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Abstract

There is an exciting prospect of obtaining the shadow of astrophysical black holes (BHs) in
the near future with the Event Horizon Telescope. As a matter of principle, this justifies asking
how much one can learn about the BH horizon itself from such a measurement. Since the shadow
is determined by a set of special photon orbits, rather than horizon properties, it is possible that
different horizon geometries yield similar shadows. One may then ask how sensitive is the shadow
to details of the horizon geometry? As a case study, we consider the double Schwarzschild BH
and analyse the impact on the lensing and shadows of the conical singularity that holds the two
BHs in equilibrium – herein taken to be a strut along the symmetry axis in between the two
BHs. Whereas the conical singularity induces a discontinuity of the scattering angle of photons,
clearly visible in the lensing patterns along the direction of the strut’s location, it produces no
observable effect on the shadows, whose edges remain everywhere smooth. The latter feature is
illustrated by examples including both equal and unequal mass BHs. This smoothness contrasts
with the intrinsic geometry of the (spatial sections of the) horizon of these BHs, which is not
smooth, and provides a sharp example on how BH shadows are insensitive to some horizon
geometry details. This observation, moreover, suggests that for the study of their shadows, this
static double BH system may be an informative proxy for a dynamical binary.

1 Introduction

In relativistic gravity, the propagation of light on curved spacetimes provides a basic probe of the
background’s properties. It reveals, of course, the causal structure of the spacetime; but it also
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unveils other relevant physical and phenomenological features. Indeed, the weak lensing of light by
the gravitational field of the Sun was the first successfully tested prediction of Einstein’s general
relativity [1].

Strong lensing effects, on the other hand, can occur around very compact objects. In particular
ultra-compact objects are, by definition, described by spacetimes that have bound photon orbits,
dubbed fundamental photon orbits (FPOs) in [2–4]. This class of spacetimes includes black holes
(BHs) but also horizonless compact objects - see e.g. [5–8]. For the Schwarzschild BH these orbits
are all planar and circular; such special FPOs are known as light rings (LRs). For the Kerr BH,
on the other hand, non-planar bound orbits arise, know as spherical photon orbits [9], in addition
to LRs. For both Schwarzschild and Kerr all FPOs are unstable. But for a generic ultra-compact
object, the set of FPOs can also include stable photon orbits – see e.g. [2, 5, 10–14].

LRs (and other FPOs) generically impact on the lensing properties of the spacetime. Unstable
LRs yield divergences in the scattering of angle of photons – see e.g [13], whereas stable LRs
can lead to chaotic scattering (and lensing) [2, 10–12]. In the particular case of BHs, a set of
unstable LRs (and other FPOs) determine the edge of the BH shadow [15–17], the absorption cross
section at high frequencies under given observation conditions. This shadow is a fingerprint of
the BH spacetime, and an accurate measurement thereof could, in principle, pinpoint the precise
type of BH that is being observed [18–20]. In practice, however, the light emitting astrophysical
environment around the BH may cause degeneracies and make very different spacetimes potentially
yield similar shadows - see e.g. [21, 22] for examples.

It is therefore relevant to inquire how much BH shadows are a sensitive probe of the horizon
geometry, even within ideal observation conditions (see also [23]). As a case study, we consider
here the example of two interacting Schwarzschild BHs. Rather than a dynamical binary, whose
spacetime geometry is time dependent and known only numerically, we study a toy model known as
the double Schwarzschild (or Bach-Weyl [24]) solution, a particular example of a Weyl solution [25].
This is an exact analytical solution of Einstein’s equations describing a static, axially symmetric
spacetime containing two Schwarzschild BHs at some distance. The BHs are kept apart by a conical
singularity [26], that plays the role of a strut (in our choice) preventing the two BHs from falling into
each other. With this choice, the spacetime is asymptotically flat. This solution can be generalised
to N collinear Schwarzschild BHs, in what is known as the Israel-Khan solution [27].

