytically. This is possible with
the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation to-
gether with a proper rescaling of tensorial quantities. In this paper we report on an implementation
of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, origi-
nally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate
boundary conditions at both inner and outer boundaries. We perform numerical simulations for a
disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in
these signals is orders of magnitude smaller when computed on spherical grids rather than Carte-
sian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical
relativity in spherical coordinates will become available to the entire numerical relativity community.

PACS numbers: 04.25.D-, 04.30.-w, 04.70.Bw, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

LIGO [1, 2] and Virgo’s [3, 4] first direct detections
of gravitational waves (GWs) from both binary black
hole (BBH) and binary neutron star (BNS) mergers [5–
10] open a new window for observations of the Uni-
verse. Moreover, the simultaneous detection of GWs and
electromagnetic (EM) radiation from the BNS merger
GW170817 has launched the new field of EM-GW multi-
messenger astronomy [11]. Ever since the breakthrough
simulations of BBHs in numerical relativity about a
decade ago [12–14], increasingly more accurate models
of BBH merger waveforms across the source parameter
space have been generated [15–17]. Together with approx-
imate gravitational wave-form models (see, e.g., [18–23]),
these numerical relativity simulations played a crucial
role in the parameter estimation of GWs [24] by LIGO-
VIRGO [25–27].

Among the missions of current and future GW detec-
tors are tests of General Relativity (GR) [28]. While the
remnant black hole (BH) mass and spin can be estimated
from the inspiral phase [29], measuring the quasinormal
ringdown [30–33] of the remnant BH in the GW signal
will provide an independent measurement of its mass and
spin [34], as well as tests of the no-hair theorem and
GR [35, 36]. Accurate modeling of the ringdown of a
highly distorted remnant Kerr BH after merger is only
possible using numerical relativity simulations of BBH
coalescence through merger.

Arguably, one of the most widely used evolu-
tion schemes for these type of simulations is the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [37, 38].1 It is based on the Arnowitt-Deser-Misner
(ADM) formulation of Einstein’s equations [40–42], and,
like the ADM formulation, adopts a 3 + 1 foliation of
spacetime [43]. Unlike the ADM formulation it also in-
troduces a conformal-traceless decomposition as well as
conformal connection functions (see also [44] for a text-
book introduction).

To date, most numerical codes that adopt the BSSN
formulation use finite differencing as well as Cartesian co-
ordinates. While Cartesian coordinates offer distinct ad-
vantages (most importantly, they are regular everywhere
and do not feature any coordinate singularities), there are
also several shortcomings: BHs, neutron stars, accretion
disks, etc., are often approximately spherical or axisym-
metric, and Cartesian coordinates are not well suited to
take advantage of these approximate symmetries. Fur-
thermore, Cartesian coordinates over-resolve angular di-
rections at large distances, which leads to the necessity
of employing box-in-box mesh refinement.

In large part, the main target of vacuum numerical
relativity simulations are BBH mergers, whose remnants
are Kerr [45] BHs. Being axisymmetric or nearly ax-

1 Sometimes referred to as BSSNOK, because it is based on the
strategy of [39] to simplify the spatial Ricci tensor.
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isymmetric, these merged remnants are prime targets
for evolutions in spherical coordinates. In [46], the au-
thors implemented the BSSN equations in spherical co-
ordinates without regularization in spherical symmetry.
An important ingredient in obtaining stability was the
use of the partially implicit Runge-Kutta methods de-
veloped in [47], even though it became clear later that
stability can also be achieved with higher-order fully ex-
plicit Runge-Kutta methods [48]. In [49], the authors ex-
tended the evolution system described in [46] to full 3D
and performed the first numerical relativity simulations
in spherical coordinates without the assumption of any
symmetries. The key idea in this approach is to han-
dle the coordinate singularities at the origin and on the
axis analytically, rather than numerically, which can be
achieved with the help of a reference-metric formulation
of the BSSN equations [46, 50–53] together with a proper
rescaling of all tensorial variables. The same methods can
also be applied to relativistic hydrodynamics [54]. Several
examples of vacuum and hydrodynamics simulations in
spherical coordinates, including an off-center BH head-on
collision, can be found in [55], and simulations of critical
collapse in the absence of spherical symmetry in [56–59].
This approach has been generalized in the SENR/N-
RPy+ code [60, 61] for various other curvilinear coordi-
nate systems.

The use of spherical coordinates has clear advantages.
Most importantly, the grid can take advantage of the ap-
proximate symmetries of the astrophysical objects to be
simulated. Also, the number of angular grid points is in-
dependent of radius, while in Cartesian coordinates the
number of points per great circle grows with distance
from the origin. The unigrid (i.e. single computational
domain without mesh refinement) character of a spheri-
cal mesh does not produce short-wavelength noise as is
the case for simulations with mesh refinement bound-
aries [62]. From a computational standpoint, our unigrid
implementation in the Einstein Toolkit offers another
advantage: It is well documented that mesh refinement
codes do not scale as well as unigrid codes (see [63] for
comparing scaling properties of unigrid and mesh refine-
ment in the Einstein Toolkit).

However, these advantages compared to Cartesian co-
ordinates come at a price: Spherical coordinates have a
well know limitation in the form of severely shorter time
steps due to the Courant-Friedrichs-Lewy (CFL) condi-
tion, as the cell volumes are not constant, but decrease
with increasing latitude towards the pole and decreasing
radius towards the origin. A related issue is that the co-
ordinate system becomes singular both at the origin and
the polar axis, where coordinate values become multival-
ued.

