

# CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

# Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties James Healy and Carlos O. Lousto

Phys. Rev. D **97**, 084002 — Published 2 April 2018 DOI: 10.1103/PhysRevD.97.084002

# The hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

James Healy and Carlos O. Lousto

Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, New York 14623 (Dated: March 5, 2018)

We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios  $q = m_1/m_2$  in the range  $1/7 \leq q \leq 1$  and individual spins covering the parameter space  $-0.95 \leq \alpha_{1,2} \leq 0.95$  with one runs with spins of  $\pm 0.95$ . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to non spinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as  $\vec{S}_{hu} \cdot \hat{L}$ , where  $\vec{S}_{hu} = (1 + \frac{1}{2}\frac{m_2}{m_1})\vec{S}_1 + (1 + \frac{1}{2}\frac{m_1}{m_2})\vec{S}_2$ . We also combine the total results of those 181 simulations to obtain improved fitting formulae for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

#### I. INTRODUCTION

The breakthroughs [1-3] in numerical relativity enabled the detailed predictions for the gravitational waves from the late inspiral, plunge, merger and ringdown of black hole binary systems (BHB). The first generic, longterm precessing binary black hole evolution without any symmetry have been performed a decade ago in Ref. [4], where a detailed comparison with post-Newtonian  $\ell =$ 2.3 waveforms was made. Gravitational waves from the merger of black holes have been now directly observed by LIGO: GW150914[5] and GW151226[6] during the first observing run O1[7], and GW170104 [8], GW170608 [9], and GW170814 (jointly with Virgo) [10] during the second observing run, O2. Direct comparison of targeted full numerical simulations with the first events of the observing run have been performed in [11] for GW150914 (with [12] providing the details of the simulation displayed in Fig. 1 of [5]) and in [13] for GW170104.

Numerical relativity techniques allow us to explore the late binary dynamics, beyond the post-Newtonian regime. Notable early examples are, for instance, the study of the *hangup* effect, i.e. the role individual black hole spins play to delay or accelerate their merger [14], and the determination of the magnitude and direction of the potentially large (up to 5000km/s) *recoil* velocity of the final merged black hole [15–17], and the effects of precession, such as the *flip-flop* of individual spins during the orbital phase [18–20].

In Refs. [21] and [22] we used 37 plus 71 original runs (and those available in the literature) to determine fitting formulae that relate aligned spin binaries orbital parameters  $(q, \alpha_1, \alpha_2)$  to the final black hole mass, spin and recoil  $(m_f, \alpha_f, V_f)$ . Here we revisit this scenario and extend the study to investigate the hangup effect for unequal mass, nonprecessing binaries.

The paper is organized as follows. Next Section II describe the methods and criteria for producing the new simulations. In Sec. III we review the characterization of the hangup effect for numerical and post-Newtonian approaches. We set up new simulations of unequal mass binaries in Sec. IV to find an effective spin description of the hangup. In Section V we model the peak luminosity from the gravitational wave strain and its frequency as a function of the parameters of the precursor binary. In Sec. VI we use the new data to improve the remnant black hole mass, spin and recoil velocity fits. Sec.VII discusses correlations among the above quantities as directly obtained from the full set of 181 simulations. We conclude with a discussion in Sec. VIII of the use of these results in the modeling of gravitational waves and its potential extensions to precessing binaries.

## **II. FULL NUMERICAL EVOLUTIONS**

We evolve the following BBH data sets using the LAZEV [23] implementation of the moving puncture approach [2, 3] with the conformal function  $W = \sqrt{\chi} = \exp(-2\phi)$  suggested by Ref. [24]. For the run presented here, we use centered, sixth-order finite differencing in space [25] and a fourth-order Runge Kutta time integrator (Note that we do not upwind the advection terms.) and a 7th-order Kreiss-Oliger dissipation operator. This sixth-order spatial finite difference allow us to gain a factor  $\sim 4/3$  with the respect to the eight-order implement

tation due to the reduction of the ghost zones from 4 to 3. We also allowed for a Courant factor CFL = 1/3 instead of the previous CFL = 1/4 [26] gaining another speedup factor of 4/3. We verified that for this relaxing of the time integration step we still conserve the horizon masses and spins of the individual black holes during evolution and the phase of the gravitational waveforms to acceptable levels. This plus the use of the new Xsede supercomputer Comet at SDSC [27] lead to typical evolution speeds of 250M/day on 16 nodes, where M is the mass that defines the scale of the simulation. Note that our previous [19, 28] comparable simulations averages ~ 100M/day.

Our code uses the EINSTEINTOOLKIT [29, 30] / CAC-TUS [31] / CARPET [32] infrastructure. The CARPET mesh refinement driver provides a "moving boxes" style of mesh refinement. In this approach, refined grids of fixed size are arranged about the coordinate centers of both holes. The CARPET code then moves these fine grids about the computational domain by following the trajectories of the two BHs.

We use AHFINDERDIRECT [33] to locate apparent horizons. We measure the magnitude of the horizon spin using the *isolated horizon* (IH) algorithm detailed in Ref. [34] and as implemented in Ref. [35]. Note that once we have the horizon spin, we can calculate the horizon mass via the Christodoulou formula  $m_H =$  $\sqrt{m_{\rm irr}^2 + S_H^2/(4m_{\rm irr}^2)}$ , where  $m_{\rm irr} = \sqrt{A/(16\pi)}$ , A is the surface area of the horizon, and  $S_H$  is the spin angular momentum of the BH. In the tables below, we use the variation in the measured horizon irreducible mass and spin during the simulation as a measure of the error in computing these quantities. We measure radiated energy, linear momentum, and angular momentum, in terms of the radiative Weyl Scalar  $\psi_4$ , using the formulas provided in Refs. [36, 37]. However, rather than using the full  $\psi_4$ , we decompose it into  $\ell$  and  $\tilde{m}$  modes and solve for the radiated linear momentum, dropping terms with  $\ell > 6$ . The formulas in Refs. [36, 37] are valid at  $r = \infty$ . We extract the radiated energy-momentum at finite radius and extrapolate to  $r = \infty$ . We find that the new perturbative extrapolation described in Ref. [38] provides the most accurate waveforms. While the difference of fitting both linear and quadratic extrapolations provides an independent measure of the error.

In this paper we have performed a new set of aligned spin BBH simulations targeted at supplementing the existing ones toward completion of a data bank covering comparable BBH mass ratios down to 1:5. Figure 1 gives an overview of the new regions of parameter space covered in red (68 simulations) and the coverage of our previous studies in black (107). 6 additional simulations, designed for individual targeted studies are also included. The total of 181 simulations are used for the hangup studies of unequal mass, nonprecessing, binaries described in this paper.

Table V including the initial data for all the new 74 simulations is provided in the appendix A. We also provide the values of the individual masses and spins once



FIG. 1. And overview of the spin and mass ratio parameters of the new simulations presented in this paper. Labeled in red are 68 new runs for mass ratios q = 0.85, 0.4142, 0.20. 6 additional runs were included in the analysis not shown in these figures. The black points for mass ratios q =1.00, 0.75, 0.50, 0.33 are runs completed for previous studies.

they settle to equilibrium values from the initial data radiation content in table VI as they provide a more physical reference value.

#### III. HANGUP

The hangup effect is the strongest dynamical effect spins of individual black holes have on their late time binary inspiral and merger [14]. This effect delays or prompts the merger speed of black hole binaries according to the sign of the spin-orbit coupling  $\vec{S} \cdot \vec{L}$ , as this term has an additional repulsive (attractive) pull that is larger (smaller) than zero [39]. The strength of the effect on the merger process was first evaluated in [14] through full numerical simulations and was found to be much larger than expected from the post-Newtonian analysis. Follow up work confirmed the strength of the hangup effect up to very large spins [40, 41].

The original work [14] was performed for equal mass, equal (anti-)aligned spins with the orbital angular momentum binaries. The hangup effect, as later shown in [42], continues to be the most important effect in equal mass precessing binaries. Here we build on the data bank of simulations for (anti-)aligned spins binaries described in [21, 22, 43] and supplement it with 74 new simulations to analyze their dynamics in detail and determine what is the spin and mass ratio variables dependence that controls the hangup effect in the unequal mass binaries cases.

In addition to those aligned runs, here we also explore the interesting case of the possibility of having a residual hangup effect even if the total spin of the binary is zero. We would like to verify this directly on full nonlinear simulations of binary black holes independently of the PN expansions. Note that the assumption that the vanishing addition of the spins  $\vec{S} = \vec{S}_1 + \vec{S}_2 = 0$  leads to no effects has been used in developing some early models of the remnant formulae [44].

In what follows we will use the following notation (the tilde over variables denote the dimensionless normaliza-

tion by  $1/m^2$ )

$$m = m_1 + m_2, \quad \delta m = \frac{m_1 - m_2}{m},$$
 (1)

$$\tilde{\vec{S}} = (\vec{S}_1 + \vec{S}_2)/m^2 = (\vec{\alpha}_2 + q^2 \vec{\alpha}_1)/(1+q)^2, \qquad (2)$$

$$\vec{\Delta} = (\vec{S}_2/m_2 - \vec{S}_1/m_1)/m = (\vec{\alpha}_2 - q\vec{\alpha}_1)/(1+q), \quad (3)$$

where  $m_i$  is the mass of BH i = 1, 2 and  $\vec{S}_i$  is the spin of BH i. We also use the auxiliary variables

$$\eta = \frac{m_1 m_2}{m^2}, \quad q = \frac{m_1}{m_2}, \quad \vec{\alpha}_i = \vec{S}_i / m_i^2,$$
 (4)

where  $|\vec{\alpha}_i| \leq 1$  is the dimensionless spin of BH *i*, and we use the convention that  $m_1 \leq m_2$  and hence  $q \leq 1$ . Here the index  $\perp$  and  $\parallel$  refer to components perpendicular to and parallel to the orbital angular momentum  $\vec{L}$ . We also define unit vectors using "hat" labels, for instance as in  $\hat{L}$ .

There are two candidate effective spin parameters,  $\vec{S}_0$ and  $\vec{S}_{eff}$ , that we can use to describe the hangup effects (the number of orbits to merger from a fiducial initial orbital frequency relative to the nonspinning case, as studied in the original work [14]). They come from the 2PN Hamiltonian spin dynamics [39, 45], where

$$\frac{1}{2}S_0 = \left(\vec{S}\cdot\hat{L} + \frac{1}{2}\,\delta m\vec{\Delta}\cdot\hat{L}\right),\tag{5}$$

$$\frac{4}{7}S_{eff} = \left(\vec{S}\cdot\hat{L} + \frac{3}{7}\,\delta m\vec{\Delta}\cdot\hat{L}\right),\tag{6}$$

where we will normalize effective spins to produce  $\vec{S}_2$ , the large black hole spin, in the extreme mass ratio limit.

A third candidate and a more explicit computation of the hangup effect can be derived from Kidder's [39] Eq. (4.16) that calculates the accumulated orbital phase of the binary from the evolution of the orbital frequency

$$\Psi \equiv \int_{t_i}^{t_f} \omega dt = \int_{\omega_i}^{\omega_f} \frac{\omega}{\dot{\omega}} d\omega, \qquad (7)$$

where  $t_i$  is the initial time considered (corresponding to a lower frequency  $\omega_i$ ) and  $t_f$  is the final time at which the merger occurs (corresponding to an upper frequency  $\omega_f$ ).

The phase is then given by

$$\Psi = \frac{1}{32\eta} \Biggl\{ \left[ (m\omega_i)^{-5/3} - (m\omega_f)^{-5/3} \right] + \frac{5}{1008} (743 + 924\eta) \left[ (m\omega_i)^{-1} - (m\omega_f)^{-1} \right] \\ + \left[ \frac{5}{24} \sum_{i=1,2} \left[ \chi_i (\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_i) (113 \frac{m_i^2}{m^2} + 75\eta) \right] - 10\pi \Biggr] \left[ (m\omega_i)^{-2/3} - (m\omega_f)^{-2/3} \right] \\ + \frac{5}{48} \eta \chi_1 \chi_2 \left[ 247 (\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2) - 721 (\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_1) (\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_2) \right] \left[ (m\omega_i)^{-1/3} - (m\omega_f)^{-1/3} \right] \Biggr\}.$$
(8)

The spin dependence gives the acceleration or delay of the spin orbit coupling, while it is also crucial to account for the change with spin of the final frequency  $\omega_f$ .

In our notation, the leading PN-dependence is given by

$$\frac{188}{113}S_{PN} = \left(\vec{S} \cdot \hat{L} + \frac{75}{188}\,\delta m \vec{\Delta} \cdot \hat{L}\right),\tag{9}$$

with 75/188 = 0.3989.