The individual BHs in the double Schwarzschild solution have a deformed horizon geometry
by virtue of the pressure exerted by the strut. This is easily visualised considering the isometric
embedding of these horizons in Euclidean 3-space as discussed in [28] and below. In particular the
horizon is not everywhere smooth, possessing a singular point. As we shall show, however, the BH
shadows are blind to this deformation, being smooth. In fact the (main) shadow presents similar
features to that obtained in a dynamical binary [29] wherein the individual BHs will certainly
not present similar deformations of their horizon geometry. This example, albeit academic, shows
clearly that BH shadows are not a faithful probe of the horizon geometry.1

The insensitivity of the shadow to the conical singularity, does not mean the latter is irrelevant
for the lensing. Rather, a lensing signature of the conical singularity appears as a discontinuity in
the scattering angle for neighbouring null geodesics that circumvent the conical singularity from
either side, giving rise to a clearly detectable pattern in the lensing; but not in the shadows. We
will argue that due to the cylindrical symmetry in the problem, of both the metric and the spatial
part of the FPOs, the conical singularity will produce no net effect in the azymuthal ϕ-direction.

1Earlier studies of shadows in spacetimes with conical singularities can be found in [30] and [31].
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This paper is organised as follows. In Section 2 we describe the double Schwarzschild solution
and present its shadows and lensing. In particular we compare the shadows obtained with those
of a dynamical binary system and the horizon geometry of the BHs in the double Schwarzschild
solution, presented in terms of embedding diagrams. In Section 3, the role of FPOs is discussed on
an emitting star’s outline in Schwarzschild and Kerr. Closing remarks are presented in Section 4.

2 Shadows in the double Schwarzschild BH solution

In this section we review the double Schwarzschild BH solution and compute its shadow. In partic-
ular, the effect of the conical singularity is shown to have no significant effect on the shadow. This
observation is contrasted with the behaviour of the intrinsic horizon geometry, analysed through
embedding diagrams, as discussed toward the end of this section.

2.1 Double Schwarzschild solution review

The double Schwarzschild BH is a static Weyl solution with axial-symmetry, featuring two non-
rotating, neutral BHs supported in equilibrium by a conical singularity which can be chosen to take
the form of either two strings or one strut (see e.g. [32]). The metric can be reduced to the form:

ds2 = −e2Udt2 + e−2U
(
e2K

[
dρ2 + dz2

]
+ ρ2dϕ2

)
,

where t, ϕ are connected respectively to staticity and axial-symmetry. Due to these symmetries,
both U(ρ, z) and K(ρ, z) are only functions of ρ, z. With this ansatz, it is well known that the
vacuum Einstein equations reduce to

∆E3U(ρ, z) = 0 , (1)

where the operator ∆E3 represents the Laplacian in an auxiliary Euclidean 3-space with line element

ds2E3 = dρ2 + ρ2dϕ2 + dz2 ,

and
∂K

∂ρ
= ρ

[(
∂U

∂ρ

)2

−
(
∂U

∂z

)2
]
,

∂K

∂z
= 2ρ

∂U

∂ρ

∂U

∂z
. (2)

The problem of finding an exact solution of Einstein’s equations then reduces to the linear equa-
tion (1), which has the interpretation of a Newtonian problem with some mass distribution along
the z-axis in the auxiliary 3-space. Once such distribution is fixed, the potential U is determined
and the functions K are obtained by solving the line integrals (2). In this parametrisation, the
Schwarzschild solution of mass M corresponds to choosing the source of (1) to be a zero thickness
mass rod along the z axis, with z-coordinate length 2M and linear mass density 1/2. Taking two
such rods, on the other hand, one obtains the double Schwarzschild (a.k.a. Bach-Weyl or 2-centre
Israel-Khan) solution. In this case, explicitly, the functions U,K satisfy

e2U =
γ1γ3
γ2γ4

, e2K =
Y43Y21Y41Y32

4Y42Y31R1R2R3R4
,

where

Rk ≡
√
ρ2 + (z − ak)2, γk ≡ Rk + ak − z, Yij ≡ RiRj + (z − ai)(z − aj) + ρ2.
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In this coordinate system, the two BH horizons are line segments on the z-axis. The parameters
ak define the positions of the horizons and masses of the BHs, with a1 < a2 6 a3 < a4. In particular,
one of the horizons exists along the interval z ∈ [a1, a2] and the other one along z ∈ [a3, a4],
with a conical singularity strut in between (see Fig. 1). Up to a z origin shift, the most general

ρ

z
a4

M2 zo

a3

a2
M1 (-zo)

a1

1

Figure 1: Schematic representation of the double Schwarzschild BH system with the used parametrisation.
The solid black rods along the z-direction represent each BH horizon while the dashed line in between these
rods correspond to the conical singularity. The two BH masses (computed as Komar integrals on each
horizon) are M1,M2. The three independent parameters of the solution can be taken, for instance, as the
mass difference ε ≡M2 −M1, the total (ADM) mass M = M1 +M2 and the distance parameter zo.

