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We introduce a new geometrically invariant prescription for comparing two different spacetimes
based on geodesic deviation. We use this method to compare a family of recently introduced ana-
lytical spacetime representing inspiraling black-hole binaries to fully nonlinear numerical solutions
to the Einstein equations. Our method can be used to improve analytical spacetime models by
providing a local measure of the effects that violations of the Einstein equations will have on time-
like geodesics, and indirectly, gas dynamics. We also discuss the advantages and limitations of this
method.
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I. INTRODUCTION

Ever since the breakthroughs in numerical relativity
in the early 2000s [1–3], it has been possible to simulate
black-hole binaries (BHBs) for from the rapid inspiral
phase, through the plunge and merger. Modern numeri-
cal relativity codes are now capable of simulating inspi-
raling BHBs for over 100 orbits [4]. These simulations are
the most accurate known means of generating the gravi-
tational waveform from such mergers. However, they are
also computationally expensive. Recently, a family of
analytic metric representing the inspiral phase of a BHB
was proposed and used extensively to study accretion
physics [5–13].

In this paper, we introduce a new technique to study
the accuracy of this family BHB spacetimes by compar-
ing them to full numerical evolutions starting from a set
of fiducial separations. Our method is based on analyz-
ing a set of scalars related to geodesic deviation. This
study complements previous studies in Ref. [8], where
the hydrodynamics and magnetohydrodynamics of ac-
creting gas were compared between versions of the an-
alytical spacetime at different approximation orders.

In this paper, we express tensors in both the more
conventional coordinate basis and in orthonormal bases.
Latin indices near the beginning of the alphabet are
abstract tensor indices [14], which indicate the type of
tensors involved in a calculation, as well as contrac-
tion. Latin indices near the end of the alphabet denote
coordinate-basis components of spatial tensors, while
Greek letters denote 4-dimensional spacetime compo-
nents in the coordinate basis. Components of tensors in
an orthonormal basis (the first element of the orthonor-
mal basis is always timelike) are denoted by a Greek or
Latin letter surrounded by square braces. Whether asso-
ciated with coordinate bases or orthonormal bases, Greek
indices range from 0 to 3, while Latin indices near the end
of the alphabet range from 1 to 3. In this paper, we use
the geometric unit system, where G = c = 1.

This paper is organized as follows. In Sec. II, we de-

scribe the analytical and numerical techniques used in
this paper. In Sec. III, we present the tests we used to
confirm the accuracy of our results. In Sec. IV, we de-
scribe the results of our study. In Sec. V we discuss the
consequences and limitations of our study.

II. TECHNIQUES

A. Analytic Black-Hole Binary Spacetime

In this paper, the analytic metric we consider repre-
sents a non-spinning, equal-mass BHB in a quasicircular
inspiral. This spacetime was first constructed in Ref. [7]
based on earlier work on binary initial data in Refs. [15–
17].

The analytic spacetime is constructed by asymptoti-
cally matching metrics in three different zones charac-
terizing three different spacetime regions of validity for
different analytic metrics: (i) a far zone (FZ) where the
spacetime can be described by a two-body perturbed
flat spacetime with outgoing gravitational radiation and
where retardation effects are fully accounted for; (ii) a
near zone (NZ) which is less than one GW length from
the center of mass of the binary (but not too close to each
black hole (BH)) that is described by a post-Newtonian
metric (this includes retardation effects at a perturbative
level and binding interactions between the two BHs); and
(iii) inner zones (IZs) that are described by perturbed
Schwarzschild (or Kerr) BHs. The full spacetime is then
constructed by smoothly transitioning from zone to zone
in the so-called buffer zones (BZs).

Figure 1 shows where these regions are located with
respect to the two BHs.

B. Geodesic Analysis

The primary analysis in this paper concerns how the
fully nonlinear evolution of initial data based on the ana-
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FIG. 1. The zones for the analytic metric. The large (green)
circle is the outer boundary of the “Near” zone. Immediately
inside this circle the metric is exclusively the post-Newtonian
near-zone metric, while outside, it is a superposition of the
near and far zone metrics. All points in the figure outside this
circle are in the “Near-Far buffer” zone (the other boundary
of this zone is not show). The smaller (cyan) circles denote
the inner boundary of the near zone. Inside the envelope
of these circles is the “Near-Inner buffer” zones. The box
(orange) denotes the region inside the Near-Inner buffer zone
where the metric is a superposition of both BH1 and BH2
inner zones, as well as the near zone. Outside the box, the
metric is a superposition of the near zone metric and either
one of the inner zone metrics. Finally inside the very small
(magenta) circles are the two inner zones, where the metric is
purely the inner zone perturbed Schwarzschild metric.

lytic metric differs from the analytic metric itself at some
later time. In order to do this, we need gauge invari-
ant measurements that can elucidate to what degree two
spacetimes are locally similar.