#### **IV. SIMULATIONS**

In order to evaluate the hangup effect dependence on the spins and the mass ratio of the binary we will make use of the 107 simulations we selected from the Refs. [21, 22, 43] and the current 74 presented in this paper. In order to quantify this hangup effect we count the number of orbits to merger (as measured by the peak of the amplitude of the (2,2)-mode of the h waveform) from an initial fiducial orbital frequency of  $\omega_i = 0.07$ . This value of  $\omega_i$  is chosen such that all the 181 simulations include cleanly this and higher frequencies in their waveforms The number of orbits are computed in an invariant way (as opposed to coordinate tracks) by counting (half) the number of cycles of the (2,2)-mode waveforms (extrapolated to an infinite observer location via [38]). Table VII provides an account of the relevant parameters in this regard for the new 74 simulations.

The spatial resolution of each simulation can be described by a number NXXX, where XXX is related to the resolution of the grid in the wavezone. For example, a resolution tag of N140 would have resolution of M/1.40 in the wavezone. This global resolution factor is chosen such that the mass and spin are conserved to an acceptable degree, and in accordance with the convergence studies conducted in Refs.[21, 22]. The new runs presented here are in 3 families: q = 0.85 with resolution N120, q = 0.4142 with resolution N100, and q = 0.20with resolution N120. From each family, a sample of simulations are produced at 3 resolutions to verify accuracy. Other additional runs added not in these series have resolutions of N100, N120, or N140.

We will study the hangup dependence of those 181 simulations on the variable

$$\frac{1}{1-C}S_{hu} = \left(\vec{S}\cdot\hat{L} + C\,\delta m\vec{\Delta}\cdot\hat{L}\right),\tag{10}$$

where C will be the fitting parameter that regulates the coupling to the total spin  $\vec{S}$  with the "delta" combination  $\delta m \vec{\Delta}$ .

Note that our study does not need to make reference to post-Newtonian expansions and uses only full numerical evolutions. The above variables in common with PN can be independently obtained from symmetry considerations (parity and exchange of  $1 \leftrightarrow 2$  BH labels) as discussed in [42, 46].



FIG. 2. The number of orbits differential with respect to the nonspinning case for full numerical binary black hole mergers. We use the (2,2) mode of the waveform and calculate the number of cycles between  $m\omega = 0.07$  and  $m\omega_{peak}$ . We studied in detail the cases with q = 1.00, q = 0.85, q = 0.75, q = 0.4142, q = 0.50, q = 0.333 and q = 0.20 and fit a quadratic dependence with the spin variables to extract the linear spin coefficients of  $\vec{S} \cdot \hat{L} + C \delta m \vec{\Delta} \cdot \hat{L}$ . The residuals of such fit are also displayed showing no systematics.

The results of a fitting of the form (where N is the number of orbits to merger for spinning binaries and  $N_0$  the corresponding for nonspinning binaries from the same initial fiducial orbital frequency)

$$\eta[N - N_0] = D + A S_{hu} + B S_{hu}^2, \qquad (11)$$

are presented in Fig. 2. This shows the dependence of the hangup effect with respect to the nonspinning binaries. We see that this dependence can be expressed in terms of the spin variable

$$\frac{3}{2}S_{hu} = \left(\vec{S}\cdot\hat{L} + \frac{1}{3}\,\delta m\vec{\Delta}\cdot\hat{L}\right),\tag{12}$$

TABLE I. RMS and variance of  $S_0$ ,  $S_{eff}$ , and  $S_{hu}$  fits. ndf (no. degrees of freedom), WSSR = weighted sum of the residuals RMS= $\sqrt{WSSR/ndf}$ , Variance=reduced  $\chi^2$  = WSSR/ndf

| Variable  | Coefficient | ndf | WSSR  | RMS   | Variance |
|-----------|-------------|-----|-------|-------|----------|
| $S_0$     | 0.5         | 167 | 0.702 | 0.065 | 0.0042   |
| $S_{eff}$ | 0.428571    | 167 | 0.361 | 0.047 | 0.0022   |
| $S_{PN}$  | 0.398936    | 167 | 0.281 | 0.041 | 0.0017   |
| $S_{hu}$  | 0.333333    | 167 | 0.214 | 0.036 | 0.0013   |

to an excellent degree of approximation since C = 0.3347from the fits.

Note the small residual coefficient, 0.00532, for vanishing spins displaying the consistent subtraction of the nonspinning portion even for spinning binaries. The residuals panel on the bottom of Fig. 2 shows that all residuals are an order of magnitude smaller than its fit range above.

Table I displays the comparative statistical properties of the fits if we use the alternative variables  $S_0$  or  $S_{eff}$ as given in Eq. (5) and  $S_{PN}$  as given in Eq. (9.

As a control study of the above results we designed two sequences of runs that check if there is a null hangup effect when either  $\vec{S} = 0$  or  $\vec{S}_0 = 0$ . By requiring that  $\vec{S} = 0$  we get

$$\vec{\alpha}_2 = -q^2 \vec{\alpha}_1 \tag{13}$$

hence

$$\delta m \,\tilde{\vec{\Delta}}(\vec{S}=0) = \frac{(1-q)\,q\,\vec{\alpha}_1}{(1+q)} \tag{14}$$

The maximum effect hence occurs for  $q^{max} = \sqrt{2} - 1$ for any magnitude of  $\alpha_1$ .

We choose a few representative cases for  $\alpha_1$  =  $0, \pm 0.4, \pm 0.8$  to model the effect. that lead to  $\alpha_2 =$  $0, \pm 0.0686, \pm 0.13726.$ 

If we want to compare to something that we suspect will be closer to mimic the nonspinning case, we can set  $S_0 = 0$ . In that case

$$\tilde{\vec{S}}_0 = (\vec{\alpha}_2 + q\vec{\alpha}_1)/(1+q) = 0,$$
(15)

implies

$$\vec{\alpha}_2 = -q\vec{\alpha}_1 \tag{16}$$

which gives

$$\tilde{\vec{S}}(\vec{S}_0 = 0) = -\frac{(1-q)\,q\,\vec{\alpha}_1}{(1+q)^2} \tag{17}$$

with a  $q^{max} = 1/3$ .

One can check that

$$\delta m \,\tilde{\vec{\Delta}}(\vec{S}_0 = 0) = -2\tilde{\vec{S}}(\vec{S}_0 = 0).$$
 (18)



FIG. 3. Differential hangup effect NR vs. PN of the simulated binaries for q = 1.00, q = 0.85, q = 0.75, q = 0.50, q = 0.4142, q = 0.333, and q = 0.2 displaying the stronger dependence on spins in full numerical simulations than predicted by PN and the spin variable deviation from simply  $\vec{S} \cdot \hat{L}$ . An additional dependence with q is also observed.

Since for q = 1/3 or  $q = \sqrt{2} - 1$ , S(q) does not change by much around the maximum (-1/8 vs. -0.121), we can still use  $q = \sqrt{2} - 1$  as the reference q, with the advantage of direct comparison for the case S = 0. Hence we study 4 new runs with  $\alpha_1 = \pm 0.4, \pm 0.8$  to model the effect. that lead to  $\alpha_2 = \mp 0.1657, \mp 0.33137.$ 

A parameter space view of the runs we performed for those families (and others) is in the of Fig. 1 labeled as q = 0.4142.

Another control study is to try to perform similar studies with purely 3.5PN evolutions as used in Ref. [19]. Figure 3 displays a measure of the differential hangup effect further delaying or prompting merger of the full numerical evolutions with respect to the 3.5PN integrations. This residual differences (also depending on q) gives us a measure of how much stronger the effect is in full General Relativity. We also see that the variable that describes the effect is not simply  $\vec{S} \cdot \vec{L}$ , but rather  $S_{fit}$  something proportional to  $(\vec{S} + (0.53 \pm 0.08)\delta m \vec{\Delta}) \cdot \vec{L}$  (see Table II), that do not corresponds to the  $\vec{S}_0 \cdot \vec{L}$  variable, that is a quasi-conserved quantity [47].

We conclude that there are residual effects at PN level that are not as simply parameterized as for the purely full numerical evolutions with  $S_{hu}$ .

TABLE II. Table of fitting coefficients for each line in Fig. 3. The fit is of the form  $\eta(N_{NR} - N_{PN}) = D + AS_{fit} + BS_{fit}^2$ where  $S_{fit} = S + C\delta m\Delta$ .

| q      | A     | В      | C     | D      |
|--------|-------|--------|-------|--------|
| 1.00   | 1.167 | -0.092 | 0     | -0.075 |
| 0.85   | 1.281 | -0.207 | 0.453 | -0.041 |
| 0.75   | 1.194 | -0.097 | 0.580 | -0.050 |
| 0.50   | 1.222 | 0.029  | 0.612 | 0.006  |
| 0.4142 | 1.266 | -0.044 | 0.605 | 0.093  |
| 0.3333 | 1.231 | -0.068 | 0.608 | 0.110  |
| 0.2    | 1.311 | 0.022  | 0.536 | 0.263  |

# V. PEAK LUMINOSITY, AMPLITUDE AND FREQUENCY MODELING

The end of the inspiral of two black holes is characterized by a plunge towards the formation of a highly distorted final single black hole. It is during this process that the black holes radiates the most power in the form of gravitational waves. One can thus identify the peak luminosity and the corresponding amplitude and the frequency (derived from the phase) of the gravitational waveforms. These quantities are of interest for gravitational wave observations and could be used as potential tests of general relativity (if measured independently) as there are theory of gravity specific relationships among them (as mentioned in [48]). Other test of general relativity have been described and applied to observations in [7, 8, 49].

In this section we make use of the new set of simulations to provide a more accurate modeling of the peak luminosity, amplitude and frequency.

#### A. Peak luminosity modeling

In Ref. [22] we proposed the following fourth order expansion to fit the peak luminosity

$$L_{\text{peak}} = (4\eta)^{2} \left\{ N_{0} + N_{1}\tilde{S}_{\parallel} + N_{2a}\,\tilde{\Delta}_{\parallel}\delta m + N_{2b}\,\tilde{S}_{\parallel}^{2} + N_{2c}\,\tilde{\Delta}_{\parallel}^{2} + N_{2d}\,\delta m^{2} + N_{3a}\,\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel}\delta m + N_{3b}\,\tilde{S}_{\parallel}\tilde{\Delta}_{\parallel}^{2} + N_{3c}\,\tilde{S}_{\parallel}^{3} + N_{3d}\,\tilde{S}_{\parallel}\delta m^{2} + N_{4a}\,\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel}^{2}\delta m + N_{4b}\,\tilde{\Delta}_{\parallel}^{3}\delta m + N_{4c}\,\tilde{\Delta}_{\parallel}^{4} + N_{4d}\,\tilde{S}_{\parallel}^{4} + N_{4e}\,\tilde{\Delta}_{\parallel}^{2}\tilde{S}_{\parallel}^{2} + N_{4f}\,\delta m^{4} + N_{4g}\,\tilde{\Delta}_{\parallel}\delta m^{3} + N_{4h}\,\tilde{\Delta}_{\parallel}^{2}\delta m^{2} + N_{4i}\,\tilde{S}_{\parallel}^{2}\delta m^{2} \right\}.$$
(19)

Where all  $N_i$  are fitting parameters (as used in Ref. [21]).

In Fig. 4 we display the agreement between the peak luminosity formula Eq. (19) (See also Ref. [22]) with the whole set of 181 simulations provided in this paper. We



FIG. 4. Top panel: Red squares representing data and blue dots their corresponding fit to the peak luminosity. Bottom panels: Fitting residuals of the peak luminosity formula as given in Eq. (19) (See also [22]).

have fitted to 16 out of the 19 coefficients here by choosing the 3 spinless coefficients,  $N_0$ ,  $N_{2d}$ , and  $N_{4f}$  to match the values found in Ref. [48] after an exceptionally accurate convergence study. Fitting independently all 19 coefficients produce values close to those assumed for the 3 nonspinning ones. This leads to larger residuals for the spin dependence, but an overall higher accuracy of the fitting formula. This hierarchical approach is similar to assigning the highest weight to those extrapolated nonspinning waveforms in [48]. The explicit values of those parameters as well as those obtained in the fitting here are provided in the appendix Table XV.

For configurations that produce a relatively low peak luminosity, for example runs 0 to 20, the percent difference in the bottom panel of fig. 4 will be higher than the rest of the set because of the normalization by a small number. In addition, for these runs, even though they have the same magnitude extrapolation error as the rest of the runs in the series, the percentage error is slightly higher because of the overall smaller peak luminosity. This leads to other runs having priority in the fitting algorithm and slightly higher residuals for these runs. This will also affect the spin and kick fittings below, since in both cases there are configurations with spins or kicks close to 0.