parametrisation is provided by:

a1 = −1

2
(M − ε)− zo, a2 =

1

2
(M − ε)− zo,

a3 = −1

2
(M + ε) + zo, a4 =

1

2
(M + ε) + zo,

where M denotes the ADM mass and ε = M2 −M1 the mass difference between the BHs. Both
M2,M1 are determined via Komar integrals, with the former (latter) corresponding to the BH
with larger (smaller) z. Additionally, the value of ε can be related to the mass ratio µ = M2/M1

between the BHs via ε = M(µ− 1)/(1 + µ). The position of both BHs on the z-axis is also set by
the parameter zo, with the latter being related to the BH coordinate distance L = (a3 − a2)/2 via
L = zo−M/2. The lower limit of zo is bounded by the condition L = 0, yielding the allowed range
zo ∈ [M/2,+∞[. Notice that for ε = 0, the solution has a Z2 reflection symmetry on the equatorial
plane (z = 0).

2.2 Shadows in double BH solution

We wish to study the shadows of the double Schwarzschild solution reviewed in the previous section.
Consider an observer with a local sky O, a manifold with S2 topology. Each point in O defines a
direction of observation of an incoming null geodesic. The shadow is the set of points in O that
leads to the infall of the associated null geodesics into the event horizon (which in our case has two
disconnected components), when propagated backwards in time [4]. Astrophysically, the shadow
is then the region in the local sky that would receive light from the event horizon, but since the
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latter is not a source of radiation, at least classically, the shadow actually corresponds to a lack2

of radiation, hence its name.
O can be represented by a 2D observation image, in which the pixel color encodes the endpoint

of the associated geodesic (when propagated backwards in time). In particular, pixels that are
part of the shadow are defined black, whereas the remainder is given the endpoint color on a large
far-away sphere N , surrounding both the observer and the BHs (see [4]). More formally, the 2D
image is a map between points in O and the sphere N , with the exception of the shadow, which is
a map from O to one of the BHs. The vertical (horizontal) axis of the image represents the latitude
(longitude) angle of the local sky O, with both axis intersecting at the image center (see top left
image of Fig. 3), which is always pointing to the origin of the coordinated system (ρ = z = 0).

Figure 2: Shadows of the double Schwarzschild BH solution with equal masses (ε = 0) and different BH
distances, corresponding to a value zo/M of: (from left to right) (top) 0.5, 0.81, 1; (bottom): 1.5, 3 , 4.

Following previous work [3,10,12,29], the sphere N is given four color quadrants, all imprinted
with a regular grid. The observer is placed at a constant coordinate ro ≡

√
ρ2 + z2, fixed by the

perimetral radius R ≡ √gϕϕ = 15M for z = 0. The observation angle θo = arccos(z/ro) is π/2,
unless otherwise specified. A white dot is also added to the sphere N in order to appear in the
image center when θo = π/2 in flat spacetime.

Consider first the observation images in Fig. 2 for the case of same mass BHs with ε = 0.
Starting with zo = M/2, the (standard) Schwarzschild shadow can be seen in the leftmost image
of the top row, which is completely circular due to spherical symmetry. The white dot is stretched
into a (white) ring, disclosing the location of an Einstein ring. Inside this ring the entire sphere
N is mapped an infinite number of times, as we approach the edge of the shadow. As we increase
the distance between the two BHs, increasing the value of zo/M , the shadow is broken into two
large disconnected parts, each associated to a different BH. However, smaller shadows also exist,

2A sharp decrease in luminosity is still expected if light sources exist in between the observer and the event horizon.
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eyebrows [33], which (heuristically) correspond to the lensing of a given BH’s shadow by the other
BH [2,12,29,33,34]. It is worth mentioning, that the shadows presented in Fig. 2 have two reflection
symmetries; one is along the vertical axis and it is associated to the spacetime invariance ϕ→ −ϕ,
whereas the other one is along the horizontal axis and it is inherited from observations at the Z2

symmetry plane z = 0.
In order to assess the influence of a different angle of observation θo, we also generated the

corresponding shadows in Fig. 3, wherein the colored sphere N was painted white for clarity. To
further illustrate the image axis, these are displayed as dotted lines in the leftmost top image of
Fig. 3, with both axis intersecting each other in the image center. As one moves away from the Z2

plane z = 0, the shadow is no longer symmetric along the the horizontal axis (the vertical reflection
symmetry still holds however). Nevertheless, as the observer approaches the z-axis, the shadow
becomes increasingly circular as a result of the spacetime axial symmetry, but it never becomes
simply connected: it is rather deformed into a Saturn-like shape (see also [12] for a similar effect).
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Figure 3: Shadows of the double equal mass (ε = 0) Schwarzschild BH system, separation zo = 2M and an
observation angle θo of: (from left to right) (top) 90◦, 40◦; (bottom): 30◦, 10◦. For clarity, here the colored
sphere N was painted white.