An approach to combine the best of both worlds is
the use of multipatch computational domains, in which
the domain is broken up into several overlapping patches
locally adapted to the underlying symmetries of the phys-
ical system and free of coordinate singularities and the
time step limitations of spherical unigrid meshes [64–71].

The SpeC code [72] uses such a multipatch grid struc-
ture [73], but in the context of pseudospectral evolution
scheme. Other techniques in numerical relativity codes
for dealing with the polar singularities are the use of
stereographic angular coordinates, coupled to the eth for-
malism [74], as is done in the PITT Null code [75], and
the use of cubed spheres, as is done in the Llama in-
frastructure [76]. The use of multipatch grids, however,
is not free of caveats either: Interpatch boundaries re-
quire interpolation of fields in ghost zones which might
introduce similar numerical noise as Cartesian mesh-
refinement boundaries.

In this work, we report on an implementation of
the BSSN equations in spherical coordinates described
in [49] as a thorn called SphericalBSSN in the pub-
licly available Einstein Toolkit [77, 78], using code
for the BSSN equations provided by [60]. The Einstein
Toolkit was designed with Cartesian coordinates in
mind, so that we had to adapt our implementation of
spherical coordinates to its infrastructure in some re-
gards. We first identify the x, y and z coordinates defined
in the Einstein Toolkit with r, θ and ϕ. The Einstein
Toolkit uses a vertex-centered grid for finite differenc-
ing, meaning that grid points are placed on the edges of
the physical domain. This is not desirable in spherical
coordinates, because grid points at the origin or on the
axis would be singular. We therefore move both the r
and θ axes by half a grid point, so that, effectively, we
implement a cell-centered grid in these directions (com-
pare Fig. 1 in [49]. While, in Cartesian coordinates, the
domain boundaries in x, y and z all correspond to outer
boundaries, only the upper r domain boundary corre-
sponds to an outer boundary in spherical coordinates. All
other boundary conditions are “inner” boundary condi-
tions. For the ϕ coordinate, these boundary conditions
result from periodicity, while for the θ direction as well
as at r = 0, the boundary conditions result from parity
across the pole or the origin. For all inner boundaries, the
ghost zones are filled in using properly identified interior
grid points (see again Fig. 1 in [49] for an illustration),
taking into account the parity of tensorial quantities.

In MPI-parallelized domain decompositions, the inner
boundary conditions can require information from differ-
ent processes and are therefore more difficult to imple-
ment than in the context of OpenMP-parallelized, single-
domain implementations. Using the Slab thorn [78], we
have implemented the inner boundary conditions in an
MPI-parallelized way, allowing for arbitrary MPI domain
decompositions. We also made several changes to existing
diagnostics in the Einstein Toolkit so that they can be
used for evolutions in spherical coordinates, specifically
the apparent horizon (AH) finder [79, 80] and a thorn
that computes quasilocal quantities [81, 82] on AHs. We
test the new thorn, together with the changes in the exist-
ing diagnostics, for a single Bowen-York spinning BH [83],
which is equivalent to a Kerr BH with an axisymmetric
Brill wave.

Throughout this paper we use units in which c = G =
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1, Latin indices run from 1 to 3, and the Einstein sum-
mation convention is used.

II. IMPLEMENTATION IN THE EINSTEIN
TOOLKIT

The Einstein Toolkit is an open source code suite
for relativistic astrophysics simulations. It uses the mod-
ular Cactus framework [84] (consisting of general mod-
ules called “thorns”) and provides adaptive mesh refine-
ment (AMR) via the Carpet driver [85–87]. Here we de-
scribe the implementation of the BSSN evolution code in
spherical coordinates within the Toolkit. All codes men-
tioned here are either publicly available already, or are in
the process of being released.

A. Evolution system

As outlined in [46, 49, 55], the key idea in allowing sta-
ble evolutions of the BSSN [37–39] equations in spherical
coordinates is to treat the coordinate singularities analyt-
ically rather than numerically. Specifically, the equations
contain terms that diverge withO(r−2) close to the origin
and O(sin−2 θ) close to the axis. Adopting a reference-
metric formulation of the BSSN equations [46, 50–53]
together with a proper rescaling of all tensorial quan-
tities, these terms can be differentiated analytically, and,
for regular spacetimes, all code variables remain finite.
We also assume absence of conical singularities, which is
sometimes referred to as “elementary flatness” [88]. This
approach has been generalized in [60] for a larger number
of curvilinear coordinate systems, such as spherical coor-
dinates with a sinh(r) radial coordinate and cylindrical
coordinates, among others. We give a summary of the
evolution system below, and refer the reader to the full
details in [49, 55, 60].

Central to the method is the conformally related spa-
tial metric

γ̄ij = e−4φγij , (1)

where γij is the physical spatial metric, and φ the con-
formal factor

e4φ = (γ/γ̄)1/3, (2)

where γ and γ̄ are the determinants of the physical and
conformally related metric, respectively. In order to make
the conformal rescaling unique, we adopt Brown’s “La-
grangian” choice [52]

∂tγ̄ = 0, (3)

fixing γ̄ to its initial value throughout the evolution. Sim-
ilarly, the conformally related extrinsic curvature is de-
fined as

Āij = e−4φ
(
Kij −

1

3
γijK

)
, (4)

where Kij is the physical extrinsic curvature and K =
γabKab its trace.