To be precise, on some fiducial spatial slice Σ0, which
corresponds to a surface of constant coordinate time
t = t0, the induced metric and extrinsic curvatures of
the analytic metric are used as initial data for a CCZ4
evolution. Critical to our analysis, on Σ0, the analytic
and numerically evolved metrics are identical. Further-
more, if the analytic metric solved the vacuum Einstein
equations, up to truncation error, the numerical and ana-
lytic metrics would only differ by a gauge transformation
at all later times (at least in the domain of dependence on
the initial numerical slice, which will be of finite extent).

The fact that gauges are identical on Σ0 allows us to
use geodesic dynamics to explore how the numerical and
analytic spacetimes begin to differ with time. In particu-
lar, if we take as initial data for a timelike geodesic some

given coordinate position and the spatial projection of
the 4-velocity, V a (from which we can reconstruct the

full 4-velocity ua at t0 via ua =
√

1 + γijV iV jn
a + V a,

where V 0 = 0 and na is the unit norm to Σ0), and if the
analytic metric solved the vacuum Einstein equations,
the resulting geodesic, as calculated on the two metrics,
would be geometrically identical. By this, we mean that
the two geodesics would only differ by a gauge transfor-
mation. The question remains though, how do we show
that geodesics in two different gauges are identical or not
if the gauge transformation is unknown?

To address this question, we consider measuring cur-
vature scalars along each geodesic as a function of proper
time. Our construction of these scalars is as follows.

Let ua(τ) be the 4-velocity associated with a geodesic
(and hence unit norm). At each point along the geodesic
construct an orthonormal basis {ea[0], e

a
[1], e

a
[2], e

a
[3]},

where ea[0] = ua(τ) and ea[µ]e
b
[ν]gab = η[µ][ν]. The choice of

components 1, 2, and 3 of this basis is arbitrary. Given
any such basis, we can define a 3 × 3 symmetric matrix
of scalars M, where

M =

 M[1][1] M[1][2] M[1][3]

M[2][1] M[2][2] M[2][3]

M[3][1] M[3][2] M[3][3]

 , (1)

and

M[i][j] = Rabcdu
aeb[i]u

ced[j], i, j = 1, 2, 3 . (2)

Importantly, the eigenvalues of this matrix are indepen-
dent of how ea[1], e

a
[2], and ea[3] are constructed. This fol-

lows because any two choices (ea[1], e
a
[2], e

a
[3]) only differ

by an orthogonal transformation (which preserves eigen-
values). Consequently, if the analytic metric and numeri-
cally evolved metric represented the same spacetime, the
eigenvalues of M constructed this way on each metric
would be identical. We will refer to these eigenvalues as
curvature eigenvalues in the sections below.

Of course, the analytic metric, being an approximate
solution, violates the vacuum field equations to some de-
gree (see Refs. [7, 8] for a detailed analysis). Thus the
analytic metric and its numerical evolution will differ to
some level. Our goal here is to demonstrate a local mea-
sure of how the two spacetimes actually differ. To do
this, we note that the elements of M[i][j] have the inter-
pretation of being the (negative of the) acceleration of
deviation vector ea[i] along the direction eb[j]. We can thus

interpret relative differences in the curvature eigenvalues
of M as proxies for the relative differences in the effective
potentials experienced by timelike geodesics traversing
these two spacetimes.

One important limitation of our procedure is that be-
cause slightly different geodesics can, in principle, follow
very different trajectories on secular timescales, our anal-
ysis will need to be done at when the geodesics are rel-
atively close to Σ0. Otherwise, a small difference in the
two spacetimes may incorrectly be interpreted as a large
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difference. We ameliorate this problem by only choos-
ing geodesics that are stable. By this, we mean that the
trajectories are largely insensitive to small perturbations
of the initial velocity. As such, we do not include cases
where small perturbations lead to the geodesic orbiting
a different black hole, or ones where small perturbations
lead to geodesics falling into either black hole.

We also note that our analysis here can be extended in
a straightforward manner to include all 20 independent
components of the Riemann tensor. To do this, we would
need the vectors ea[i] (i = 1, 2, 3) to obey ub∇bea[i] = 0.

That is, evolve the entire basis. Under this extended
construction, all components of

R[µ][ν][ρ][σ] = Rabcde
a
[µ]e

b
[ν]e

c
[ρ]e

d
[σ] (3)

are gauge invariant. We can thus compare each compo-
nent as constructed on the analytic and numerical space-
times. We leave this analysis for a later work.

C. Reconstructing the 4-dimensional Riemann
tensor

As is done by in many numerical relativity codes, our
numerical evolutions uses the standard 3+1 Arnowitt-
Deser-Misner [18] split of the Einstein equations. In this
paper, we will need to reconstruct the full 4-dimensional
Riemann tensor from the three dimensional quantities
evolved by our code. In this section, we provide the de-
tails of how this is accomplished. In order to avoid con-
fusion, we will use the notation (3) and (4) to indicate a
three or four dimensional tensors, respectively.

In the standard 3+1 split, the metric on a spatial
slice (given by t = const) is obtained from the full 4-
dimensional metric via

γµν = gµν + nµnν , (4)

where nµ is the unit norm to the spatial hypersurface
and the spatial components of this tensor (i.e., indices 1
through 3) form the 3-dimensional metric tensor. Note
that while γij = gij , γ

ij 6= gij . The full 4-dimensional
tensor γµν also serves as a projection operator which
takes four-dimensional tensors to three-dimensional ones.
To avoid confusion, we will use Pµν = γµν to denote the
projection tensor.