# B. Peak amplitude and frequency modeling

In Ref. [48] we modeled the peak amplitude and peak frequency for the nonspinning binaries (See also independent studies in [50-52]). Here we generalize those fitting



FIG. 5. Top panel: Red squares representing data and blue dots their corresponding fit to the peak amplitude of the (2,2)-mode. Bottom panels: Fitting residuals of the peak amplitude formula as given in Eq. (20).

formulae for the aligned spinning binary black hole mergers.

$$(r/m)h_{22}^{\text{peak}} = (4\eta) \left\{ H_0 + H_1 \tilde{S}_{\parallel} + H_{2a} \,\tilde{\Delta}_{\parallel} \delta m + H_{2b} \,\tilde{S}_{\parallel}^2 + H_{2c} \,\tilde{\Delta}_{\parallel}^2 + H_{2d} \,\delta m^2 + H_{3a} \,\tilde{\Delta}_{\parallel} \tilde{S}_{\parallel} \delta m + H_{3b} \,\tilde{S}_{\parallel} \tilde{\Delta}_{\parallel}^2 + H_{3c} \,\tilde{S}_{\parallel}^3 + H_{3d} \,\tilde{S}_{\parallel} \delta m^2 + H_{4a} \,\tilde{\Delta}_{\parallel} \tilde{S}_{\parallel}^2 \delta m + H_{4b} \,\tilde{\Delta}_{\parallel}^3 \delta m + H_{4c} \,\tilde{\Delta}_{\parallel} + H_{4d} \,\tilde{S}_{\parallel}^4 + H_{4c} \,\tilde{\Delta}_{\parallel}^2 \tilde{S}_{\parallel}^2 + H_{4f} \,\delta m^4 + H_{4g} \,\tilde{\Delta}_{\parallel} \delta m^3 + H_{4h} \,\tilde{\Delta}_{\parallel}^2 \delta m^2 + H_{4i} \,\tilde{S}_{\parallel}^2 \delta m^2 \right\}. (20)$$

With all  $H_i$  fitting parameters.

In Fig. 5 we display the agreement between the new peak amplitude formula given here with the updated set of simulations provided in this paper. We have fitted to 16 out of the 19 coefficients here by choosing the 3 spinless coefficients,  $H_0, H_{2d}$ , and  $H_{4f}$  to match the values found in Ref. [48] after an extrapolation of accurate convergence sequence. This choice, while producing slightly larger residuals, should produce a more accurate overall fit. The explicit values of those parameters as well as those obtained in the fitting here are provided in the appendix Table XVI.

Following again the introduction of the peak frequency for spinless binaries in Ref. [48] we generalize those fitting formulae for the aligned spinning binary black hole



FIG. 6. Top panel: Red squares representing data and blue dots their corresponding fit to the frequency of the peak amplitude of the (2,2)-mode. Bottom panels: Fitting residuals of the frequency at peak amplitude formula as given in Eq. (21).

mergers

$$\begin{split} m\omega_{22}^{\text{peak}} &= \left\{ W_{0} + W_{1}\tilde{S}_{\parallel} + W_{2a}\,\tilde{\Delta}_{\parallel}\delta m + \\ &W_{2b}\,\tilde{S}_{\parallel}^{2} + W_{2c}\,\tilde{\Delta}_{\parallel}^{2} + W_{2d}\,\delta m^{2} + \\ &W_{3a}\,\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel}\delta m + W_{3b}\,\tilde{S}_{\parallel}\tilde{\Delta}_{\parallel}^{2} + W_{3c}\,\tilde{S}_{\parallel}^{3} + \\ &W_{3d}\,\tilde{S}_{\parallel}\delta m^{2} + W_{4a}\,\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel}^{2}\delta m + \\ &W_{4b}\,\tilde{\Delta}_{\parallel}^{3}\delta m + W_{4c}\,\tilde{\Delta}_{\parallel}^{4} + W_{4d}\,\tilde{S}_{\parallel}^{4} + \\ &W_{4e}\,\tilde{\Delta}_{\parallel}^{2}\tilde{S}_{\parallel}^{2} + W_{4f}\,\delta m^{4} + W_{4g}\,\tilde{\Delta}_{\parallel}\delta m^{3} + \\ &W_{4h}\,\tilde{\Delta}_{\parallel}^{2}\delta m^{2} + W_{4i}\,\tilde{S}_{\parallel}^{2}\delta m^{2} \right\}. \end{split}$$
(21)

With all  $W_i$  fitting parameters.

In Fig. 6 we display the agreement between the new peak amplitude formula given here with the updated set of 181 simulations provided in this paper. We have fitted to 16 out of the 19 coefficients here by choosing the 3 spinless coefficients,  $W_0, W_{2d}$ , and  $W_{4f}$  to match the values found in Ref. [48] after an extrapolation of an accurate three convergence sequence. Matching all 19 coefficients leads to values close to those previous work [48] for the nonspinning case, hence we assumed those values for our reduced fits. The explicit values of those parameters as well as those obtained in the fitting here are provided in the appendix B, Table XVI.

In summary, we find the fitting statistics as given in Table III

We expect that the hierarchical approach followed in these fitting (use of accurate 3-parameters from the nonspinning binary cases), provides an accurate account of

TABLE III. Fitting statistics for peak luminosity, frequency and amplitude of the mode (2,2) formulae

| Value      | Peak Luminosity | Peak $m\omega_{22}$ | Peak $(r/m)h_{22}$ |
|------------|-----------------|---------------------|--------------------|
| RMS        | 1.68809e-05     | 5.95755e-03         | 1.54105e-03        |
| Std. Dev.  | 1.46664e-05     | 5.70386e-03         | 1.47523e-03        |
| Avg. Diff. | 6.77198e-06     | 2.70026e-05         | -2.44938e-05       |
| Max Diff.  | 7.18966e-05     | 2.63070e-02         | 8.39437e-03        |
| Min Diff.  | -3.18964e-05    | -3.94535e-02        | -4.81573e-03       |

the phenomenology of the peak emission of gravitational waves. See also, for instance, the approach in Ref. [53].

# VI. REMNANT MODELING

The modeling of the final mass and spin as well as the recoil of the final merged black hole has been the subject of many studies ever since the numerical relativity breakthroughs [1–3] allowed the long term evolutions of binary black holes. The interest for such formulae have been recently renewed [53–55] as they provide important information for the modeling of waveforms [52, 56] and interpretation of the gravitational wave observations as well as providing consistency test for general relativity [8, 49] Below we make use to improve (notably for the recoil velocity) the current fitting formulae for the remnant properties of the final black hole with the new set of simulations.

#### A. Final Mass modeling

In Ref. [21] the fitting formula for the remnant mass  $M_{\rm rem}$  was given by,

$$\frac{M_{\rm rem}}{m} = (4\eta)^2 \left\{ M_0 + K_1 \tilde{S}_{\parallel} + K_{2a} \tilde{\Delta}_{\parallel} \delta m + K_{2b} \tilde{S}_{\parallel}^2 + K_{2c} \tilde{\Delta}_{\parallel}^2 + K_{2d} \delta m^2 + K_{3a} \tilde{\Delta}_{\parallel} \tilde{S}_{\parallel} \delta m + K_{3b} \tilde{S}_{\parallel} \tilde{\Delta}_{\parallel}^2 + K_{3c} \tilde{S}_{\parallel}^3 + K_{3d} \tilde{S}_{\parallel} \delta m^2 + K_{4a} \tilde{\Delta}_{\parallel} \tilde{S}_{\parallel}^2 \delta m + K_{4b} \tilde{\Delta}_{\parallel}^3 \delta m + K_{4c} \tilde{\Delta}_{\parallel}^4 + K_{4d} \tilde{S}_{\parallel}^4 + K_{4e} \tilde{\Delta}_{\parallel}^2 \tilde{S}_{\parallel}^2 + K_{4f} \delta m^4 + K_{4g} \tilde{\Delta}_{\parallel} \delta m^3 + K_{4h} \tilde{\Delta}_{\parallel}^2 \delta m^2 + K_{4i} \tilde{S}_{\parallel}^2 \delta m^2 \right\} + \left[ 1 + \eta (\tilde{E}_{\rm ISCO} + 11) \right] \delta m^6. \quad (22)$$

With all 19  $K_i$  being fitting parameters.

In Fig. 7 we display the agreement between the latest final mass formula as in Eq. (22) (See also Ref. [22]) with the whole set of simulations provided in this paper. Table XIII gives the 19 parameters for the final mass optimal fit. Making use of the accurate determination of the final



FIG. 7. Top panel: Red squares representing data and blue dots their corresponding fit. Bottom panels: Fitting residuals of the final remnant mass formula as given in Eq. (22) (See also Ref. [22]).

mass via the isolated horizon formalism [34] we observe that those coefficients with nearly vanishing values can be adopted as precisely zero. Thus, Table XIV gives an alternative reduced set of 9 parameters fit. This may provide a helpful approach to extend these formulae to the precessing binaries case.

#### B. Final Spin Modeling

As in Ref. [21] the fitting formula for the final spin has the form,

$$\alpha_{\rm rem} = \frac{S_{\rm rem}}{M_{\rm rem}^2} = (4\eta)^2 \Big\{ L_0 + L_1 \,\tilde{S}_{\parallel} + \\ L_{2a} \,\tilde{\Delta}_{\parallel} \delta m + L_{2b} \,\tilde{S}_{\parallel}^2 + L_{2c} \,\tilde{\Delta}_{\parallel}^2 + L_{2d} \,\delta m^2 + \\ L_{3a} \,\tilde{\Delta}_{\parallel} \tilde{S}_{\parallel} \delta m + L_{3b} \,\tilde{S}_{\parallel} \tilde{\Delta}_{\parallel}^2 + L_{3c} \,\tilde{S}_{\parallel}^3 + \\ L_{3d} \,\tilde{S}_{\parallel} \delta m^2 + L_{4a} \,\tilde{\Delta}_{\parallel} \tilde{S}_{\parallel}^2 \delta m + L_{4b} \,\tilde{\Delta}_{\parallel}^3 \delta m + \\ L_{4c} \,\tilde{\Delta}_{\parallel}^4 + L_{4d} \,\tilde{S}_{\parallel}^4 + L_{4e} \,\tilde{\Delta}_{\parallel}^2 \tilde{S}_{\parallel}^2 + \\ L_{4f} \,\delta m^4 + L_{4g} \,\tilde{\Delta}_{\parallel} \delta m^3 + \\ L_{4h} \,\tilde{\Delta}_{\parallel}^2 \delta m^2 + L_{4i} \,\tilde{S}_{\parallel}^2 \delta m^2 \Big\} + \\ \tilde{S}_{\parallel} (1 + 8n) \delta m^4 + n \tilde{J}_{\rm SCO} \delta m^6, \quad (23)$$

With 19  $L_i$  fitting parameters.

Note that the two formulae, for the remnant mass and spin, above impose the particle limit by including the ISCO dependencies (See Ref. [21, 57] for the explicit expressions).



FIG. 8. Top panel: Red squares representing data and blue dots their corresponding fit. Bottom panels: Fitting residuals of the final remnant spin formula as given in Eq. (23) (See also [22]).

In Fig. 8 we display the agreement between the latest remnant spin formula as in Eq. (23) (See also Ref. [22]) with the updated set of 181 simulations provided in this paper. Table XIII gives the 19 parameters for the final spin fit. Making use of the accurate determination of the final mass via the isolated horizon formalism [34] we observe that those coefficients with nearly vanishing values can be adopted as precisely zero. Thus, Table XIV gives an alternative reduced set of 10 parameters fit. As in the case of the final remnant mass, this reduced spin formula may prove useful to extend these formulae to the precessing binaries case. For instance, in Ref. [58] accurate results are found for the final spin by augmenting the nonprecessing formulae with in-plane spins and spin evolution.

We find that comparing the residuals for the mass and spins between the new and the previous fitting formulae implies a modest improvement, i.e. the RMS for the new mass fit is 2.62396e-04 compared to 2.90334e-04 for the fit of Ref. [22]. While for the final spin fit we find that the current RMS is 7.90772e-04 versus 8.15907e-04 for the Ref. [22].

## C. Final Recoil Modeling

We model the total recoil as in Ref. [21]

$$\vec{V}_{\text{recoil}}(q, \vec{\alpha}_i) = v_m \,\hat{e}_1 + v_\perp(\cos(\xi) \,\hat{e}_1 + \sin(\xi) \,\hat{e}_2), \quad (24)$$

 $\hat{e}_1, \hat{e}_2$  are orthogonal unit vectors in the orbital plane, and  $\xi$  measures the angle between the "unequal mass" and



FIG. 9. Top panel: Red squares representing data and blue dots their corresponding fit to the in-plane recoil. Bottom panels: Fitting residuals of the final remnant recoil formula as given in Eq. (25) (See also [22]).