For BHs with different masses, the Z2 reflection symmetry at z = 0 is broken. In the discussion
section we will comment on a potential implication of this observation. The shadows can be found
in Fig. 4, wherein different mass ratios µ are analysed. In the limit of large µ the lensing becomes
that of a single Schwarzschild BH but with θo 6= π/2.

2.3 Insensitivity to the conical singularity

We now turn to the analysis of the effect on the shadows in the double Schwarzschild solution
and, show that due to the cylindrical symmetries in these solutions there is no effect of the conical
singularity on their shadows. The conical singularity produces a subtle discontinuity in the geodesic
scattering, perceptible by a sharp color transition in the vertical axis in between the two shadows
(see Fig. 2). However, this effect becomes clearer if the scattered angle in N is plotted against the
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Figure 4: Shadows of the double Schwarzschild BH system with separation zo = 2M and a mass ratio µ of:
(from left to right) (top) 2, 5; (bottom): 10, 100.

initial angle in O (see Fig. 5). The conical singularity produces an angular difference δϕ between
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Figure 5: Scattered angle, i.e. coordinate ϕ in N , as a function of the observation angle along the horizontal
image axis (O). The origin of the initial angle corresponds to the image center. The solution has zo = 3M ,
ε = 0. The jump δϕ in the middle corresponds to the effect of the conical singularity.

geodesics that circumvent the conical axis from either side, which can be computed analytically

δϕ ≡ 2π lim
ρ→0

(
e−K − 1

)
, a2 < z < a3,

= 2π

(
M2 − ε2

4z2o −M2

)
(3)
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Figure 6: By removing a section of a flat sheet of paper and gluing together the cutting edges, one creates
an angular deficit α at point P (in the illustration α = −π/2). This point is a conical singularity, leading to
an angular deviation α = δϕ between geodesics that circumvent P from either side.

Notice that δϕ vanishes as zo → ∞, i.e. as the BHs become infinitely far away from one another,
or when ε = M , which corresponds to the single BH limit. We find that the value of δϕ computed
analytically is consistent with the numerical displacement of the scattering angle in Fig. 5.

In order to further illustrate this effect, while providing some additional physical intuition,
consider the simple procedure depicted in Fig. 6. Starting from a flat sheet of paper, one can
make two straight cuts that intersect with an angle α at some point P, discarding the piece that
detaches afterwards. By gluing the cutting edges together, one creates a conical surface with a cusp
in P, hence forming a conical singularity with respect to the surface. By construction, any simply
connected region not including P is flat, despite the global curvature introduced by the conical
singularity. This is well illustrated on the right image of Fig. 6, wherein the outermost triangle
(of geodesics) has three red angles that sum 270◦ > 180◦. More generically, a triangle of geodesics
encircling P has internal angles summing 180◦ − α, whereas triangles not encircling P still sum
180◦.

In addition, the conical singularity leads to an angular deflection of nearby geodesics as illus-
trated by the blue line in Fig. 6. In the illustrated case, α < 0 and the conical singularity is
attractive. In contrast, α > 0 would lead to a repulsive P, corresponding to an angle excess rather
than a deficit; this is actually the case of the conical singularity in the double Schwarzschild solution
that we are analysing. From Fig. 6 it is also clear that a geodesic that barely skims P is deflected
by α/2, leading to an angular deviation δϕ = α between geodesics that circumvent P from either
side.

Surprisingly, as can be easily observed from the previous images, the conical singularity has no
clear effect on the shadow edge, in sharp contrast with the jump of Fig. 5. Within the numerical
accuracy, the shadows always appear to be smooth and without cusps. However, this can be
expected, since the edge of the shadow corresponds to geodesics asymptotically approaching a
special class of orbits: FPOs [3]. The spatial part of FPOs typically exists on a 2-surface with
cylindrical topology, invariant under the action of the Killing vector ∂ϕ. Consequently, a deflection
δϕ/2 will produce no net effect for geodesics approaching an FPO.