In order to reconstruct the 4-dimensional Riemann ten-
sor, (4)Rµνεδ, we follow Ref. [19] and write it as

(4)Rµνεδ = Pµ
ζPν

τPε
κPδ

σ (4)Rζτκσ
−2Pµ

ζPν
τP[ε

κnδ]n
σ (4)Rζτκσ

−2Pε
ζPδ

τP[µ
κnν]n

σ (4)Rζτκσ
+2Pµ

ζP[ε
κnδ]nνn

τnσ (4)Rζτκσ
−2Pν

ζP[ε
κnδ]nµn

τnσ (4)Rζτκσ , (5)

where

P ζµP
η
νP

κ
εP

σ
δ

(4)Rζηκσ = (3)Rµνεδ

+KµεKνδ −KµδKεν , (6)

PσµP
η
νP

κ
δn
ζRσηκζ = DνKµδ −DµKνδ , (7)

P ζµP
κ
νn

δnεRδκεζ = LnKµν +
1

α
DµDνα

+Kε
νKµε , (8)

and Di is the covariant derivative associated with γij , α
is the lapse, and Kij is the extrinsic curvature.

Note that the left hand sides of Eqs. (6)–(8) are all
naturally defined in terms of 3-dimensional tensors. To
construct a 4-dimension tensor from a 3-dimension tensor
T i1i2···j1j2··· , we use the following operator,

Tµ1µ2···
ν1ν2··· = Λµ1

i1Λµ2
i2 · · ·Λν1

j1Λν2
j2 · · ·T i1i2···j1j2··· , (9)

where

Λµ
i =

 β1 β2 β3

1 0 0
0 1 0
0 0 1

 , (10)

where βi is the shift, and

Λµi =

 0 0 0
1 0 0
0 1 0
0 0 1

 . (11)

Finally, the left-hand-side of Eq. (8) is evaluated by
assuming the standard ADM vacuum evolution equations
are obeyed. That is,

LnKµν =
1

α
(LtKµν − LβKµν) ,

LtKµν = −DµDνα+ α((3)Rµν − 2Kκ
νKµκ +KKµν)

−8πα(Sµν −
1

2
γµν(S − ρ)) + LβKµν , (12)

where Sµν = γµ
κγν

σTκσ, S = Sµµ, and ρ = nµnνTµν are
all assumed to be zero.

Since we actually evolve the metric using the CCZ4
system [24], the actual form of the evolution equation for
the extrinsic curvature is

LtKµν = −DµDνα+ α((3)Rµν − 2Kκ
νKµκ +KKµν)

+α(DµZν +DνZµ)

−(2αKµν + αγµν
1

φ2
κ1(1 + κ2))Θ

+LβKµν , (13)

where Θ and Zi denote deviations from the Einstein
equations, and constants κi are free parameters. Thus
using Eq. (12) is equivalent to assuming Θ and Zi are
zero. At t = 0 this is the case, and both variables remain
small due to the constraint damping of the CCZ4 sys-
tem. In order to make our code more general, we assume



4

Eq. (12), which means that it can be used equally well
with a BSSN, CCZ4, or other 3+1 evolution system.

To reconstruct (4)Rµνκσ, we interpolate γij , ∂kγij , the

3-dimensional Ricci tensor (3)Rij , Kij , ∂kKij , α, βi, and
∂jβ

i along each geodesic. Note that we do not need
second derivatives of the lapse because the DµDνα can-
cel out. From these quantities, we can reconstruct all
terms in Eqs. (6)–(8). Note that the 3-dimensional Rie-
mann tensor can be reconstructed directly from the 3-
dimensional Ricci tensor.

To compute the Riemann tensor for the analytic space-
time, we use an eighth-order finite differencing algorithm
and directly differentiate the 4-dimensional metric.

D. Numerical Evolutions

We first explored evolving the analytic metric using
the fully nonlinear numerical relativity codes in Ref. [9].
We use an identical procedure here, which we summarize
below.

We evolved the BHB initial data using the LazEv [20]
implementation of the moving puncture approach [2, 3]
with the conformal function W =

√
χ = exp(−2φ) sug-

gested by Ref. [21] and the Z4 [22–24] and BSSN [25–27]
evolution systems. Here, we use the conformal covariant
Z4 (CCZ4) implementation of Ref. [24]. Note that the
same technique has been recently applied to the evolution
of binary neutron stars [28, 29]. For the CCZ4 system,
we again used the conformal factor W . We used centered
eighth-order finite differencing for all spatial derivatives,
a fourth-order Runge-Kutta time integrator, and both
fifth- and seventh-order Kreiss-Oliger dissipation [30].

Our code uses the EinsteinToolkit [31–33] / Cac-
tus [34] / Carpet [35, 36] infrastructure. The Carpet
mesh refinement driver provides a “moving boxes” style
of adaptive mesh refinement (AMR). In this approach,
refined grids of fixed size are arranged about the coor-
dinate centers of both holes. The Carpet code then
moves these fine grids about the computational domain
by following the trajectories of the two BHs.