The main idea is to write the conformally related met-
ric as the sum of the flat background metric plus pertur-
bations (which need not be small)

γ̄ij = γ̂ij + εij , (5)

where γ̂ij is the reference metric in spherical coordinates,

γ̂ij =

1 0 0
0 r2 0
0 0 r2sin2θ

 , (6)

and the corrections εij are given by

εij =

 hrr r hrθ r sinθ hrϕ
r hrθ r2 hθθ r2 sinθ hθϕ

r sinθ hrϕ r2 sinθ hθϕ r2 sin2θ hϕϕ

 , (7)

where hij is the rescaled evolved metric. This idea is sim-
ilar to bimetric formalisms [89–95] in GR, in which ref-
erence metrics are employed to give physical meaning to
pseudotensors in curvilinear coordinates, or in the inte-
gration of the Ricci scalar on a hypersurface [96]. The
evolved conformally rescaled extrinsic curvature aij is
similarly related to the conformally related extrinsic cur-
vature Āij

Āij =

 arr r arθ r sinθ arϕ
r arθ r2 aθθ r2 sinθ aθϕ

r sinθ arϕ r2 sinθ aθϕ r2 sin2θ aϕϕ

 . (8)

The conformal connection coefficients Λ̄i are treated as
independent variables that satisfy the initial constraint

Λ̄i −∆i = 0. (9)

Here

∆i ≡ γ̄ab∆i
ab (10)

and ∆i
jk is the difference between the Christoffel symbols

of the conformally rescaled and flat reference metric,

∆i
jk ≡ Γ̄ijk − Γ̂ijk. (11)

The conformal connection coefficients Λ̄i therefore trans-
form like vectors in the reference-metric formalism. Sim-
ilar to our treatment of the metric and the extrinsic cur-
vature we write

Λ̄i =

 λr

λθ/r
λϕ/(r sin θ)

 (12)

and evolve the variables λi in our code. We refer the
reader to [49, 55, 60] for the full details of the evolution
system.
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The physical metric γij and the physical extrinsic cur-
vature Kij can be reconstructed from the evolved vari-
ables hij and aij as follows:

γij = e4φ

 1 + hrr r hrθ r sinθ hrϕ
r hrθ r2 (1 + hθθ) r2 sinθ hθϕ

r sinθ hrϕ r2 sinθ hθϕ r2 sin2θ (1 + hϕϕ)

 ,

(13)
and

Kij = e4φĀij +
1

3
γijK. (14)

Together with the lapse α and the shift βi, this set
of the 3 + 1 variables {α, βi, γij ,Kij}, expressed in
spherical coordinates, is stored in the thorn ADMBase
to interface with existing diagnostics in the Einstein
Toolkit [77, 78].

Numerical code for the evolution system is provided
by the SENR/NRPy+ code, and the time integration
is performed with the method of lines as implemented in
the MoL [77, 78] thorn.

B. Spherical parity boundary conditions

There is no global and regular one-to-one map from
spherical to Cartesian coordinates. Instead, at least two
charts are needed to cover an entire sphere of a given
radius. Ultimately, this is due to the fact that θ and ϕ
are multivalued at the coordinate origin, and ϕ is multi-
valued at the polar axis. As a result, the Jacobian from
spherical to Cartesian coordinates diverges both at the
origin and polar axis. In our implementation in the Ein-
stein Toolkit we use the existing Cartesian grid in-
frastructure as spherical coordinates by implementing the
internal boundary conditions in a way that uses the un-
derlying topologically Cartesian grid.

As explained already in the Introduction, we start by
identifying the internal (x, y, z) coordinate representation
used in Carpet with the spherical coordinates (r, θ, ϕ).
Carpet uses a vertex-centered grid structure, meaning
that grid points exist on the edges of the physical do-
mains. This is not desirable in spherical coordinates, be-
cause of the coordinate singularities at the origin, r = 0,
and the poles at θ = 0 and θ = π. We therefore shift
both the r and θ axes by half a grid point. Therefore, the
physical 3D domain has the following extents:

r ∈
[
dr

2
, rmax

]
, (15)

θ ∈
[
dθ

2
, π − dθ

2

]
, (16)

ϕ ∈ [0, 2π − dϕ] . (17)

Effectively, we therefore adopt a cell-centered grid in the
r and θ directions, but maintain a vertex-centered grid
in the ϕ direction.

Cartesian coordinates are topologically R3, and all do-
main boundaries for large or small values of the coordi-
nates x, y or z correspond to outer boundaries. In spheri-
cal coordinates, on the other hand, only rmax corresponds
to an outer boundary, while all other domain boundaries
represent “inner boundaries”. At r = 0, for example, a
radial grid line can be extended to negative values of r.
We allow for ngzr ghost zone grid points at negative r;
these ghost zone grid points correspond to interior grid
points with positive r for some other values of the angles
θ and ϕ (see Fig. 1 in [49] for an illustration). Specifi-
cally, we identify ghost zones at the origin with interior
grid points at the coordinate locations

r → −r (18)

θ → π − θ, (19)

ϕ → ϕ+ π. (20)

We can then fill these ghost zones by applying internal
parity boundary conditions, which we explain in more
detail below. Similarly, meridians, i.e. lines of constant
θ, can be extended across the pole, and the ghost zones
there can again be identified with internal grid points.
For θmin = 0 we have

θ → −θ, (21)

ϕ → ϕ+ π, (22)

and for θmax = π

θ → π − θ, (23)

ϕ → ϕ+ π. (24)

We also introduce ghost zones for ϕ, which can be filled
by imposing periodicity. We note that application of this
scheme requires an even number of grid points in the ϕ
direction.