To have a clearer depiction of these findings we represent in Fig. 7 (left) two geodesics, colored
in red and blue. These geodesics correspond to two points (1 and 2) very close to the shadow
edge, labeled by the respective color in the top left image of Fig. 3. These shadow points exist
very close to - and on both sides - of the vertical image axis, leading to geodesics that approach a
spherical-like surface (i.e. an FPO), while barely skimming the conical singularity. This spherical-
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Figure 7: Left: representation of the geodesics associated to two points in the shadow edge (1,2 in the
top left of Fig. 3), with both geodesics approaching an FPO surface, which has a spherical-like profile; the
coordinates (ρ, z, ϕ) were represented as if they were cylindrical, with each BH being represented by a black
line segment along the dashed z-axis. Right: Representation as seen from the z-axis of two geodesics (red
and green) on the FPO surface that just skim the axis, with the polar mesh representing (ρ, ϕ). The red
(green) geodesic approaches the z-axis from below (above) the uppermost BH, with the geodesic suffering
(not suffering) an angular deflection.

like FPO surface has two (very small) openings close to the z-axis, respectively above and below
the uppermost BH. Since the conical singularity only exists in between the BHs, one can expect an
angular deflection δϕ/2 for geodesics that comes very close to the lower FPO axis opening (but not
the upper one). Indeed, this is the case, as illustrated in the right image of Fig. 7. Nevertheless,
despite this deflection, the conical singularity appears to have no significant effect at the level of
the FPO structure, which is what is critical for the shadow edge (and its smoothness).

2.4 Horizon geometry embedding, shadows and dynamical binary BH

In sharp contrast to the shadow, the conical singularity has an important effect on the intrinsic
geometry of the individual horizons in the double Schwarzschild solution. This effect can be vi-
sualised by performing a global embedding of the individual (spatial sections of the) horizon in
Euclidean 3-space. For the case of the double Schwarzschild solution (in contrast to the double
Kerr solution [35, 36]), such global embedding is always possible [28] and the result is provided
in Fig. 8 for the equal mass double Schwarzschild solution for three different separations. Com-
paring Fig. 8 (horizon geometry) with Fig. 2 (shadows) one can see that the shadow is blind to
the (intuitive) sharp edge induced by the strut. Furthermore, the main shadows of the double
Schwarzschild solution resemble the ones in a dynamical binary, which has no conical singularities.
Indeed, comparing Fig. 2 (say, the bottom left panel) with Fig. 5 in [29] of a fully dynamical BH
merger one observes a striking similarity in the main shadows, whereas the eyebrows in the latter
are slightly displaced (likely) as a consequence of the motion of the BHs in the dynamical binary.
The overall lensing, on the other hand, presents some differences, most interestingly, the imprint
of the conical singularity along the symmetry axis in the static two BH system, which is absent
in the dynamical binary. Thus, we conclude that the shadows are totally blind to the conspicuous
geometrical deformation of the horizon caused by the conical singularity.
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Figure 8: Global embedding in Euclidean 3-space - in cartesian (x, y)-coordinates - of the individual horizons
of the double Schwarzschild solution (ε = 0), with parameters (from left to right) zo = {3, 0.75, 0.525}M .
These images are in contrast with the shadows in that the latter does not present any cusps due to the
conical singularity (see Fig. 2)

.

3 Emitting star surface in static and spinning BHs

In the previous section we computed the shadows of the double Schwarzschild BH solution and
made a tentative general statement about the insensitivity of the shadow with respect to the de-
tailed BH horizon geometry. In this section we provide support to this idea by considering the
following academic exercise: an emitting (star) surface is placed in a Schwarzschild or Kerr space-
time at some radial function R(θ), in Boyer-Lindquist coordinates (r, θ). As the star (mean) radius
decreases and approaches the event horizon, how is its image changed?

To answer this question, we seek more detail about a bumpy star surface, comprised between
two radii r1 and r2:

R(θ) =

(
r2 − r1

2

)
cos(28 θ) +

(
r2 + r1

2

)
, R ∈ [r1, r2].

placed in a Schwarzschild or Kerr spacetime. Starting in Fig. 9 with the Schwarzschild case, the
star’s wavy structure is clearly visible if 3M < r1 < r2 (left column of (a) in Fig. 9). However, when
r1 < r2 6 3M (right column of (a) in Fig. 9) the star’s outline becomes perfectly circular, and the
information from the bumpy surface is lost; had the star been completely opaque and the star’s
image could not be distinguished from the Schwarzschild shadow, as seen by a far away observer
(see bottom row of (a) in Fig. 9). This is a consequence of the photon sphere (i.e. the LR) at
r = 3M , which determines the star’s profile in the latter case. In some sense, the shadow is not an
image of the horizon but rather that of the FPO structure.