To obtain initial data, we use eighth-order finite differ-
encing of the analytic global metric to obtain the 4-metric
and all its first derivatives at every point on our simu-
lation grid. The finite differencing of the global metric
is constructed so that the truncation error is negligible
compared to the subsequent truncation errors in the full
numerical simulation (here we used finite difference step
size of 10−4, which is 90 times smaller than our smallest
grid size in any of the numerical simulations discussed
below). We then reconstruct the spatial 3-metric γij and
extrinsic curvature Kij from the global metric data. Note
that with the exception of the calculation of the extrin-
sic curvature, we do not use the global metric’s lapse
and shift. In order to evolve these data, we need to re-
move the singularity at the two BH centers. Unlike in
the puncture formalism [37], the singularities here are
true curvature singularities. We stuff [38–40] the BH in-

teriors in order to remove the singularity. Our procedure
is to replace the singular metric well inside the horizons
with nonsingular (but constraint violating) data through
the transformations,

γij → f(r) γij , i 6= j ,
γii → f(r) γii + (1− f(r))Ξ ,
Kij → f(r) Kij , (14)

where

f(r) =

 0 , r < rmin

1 , r > rmax

P (r) , rmin ≤ r ≤ rmax

. (15)

Here, r is the distance to a BH center, and P (r) is a
fifth-order polynomial that obeys P (rmin) = P ′(rmin) =
P ′′(rmin) = 0, P (rmax) = 1, P ′(rmax) = P ′′(rmax) = 0,
and Ξ is a large number. The resulting data are therefore
C2 globally. The parameters rmin, rmax, and Ξ are chosen
such that both transitions occur inside the BHs and so
that W varies smoothly with negligible shoulders in the
transition region and is small at the centers.

The grid structure for the runs below con-
sisted of a course grid extending to (x, y, z) =
±(3200, 3200, 3200)M (we exploited both the z-
reflection and π-rotational symmetry of the data in order
to reduce the computational volume by a factor of 4. We
used 12 levels of mesh refinement. In the sections be-
low, we indicate the global resolution of each simulation
by indicating the number of points on the coarsest grid
from the origin to each outer face. That is, a resolution
of N = 100 indicated that the coarsest grid spacing is
3200M/100 = 32M . The resolution was always set to be
the same in each direction.

To evolve timelike geodesics in the numerical space-
time, we use the following algorithm. The 4-velocity of
each geodesic is decomposed into a component tangent
to the unit norm na and a spatial component V a. That
is,

uµ = $nµ + V µ , (16)

where $ =
√

1 + V iV jγij and V 0 = 0 [41] (note that
Vi = ui [i = 1, 2, 3]). The geodesic equation then gives

dxi

dt
= −βi +

α

$
V i ,

dτ

dt
=
α

$
,

dVi
dt

= −$α,i − Vjβj ,i +
1

2
V jV kγjk,i . (17)

This form of the geodesic equation has the advantage that
explicit time derivatives of the 4-metric are not needed
for the evolution and the integration variable is t, which
is the time coordinate used in the code. We evolve the
geodesics using the same RK4 time integrator used to
evolve the metric itself.

Since we evolve these geodesics with an adaptive-mesh
code, there are complication associated with geodesics
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crossing refinement level boundaries. Our algorithm is
as follows. The AMR grid is distributed such that on a
given refinement level, a single CPU will only own a single
Cartesian box. We then search for the finest resolution
box that contains that geodesic and assign the evolution
of the geodesics (at that timestep) to that processor. For
our purposes, a geodesic is only contained in a given box
if all points used by the interpolation stencil are in that
box (excluding buffer zones, but including ghost zones).
If a geodesic is too close to buffer zones, then it will be
evolved using the next coarsest level.

A geodesic that crosses from a coarse refinement level
to a finer one may actually be ahead, in time, of the rest
of the fields on that refinement level. In such a case,
the evolution of the geodesic is stalled until the time as-
sociated with that refinement level catches up. On the
other hand, when a geodesic moves from a finer level to
a coarser one, it is generally behind. In that case, we use
a second-order accurate algorithm to evolve the geodesic
forward in time until it is caught up with the rest of the
fields on that refinement level.

On the other hand, for the analytic metric, we use the
more conventional formulation of the geodesic equation,

dxµ

dτ
= uµ ,

duµ

dτ
= −Γµρσu

ρuσ , (18)

where Γµρσ is the 4-dimensional Christoffel symbols.
Here, we evolve the geodesics using an adaptive RK45
algorithm.

III. CODE VERIFICATION

Our code suite consists of three parts. A stand-alone
code written in C++ that integrates geodesics and cal-
culates the Riemann tensor given a function that can
provide gµν at arbitrary coordinate positions. A Cac-
tus Thorn that evolves geodesics alongside the metric
within the Einstein Toolkit, as well as interpolates the
metric (and derivatives) along these geodesics. Finally,
our toolkit contains a set of Python scripts that calcu-
lates the curvature eigenvalues of Eq. (1) given the data
provided by the previous two programs.