For scalar quantities, interior grid points can be copied
directly into the corresponding ghost zone grid points.
For tensorial quantities, however, we have to take into ac-
count the fact that the direction of unit vectors changes
when crossing the origin or pole (see [49, 60] for more de-
tails). This observation leads to parity factors that arise
in the application of the inner boundary conditions. We
list these factors in Table I.

By using the cell-centered grid in r and θ, and using
the described internal boundary conditions, we are able
to have a one-to-one mapping of the internal Cartesian
coordinates in the Einstein Toolkit, which are topo-
logically R3, with the spherical coordinates used in the
evolution.

Allowing for arbitrary MPI domain decompositions re-
quires communication across processes, as a given process
might not be in possession of the point that is mapped to
a ghost zone in its domain. We have implemented these
boundary conditions using the Slab thorn, which pro-
vides MPI-parallelized infrastructure to take 3D subar-
rays (“slabs”) of the 3D domain, manipulate them and



5

Origin Axis
Vr – +
Vθ + –
Vϕ – –
Trr + +
Trθ – –
Trϕ + –
Tθθ + +
Tθϕ – +
Tϕϕ + +

TABLE I: Table showing the spherical parity factors for vec-
tors and tensors (see Table I in [49]).

then broadcast the manipulated slabs back to all proces-
sors that contain a part of it. In what follows, we show
how the internal boundary conditions are implemented as
slab transfers using the SLAB thorn (see Figs. 1 and 2).

θ ϕ

r0

r−1

θ → π − θ

ϕ→ ϕ + π

0

π 0

2π

FIG. 1: Diagram depicting the slab transfers involved in the
rmin boundary condition.

θ ϕ

0

π

FIG. 2: Diagram showing the slab transfers involved in the
θmin and θmax boundary conditions.

The source slab for the boundary condition at the ori-
gin contains the first ngzr physical points in r, where,
again, ngzr is the number of ghost zones in the r direc-
tion, and all physical points in θ and ϕ. The operation
θ → π−θ is performed by inverting the slab in the θ direc-

tion, while the ϕ→ ϕ+π operation corresponds to mov-
ing all points from [0, π] → [π, 2π] and, taking into ac-
count the periodicity in ϕ, all points from [π, 2π]→ [0, π].
The ϕ part of the operation is achieved using two sepa-
rate calls to the slab transfer. Finally, the source slab is
inverted in r and the resulting slabs transferred into the
ghost zones of the domain. This is illustrated in Fig. 1.
Note that the procedure only fills ghost zones that corre-
spond to physical points in θ and ϕ, while “double” and
“triple” ghost zones on the edges and corners of the com-
putational grid need to be filled by subsequent internal
boundary conditions.

We then proceed by imposing the θ boundary condi-
tions in a similar manner (see schematic in Fig. 2), fol-
lowed by applying periodic boundary conditions in ϕ us-
ing an existing thorn in the Einstein Toolkit. This
order ensures that all ghost zones that need to be speci-
fied by internal parity boundaries are filled correctly.

In future applications that include magnetohydro-
dynamics and/or other matter fields, the same parity
boundary conditions will apply to the matter fields as
well. We have therefore implemented these boundary con-
ditions in a separate thorn, SphericalBC, so that they
are available for all evolved quantities, and not only for
the spacetime evolution.

C. Time Step considerations

It is well known that the time integration of hyperbolic
PDEs in spherical coordinates suffers from severe CFL
time step restrictions, as the cell sizes become smaller and
smaller with increasing latitude from the equator towards
the poles, and decreasing distance from the origin. In a
spherical unigrid in flat spacetimes, the time step due to
the CFL condition is given by [49]:

dt = Cmin

[
dr,

dr

2
dθ,

dr

2
sin(

dθ

2
)dϕ

]
, (25)

where the CFL factor C is chosen between 0 and 1. The
time step is therefore limited by the azimuthal distance
between cells at the origin and polar axis. Compared with
Cartesian coordinates, where dt ≈ dx (when the same
spatial resolution dx is used in all three coordinates), the
time step in spherical coordinates varies as dt ≈ dr dθ dϕ.
Thus high angular resolution will impose severe time step
restrictions in spherical coordinates.

When using a high number of azimuthal cells, the CFL
restriction might render the numerical integration com-
putationally unfeasible. There are several approaches to
mitigate this problem (for an introduction, see e.g. [97]),
from various multipatch approaches [64–71, 74, 75] to re-
ducing the number of azimuthal cells at high latitudes as
mesh coarsening in the azimuthal direction [98], focusing
resolution of the polar angle at the equator [99, 100], or
the use of filters [101–104], to name a few.

To circumvent the severe time step limitation in cases
when evolving BHs centered at the coordinate origin,
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we have devised a simple excision strategy in order to
enlarge time steps in these evolutions. When evolving
BHs centered at the coordinate origin, however, specif-
ically, we employ a radial extrapolation of all evolved
variables deep inside the AH during the evolution, which
essentially amounts to excising parts of the BH inte-
rior. Similar strategies have been employed and shown to
work in the context of puncture BH [105–107]. Within a
fixed number of radial points the BSSN variables are not
evolved but rather linearly extrapolated inwards radially
from the first evolved points. When using this technique,
we get a dramatic increase in time step, which is now
given by:

dt = Cmin

[
dr,Adrdθ,Adr sin(

dθ

2
)dϕ

]
, (26)

where A ≡ nEx − 1 + 1
2 and nEx is the number of “ex-

cised” radial grid points. In the simulations presented
in Sec. III below, we choose this parameter such that
nExdr ≈ rAH/2 initially, and a CFL factor C = 0.4. We
emphasize that we employ this excision for the purposes
of speeding up the simulation only – it is not needed for
stability. In Fig. 5 below we compare simulations with
and without this excision; we also note that the simula-
tions in [49, 55–60] did not use such an excision.