"spin" contributions to the recoil velocity in the orbital plane, and with,

$$v_{\perp} = H\eta^{2} \left( \tilde{\Delta}_{\parallel} + H_{2a}\tilde{S}_{\parallel}\delta m + H_{2b}\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel} + H_{3a}\tilde{\Delta}_{\parallel}^{2}\delta m \right. \\ \left. + H_{3b}\tilde{S}_{\parallel}^{2}\delta m + H_{3c}\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel}^{2} + H_{3d}\tilde{\Delta}_{\parallel}^{3} \right. \\ \left. + H_{3e}\tilde{\Delta}_{\parallel}\delta m^{2} + H_{4a}\tilde{S}_{\parallel}\tilde{\Delta}_{\parallel}^{2}\delta m + H_{4b}\tilde{S}_{\parallel}^{3}\delta m \right. \\ \left. + H_{4c}\tilde{S}_{\parallel}\delta m^{3} + H_{4d}\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel}\delta m^{2} \right. \\ \left. + H_{4e}\tilde{\Delta}_{\parallel}\tilde{S}_{\parallel}^{3} + H_{4f}\tilde{S}_{\parallel}\tilde{\Delta}_{\parallel}^{3} \right),$$

$$\xi = a + b\tilde{S}_{\parallel} + c\,\delta m\tilde{\Delta}_{\parallel}.$$
(25)

Where

$$v_m = \eta^2 \delta m \left( A + B \, \delta m^2 + C \, \delta m^4 \right). \tag{26}$$

and according to Ref. [48] we have  $A = -8712 \, km/s$ , and  $B = -6516 \, km/s$  and  $C = 3907 \, km/s$ .

In Fig. 9 we display the agreement between the recoil formula as in Eq. (25) (See also Ref. [22]) with the updated set of simulations provided in this paper. Table XV provides the 17 parameters for the aligned recoil formula.

In summary we find the fitting statistics as given in Table IV

# VII. FURTHER INSIGHT INTO THE RADIATIVE AND REMNANT RELATIONS

We observe an interesting set of correlations among the remnant and radiative merger variables as in Fig. 10.

TABLE IV. Fitting statistics for remnant formulae presented here.

| Value      | $M_{rem}/m$  | $\alpha_{rem}$ | Recoil $(km/s)$ |
|------------|--------------|----------------|-----------------|
| RMS        | 2.62396e-04  | 7.90772e-04    | 3.48            |
| Std. Dev.  | 2.52011e-04  | 7.58235e-04    | 3.31            |
| Avg. Diff. | -6.38437e-06 | 4.33099e-04    | 0.21            |
| Max Diff.  | 1.19201e-03  | 2.59799e-03    | 10.98           |
| Min Diff.  | -1.13027e-03 | -2.45274e-03   | -12.73          |



FIG. 10. The correlation between the final spin of the remnant and the (2,2)-mode frequency at the peak of the waveform amplitude over a range of spins and mass-ratios (in color).

Note that a similar correlation was pointed out independently in Ref. [59] between peak frequency and quasinormal modes of the remnant black hole.

We also found interesting correlations for the normalized energy radiated,  $E_{rad}/\eta$ , and the final spin or peak frequency displayed in Fig. 11. Note the slight broadening of the correlation between Energy and peak frequency for large values seems to be driven by three small mass ratio simulations. This suggest this region of parameter space should be supplemented with higher resolution and longer term simulations.

We note that we searched for other correlations among the peak, radiative, and final remnant values and did not find simple and accurate relations as those presented here for the three cases relating energy radiated, peak frequency and final spin in an universal way, independent of the (moderate) mass ratios studied here.

We also note that these relationships, valid for our simulations of binary black holes as governed by general relativity, could provide a test of the theory of gravity when combined with independent observations of such quantities by gravitational waves observatories. For instance, excess power plots measuring wave amplitude in time vs. frequency is commonly reported by LIGO analysis [60]. Another example would be combining the measurement of the final mass and spin from a quasinormal modes (see for instance [61]) with a measurement of the total mass and mass ratio from the inspiral waveform to determine the total energy radiated.



FIG. 11. The correlation between the normalized radiated energy and final spin of the remnant and the (2,2)-mode frequency at the peak of the waveform amplitude over a range of spins and mass-ratios (in color).

# VIII. CONCLUSIONS AND DISCUSSION

We have performed 74 new simulations of unequal mass, spinning nonprecessing binary black holes to investigate the dynamics of their late inspiral and merger leading find that the hangup phenomena (acceleration/deceleration of merger with respect to the nonspinning case) can be represented at leading spin order by the following quantity

$$S_{hu} = \left( \left(1 + \frac{1}{2q}\right) \vec{S}_1 + \left(1 + \frac{1}{2}q\right) \vec{S}_2 \right) \cdot \hat{L}.$$
 (27)

We observed a clear better match with respect to alternative effective description used in the modeling and post-Newtonian descriptions

$$S_0 = \left( (1 + \frac{1}{q}) \,\vec{S}_1 + (1 + q) \,\vec{S}_2 \right) \cdot \hat{L},\tag{28}$$

$$S_{eff} = \left( (1 + \frac{3}{4q}) \vec{S}_1 + (1 + \frac{3}{4}q) \vec{S}_2 \right) \cdot \hat{L}, \qquad (29)$$

$$S_{PN} = \left( \left(1 + \frac{75}{113q}\right) \vec{S}_1 + \left(1 + \frac{75}{113}q\right) \vec{S}_2 \right) \cdot \hat{L}. \quad (30)$$

We have also generated new simulations to add to the waveform data bank available for parameter estimation of gravitational wave observations [11, 62], and soon to be included in a new release of the RIT waveform Catalog [43] (http://ccrg.rit.edu/~RITCatalog/). For in-



FIG. 12. The lowest mass representation of the simulated waveforms for a starting frequency of 20Hz and 30Hz at the source frame. On top, the number of waveforms in individual bins of  $5M_{\odot}$  and on the bottom, the cumulative number of waveforms.

stance, the lowest mass coverage of our full set of aligned runs used here is summarized in Fig. 12

Our simulations and results can also be used to improve "phenomenological models" by considering the use of  $S_{hu}$  as the variable for aligned binaries instead of  $\chi_{eff} = \tilde{S}_0$  or  $\chi_{PN} = \tilde{S}_{PN}$  (as used in [56]). We display the coverage in this variable of our whole set of simulations from this paper and Refs.[59] and [22] in Fig. 13. We observe that there is a lack of simulations in the regions of high spins (aligned or counteraligned) and the region of small mass ratios. While there are some simulations available in those regions we have not included them in this particular set of studies until we have a systematic coverage of those regions.

Finally, the new fits to the whole set of simulations, particularly improve the accuracy of the remnant recoil and peak luminosity, amplitude and frequency for applications to the observations of gravitational waves and tests of general relativity.

# ACKNOWLEDGMENTS

The authors thank M. Campanelli, N.K.Johnson-McDaniel, D.Keitel, H. Nakano, R. O'Shaughnessy and Y. Zlochower for discussions on this work. The authors gratefully acknowledge the National Science Foun-



FIG. 13. Coverage of the whole set of aligned spinning binary black simulations used in this paper.

dation (NSF) for financial support from Grants No. PHY-1607520, No. PHY-1707946, No. ACI-1550436, No. AST-1516150, No. ACI-1516125, No. PHY-1726215. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) [allocation TG-PHY060027N], which is supported by NSF grant No. ACI-1548562. Computational resources were also provided by the NewHorizons and BlueSky Clusters at the Rochester Institute of Technology, which were supported by NSF grants No. PHY-0722703, No. DMS-0820923, No. AST-1028087, and No. PHY-1229173.

# Appendix A: Tables of initial data and results of the new simulations

In this appendix we provide the tables of the initial data (Table V) used to start the full numerical evolutions and a Table VI with the mass and spin parameters after they settle into a more physical value from the initial conformal flatness mathematical choice by radiating it away (a fiducial t = 200M, within an orbit from start).

We also provide a Table VII with the initial orbital frequency and eccentricity as well as the number of orbits to merger and the final eccentricity, expected to be reduced from its initial value by gravitational radiation, at a rate proportional to  $d^{19/12}$  according to [63], with d, the separation of the binary (see, for instance, Fig. 6 of Ref. [64] or Fig. 9 in Ref. [19]).

We provide a Table VIII with the values of the energy radiated during the simulation and the final black hole spin as measured through the (most accurate) isolated horizon formalism [34]. A Table IX with the recoil velocity completes the properties of the remnant black hole.

Finally, Tables X, provide the data of the peak amplitude and frequency of the gravitational wave strain of the (2,2) modes for the whole set of 181 simulations.

TABLE V: Initial data parameters for the quasi-circular configurations with a smaller mass black hole (labeled 1), and a larger mass spinning black hole (labeled 2). The punctures are located at  $\vec{r}_1 = (x_1, 0, 0)$  and  $\vec{r}_2 = (x_2, 0, 0)$ , with momenta  $P = \pm (P_r, P_t, 0)$ , spins  $\vec{S}_i = (0, 0, S_i)$ , mass parameters  $m^p/m$ , horizon (Christodoulou) masses  $m^H/m$ , total ADM mass  $M_{\text{ADM}}$ , and dimensionless spins  $a/m_H = S/m_H^2$ . The configuration are denoted by QX\_Y\_Z, where X gives the mass ratio  $m_1^H/m_2^H$ , Y gives the spin of the smaller BH  $(a_1/m_H^2)$ , and Z gives the spin of the larger BH  $(a_2/m_H^2)$ .