We performed several verification tests of the this code
suite, which we will describe here. Our first test consisted
of using the stand-alone C++ code to evolve identical
geodesics on Schwarzschild backgrounds, but in very dif-
ferent gauges.

To do this, we started with the standard Schwarzschild
metric,

ds2 = −
(

1− 2M

R

)
dT 2 +

(
1− 2M

R

)−1
dR2

+R2 dΘ2 +R2 sin2 Θ dΦ2 , (19)

and used the simple coordinate transformation,

T = t+A sin(ωt) sin(ωt) cos(r) ,

FIG. 2. Circular geodesics in standard Schwarzschild and
transformed Schwarzschild coordinates. While the trajectory
is gauge dependent (top), the associated curvature eigenval-
ues (only one shown) are not (bottom). The differences be-
tween the eigenvalues (Sc) calculated in to the two gauges are
consistent with roundoff errors.

R = r +A sin(ωt) sin(ωt) ,
Θ = θ ,
Φ = φ , (20)

where A is a constant. As is readily apparent in Fig. 2,
the coordinate trajectory of the geodesic is quite differ-
ent in the two coordinate systems. However, the calcu-
lated curvature eigenvalues (only one shown) are identi-
cal. There are three curvature eigenvalues, two are posi-
tive with very similar magnitudes and one has a negative
value, but is roughly a factor of two larger in absolution
value than the other two. When plotting the eigenvalues,
we make the fiducial choice of plotting the intermediate
eigenvalue, which we denote by Sc in the figures below.

Next, we repeated the same calculation using our
EinsteinToolkit-based geodesic thorn. Here we set the
metric analytically, but evolved the geodesics, and calcu-
lated the Riemann tensor (see Sec. II) numerically. Here,
three grid resolutions were used to test the numerical
convergence. As shown in Fig. 3, the relative differences
between the analytical and numerical evolution of the
curvature eigenvalues shows the expected fourth-order
convergence.
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FIG. 3. The differences between one of curvature eigen-
values(Sc) versus time from our new geodesic thorn and the
exact values (as determined by a stand-alone code). Here,
we denote the resolution of a given simulation by the num-
ber of gridpoint, per dimension, from the origin to the outer
boundary, and rescale the differences by the ratio of the grid
resolution to the fourth power.

To test for convergence of our geodesic thorn in
the context of a fully nonlinear numerical spacetime,
we evolve the Schwarzschild metric in trumpet coordi-
nates [42] (with the trumpet parameter R0 = M). For
reference, the metric has the form,

ds2 = −
(
R−M
R+M

)
dT 2 +

2M

R
dTdR

+

(
1 +

M

R

)2 (
dR2 +R2 dΘ2 +R2 sin2 Θ dΦ2

)
.(21)

Following Ref. [43], we use the lapse condition ∂tα =
Lβα− α(1− α)K, for which all the metric functions are
constants (up to truncation error) as functions of time.

A convergence plot of the curvature eigenvalues from
a fiducial geodesic is shown in Fig. 4. Here, too, we find
fourth-order convergence.

One aspect of numerical evolutions of a binary space-
time on AMR grids that we will encounter is stochas-
tic noise in the curvature [44] due to unresolved gauge
waves [45]. In order to test our code with a time depen-
dent metric, we evolved the same trumpet data, but with
a modified lapse condition ∂tα = Lβα− 1.001α(1−α)K.
This introduces a small time dependence to the metric
without simultaneously introducing an unresolved gauge
wave. As seen in Fig. 5, the convergence is still fourth-
order. However, when using a more standard puncture-
based initial data and 1 + log lapse, the convergence or-
der reduced to second-order, which is consistent with the
second-order time prolongation we use. The reason for
this drop in convergence rate is likely the very rapid evo-
lution of the gauge during the first few M of evolution.
These rapid changes can lead to the second order (in
time) prolongation error dominating the error budget.

Finally, we evolved a set of geodesics in Kerr space-
time in quasi-isotropic coordinates [46] and fully non-

FIG. 4. The difference between one of the gauge indepen-
dent curvature eigenvalue (Sc) as calculated using a fully
nonlinear numerical evolution of time independent trumpet
Schwarzschild data using the EinsteinToolkit, and as calcu-
lated using the exact trumpet Schwarzschild metric with the
trumpet parameter R0 = M . Here, we rescale the differences
by the ratio of the grid resolution to the fourth power.

FIG. 5. The convergence of the one of the gauge indepen-
dent curvature eigenvalues (Sc) for a slowly time-dependent
Schwarzschild trumpet. The convergence order is still fourth-
order.

linear numerical evolutions of a Kerr BH starting with
quasi-isotropic initial data. Here the two codes evolve
the geodesics in gauges that rapidly deviate from each
other. The effects of the unresolved gauge wave are ap-
parent in the noise and lower-order convergence seen in
Fig. 6. We see a similar lower order convergence when
using Schwarzschild isotropic data.