D. Diagnostics

We use the AHFinderDirect thorn [108] to find
AHs [109] and the QuasiLocalMeasures thorn [110,
111] to calculate the angular momentum of the apparent
horizon during the evolution. The BH spin is measured
using the flat space rotational Killing vector method [112]
that was shown to be equivalent to the Komar angular
momentum [113] in foliations adapted to the axisymme-
try of the spacetime [114]. Both thorns were written ex-
plicitly for the Cartesian coordinates employed in Car-
pet — interpolating entirely in the Cartesian basis both
the ADMBase variables {γij ,Kij , α, β

i} and the par-
tial derivatives of the spatial metric and extrinsic cur-
vature. As indicated in Sec. II A above, the ADMBase
variables in the SphericalBSSN thorn are the physi-
cal spherical metric, extrinsic curvature, lapse and shift
in spherical coordinates, which means we need to trans-
form the ADMBase variables and their partial deriva-
tives to Cartesian coordinates after interpolation. This
is required because AHFinderDirect expects the com-
putational domain to have Cartesian topology (i.e., any
surface with constant r, will not appear to be closed
to AHFinderDirect). In its original form, AHFind-
erDirect interacts with the rest of the Toolkit by re-
questing the interpolation of the metric functions, and
their derivatives, at various points in Cartesian coor-
dinates. To make this work with SphericalBSSN, we
modify this behavior by transforming the Cartesian co-
ordinates to spherical (the necessary Jacobians are pro-
vided by aliased functions defined in SphericalBSSN),

and then after the interpolation step, transforming the
metric functions from spherical to Cartesian coordinates
using the Jacobian Jai ≡ ∂xa

∂xi from spherical to Cartesian
coordinates according to

γij = Jai J
b
j γab,

γij,k = Jai,c J
b
j J

c
k γab,

+ Jai J
b
j,c J

c
k γab,

+ Jai J
b
j J

c
k γab,c,

Kij = Jai J
b
j Kab,

Kij,k = Jai,c J
b
j J

c
kKab,

+ Jai J
b
j,c J

c
kKab,

+ Jai J
b
j J

c
kKab,c,

βi = J ia β
a, (27)

where we adopt the convention that indices a and b refer
to spherical coordinates r, θ and ϕ, and indices i and j to
the Cartesian coordinates x, y and z in coordinate trans-
formations, and a comma indicates ordinary partial dif-
ferentiation. When the origin of the AHFinderDirect
internal six-patch system coincides with the coordinate
origin, we add a small offset in θ at points located on the
z-axis, as the Jacobian diverges at those points.

We extract GWs by computing the Weyl scalar Ψ4 us-
ing the electric and magnetic parts of the Weyl tensor and
constructing the numerical tetrad as described in [115] in
spherical coordinates. The calculation of Ψ4 and the re-
maining Weyl scalars is contained in a new thorn called
SphericalWeylScal. The multipole expansion of the
real and imaginary parts of Ψ4 in spin-weighted spher-
ical harmonics [116] is performed on the spherical grid
used in the evolution. SphericalWeylScal performs
the multipole expansion after the calculation of the Weyl
scalars.

While the Jacobian for spherical coordinates is simple
to implement directly into the analysis thorns, we coded
our modification to AHFinderDirect and QuasiLo-
calMeasures so that they call aliased functions. In this
way, both codes can now work with arbitrary coordinate
systems, as the calculation of the Jacobians, etc., are han-
dled by auxiliary routines.

E. Initial Data

As a demonstration of our methods we show in Sec. III
below an evolution of a spinning Bowen-York BH [83],
which describes a perturbed Kerr BH [45].

Bowen-York data are conformally flat, so that hij = 0
identically, as well as Λ̄i = 0. The data are also max-
imally sliced, so that K = 0. The momentum con-
straint can then be solved analytically for the confor-
mally rescaled extrinsic curvature; for rotating Bowen-
York BHs, the only non-vanishing component is the rϕ
component. Given the analytical solution for this extrin-
sic curvature, the Hamiltonian constraint can then be
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solved numerically for the conformal factor eφ. The only
non-vanishing component of the the extrinsic curvature
variables aij defined in (8) is then

arϕ =
3e−6φJ sin θ

r3
, (28)

where J is the magnitude of the BH’s angular momentum
(see also exercise 3.11 in [44]).

In order to allow for future applications with more gen-
eral sets of initial data that may have been prepared in
Cartesian coordinates, we do not implement the above
results directly, but instead use the TwoPunctures
thorn [117] to set up the data. This thorn uses spectral
methods to solve the Einstein constraints, and interpo-
lates the Cartesian ADMBase variables onto the com-
putational mesh used in the simulation. We have adapted
the thorn to interpolate the Cartesian ADMBase vari-
ables onto the spherical grid points instead. Upon the
completion of the interpolation, the metric γij and ex-
trinsic curvature Kij are transformed from Cartesian to
spherical coordinates as described in Section II D above.
The evolved metric variables hij are then computed from

hij = e−4φγij �

 1 1/r 1/(r sinθ)
1/r 1/r2 1/(r2 sinθ)

1/(r sinθ) 1/(r2 sinθ) 1/(r2 sin2θ)

−1,
(29)

where � indicates the Hadamard product (element-wise
matrix multiplication) and 1 the identity matrix, while
the evolved extrinsic curvature variables aij are

aij =e−4φ(Kij −
1

3
γijK)

�

 1 1/r 1/(r sinθ)
1/r 1/r2 1/(r2 sinθ)

1/(r sinθ) 1/(r2 sinθ) 1/(r2 sin2θ)

 .
(30)

We confirmed that these variables agree with the values
listed above to within truncation error.