A similar argument applies in Fig. 9 in (b), for Kerr with rotation parameter a = 0.9M .
However, the FPO structure now exists in an interval r ∈ [r+, r−] ' [1.558M, 3.9M ], where r+

(r−) is the radial coordinate of the co(counter) rotating LR [9]. When r− < r1 < r2, the surface
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structure is still captured by the star’s outline, whereas the latter is identical to the Kerr shadow
when r1 < r2 6 r+.

(a) Emitting star in Schwarzschild (b) Emitting star in Kerr

Figure 9: Top row (a): observation images of an emitting star surface in Schwarzschild with {r1, r2} '
{4M, 5.72M} and {r1, r2} ' {2.02M, 2.89M} (from left to right). A darker (brighter) grey color corresponds
to a valley (peak) of the star’s surface. Bottom row (a): Silhouette of the previous stars (now totally
opaque), with N painted white. The right image is identical to the Schwarzschild shadow. Top row (b):
observation images of an emitting star surface in Kerr for a rotation parameter a = 0.9M , with {r1, r2} '
{5.74M, 6.17M} and {r1, r2} ' {1.45M, 1.557M} (from left to right). Bottom row (b): Similar to (a); the
right image is identical to the corresponding Kerr shadow.

4 Closing remarks

In this paper we have presented a case study showing that a relevant geometrical feature that
produces a deformation of the horizon geometry in a static two BHs system – the existence of
a conical singularity – leaves no noticeable signature in the corresponding BH shadows. In fact,
the shadows of the static two BH system appear similar to those in a dynamical binary, wherein
we expect no similar deformation of the BHs’ intrinsic geometry. The latter observation suggests
further considering light lensing in the static two BH system, or its stationary generalisation – the
double Kerr solution – with appropriate adaptations, as a proxy of the corresponding process in
the corresponding (numerically generated) dynamical binaries.

At the source of the insensitivity of the shadows to the deformations induced by the conical
singularity, is the fact that BH shadows are only probing the spacetime geometry as far inside as
a set of FPOs, which include LRs, that exist at some distance from the horizon. The shadow is
essentially blind to the spacetime region interior to these orbits. We therefore can argue that a
deflection δϕ/2 in the ϕ-direction will produce no net effect for geodesics approaching an FPO since
the spatial part of FPOs typically exists on a 2-surface with cylindrical topology, invariant under
the action of the Killing vector ∂ϕ.

There is some partial parallelism of this result with the observations in [6] that the initial
ringdown signal emitted by a perturbed ultra-compact object is determined by its LRs structure
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and it is insensitive to the horizon, even to the extent of its very existence. In this case, however,
the later part of the ringdown may yield signatures of the spacetime geometry in the neighborhood
of the horizon.

In the case of lensing we face a situation with some similarities. Two different BHs with a
similar FPO structure will cast a similar shadow (see [37] for an example). And, as illustrated in
Section 3, so will opaque horizonless ultra-compact objects with a similar FPO structure. Transpar-
ent horizonless compact objects, such as boson stars composed of a dark scalar field, on the other
hand, can in principle be distinguished [13]. Of course, the potential existence of light sources in
between the FPOs and the horizon, could also provide a probe of this spacetime region. Typically,
however, light sources are in rapid free fall towards the centre in this region, where there are no
long lived orbits.

Finally, our results on shadows and lensing of the double Schwarzschild BH are also related to
geodesic integrability of this solution. In BH solutions wherein geodesic motion is integrable, it has
been observed that the BH shadow is always Z2 symmetric with respect to the image’s horizontal
axis, even when observed outside the equatorial plane. The lack of such symmetry in the shadows
of the double Schwarzschild solution, observed away from the symmetry plane for equal mass BHs,
is therefore suggestive that geodesic motion on this background is not Liouville integrable. In other
words, no non-trivial Killing tensor exists. Indeed this is the case [38], further supporting the
unproved relation between integrability and generic Z2 symmetry of the shadow.
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