IV. RESULTS

The main analysis of this paper concerns the dynamics
of geodesics on spacetimes obtained by numerically evolv-
ing (using CCZ4) initial data obtained from the analytic
metric at various starting separations. In particular, we
compare those geodesics with the ones obtained by solv-
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FIG. 6. Second-order convergence of the gauge independent
curvature eigenvalues (Sc) as calculated using a fully non-
linear numerical evolution of Kerr data using the Einstein-
Toolkit, and as calculated using the exact Kerr metric in
quasi-isotropic coordinates.

ing the geodesic equation on the analytic spacetime. The
differences between the numerically evolved metric and
the analytic one arise from the differences in the Ricci
tensor of the two. The CCZ4 algorithm drives the con-
straint violation toward small values, at which point the
evolved metric is consistent with Tµν = 0. The analytic
metric, on the other hand, has Tµν 6= 0. Differences in
Tµν exist even at t = 0, which means that the Riemann
tensor on the initial slice is not the same between the
numerical and analytic metrics.

We use the EinsteinToolkit to evolve geodesics on
spacetimes obtained by using the analytic metric, with
m1 = m2 = M/2, as initial data with separations of
D = 50M , 25M , 20M , 15M , and 10M . We simultane-
ously evolve these geodesics using our stand-alone C++
code with the purely analytic metric.

In Fig. 7, we show how the constraint violations de-
cay with time using the CCZ4 evolution code (we see a
decrease of over three orders of magnitude).

The results from a wide variety of geodesics are shown
in Figs. 8, 9, and 10. The figures show one of the curva-
ture eigenvalues (Sc) versus proper time, τ , for various
starting configurations. The coordinate trajectories of
the geodesics in a corotating frame are also shown. The
boundaries of the inner, near, far, and buffer zones are
denoted by vertical lines and ellipses.

The noise apparent in the curvature eigenvalues for the
geodesics far from the BHs is due reflections of spurious
waves off of the AMR boundaries (this is the same error
associated with high-frequency oscillations in the wave-
form seen in numerical evolutions of BHBs using AMR-
based codes). At far distances, this noise is larger in mag-
nitude than the curvature eigenvalues. See, for example,
the r0 >∼ 100M curves for the D = 50M configuration in
Fig. 8.

At a separation of D = 50M in Fig. 8, one would
expect very good agreement between the analytic met-
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FIG. 7. The L2 norm of the constraints for the D = 25M
configuration. Here the constraints are calculated within the
volume outside the two horizons and inside the coordinate
sphere r = 30M .

ric and the numerical one. Quantitatively, there is re-
markably good agreement when the geodesics are about
20M <∼ r0 <∼ 100M from the BHs. Closer than this,
there are small, but noticeable differences, and farther
than this, there is some evidence significant differences,
but in those cases the noise is significantly larger than
the curvature eigenvalues themselves.

We find that initial conditions that lead to nearly cir-
cular geodesics for one metric do lead to nearly circular
geodesics for the other. The best agreement here are for
geodesics in the outer regions of the inner-to-near-zone
buffer regions and the near zone.

At a binary separation of D = 25M (see Fig. 9), the
disagreement between the analytical and numerical re-
sults when the geodesics are close are exacerbated. Good
agreement between the curvature eigenvalues is still ap-
parent in the outer part of the inner-to-near zone buffer
region and the near zone, although at late times these
geodesics show deviations as shown for the r0 > 40M
cases. At a binary separation of D = 10M (see Fig. 10),
there are noticeable differences in the curvature eigen-
values for almost all geodesics. However, examining the
D = 15M geodesics (see Fig. 10) shows something per-
haps surprising. The geodesics in the outer part of the
inner-to-near zone buffer region and the near zone are
remarkably good. Here, the deviations for far geodesics
also start to deviate at later times. It seems these devia-
tions are dependent on the binary separation. One may
have expected these geodesics to be substantially worse
than the D = 25M and D = 20M analogs, but we do
not see this.

In Fig. 11, we show the relative difference between
the curvature eigenvalues calculated using the numerical
and analytic metrics. Here, we use a running average to
smooth out the noise. Note that the color scale changes
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FIG. 8. Separation D = 50M results. Here we plot the value of the largest (in magnitude) curvature eigenvalue (Sc) versus
time (as evolved using the numerical and analytic metric), as well as plot the coordinate position of the geodesics in a corotating
frame (i.e., one where the BH positions are nearly fixed) on the right side of each panel. The vertical lines and circles in these
trajectory plots show the location of the various zones described in Sec. II A. The number r0 (normalized by M) is the initial
coordinate distance of the geodesic from the nearest BH. For the geodesics close to the BHs, the noise in the numerically evolved
spacetime is low compared to the magnitude of the curvature eigenvalues, the opposite is true for the farthest ones.