We complete the specification of the initial data with
choices for the initial lapse and shift. We choose an ini-
tial shift βi = 0 and an initial lapse α = e−2φ for the
SphericalBSSN runs and βi = 0, α = 2r/(M + 2r) for
the comparison Einstein Toolkit runs.

III. RESULTS

We perform simulations of a single, spinning, and ini-
tially conformally flat BH (the Bowen-York solution [83]),
with the initial data prepared as described in Section II E
above. Since the Kerr [45] spacetime is not conformally
flat, these initial data represent a spinning BH with grav-
itational wave content that will be radiated away [123],
allowing the BH to settle to the Kerr solution. In all re-
sults presented here, dimensionful quantities are reported
in terms of M = 1. The BH has an initial spin J = 0.8M2
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1.12634

1.12636

1.12638

1.1264

M
ir

r Nθ = 32

Nθ = 64

dx = 0.02

dx = 0.0125

FIG. 3: Comparison of the evolution of the irreducible mass
of the BH for SphericalBSSN and McLachlan at two dif-
ferent resolutions each.
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0.80000

0.80010

J
[M

2
]

Nθ = 32

Nθ = 64

dx = 0.02

dx = 0.0125

FIG. 4: Comparison of the evolution of the AH angular mo-
mentum for SphericalBSSN and McLachlan at two differ-
ent resolutions each.

and an ADM mass [41, 42] of MBH = 1.18112M , giv-
ing a Kerr parameter a ≡ J/MBH = 0.677M . We per-
form simulations of these initial data using our Spher-
icalBSSN implementation. For comparison, we evolve
the same initial data in Cartesian coordinates using the
McLachlan [107, 124] thorn. McLachlan is a finite
difference code generated using Kranc [125] that solves
the BSSN equations as part of the Einstein Toolkit.
For our comparisons here we use 4th-order spatial finite
differences in both codes, but we note that SENR/N-
RPy+ and McLachlan are capable of providing finite-
difference stencils for the BSSN equations at arbitrary
order. We summarize the details of the relevant simula-
tion parameters in Table II.

A. BH mass and spin

In Figs. 3 and 4 we plot the evolution of the irreducible
mass of the BH and its angular momentum, respectively.
During the first 35M of the evolution the BH mass in-
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SphericalBSSN McLachlan

Resolution dr = 0.02, dθ = π/32 (π/64), dϕ = 2π/4 dx = dy = dz = 0.02 (0.0125)
Mesh refinement unigrid 10 refinement levels [85]
Outer boundary 200 (500) 512

Outer boundary condition Sommerfeld BC [118] Sommerfeld BC
FD order 4th order centered finite differencing 4th order centered finite differencing

Upwinding 4th order upwinding on shift advection terms 4th order upwinding on shift advection terms
Kreiss-Oliger dissipation 5th order dissipation 5th order dissipation

Dissipation strength ε = 0.1 ε = 0.1
Time integration Method of lines with RK4 Method of lines with RK4

CFL factor C 0.4 0.4
Prolongation none 5th order spatial, 2nd order temporal prolongation

Lapse evolution 1+log slicing [119] 1+log slicing
Lapse advection yes yes
Shift evolution Γ-driver [120], η = 1.0 Γ-driver, η = 2.0
Shift advection yes yes

Evolved conformal factor W = e−2φ [121] W = e−2φ

Gravitational wave extraction Ψ4 with SphericalWeylScal Ψ4 with WeylScal4 thorn [122]
GW extraction radii 20, 60, 100, 140, 180 20, 60, 100, 140, 180

TABLE II: Summarizing the main parameters of the simulations performed with SphericalBSSN and the McLachlan thorn.

creases due to the absorption of some of the GW con-
tent in the spacetime (see Fig. 5 below). We omit this
initial time in Fig. 3, and instead show the long-term be-
havior after the BH has settled down. We show results
for two different θ resolutions (Nθ = 32 and 64) with
SphericalBSSN and two resolutions (dx = 0.0125 and
0.02 on the finest mesh) using the Einstein Toolkit
in Cartesian coordinates with box-in-box mesh refine-
ment. The radial resolution in both evolutions (dr = 0.02
and dx = 0.02 on the finest Cartesian mesh which cov-
ers the AH) gives approximately 25 radial points across
the minimum diameter (0.25) of the AH initially. For
the irreducible mass shown in Fig. 3, the results ob-
tained with the higher resolution SphericalBSSN and
the two Cartesian runs agree well, while the lower resolu-
tion SphericalBSSN run appears to be under-resolved,
showing a linear growth in the irreducible mass that is
unphysical. There is a notable absence of oscillations in
the higher resolution SphericalBSSN run, which can
be seen in both Cartesian runs (converging away with
increasing resolution).

The evolution of the angular momentum of the AH,
shown in Fig. 4, exhibits a similar behavior. The two
high-resolution runs with McLachlan and Spheri-
calBSSN perform similarly, while the lower resolution
runs show linear drifts in both Cartesian and spherical
coordinates. The Cartesian simulations show larger ini-
tial oscillations that do not seem to converge away with
increasing resolution, likely due to reflections of short-
wavelength modes across mesh boundaries [126, 127].
Just as for the irreducible mass, the high-resolution
SphericalBSSN simulations performs best.