| Run            | $x_1/m$ | $x_2/m$ | $P_r/m$   | $P_t/m$ | $m_1^p/m$ | $m_2^p/m$ | $S_1/m^2$ | $S_2/m^2$ | $m_1^H/m$ | $m_2^H/m$ | $M_{\rm ADM}/m$ | $a_1/m_1^H$ | $a_2/m_2^H$ |
|----------------|---------|---------|-----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|-------------|-------------|
| 1              | -7.88   | 1.12    | -2.14e-04 | 0.04251 | 0.07322   | 0.5405    | 0.0125    | 0.6125    | 0.125     | 0.875     | 0.995           | 0.8         | 0.8         |
| 2              | -10.83  | 2.17    | -1.47e-04 | 0.04609 | 0.1602    | 0.7352    | 0         | -0.3472   | 0.1667    | 0.8333    | 0.9955          | 0           | -0.5        |
| 3              | -10.83  | 2.17    | -1.17e-04 | 0.04393 | 0.1603    | 0.7352    | 0         | 0.3472    | 0.1667    | 0.8333    | 0.9953          | 0           | 0.5         |
| 4              | -10.83  | 2.17    | -1.40e-04 | 0.0457  | 0.1423    | 0.8065    | -0.01389  | -0.1736   | 0.1667    | 0.8333    | 0.9955          | -0.5        | -0.25       |
| 5              | -10.83  | 2.17    | -1.25e-04 | 0.0446  | 0.1423    | 0.8065    | -0.01389  | 0.1736    | 0.1667    | 0.8333    | 0.9954          | -0.5        | 0.25        |
| 6              | -10.83  | 2.17    | -1.36e-04 | 0.04534 | 0.1423    | 0.8065    | 0.01389   | -0.1736   | 0.1667    | 0.8333    | 0.9955          | 0.5         | -0.25       |
| $\overline{7}$ | -10.83  | 2.17    | -1.21e-04 | 0.04428 | 0.1423    | 0.8065    | 0.01389   | 0.1736    | 0.1667    | 0.8333    | 0.9954          | 0.5         | 0.25        |
| 8              | -10.83  | 2.17    | -1.55e-04 | 0.04662 | 0.1422    | 0.655     | -0.01389  | -0.4514   | 0.1667    | 0.8333    | 0.9956          | -0.5        | -0.65       |
| 9              | -10.83  | 2.17    | -1.15e-04 | 0.04379 | 0.1424    | 0.655     | -0.01389  | 0.4514    | 0.1667    | 0.8333    | 0.9954          | -0.5        | 0.65        |
| 10             | -10.83  | 2.17    | -1.50e-04 | 0.04625 | 0.1422    | 0.655     | 0.01389   | -0.4514   | 0.1667    | 0.8333    | 0.9956          | 0.5         | -0.65       |
| 11             | -10.83  | 2.17    | -1.13e-04 | 0.04349 | 0.1424    | 0.655     | 0.01389   | 0.4514    | 0.1667    | 0.8333    | 0.9953          | 0.5         | 0.65        |
| 12             | -10.83  | 2.17    | -1.42e-04 | 0.0458  | 0.09957   | 0.7352    | 0.02222   | -0.3472   | 0.1667    | 0.8333    | 0.9956          | 0.8         | -0.5        |
| 13             | -10.83  | 2.17    | -1.64e-04 | 0.0471  | 0.09952   | 0.515     | -0.02222  | -0.5556   | 0.1667    | 0.8333    | 0.9958          | -0.8        | -0.8        |
| 14             | -10.83  | 2.17    | -1.13e-04 | 0.04358 | 0.09966   | 0.515     | -0.02222  | 0.5556    | 0.1667    | 0.8333    | 0.9954          | -0.8        | 0.8         |
| 15             | -10.83  | 2.17    | -1.54e-04 | 0.04649 | 0.09954   | 0.515     | 0.02222   | -0.5556   | 0.1667    | 0.8333    | 0.9957          | 0.8         | -0.8        |
| 16             | -8.25   | 2.75    | -4.86e-04 | 0.07001 | 0.1387    | 0.429     | 0.05156   | -0.4641   | 0.25      | 0.75      | 0.9934          | 0.825       | -0.825      |
| 17             | -9.19   | 3.81    | -2.86e-04 | 0.06696 | 0.2835    | 0.6985    | 0         | 0         | 0.2929    | 0.7071    | 0.9931          | 0           | 0           |
| 18             | -9.19   | 3.81    | -3.14e-04 | 0.0683  | 0.2835    | 0.6204    | 0         | -0.25     | 0.2929    | 0.7071    | 0.9933          | 0           | -0.5        |
| 19             | -9.19   | 3.81    | -2.63e-04 | 0.06569 | 0.2836    | 0.6204    | 0         | 0.25      | 0.2929    | 0.7071    | 0.993           | 0           | 0.5         |
| 20             | -9.19   | 3.81    | -3.38e-04 | 0.06928 | 0.2834    | 0.3684    | 0         | -0.425    | 0.2929    | 0.7071    | 0.9935          | 0           | -0.85       |
| 21             | -9.19   | 3.81    | -2.50e-04 | 0.06486 | 0.2837    | 0.3684    | 0         | 0.425     | 0.2929    | 0.7071    | 0.993           | 0           | 0.85        |
| 22             | -9.19   | 3.81    | -2.89e-04 | 0.06715 | 0.2641    | 0.6972    | -0.03431  | 0.03431   | 0.2929    | 0.7071    | 0.9932          | -0.4        | 0.06863     |
| 23             | -9.19   | 3.81    | -2.83e-04 | 0.06677 | 0.2641    | 0.6972    | 0.03431   | -0.03431  | 0.2929    | 0.7071    | 0.9932          | 0.4         | -0.06863    |
| 24             | -9.19   | 3.81    | -2.84e-04 | 0.06689 | 0.2641    | 0.6908    | -0.03431  | 0.08285   | 0.2929    | 0.7071    | 0.9932          | -0.4        | 0.1657      |
| 25             | -9.19   | 3.81    | -2.87e-04 | 0.06702 | 0.2641    | 0.6908    | 0.03431   | -0.08285  | 0.2929    | 0.7071    | 0.9932          | 0.4         | -0.1657     |
| 26             | -9.19   | 3.81    | -3.09e-04 | 0.0681  | 0.2517    | 0.6806    | -0.04289  | -0.125    | 0.2929    | 0.7071    | 0.9933          | -0.5        | -0.25       |
| 27             | -9.19   | 3.81    | -2.82e-04 | 0.06677 | 0.2518    | 0.6806    | -0.04289  | 0.125     | 0.2929    | 0.7071    | 0.9932          | -0.5        | 0.25        |
| 28             | -9.19   | 3.81    | -2.90e-04 | 0.06714 | 0.2518    | 0.6806    | 0.04289   | -0.125    | 0.2929    | 0.7071    | 0.9932          | 0.5         | -0.25       |
| 29             | -9.19   | 3.81    | -2.66e-04 | 0.06587 | 0.2518    | 0.6806    | 0.04289   | 0.125     | 0.2929    | 0.7071    | 0.9931          | 0.5         | 0.25        |
| 30             | -9.19   | 3.81    | -3.36e-04 | 0.06922 | 0.2517    | 0.5527    | -0.04289  | -0.325    | 0.2929    | 0.7071    | 0.9935          | -0.5        | -0.65       |
| 31             | -9.19   | 3.81    | -2.63e-04 | 0.06576 | 0.2519    | 0.5527    | -0.04289  | 0.325     | 0.2929    | 0.7071    | 0.9931          | -0.5        | 0.65        |
| 32             | -9.19   | 3.81    | -3.13e-04 | 0.06822 | 0.2517    | 0.5527    | 0.04289   | -0.325    | 0.2929    | 0.7071    | 0.9934          | 0.5         | -0.65       |
| 33             | -9.19   | 3.81    | -2.51e-04 | 0.06491 | 0.2519    | 0.5528    | 0.04289   | 0.325     | 0.2929    | 0.7071    | 0.993           | 0.5         | 0.65        |
| 34             | -9.19   | 3.81    | -3.01e-04 | 0.06771 | 0.1763    | 0.6985    | -0.06863  | 0         | 0.2929    | 0.7071    | 0.9933          | -0.8        | 0           |
| 35             | -9.19   | 3.81    | -2.73e-04 | 0.06623 | 0.1763    | 0.6986    | 0.06863   | 0         | 0.2929    | 0.7071    | 0.9932          | 0.8         | 0           |
| 36             | -9.19   | 3.81    | -2.93e-04 | 0.06734 | 0.1763    | 0.6932    | -0.06863  | 0.06863   | 0.2929    | 0.7071    | 0.9933          | -0.8        | 0.1373      |
| 37             | -9.19   | 3.81    | -2.79e-04 | 0.06658 | 0.1763    | 0.6932    | 0.06863   | -0.06863  | 0.2929    | 0.7071    | 0.9932          | 0.8         | -0.1373     |
| 38             | -9.19   | 3.81    | -2.83e-04 | 0.06683 | 0.1763    | 0.6664    | -0.06863  | 0.1657    | 0.2929    | 0.7071    | 0.9933          | -0.8        | 0.3314      |
|                |         |         |           |         |           |           |           |           |           |           | Contin          | ued on r    | ext page    |

TABLE V – continued from previous page

| Run | $x_1/m$ | $x_2/m$ | $P_r/m$   | $P_t/m$ | $m_1^p/m$ | $m_2^p/m$ | $S_1/m^2$ | $S_2/m^2$ | $\overline{m_1^H/m}$ | $m_2^H/m$ | $M_{\rm ADM}/m$ | $a_1/m_1^H$ | $a_2/m_2^H$ |
|-----|---------|---------|-----------|---------|-----------|-----------|-----------|-----------|----------------------|-----------|-----------------|-------------|-------------|
| 39  | -9.19   | 3.81    | -2.89e-04 | 0.06708 | 0.1763    | 0.6664    | 0.06863   | -0.1657   | 0.2929               | 0.7071    | 0.9933          | 0.8         | -0.3314     |
| 40  | -9.19   | 3.81    | -3.33e-04 | 0.0691  | 0.1762    | 0.6204    | -0.06863  | -0.25     | 0.2929               | 0.7071    | 0.9935          | -0.8        | -0.5        |
| 41  | -9.19   | 3.81    | -2.74e-04 | 0.0664  | 0.1763    | 0.6204    | -0.06863  | 0.25      | 0.2929               | 0.7071    | 0.9932          | -0.8        | 0.5         |
| 42  | -9.19   | 3.81    | -2.98e-04 | 0.06752 | 0.1763    | 0.6204    | 0.06863   | -0.25     | 0.2929               | 0.7071    | 0.9933          | 0.8         | -0.5        |
| 43  | -9.19   | 3.81    | -2.53e-04 | 0.06502 | 0.1764    | 0.6204    | 0.06863   | 0.25      | 0.2929               | 0.7071    | 0.9931          | 0.8         | 0.5         |
| 44  | -9.19   | 3.81    | -3.55e-04 | 0.06997 | 0.1762    | 0.4345    | -0.06863  | -0.4      | 0.2929               | 0.7071    | 0.9936          | -0.8        | -0.8        |
| 45  | -9.19   | 3.81    | -2.61e-04 | 0.06565 | 0.1764    | 0.4346    | -0.06863  | 0.4       | 0.2929               | 0.7071    | 0.9932          | -0.8        | 0.8         |
| 46  | -9.19   | 3.81    | -3.16e-04 | 0.06833 | 0.1762    | 0.4346    | 0.06863   | -0.4      | 0.2929               | 0.7071    | 0.9935          | 0.8         | -0.8        |
| 47  | -9.19   | 3.81    | -2.43e-04 | 0.06433 | 0.1764    | 0.4346    | 0.06863   | 0.4       | 0.2929               | 0.7071    | 0.9931          | 0.8         | 0.8         |
| 48  | -9.44   | 4.06    | -2.72e-04 | 0.06698 | 0.2753    | 0.6865    | -0.03286  | -0.06141  | 0.3007               | 0.6993    | 0.9933          | -0.3634     | -0.1256     |
| 49  | -10.30  | 4.70    | -2.03e-04 | 0.06415 | 0.2889    | 0.5925    | 0.0343    | -0.2501   | 0.313                | 0.687     | 0.9938          | 0.35        | -0.53       |
| 50  | -10.30  | 4.70    | -1.89e-04 | 0.06314 | 0.2657    | 0.6442    | -0.05194  | 0.1652    | 0.313                | 0.687     | 0.9937          | -0.53       | 0.35        |
| 51  | -6.01   | 3.99    | -1.00e-03 | 0.09896 | 0.3986    | 0.6014    | 0.1509    | -0.3436   | 0.3986               | 0.6014    | 0.9887          | 0.95        | -0.95       |
| 52  | -7.50   | 5.00    | -3.89e-04 | 0.0775  | 0.3891    | 0.3667    | 0         | 0.288     | 0.4                  | 0.6       | 0.9917          | 0           | 0.8         |
| 53  | -7.06   | 4.94    | -5.07e-04 | 0.08246 | 0.4002    | 0.5771    | 0         | 0         | 0.4118               | 0.5882    | 0.9914          | 0           | 0           |
| 54  | -8.47   | 6.06    | -2.92e-04 | 0.07421 | 0.3991    | 0.4219    | 0.03831   | -0.2418   | 0.4168               | 0.5832    | 0.9928          | 0.2205      | -0.711      |
| 55  | -8.11   | 6.89    | -2.62e-04 | 0.07358 | 0.45      | 0.5177    | 0         | -0.07305  | 0.4595               | 0.5405    | 0.9927          | 0           | -0.25       |
| 56  | -8.11   | 6.89    | -2.50e-04 | 0.07278 | 0.4501    | 0.5177    | 0         | 0.07305   | 0.4595               | 0.5405    | 0.9927          | 0           | 0.25        |
| 57  | -7.03   | 5.97    | -4.42e-04 | 0.0816  | 0.4486    | 0.4392    | 0         | -0.1753   | 0.4595               | 0.5405    | 0.9919          | 0           | -0.6        |
| 58  | -7.03   | 5.97    | -3.80e-04 | 0.07891 | 0.4487    | 0.4392    | 0         | 0.1753    | 0.4595               | 0.5405    | 0.9917          | 0           | 0.6         |
| 59  | -7.03   | 5.97    | -4.58e-04 | 0.0822  | 0.4485    | 0.2794    | 0         | -0.2484   | 0.4595               | 0.5405    | 0.9921          | 0           | -0.85       |
| 60  | -7.03   | 5.97    | -3.70e-04 | 0.07838 | 0.4487    | 0.2794    | 0         | 0.2484    | 0.4595               | 0.5405    | 0.9917          | 0           | 0.85        |
| 61  | -8.11   | 6.89    | -2.60e-04 | 0.07351 | 0.4385    | 0.5313    | -0.05278  | 0         | 0.4595               | 0.5405    | 0.9927          | -0.25       | 0           |
| 62  | -8.11   | 6.89    | -2.51e-04 | 0.07285 | 0.4385    | 0.5313    | 0.05278   | 0         | 0.4595               | 0.5405    | 0.9927          | 0.25        | 0           |
| 63  | -8.11   | 6.89    | -2.67e-04 | 0.07391 | 0.4385    | 0.5177    | -0.05278  | -0.07305  | 0.4595               | 0.5405    | 0.9928          | -0.25       | -0.25       |
| 64  | -8.11   | 6.89    | -2.54e-04 | 0.07311 | 0.4385    | 0.5177    | -0.05278  | 0.07305   | 0.4595               | 0.5405    | 0.9927          | -0.25       | 0.25        |
| 65  | -8.11   | 6.89    | -2.57e-04 | 0.07325 | 0.4385    | 0.5177    | 0.05278   | -0.07305  | 0.4595               | 0.5405    | 0.9927          | 0.25        | -0.25       |
| 66  | -8.11   | 6.89    | -2.45e-04 | 0.07245 | 0.4385    | 0.5177    | 0.05278   | 0.07305   | 0.4595               | 0.5405    | 0.9927          | 0.25        | 0.25        |
| 67  | -8.11   | 6.89    | -2.53e-04 | 0.07304 | 0.3997    | 0.4719    | -0.1056   | 0.1461    | 0.4595               | 0.5405    | 0.9927          | -0.5        | 0.5         |
| 68  | -8.11   | 6.89    | -2.58e-04 | 0.07332 | 0.3997    | 0.4719    | 0.1056    | -0.1461   | 0.4595               | 0.5405    | 0.9928          | 0.5         | -0.5        |
| 69  | -8.11   | 6.89    | -2.36e-04 | 0.07174 | 0.3998    | 0.4719    | 0.1056    | 0.1461    | 0.4595               | 0.5405    | 0.9926          | 0.5         | 0.5         |
| 70  | -8.11   | 6.89    | -2.36e-04 | 0.07174 | 0.28      | 0.5177    | 0.1689    | 0.07305   | 0.4595               | 0.5405    | 0.9927          | 0.8         | 0.25        |
| 71  | -8.11   | 6.89    | -2.52e-04 | 0.07295 | 0.2799    | 0.3305    | -0.1689   | 0.2337    | 0.4595               | 0.5405    | 0.9929          | -0.8        | 0.8         |
| 72  | -8.11   | 6.89    | -2.59e-04 | 0.07341 | 0.2799    | 0.3305    | 0.1689    | -0.2337   | 0.4595               | 0.5405    | 0.9929          | 0.8         | -0.8        |
| 73  | -8.11   | 6.89    | -2.27e-04 | 0.07089 | 0.28      | 0.3305    | 0.1689    | 0.2337    | 0.4595               | 0.5405    | 0.9927          | 0.8         | 0.8         |
| 74  | -7.92   | 6.74    | -2.83e-04 | 0.07467 | 0.3196    | 0.3056    | 0.1553    | -0.2412   | 0.4599               | 0.5401    | 0.9928          | 0.7343      | -0.8267     |