from blue to red at a 10% relative difference. From these
plots, we can see that the buffer zone between the in-
ner and near zones, as well as the near zone itself shows
the smallest relative errors. The near-to-far zone buffer
region (no plot shows the far zone) is generally worse,
as least in terms of relative errors, than the near zone.
The large relative differences seen for the D = 50M case

may be due to noise, but as seen in Fig. 11, there are
hints of systematic differences between the analytic and
numerical spacetimes. Note that in Fig. 11, we plot the
geodesics in a non-corotating frame. The reason for this
is, that while plotting in a corotating frame allows us to
see which zones the geodesics pass through, it also gives
a false sense of how far in (quasi) inertial coordinates the
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FIG. 9. Separation D = 25M and D = 20M results. Here we plot the value of the largest (in magnitude) curvature eigenvalue
(Sc) versus time (as evolved using the numerical and analytic metric), as well as plot the coordinate position of the geodesics
in a corotating frame (i.e., one where the BH positions are nearly fixed) on the right side of each panel. The vertical lines
and circles in these trajectory plots show the location of the various zones described in Sec. II A. The number r0 (normalized
by M) is the initial coordinate distance of the geodesic from the nearest BH. For the geodesics close to the BHs, the noise in
the numerically evolved spacetime is low compared to the magnitude of the curvature eigenvalues, the opposite is true for the
farthest ones.
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FIG. 10. Separation D = 15M and D = 10M results. Here we plot the value of the largest (in magnitude) curvature eigenvalue
(Sc) versus time (as evolved using the numerical and analytic metric), as well as plot the coordinate position of the geodesics
in a corotating frame (i.e., one where the BH positions are nearly fixed) on the right side of each panel. The vertical lines
and circles in these trajectory plots show the location of the various zones described in Sec. II A. The number r0 (normalized
by M) is the initial coordinate distance of the geodesic from the nearest BH. For the geodesics close to the BHs, the noise in
the numerically evolved spacetime is low compared to the magnitude of the curvature eigenvalues, the opposite is true for the
farthest ones.
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geodesics actually traveled. By comparing the plots in
Fig. 11 with Figs. 8–10, one can get a more accurate of
the actual motion of each geodesic.

A. Comparing First and Second-Order Matched
spacetime

There are two versions of the analytic metric presented
above. The standard one, known as the second-order
metric, uses higher-order PN terms in the near zone, and
matches the ` = 2 and ` = 3 multipoles in the inner
zone. The first-order metric, which we will explore below,
uses lower-order PN terms and only matches the ` = 2
multipoles in the inner-zone.

Thus, we expect the second-order metric to be superior
to the first-order one. In this section, we repeat our calcu-
lations comparing analytic metric to numerically evolved
ones, but this time using the first-order analytic met-
ric. Again, we plot results for D = 50M , D = 20M ,
D = 15M , and D = 10M in Figs. 13, 14, 15, and 16. As
in the sections above, we compare the curvature eigen-
values for from the analytic metric with the eigenvalues
obtained by numerically evolving the analytic metric us-
ing the CCZ4 system. Thus we compare the second-order
analytic eigenvalues with those obtained by numerically
evolving the second-order metric and compare the first-
order analytic eigenvalues with those obtained by nu-
merically evolving the first-order metric. As expected,
for D ≥ 15M , the second-order curvature eigenvalues
more closely match the associated numerical ones than
the first-order eigenvalues do. For both metrics, the gen-
eral trend for D ≥ 15M is that the first and second or-
der results both become better at larger distances from
the black holes and larger black-hole separations. The
D = 10M results appear to be equally inaccurate for the
first and second-order metrics. Our method is thus able
to distinguish between a lower-accuracy and a higher-
accuracy metric. Thus, we expect it will be a useful test-
ing ground for developing still higher-accuracy analytic
metrics.

V. DISCUSSION

In order to conclude if there are important systematic
differences between the numerical and analytic metrics,
we need to consider the possibility that the analytical
metric is better approximated by an exact solution that
does not agree exactly with the analytic metric on Σ0. In
such a case, one would expect that the appropriate ini-
tial conditions for the geodesics in the exact spacetime
are not identical to those for the analytic one. But since
small perturbations in the initial conditions of a geodesic
can lead to significant differences on secular timescales
(e.g., fall into one BH or the other, bounded versus un-
bounded, etc.), we considered here only geodesics that
did not fall into the BHs or escape to large radii.

To see how small differences in the initial affect the
geodesics we presented above (i.e., the stability of the
above geodesics), we perturbed the initial velocities of
a set of included geodesics by up to 10%. The results
several geodesics are shown in Fig. 12 for the D = 20M
case. We find that the effect of a ∼ 10% perturbation
is smaller for the farther out geodesics. We also find
that a perturbation of <∼ 1% seems to be sufficient to
get reasonable agreement between the geodesics in the
numerical and analytic spacetimes for geodesics farther
than r0 ∼ 10M from the BHs. However, for the closer
geodesic, the agreement is much poorer than for further
out ones, which matches the general trend seen in Fig. 9.
Indeed, for the r0 = 6M case, no perturbation is able
to reproduce the behavior of the numerical geodesic past
τ ∼ 75M . To further support the argument that small
differences in the scalars can be removed by small changes
on the initial conditions of the geodesics but large differ-
ences cannot be removed, we examined geodesics a dis-
tance of ∼ 15M from the black holes fro the D = 15M
and D = 10M case. Here we see that no perturbation
of the D = 10M geodesic’s initial conditions will lead to
qualitative agreement between the analytical and numer-
ical eigenvalues. On the other hand, for the D = 15M
very good agreement is achieved.