To test the effect of the excision described in Sec-
tion II C, we plot the initial evolution of the irreducible
mass for a run with, and one without, our excision pro-
cedure in Fig. 5. Evidently, the excision procedure does

0 10 20 30

t

1.12525

1.1255

1.12575

1.126

1.12625
M

ir
r

No Excision, Nθ = 64

Excision, Nθ = 64

FIG. 5: Comparing the evolution of the BH irreducible mass
for two SphericalBSSN runs, with and without the excision
algorithm described in Sec. II C.

not have any visible effect on the accuracy or stability of
our method.

B. Gravitational waves

In Fig. 6, we plot the absolute value of the multipole
expansion in spin-weighted spherical harmonics −2Ylm of
the Weyl scalar Ψ4, extracted at a radius of r = 180, for
the even l = 2 through 8, m = 0 multipoles (by symme-
try, only the m = 0 modes are non-zero). The plot shows
the Cartesian simulation with dx = 0.02 and two differ-
ent θ-resolutions for the spherical simulations. There are
notable differences between the Cartesian and spherical
evolutions: In the spherical simulations, there is an ab-
sence of initial noise pulse before the radiation reaches it
peak value, and the decay after the peak value proceeds
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much cleaner and to orders of magnitude below the val-
ues attained in the Cartesian simulation. The reason for
this difference in behavior is the fact that there are par-
tial reflections of the outgoing wave at each Cartesian
mesh refinement boundary (see, e.g. [126, 127]), causing
the unphysical excitation of l ≥ 4 multipole modes, as
well as reflections in the initial noise pulse in seen in the
l = 2 mode. These reflections affect strong-field quanti-
ties as well, as described in [126]. Contrary to this, the
spherical grid in SphericalBSSN is a single uniform
grid, so there is a complete absence of these reflections
(apart from reflections from the outer boundary), lead-
ing to much cleaner signals especially in the higher-order
multipoles.

C. Kerr quasinormal modes

Given that the SphericalBSSN simulation provides
us with very accurate higher order modes, we turn our
attention to an analysis of the BH’s quasinormal modes.
As explained in the setup of the initial data, the spin-
ning, initially conformally flat BH should settle down
to a Kerr BH via ringdown of its quasinormal modes
(QNM) (see [33] for a review). In Fig. 7, we plot the l = 2
through 8, m = 0 modes of |Ψ4| for the high resolution
Nθ = 64 simulation alone. We note that even (odd) l-
modes contain only the real (imaginary) part of Ψ4. The
l = 2 mode follows a clear exponential decay, but the
higher-order modes exhibit a beating modulation on top
of the exponential decay. The reason for this behavior is
that the quasinormal modes for Kerr are defined in terms
of spheroidal harmonics, sS

lm, while we decompose the
waveform in terms of spin-weighted spherical harmonics

sYlm. Following [128], we can decompose Ψ4 in terms of

spin-weighted spheroidal harmonics sS
l′m with s = −2

according to

Ψ4 =
∑

l′,m′,n′

Al′m′n′ sS
l′m′

e−αl′m′n′ teiωl′m′n′ t (31)

where n is the overtone number of each mode, αl′mn is its
the decay rate, ωl′mn its frequency, and the coefficients
Al′mn are the amplitudes of the individual modes. In par-
ticular, we see that each mode oscillates and decays at
well-defined rates. In practice, however, Ψ4 is projected
into the spin-weighted spherical harmonics sY

lm, i.e.

Ψlm
4 =

∫
Ψ4sY

∗
lmdΩ

=
∑

l′,m′,n′

Al′m′n′e−αl′m′n′ teiωl′m′n′ t

∫
sSl′m′sY

∗
lmdΩ

=
∑

l′,m′,n′

Al′m′n′e−αl′m′n′ teiωl′m′n′ tµ∗mll′n′(a)δmm′

=
∑
l′,n′

Al′mn′e−αl′mn′ teiωl′mn′ tµ∗mll′n′(a). (32)

Here the coefficients µ∗mll′n′(a) describe the mixing be-
tween spin-weighted spheroidal and spherical harmonics;
they are defined in eq. (5) of [129] and depend on the
black hole Kerr parameter a.

Ignoring higher-order overtone modes with n′ > 0,
which decay faster than the fundamental modes, we fit
the l = 4 through 8, m = 0 spherical harmonic modes
computed from our numerical data to the form

Ψl0
4 (t) ≈

l′=10∑
l′=2

Al′0e
(−αl′00t)sin(ωl′00t+ φl′0), (33)

where the unknowns Al′0 and φl′0 serve as 18 parame-
ters corresponding to the amplitudes (including the mix-
ing coefficients) and phases, respectively. We fix the αl′00
and ωl′00 in the fit to be the values of the decay rate and
frequency that correspond to the Kerr BH in our simu-
lation (J/M2

BH = 0.573 and MBH = 1.18112), using the
tabulated values and Mathematica notebooks to calcu-
late QNMs [33, 130] found at [131]. The results of the fit
for the l = 3 through 8 modes are shown in Fig. 8 for a fit-
ting window of t = 220−340. The beating of the modes is
very well captured by modeling a given l mode as the sum
of the expected decay rates and frequencies calculated in
spin-weighted spheroidal harmonics, showing that mode
mixing is responsible for the observed beating. A similar
type of equal m mode mixing has been observed in [132].