TABLE VI: The mass and spin of the BHBs in Table V after the BHs had time to equilibrate (t/m=200).

|     |                       |          |           |           |              |              |              | . 0         | 0                |
|-----|-----------------------|----------|-----------|-----------|--------------|--------------|--------------|-------------|------------------|
| Run | Config.               | $q^r$    | $m_1^r/m$ | $m_2^r/m$ | $\alpha_1^r$ | $\alpha_2^r$ | $\delta m_r$ | $S_r/m_r^2$ | $\Delta_r/m_r^2$ |
| 1   | Q0.1429_0.8000_0.8000 | 0.142939 | 0.125001  | 0.874504  | 0.800504     | 0.800939     | -0.749875    | 0.625652    | 0.600659         |
| 2   | Q0.2000_0.00000.5000  | 0.200013 | 0.166669  | 0.833287  | -0.000002    | -0.500061    | -0.666648    | -0.347257   | -0.416713        |
| 3   | Q0.2000_0.0000_0.5000 | 0.200014 | 0.166669  | 0.833287  | -0.000000    | 0.500060     | -0.666647    | 0.347256    | 0.416712         |
| 4   | Q0.20000.50000.2500   | 0.200012 | 0.166676  | 0.833332  | -0.500066    | -0.250017    | -0.666651    | -0.187512   | -0.124997        |
| 5   | Q0.20000.5000_0.2500  | 0.200011 | 0.166676  | 0.833332  | -0.500081    | 0.250019     | -0.666651    | 0.159728    | 0.291698         |
| 6   | Q0.2000_0.50000.2500  | 0.200012 | 0.166676  | 0.833331  | 0.500052     | -0.250019    | -0.666650    | -0.159730   | -0.291693        |
| 7   | Q0.2000_0.5000_0.2500 | 0.200011 | 0.166675  | 0.833330  | 0.500055     | 0.250020     | -0.666651    | 0.187513    | 0.125002         |
| 8   | Q0.20000.50000.6500   | 0.200049 | 0.166677  | 0.833178  | -0.500052    | -0.650269    | -0.666599    | -0.465435   | -0.458509        |
| 9   | Q0.20000.5000_0.6500  | 0.200048 | 0.166676  | 0.833177  | -0.500073    | 0.650269     | -0.666600    | 0.437643    | 0.625232         |
| 10  | Q0.2000_0.50000.6500  | 0.200049 | 0.166676  | 0.833176  | 0.500027     | -0.650321    | -0.666598    | -0.437679   | -0.625267        |
| 11  | Q0.2000_0.5000_0.6500 | 0.200047 | 0.166675  | 0.833176  | 0.500037     | 0.650289     | -0.666601    | 0.465449    | 0.458530         |
| 12  | Q0.2000_0.80000.5000  | 0.199966 | 0.166629  | 0.833288  | 0.800547     | -0.500058    | -0.666714    | -0.325051   | -0.550133        |
| 13  | Q0.20000.80000.8000   | 0.200068 | 0.166632  | 0.832878  | -0.800519    | -0.800894    | -0.666573    | -0.578363   | -0.533916        |
| 14  | Q0.20000.8000_0.8000  | 0.200061 | 0.166625  | 0.832873  | -0.800645    | 0.800908     | -0.666582    | 0.533878    | 0.800864         |
| 15  | Q0.2000_0.80000.8000  | 0.200068 | 0.166630  | 0.832869  | 0.800540     | -0.800929    | -0.666573    | -0.533888   | -0.800864        |
| 16  | Q0.3333_0.82500.8250  | 0.333440 | 0.249923  | 0.749528  | 0.825530     | -0.826079    | -0.499880    | -0.412974   | -0.825941        |
| 17  | Q0.4142_0.0000_0.0000 | 0.414215 | 0.292894  | 0.707107  | -0.000001    | 0.000000     | -0.414213    | -0.000000   | 0.000000         |
| 18  | Q0.4142_0.00000.5000  | 0.414246 | 0.292903  | 0.707074  | -0.000000    | -0.500085    | -0.414181    | -0.250031   | -0.353605        |
| 19  | Q0.4142_0.0000_0.5000 | 0.414248 | 0.292904  | 0.707073  | -0.000001    | 0.500079     | -0.414179    | 0.250027    | 0.353601         |
|     | -                     |          |           |           |              |              | С            | ontinued or | n next page      |