The fact that reasonable agreement between the an-
alytical and numerical eigenvalues can be achieved by
perturbing the analytical geodesics indicates a limitation
of our basic method in that it may overemphasize the dif-
ferences between to similar spacetimes. Large differences
in the eigenvalues, like the ones seen in the D = 20M
case near the BHs (and D = 10M everywhere) seem to
be indicative of significant differences between the two
spacetimes. On the other hand, where the differences
are small, a given geodesic in one spacetime may behave
nearly identically to one in the other, just with slightly
different initial conditions. Consequently, one may ex-
pect that small differences in the eigenvalues will have
little effect on, among others, gas dynamics.

One final note concerns the potential usefulness of our
analysis at late times. The issue is that small differences
in the trajectories generally grow on secular timescales.
Thus the numerical and analytical eigenvalues represent
curvature terms at increasingly different points of the
spacetimes. For example, in the D = 25M case (see
Fig. 9) for the farthest geodesics, we see differences be-
tween the numerical and analytic eigenvalues after about
τ = 400M . From this point on, the geodesics will start
taking different paths, and the scalars will disagree more
and more, even though the two spacetimes are quite
close, as is evident by the early time agreement of the
scalars and the fact that the geodesics do not get signif-
icantly closer to either black hole. At close separations,
these effects are larger and happen earlier. For example
the r0 = 17.5M case shows significant deviations after
τ = 250M , and the r0 = 9.5M shows significant differ-
ences after τ = 75M . The net effect is, the closer the
two spacetimes are to each other (in the vicinity of the
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FIG. 11. (Top two rows) A summary of the results. The plots show the trajectories of the geodesics in a non-corotating frame.
The color scale gives the relative differences between the curvature eigenvalues (Sc) as calculated using the numerical (and
smoothed by a running average) and analytic metrics. Note that the color changes from blues to reds at 10% relative difference.
(Bottom two rows) Plots showing curvature eigenvalues as calculated using the analytical and numerical metrics, as well as
a running average of the latter. There are hints here of systematic differences between the analytical and numerical results.
However, as can be seen, the noise is much larger than these differences.

geodesic), the longer in time the analysis is valid.

VI. CONCLUSION

In this paper, we introduced a new method for compar-
ing the geodesic dynamics of two spacetimes. We used
this method to compare the dynamics of recently devel-
oped analytical metrics that approximate the metric from
an inspiraling black hole binary with fully nonlinear nu-
merical evolutions of the Einstein equations. We find
that the agreement in the dynamics between the two
spacetimes is generally better for more separated bina-

ries. Close to the black holes, as one might expect, we
see the largest differences. Interestingly, we see that these
differences scale in a highly nonlinear way with separa-
tion, with the D = 10M spacetime showing much larger
differences than the D = 15M one. On the other hand,
even for the D = 50M case, there are measurable differ-
ences in the geodesic deviation scalars between the an-
alytical and numerical spacetimes for geodesics farther
than r0 ∼ 100M from the black holes.
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FIG. 12. Curvature eigenvalues (Sc) for numerical and analytical spacetimes. For the analytical spacetime, we perturb the
initial velocity of geodesics by the factors shown in the graphs. The dotted blue curve is the numerical result with velocity
associated with the unperturbed analytic geodesic. As can be seen, the larger the value of the eigenvalues (i.e., geodesic
deviation) the larger the effect of a ±10% perturbation. On the other hand, with small perturbations, we were able to find
geodesics in the analytical spacetime that closely matched the dynamics (time dependence the eigenvalue) of the numerical one
for geodesics farther than r0 ∼ 10M from the BHs.

FIG. 13. A comparison of how well the curvature eigenvalues of the second-order metric and first-order metric agree with the
eigenvalues of the associated numerical metrics for the D = 50M case. The top row shows the second-order results (which were
previously shown in Fig. 8). The bottom row shows the first-order results. Note that at larger distances from the black holes
the two results are comparable, while at closer distances the second-order results are qualitatively better.
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FIG. 14. A comparison of how well the curvature eigenvalues of the second-order metric and first-order metric agree with the
eigenvalues of the associated numerical metrics for the D = 20M case. The top row shows the second-order results (which were
previously shown in Fig. 9). The bottom row shows the first-order results. Unlike for the D = 50M case, there are significant
differences between the analytical and numerical scalars for the first-order metric even at larger distances from the black holes.

FIG. 15. A comparison of how well the curvature eigenvalues of the second-order metric and first-order metric agree with the
eigenvalues of the associated numerical metrics for the D = 15M case. The top row shows the second-order results (which were
previously shown in Fig. 10). The bottom row shows the first-order results. As with the D = 20M case, there are significant
differences between the analytical and numerical scalars for the first-order metric even at larger distances from the black holes.

FIG. 16. A comparison of how well the curvature eigenvalues of the second-order metric and first-order metric agree with the
eigenvalues of the associated numerical metrics for the D = 10M case. The top row shows the second-order results (which were
previously shown in Fig. 10). The bottom row shows the first-order results. Here, we do not see a significant improvement of
the second-order metric over the first-order one.
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