IV. DISCUSSION

We report on an implementation of the BSSN equa-
tions in spherical coordinates in the Einstein Toolkit.
While Cartesian coordinates have advantages for many
applications, spherical coordinates are much better suited
to take advantage of the approximate symmetries in
many astrophysical systems. The problems associated
with the coordinate singularities that appear in curvilin-
ear coordinates can be avoided if these singularities are
treated analytically – which, in turn, is possible with the
help of a reference-metric formulation of the BSSN equa-
tions [46, 50–53] and a proper rescaling of all tensorial
quantities [46, 49, 55, 60]. We implement this formalism
in the Einstein Toolkit in an effort to make these tech-
niques publicly available to the entire numerical relativity
community and beyond.

Specifically, we adapt the Einstein Toolkit infras-
tructure, which originally was designed for Cartesian
coordinates, for spherical coordinates. In contrast to
Cartesian coordinates, spherical coordinates feature in-
ner boundary condition, where ghost zones are filled by
copying interior data from other parts of the numerical
grid, taking into account proper parity conditions. We
implemented these boundary conditions, which may re-
quire communication across processors, within an MPI-
parallelized infrastructure using the Slab thorn. Numer-
ical code for the BSSN equations in spherical coordinates
were provided by SENR/NRPy+ [60, 61].
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FIG. 6: |Ψ4| for the even l = 2 through 8, m = 0 modes, computed with both SphericalBSSN (black and blue lines) and
McLachlan (red lines).
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FIG. 7: |Ψ4| for the even l = 2 through 8, m = 0 modes (left panel), and the odd l = 3 through 7, m = 0 modes (right panel),
computed with SphericalBSSN.

In order to test and calibrate our implementation we
performed simulations of a single, spinning and initially
conformally flat BH, and compared the evolution of BH
mass, spin and GWs using our spherical BSSN (Spher-
icalBSSN) and Cartesian AMR BSSN (McLachlan)
code with comparable grid resolutions. For sufficiently
high resolutions, the evolution on a spherical mesh con-
serves irreducible mass and angular momentum far better
than with Cartesian AMR. In particular, there are no

reflections of the initial junk radiation or outgoing ini-
tial gauge pulse [62, 126] at mesh refinement boundaries,
causing the evolution of irreducible mass and spin to be
smoother in the unigrid spherical evolution. The advan-
tage of using unigrid spherical coordinates over Cartesian
coordinates with box-in-box mesh refinement becomes
particularly apparent when analyzing the higher-order
l-multipoles of the GW wave signal. These signals are
affected by partial reflections at mesh refinement bound-
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FIG. 8: Fits for the QNM ringdown, with even modes l = 2 through 8 in the left panel, and odd modes l = 3 through 7 in the
right panel. The solid lines represent the numerical results for |Ψ4| as as computed with SphericalBSSN, while the points are
a result of a fit (33) to these numerical data.

aries, leading to a contamination of all higher order l,m
modes that never fully leaves the computational domain.
This effect is completely absent in the simulations us-
ing the SphericalBSSN thorn, where the quasinormal
ringdown of the Kerr BH is observed to much smaller
amplitudes than in the Cartesian simulations. We ob-
serve a significant beating of the exponential ringdown
of multipoles with l > 2, which can be explained by
spheroidal-spherical multipole mode mixing. The accu-
rate modeling of the ringdown of higher order modes is
necessary in order to provide GW detectors with accurate
templates [133], as the measurement of two quasinormal
modes is needed to test the “no hair theorem” [35, 130].

The current SphericalBSSN thorn adopts uniform
resolution in radius, which requires a large number of
points in order to place the outer boundary sufficiently
far away and to avoid contaminating the inner parts
of the computational domain with noise from the outer
boundary (i.e., to causally disconnect these inner parts
from the outer boundary). Possible approaches to im-
prove this is to adopt a non-uniform radial grid, e.g. a
logarithmic grid as implemented in [56] or [134], or to use
more general radial coordinates. The SENR/NRPy+
code [60, 61] allows for such generalized radial coordi-
nates – a convenient choice is sinh(r) – and we plan to
port these features into the SphericalBSSN thorn in
the future.

We also plan to supplement our current implemen-
tation of Einstein’s vacuum equations in spherical co-
ordinates with methods for relativistic hydrodynamics
and magnetohydrodynamics as another set of publicly
available thorns for the Einstein Toolkit. As shown
in [54, 55], these equations can be expressed with the
help of a reference-metric as well. Further using a rescal-
ing of all tensorial quantities similar to the rescaling of
the gravitational field quantities in this paper, the evolu-
tion of hydrodynamical variables is unaffected by the co-

ordinate singularities. We hope that with these methods,
and possibly implementations of microphysical processes
like radiation transport and nuclear reaction chains, the
Einstein Toolkit in spherical coordinates will become
a powerful and efficient community tool for fully rela-
tivistic simulations of a number of different objects, in-
cluding rotating neutron stars, gravitational collapse, ac-
cretion disks, and supernova explosions. We believe that
this will result in a new open source state-of-the-art code
that will prove to be a valuable resource for a broad range
of future simulations.
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S. Husa, et al., Phys. Rev. Lett. 113, 151101 (2014),
arXiv:1308.3271 [gr-qc].

[19] P. Schmidt, F. Ohme, and M. Hannam, Phys. Rev. D
91, 024043 (2015), arXiv:1408.1810 [gr-qc].

[20] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer,
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