TABLE VI – continued from previous page

| 20         Q0.4142_0.0000_0.5000         0.414542         0.292906         0.706573         0.000001         0.851421         0.413883         0.425515         0.601905           21         Q0.4142_0.0000_0.5800         0.414524         0.292901         0.707108         -0.000012         0.068632         -0.0414203         0.000002         0.165688           21         Q0.4142_0.4000_0.01657         0.414224         0.292901         0.707106         -0.00062         0.165717         -0.141203         -0.048536         0.234352           25         Q0.4142_0.4000_0.01657         0.414221         0.292988         0.707105         0.500033         -0.41203         -0.048536         0.234352           26         Q0.4142_0.5000_0.02500         0.414221         0.292898         0.707105         0.500073         -0.50026         -0.414206         -0.03211         -0.332286           20         Q0.4142_0.5000_0.05500         0.414221         0.292898         0.707105         0.500073         -0.50028         -0.614126         -0.232181         0.606127         -0.414136         -0.38181         -0.414260         -0.322181         0.60127         -0.414136         -0.2281476         -0.650278         -0.414136         -0.2281476         -0.234476         0.41422         -0.292790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Run | Config.                        | $q^r$    | $m_1^r/m$ | $m_2^r/m$ | $\alpha_1^r$ | $lpha_2^r$ | $\delta m_r$ | $S_r/m_r^2$ | $\Delta_r/m_r^2$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------|----------|-----------|-----------|--------------|------------|--------------|-------------|------------------|
| 21         Q0.4142_0.0000_0.08500         0.414246         0.292901         0.70167         0.086832         0.04142_0.4000_0.0686         0.414224         0.292901         0.70170         0.086832         -0.414203         0.000000         -0.165693           23         Q0.4142_0.4000_0.0686         0.414224         0.292900         0.70170         0.500832         -0.141201         0.048538         0.234356           24         Q0.4142_0.5000_0.2500         0.414221         0.292898         0.701167         0.500033         -0.250023         -0.414207         0.048138         0.233368           29         Q0.4142_0.5000_0.2500         0.414221         0.292898         0.701167         0.500033         -0.250026         -0.414207         0.083211         -0.332236           20         Q0.4142_0.5000_0.5000         0.414292         0.292898         -0.70116         0.500073         -0.50005         6.06272         -0.414137         0.28113         0.666273           20         Q.4142_0.5000_0.5000         0.414291         0.292898         0.700714         -0.50078         -0.414136         0.368011         -0.312929         0.00071         -0.50278         -0.414136         0.368011         -0.31292         0.00021         -0.50278         -0.414136         0.368011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20  | Q0.4142_0.00000.8500           | 0.414542 | 0.292904  | 0.706573  | 0.000000     | -0.851426  | -0.413885    | -0.425515   | -0.601909        |
| 22         Q0.4142_0.40000_0.0686         0.414224_0.292010_0.707105         -0.066822_0.414202_0.0000002_0.0.16558           23         Q0.4142_0.4000_0.1657         0.414224_0.292001_0.707105         -0.066823_0_0.165718_0_0.414203_0_0.045536         0.234352           24         Q0.4142_0.4000_0.1657         0.414224_0.292800_0.707107_0_0.500005_0.025002_0_0.414203_0_0.052102_0_0.03316         0.234352           25         Q0.4142_0.5000_0.2500         0.414221_0.292898_0.707107_0_0.50005_0.250022_0_0.414206_0.08211_0_0.32284         0.234362           20         Q0.4142_0.5000_0.2500         0.414221_0.292898_0.707105_0.500073_0.250024_0.414206_0.08211_0_0.32284         0.236026_0_0.41423_0_0.03210_0_0.32180           20         Q0.4142_0.5000_0.6500         0.414220_0.292898_0.706985_0.500055_0.650262_0_0.414135_0_0.30811_0_0.313290           20         Q0.4142_0.5000_0.6500         0.414291_0.292898_0.706985_0.500055_0.650262_0_0.414136_0_0.08601_0_0.313296           20         Q0.4142_0.5000_0.0500         0.414291_0.292798_0.707116_0_0.800966_0.000001_0_0.414360_0_0.09008_0_0.331508           20         Q0.4142_0.8000_0.0137_0_0_0.414050_0.292794_0.707116_0_0.800565_0_0.331396_0_0.41436_0_0.09008_0_0.331508           20         Q0.4142_0.8000_0.0331_0_0_1.41467_0.292798_0.707718_0_0.80055_0_0.033139_0_0_0.41435_0_0.09008_0_0.331508           20         Q0.4142_0.8000_0.0331_0_0_1.41487_0.292798_0.707718_0_0.80055_0_0.50005_0_0.41435_0_0.090708_0_0.416828           20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21  | Q0.4142_0.0000_0.8500          | 0.414545 | 0.292905  | 0.706570  | -0.000001    | 0.851421   | -0.413883    | 0.425511    | 0.601905         |
| 23         Q0.4142.0.4000.0.0666         0.41425         0.292900         0.70170         0.399998         -0.668632         -0.414240         0.00000         -0.165688           24         Q0.4142.0.4000.0.1657         0.414221         0.292980         0.70170         -0.50003         -0.25002         -0.414207         -0.667318         -0.414207         -0.067312         -0.30321           26         Q0.4142.0.5000.0.2500         0.414221         0.292898         0.701107         -0.500073         -0.250024         -0.414206         0.082111         -0.332268           20         Q0.4142.0.5000.0.2500         0.414221         0.292898         0.707105         0.500073         0.250024         -0.414206         0.068211         -0.332263           20         Q0.4142.0.5000.0.5000         0.414292         0.292897         0.706085         -0.500286         -0.414137         0.28212         -0.000277           20         Q.4142.0.5000.0.5000         0.414291         0.292890         0.700071         -0.500278         -0.414137         0.28212         -0.000277           20         Q.4142.0.5000.0.01300         0.414205         0.292791         0.70116         -0.50028         -0.141365         0.046657         0.234476           20         Q.4142.0.5000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22  | Q0.41420.4000_0.0686           | 0.414224 | 0.292901  | 0.707108  | -0.400012    | 0.068632   | -0.414203    | -0.000002   | 0.165693         |
| 21         Q0.4142_0.4000.0.1657         0.41424         0.229290         0.707105         0.40006         0.165718         0.41423         0.048538         0.234355           25         Q0.4142_0.5000_0.2500         0.414221         0.2292988         0.70107         -0.50003         0.250022         -0.414207         0.067318         0.332368           28         Q0.4142_0.5000_0.2500         0.414221         0.292898         0.70107         0.500073         0.250024         -0.414206         -0.082111         -0.33236           29         Q0.4142_0.5000_0.0500         0.414220         0.292898         0.706087         -0.500076         -0.414134         -0.282183         0.6060273           20         Q0.4142_0.5000_0.0500         0.414290         0.292898         0.706084         0.500076         0.450248         -0.414134         -0.282183         0.606673           20         Q.4142_0.5000_0.0500         0.414290         0.292791         0.70114         -0.800764         0.041436         0.368010         0.313266           20         Q.4142_0.5000_0.03314         0.414606         0.292791         0.70116         -800675         0.331368         -0.414366         0.009006         -0.331498         Q0.4142_0.8000_0.3314         0.414806         0.292790         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23  | Q0.4142_0.40000.0686           | 0.414225 | 0.292901  | 0.707107  | 0.399998     | -0.068632  | -0.414202    | 0.000000    | -0.165688        |
| 25         Q0.4142.0.40000.1657         0.414224         0.292988         0.7017         -0.50003         0.25003         0.414207         0.082108         0.332368           26         Q0.4142.0.5000.0.2500         0.414221         0.292898         0.701107         -0.500073         0.250024         -0.414207         0.082108         0.332368           29         Q0.4142.0.5000.0.2500         0.414221         0.292898         0.70105         0.500073         0.250024         -0.414206         0.082111         0.0332368           20         Q0.4142.0.5000.0.5000         0.414220         0.292897         0.706885         -0.500073         0.250024         -0.414136         0.368011         -0.313200           20         Q0.4142.0.5000.0.6500         0.414230         0.292896         0.706082         0.500026         -0.414136         0.38000         0.31326         0.606277           20         Q.4142.0.5000.0.5000         0.414061         0.292791         0.70116         -0.800748         0.500001         -0.414356         0.08657         0.234476           37         Q.4142.0.8000.0.1373         0.414071         0.292791         0.70176         0.800585         -0.141356         0.090051         -0.331366         0.044320         0.031386         0.041436 <td>24</td> <td>Q0.41420.4000_0.1657</td> <td>0.414224</td> <td>0.292900</td> <td>0.707106</td> <td>-0.400062</td> <td>0.165717</td> <td>-0.414204</td> <td>0.048536</td> <td>0.234356</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24  | Q0.41420.4000_0.1657           | 0.414224 | 0.292900  | 0.707106  | -0.400062    | 0.165717   | -0.414204    | 0.048536    | 0.234356         |
| 26         Q0.4142-0.5000.0.200         0.41421         0.292898         0.7017         -0.50003         -0.414207         0.08211         -0.323264           20         Q0.4142.0.5000         0.041421         0.292898         0.70105         0.50003         -0.550026         -0.414206         0.082111         -0.332364           20         Q0.4142.0.5000         0.6500         0.414220         0.292898         0.706987         -0.550008         -0.650268         -0.411135         -0.360011         -0.3313290           20         Q0.4142.0.5000.0.6500         0.414290         0.292898         0.706984         -0.500076         -0.650278         -0.411131         -0.282192         -0.060277           32         Q0.4142.0.5000.0.0500         0.414290         0.292790         0.70114         -0.800764         0.041435         -0.36675         0.231460           32         Q0.4142.0.8000.0.0133         0.414060         0.292791         0.70116         -0.800655         -0.31346         -0.414356         0.00001         -0.413456         0.00001         -0.313489         40.4142.0.8000.0.0000         0.414071         0.292790         0.70118         0.800655         -0.331490         -0.414346         0.814141         0.588114           10         Q1.412.0.8000.0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25  | Q0.4142_0.40000.1657           | 0.414224 | 0.292900  | 0.707105  | 0.400046     | -0.165718  | -0.414203    | -0.048538   | -0.234352        |
| 27         Q0.41420.5000.0.2500         0.414220         0.23268         0.0.7107         0.50005         0.25002         -0.41420         0.03268           28         Q0.4142.0.5000.0.2500         0.414210         0.232888         0.707105         0.500073         -0.250024         -0.414206         0.16711         0.032328           29         Q0.4142.0.5000.0.6500         0.414290         0.232889         0.706885         -0.500093         -0.650278         -0.414134         -0.282183         0.660273           20         Q0.4142.0.5000.0.6500         0.414290         0.292898         0.706885         -0.500095         -0.6414134         -0.282182         0.606273           20         Q0.4142.0.5000.0.6500         0.414201         0.292896         0.706882         5.000743         0.00004         -0.41436         0.56657         -0.234460           20         Q0.4142.0.8000.0.3314         0.414070         0.292791         0.707118         0.80058         -0.31336         -0.41436         0.08655         -0.33148           20         Q0.4142.0.8000.0.3314         0.414070         0.292791         0.70718         0.80075         -0.31436         -0.41436         0.31483         -0.31484           Q0.4142.0.8000.0.3000         0.414010         0.292791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26  | Q0.41420.50000.2500            | 0.414221 | 0.292898  | 0.707107  | -0.500093    | -0.250023  | -0.414207    | -0.167912   | -0.030316        |
| 28         Q0.4142.0.5000.2500         0.414221         0.292889         0.707105         0.500073         -0.250026         -0.414206         -0.08211         -0.332290           30         Q0.4142.0.5000.26500         0.41429         0.292889         0.706985         -0.50093         -0.650268         -0.414137         0.282182         -0.066273           31         Q0.4142.0.5000.0.6500         0.414291         0.292898         0.706985         -0.50095         0.650262         -0.414134         -0.38211         -0.313290           32         Q0.4142.0.5000.0.6500         0.414291         0.2929791         -0.70714         -0.800676         -0.41436         0.368657         -0.33136           4         Q0.4142.0.8000.0.0100         1.41066         0.292791         0.70716         -0.800685         -0.13762         -0.41435         0.606857         -0.331498           30         Q0.4142.0.8000.0.3314         0.414071         0.292792         0.70716         -8.00756         -0.500053         -0.414356         0.000005         -0.331498           30         Q0.4142.0.8000.0.3314         0.414076         0.292791         0.70704         -8.00776         -0.500076         -0.414346         0.31876         -0.11131           12         Q.4142.0.8000.0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27  | Q0.41420.5000_0.2500           | 0.414220 | 0.292898  | 0.707107  | -0.500095    | 0.250022   | -0.414207    | 0.082108    | 0.323268         |
| 29         Q0.4142_0.5000_0.02500         0.41421         0.292898         0.707165         0.500073         0.250024         -0.41435         0.030233           31         Q0.4142_0.5000_0.6500         0.414290         0.292898         0.706885         -0.500095         0.650262         -0.414137         0.282183         0.666273           32         Q0.4142_0.5000_0.5000         0.414290         0.292896         7.066882         5.000167         0.650278         -0.414134         -0.328192         -0.66277           32         Q0.4142_0.5000_0.5000         0.414290         0.292896         7.07068         0.00001         -0.414360         -0.068657         -0.234460           4         Q0.4142_0.5000_0.1373         0.41407         0.292791         0.707116         -0.800759         0.331368         -0.414360         -0.00005         0.331388           30         Q0.4142_0.5000_0.3314         0.41407         0.292791         0.707184         -0.800759         -0.331399         -0.414360         -0.814735         -0.9777         -0.46823           31         Q0.4142_0.5000_0.5000         0.41487         0.292780         -0.70784         -0.80072         -0.414340         0.18175         -0.119137           14         Q0.4142_0.5000_0.5000         0.41489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28  | Q0.4142_0.50000.2500           | 0.414221 | 0.292898  | 0.707105  | 0.500073     | -0.250026  | -0.414206    | -0.082111   | -0.323264        |
| 30         Q0.4142-0.500006500         0.41429         0.292899         0.706985         -0.500093         -0.650268         -0.414135         -0.368011         -0.31230           31         Q0.4142.0.5000.0.6500         0.414291         0.292898         0.706985         -0.500075         -0.650278         -0.414136         -0.328102         -0.660277           32         Q0.4142.0.5000.0.0000         0.414091         0.292792         0.707114         -0.800743         -0.00001         -0.41436         -0.08657         -0.234460           4         Q0.4142.0.8000.0.0000         0.414070         0.292792         0.707116         -0.800765         -0.414360         -0.00005         -0.31388           4         Q0.4142.0.8000.0.3314         0.414071         0.292792         0.707118         -0.800756         -0.31386         -0.414360         -0.000005         -0.31383           4         Q0.4142.0.8000.0.3000         0.414081         0.292792         0.70714         -0.80075         -0.414346         -0.181436         -0.181436         -0.181431         -0.58814           12         Q0.4142.0.8000.0.3000         0.41420         0.292793         -0.70774         -0.800771         -0.500052         -0.414346         -0.181434         -0.58144         -0.58144 <td>29</td> <td>Q0.4142_0.5000_0.2500</td> <td>0.414221</td> <td>0.292898</td> <td>0.707105</td> <td>0.500073</td> <td>0.250024</td> <td>-0.414206</td> <td>0.167911</td> <td>0.030323</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29  | Q0.4142_0.5000_0.2500          | 0.414221 | 0.292898  | 0.707105  | 0.500073     | 0.250024   | -0.414206    | 0.167911    | 0.030323         |
| 31         Q0.4142-0.5000.06500         0.414290         0.292897         0.706985         -0.500075         0.650262         -0.414137         0.282183         0.606277           32         Q0.4142.0.5000.06500         0.414291         0.292890         0.706984         0.500076         0.650268         -0.414136         0.381296           34         Q0.4142.0.5000.06500         0.414067         0.292792         0.707116         0.800696         0.00001         -0.414355         0.068655         -0.234460           35         Q0.4142.0.8000.0.1373         0.414071         0.292791         0.707116         0.800585         -0.137262         -0.414361         0.009005         0.331498           36         Q0.4142.0.8000.0.3131         0.414071         0.292792         0.707104         0.800756         0.50053         -0.41435         0.009707         -0.468828           39         Q0.4142.0.8000.0.5000         0.414081         0.292792         0.707074         0.800756         0.500053         -0.414345         0.18124         -0.588111           41         Q.4142.0.8000.0.5000         0.414081         0.292780         0.70674         0.800754         -0.414343         0.318745         0.119137           41         Q.4142.0.8000.0.50000         0.41492 <td>30</td> <td>Q0.41420.50000.6500</td> <td>0.414292</td> <td>0.292899</td> <td>0.706987</td> <td>-0.500093</td> <td>-0.650268</td> <td>-0.414135</td> <td>-0.368011</td> <td>-0.313290</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30  | Q0.41420.50000.6500            | 0.414292 | 0.292899  | 0.706987  | -0.500093    | -0.650268  | -0.414135    | -0.368011   | -0.313290        |
| 32         Q0.4142.0.50000.6500         0.414293         0.292898         0.706984         0.500076         0.650278         -0.414136         0.368010         0.313296           33         Q0.4142.0.5000.0.0000         0.414067         0.292791         0.707114         -0.800743         0.000001         -0.414360         -0.008655         -0.234476           34         Q0.4142.0.8000.0.1373         0.414067         0.292791         0.707116         -0.800728         -0.727260         -0.414366         0.000001         -0.331508           37         Q0.4142.0.8000.0.1373         0.414067         0.292790         0.707113         0.800628         -0.37260         -0.414361         0.090706         -0.48828           38         Q0.4142.0.8000.0.3314         0.414072         0.292790         0.707113         -0.800756         -0.331399         -0.414351         0.090707         -0.468828           39         Q0.4142.0.8000.0.5000         0.414071         0.292790         0.70714         -0.800756         -0.50053         -0.414345         0.18141         0.58114           42         Q0.4142.0.8000.0.5000         0.414071         0.292793         0.70774         0.800729         -0.414343         0.318745         -0.119137           4         Q0.4142.0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31  | Q0.41420.5000_0.6500           | 0.414290 | 0.292897  | 0.706985  | -0.500095    | 0.650262   | -0.414137    | 0.282183    | 0.606273         |
| 33<br>0,4.142.0.5000.0.6500         0.414201         0.292896         0.706982         0.650268         -0.414360         -0.68657         0.234476           34         Q.0.142.0.5000.0.0000         0.414069         0.292791         0.707116         0.800696         0.000001         -0.414360         -0.068657         0.234460           36         Q.0.142.0.5000.0.1373         0.414071         0.292791         0.707116         -0.800585         -0.137262         -0.414356         0.00001         -0.311498           37         Q.0.142.0.8000.0.3314         0.414061         0.292790         0.707113         0.80058         -0.313399         -0.414361         0.097068         -0.468821           40         Q.0.142.0.8000.0.5000         0.414081         0.292790         0.707084         -0.80075         -0.500053         -0.414346         -0.31873         -0.119137           41         Q.0.4142.0.8000.0.5000         0.414081         0.292780         0.707074         0.800759         -0.500052         -0.41433         -0.818124         -0.588111           42         Q.0.4142.0.8000.0.8000         0.414210         0.292780         0.70673         -0.800870         -0.414132         -0.311698           42         Q.0.4157.0.5000.0.55000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32  | Q0.4142_0.50000.6500           | 0.414293 | 0.292898  | 0.706984  | 0.500071     | -0.650278  | -0.414134    | -0.282192   | -0.606277        |
| 34         Q.4142_0.8000_0.0000         0.414067         0.292792         0.707114         -0.800743         0.000001         -0.414360         -0.068655         -0.234476           35         Q.0.4142_0.8000_0.01373         0.414068         0.292794         0.707116         -0.800585         -0.137260         -0.414360         -0.000005         0.331583           37         Q.4142_0.8000_0.1373         0.414068         0.292794         0.707118         0.800585         -0.137260         -0.414356         0.000001         -0.331498           39         Q.0.4142_0.8000_0.5000         0.414072         0.292794         0.707184         -0.800756         -0.500053         -0.414346         0.181755         -0.119137           112         Q.4142_0.8000_0.5000         0.414081         0.292793         0.70774         0.800756         -0.500057         -0.414343         0.18175         -0.181842           12         Q.4142_0.8000_0.5000         0.414081         0.292793         0.706743         -0.800774         -0.800870         -0.414343         0.31866         0.800856           12         Q.4142_0.8000_0.8000         0.414295         0.292787         0.706733         -0.800870         -0.41434         0.31868         0.331686         0.331686         0.331668         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33  | Q0.4142_0.5000_0.6500          | 0.414291 | 0.292896  | 0.706982  | 0.500076     | 0.650268   | -0.414136    | 0.368010    | 0.313296         |
| 35         Q.4142.0.8000.0.000         0.414069         0.292791         0.707106         0.800696         0.00001         -0.414358         0.068665         -0.231460           36         Q.0.4142.0.8000.0.1373         0.414068         0.292790         0.707118         0.800628         0.137262         -0.414366         0.000001         -0.331488           37         Q.4142.0.8000.0.3314         0.414072         0.292790         0.707118         0.800698         -0.31399         -0.414356         0.000706         0.48828           40         Q.0.4142.0.8000.0.5000         0.414087         0.292790         0.707084         -0.800756         -0.500053         -0.414346         0.181411         0.588114           41         Q.0.4142.0.8000.0.5000         0.414081         0.292789         0.70764         0.800756         -0.414336         -0.181424         -0.588114           42         Q.0.4142.0.8000.0.8000         0.414281         0.292789         0.706733         -0.80074         -0.800870         -0.414345         0.318765         -0.31198           42         Q.0.4142.0.8000.0.8000         0.414285         0.292797         0.706731         0.800717         -0.800821         -0.414135         0.313766         -0.800862         -0.31198         Q.04577.0.5300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34  | Q0.41420.8000_0.0000           | 0.414067 | 0.292792  | 0.707114  | -0.800743    | 0.000004   | -0.414360    | -0.068657   | 0.234476         |
| 36         Q.4142.0.80000.1373         0.414068         0.292794         0.707116         -0.800628         0.137260         -0.414360         -0.000005         0.331508           37         Q.0.4142.0.80000.3314         0.414066         0.292790         0.707111         -0.800759         0.331386         -0.414351         0.009706         0.468823           39         Q.0.4142.0.80000.3314         0.414061         0.292792         0.707103         0.800698         -0.33139         -0.414351         -0.097077         -0.468821           40         Q.0.4142.0.80000.5000         0.414081         0.292793         0.707084         -0.800757         -0.414361         0.181424         -0.588111           41         Q.0.4142.0.80005000         0.414081         0.292793         0.70774         0.800729         0.500076         -0.414336         0.18142         -0.588111           41         Q.4142.0.800008000         0.414291         0.292797         0.706739         -0.800870         -0.414343         0.31866         0.800856           41         Q.4142.0.800008000         0.41425         0.292787         0.706729         0.800755         0.500914         -0.414142         0.49142         -0.331686         0.800814         -0.414142         0.33166 <t< td=""><td>35</td><td>Q0.4142_0.8000_0.0000</td><td>0.414069</td><td>0.292791</td><td>0.707106</td><td>0.800696</td><td>0.000001</td><td>-0.414358</td><td>0.068655</td><td>-0.234460</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35  | Q0.4142_0.8000_0.0000          | 0.414069 | 0.292791  | 0.707106  | 0.800696     | 0.000001   | -0.414358    | 0.068655    | -0.234460        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36  | Q0.41420.8000_0.1373           | 0.414068 | 0.292794  | 0.707116  | -0.800628    | 0.137260   | -0.414360    | -0.000005   | 0.331508         |
| 38         Q0.4142_0.8000_0.3314         0.414066         0.292790         0.707111         -0.80755         0.331386         -0.414361         0.09708         0.468828           39         Q0.4142_0.8000_0.5000         0.414087         0.292792         0.707082         -0.800756         -0.500053         -0.414340         -0.318735         -0.119137           11         Q0.4142_0.8000_0.5000         0.414081         0.292793         0.707082         -0.800757         -0.414340         -0.818755         -0.119137           12         Q0.4142_0.8000_0.5000         0.414081         0.292789         0.70704         0.800755         -0.414343         0.818745         0.119163           13         Q0.4142_0.8000_0.8000         0.414291         0.292789         0.70673         -0.800870         -0.414135         0.31666         0.800876           14         Q0.4000_0.8000         0.414255         0.292789         0.706729         0.800755         -0.80023         -0.414132         -0.331706         -0.800827           17         Q0.4142_0.8000_0.8000         0.414255         0.292789         0.706729         0.800755         -0.80127         -0.414142         -0.630141         -0.12554         -0.339049         -0.141342         -0.331706         -0.80021         -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37  | Q0.4142_0.80000.1373           | 0.414071 | 0.292793  | 0.707108  | 0.800585     | -0.137262  | -0.414356    | 0.000001    | -0.331498        |
| $ \begin{array}{c} 9 \\ 0.4142.0.80000.3314 0.414072 0.292792 0.707103 0.800698 -0.331399 -0.414355 -0.097077 -0.468821 \\ 0 \\ 0.4142.0.80000.5000 0.414087 0.292798 0.707084 -0.800756 -0.500053 -0.414346 0.181473 -0.119137 \\ 0.4142.0.80005000 0.414091 0.292793 0.707074 0.800759 -0.500082 -0.41436 0.181424 -0.588114 \\ 2 \\ 0.4142.0.80008000 0.414091 0.292789 0.707074 0.800729 0.500076 -0.41436 0.181424 -0.588114 \\ 2 \\ 0.4142.0.80008000 0.414091 0.292789 0.706739 -0.80071 -0.408087 -0.41436 0.181424 -0.588114 \\ 2 \\ 0.4142.0.80008000 0.414291 0.292797 0.706734 -0.80077 -0.408087 -0.414136 -0.461015 -0.331686 \\ 0.4142.0.80008000 0.414285 0.292787 0.706739 -0.800761 -0.800873 -0.414135 -0.301766 -0.800862 \\ 2 \\ 0.4142.0.80008000 0.414285 0.292787 0.706739 -0.800761 -0.800914 -0.414132 -0.49128 0.331736 \\ 4 \\ 0.4142.0.800036340.1256 0.430043 0.300723 0.699285 -0.363411 -0.125584 -0.398559 -0.094274 0.021466 \\ 9 \\ 0.4557.0.35000.5300 0.455744 0.313055 0.686099 0.350004 -0.530087 -0.373868 -0.215832 -0.473709 \\ 0.4557.0.35000.5300 0.455746 0.313047 0.686948 -0.530051 -0.350011 -0.37903 0.113226 0.406372 \\ 5 \\ 0.06672.0.0000.0.0000 0.000098 0.411821 0.58833 0.00017 -0.050000 -0.17643 0.000003 -0.09027 \\ 5 \\ 0.06672.0.0000.0.0000 0.0667002 0.400002 0.599701 -0.000001 0.80799 -0.19359 0.288172 0.480383 \\ 0.07000.00000.0.0000 0.70098 0.41521 0.58833 0.000017 -0.620019 -0.81083 0.073050 -0.135142 \\ 0.05500.0.0000.0.2500 0.849997 0.459459 0.540542 -0.000001 0.250019 -0.81083 0.073059 -0.135140 \\ 5 \\ 0.05500.0.0000.0.2500 0.849997 0.459459 0.540542 -0.000001 -0.600166 -0.081039 -0.175345 -0.324411 \\ 5 \\ 0.05500.0.0000.0.2500 0.849997 0.459459 0.540542 -0.000001 -0.600166 -0.081039 -0.175345 -0.324411 \\ 5 \\ 0.05500.0.0000.0.85007 0.459458 0.540544 -0.250014 -0.250012 -0.081080 -0.0272787 0.114887 \\ 0.08500.0.0000.0.85007 0.459458 0.540542 -0.250014 -0.250012 -0.081080 -0.027278 -0.507672 \\ 0.08500.0.2500.0.2500 0.850007 0.459458 0.540542 -0.250014 -0.250012 -0.081080 -0.027278 -0.500118 \\ 0.05500.0.2500.0.2500 0.8500$                                                                                                                                                                                                              | 38  | Q0.41420.8000_0.3314           | 0.414066 | 0.292790  | 0.707111  | -0.800759    | 0.331386   | -0.414361    | 0.097068    | 0.468828         |
| $ \begin{array}{c} 40 \\ \hline Q.4142 \\ Q.04142 \\ Q.04142 \\ Q.04142 \\ Q.04142 \\ Q.04142 \\ Q.0500 \\ Q.0500 \\ Q.0500 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.01420 \\ Q.0500 \\ Q.0500 \\ Q.01420 \\ Q.01400 \\ Q.01410 \\ Q.01400 \\ Q$ | 39  | Q0.4142_0.80000.3314           | 0.414072 | 0.292792  | 0.707103  | 0.800698     | -0.331399  | -0.414355    | -0.097077   | -0.468821        |
| $ \begin{array}{c} 41 \\ 0.41420.8000.0.5000 \\ 0.414091 \\ 0.292793 \\ 0.70774 \\ 0.800695 \\ 0.50062 \\ -0.414336 \\ -0.181424 \\ -0.58114 \\ 0.4142.0.8000.0.5000 \\ 0.414091 \\ 0.292793 \\ 0.70774 \\ 0.800695 \\ -0.50062 \\ -0.414336 \\ -0.181424 \\ -0.58111 \\ 0.51874 \\ -0.58111 \\ 0.51874 \\ -0.5198 \\ 0.7077 \\ -0.800870 \\ -0.41433 \\ -0.414136 \\ -0.469105 \\ -0.331686 \\ -0.800856 \\ -0.414136 \\ -0.469105 \\ -0.331686 \\ -0.800858 \\ -0.414132 \\ -0.331766 \\ -0.800858 \\ -0.414132 \\ -0.331766 \\ -0.800858 \\ -0.414132 \\ -0.331766 \\ -0.800923 \\ -0.414132 \\ -0.331766 \\ -0.800923 \\ -0.414132 \\ -0.331766 \\ -0.800923 \\ -0.414132 \\ -0.331766 \\ -0.800923 \\ -0.414132 \\ -0.331766 \\ -0.800923 \\ -0.414132 \\ -0.331766 \\ -0.800923 \\ -0.414132 \\ -0.331766 \\ -0.800923 \\ -0.414132 \\ -0.331766 \\ -0.30176 \\ -0.373868 \\ -0.21582 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.331766 \\ -0.33176 \\ -0.331766 \\ -0.331766 \\ -0.33176 \\ -0.331766 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 \\ -0.33176 $                                          | 40  | Q0.41420.80000.5000            | 0.414087 | 0.292794  | 0.707084  | -0.800756    | -0.500053  | -0.414340    | -0.318735   | -0.119137        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41  | Q0.41420.8000_0.5000           | 0.414081 | 0.292789  | 0.707082  | -0.800771    | 0.500057   | -0.414346    | 0.181411    | 0.588114         |
| 43         Q0.4142_0.8000_0.5000         0.414084         0.292788         0.70774         0.800729         0.500076         -0.414343         0.318745         0.119163           44         Q0.4142_0.8000_0.8000         0.414281         0.292798         0.706743         -0.800774         -0.800870         -0.414135         -0.331668         0.800856           45         Q0.4142_0.8000_0.8000         0.414285         0.292789         0.706739         -0.800801         -0.800872         -0.414142         -0.331766         -0.800862           47         Q0.4142_0.8000_0.8000         0.414285         0.292787         0.706729         0.800765         0.800914         -0.414142         0.402146         0.331376           48         Q0.4557_0.3500_0.05500         0.455744         0.313055         0.686909         0.350014         -0.33087         -0.373868         -0.125582         -0.473709           50         Q0.6667_0.0000_0.8000         0.667002         0.40002         0.59971         -0.00001         0.80079         -0.193053         0.13226         0.460372           51         Q0.6667_0.0000_0.8000         0.66702         0.40002         0.59071         -0.000001         0.80079         -0.193053         -0.015142         0.48038         0.073050         -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42  | Q0.4142_0.80000.5000           | 0.414091 | 0.292793  | 0.707074  | 0.800695     | -0.500082  | -0.414336    | -0.181424   | -0.588111        |
| 44         Q0.41420.80000.8000         0.414291         0.292797         0.706743         -0.800870         -0.414136         -0.469105         -0.331698           45         Q0.41420.8000_0.8000         0.414282         0.292789         0.706739         -0.800810         8.00878         -0.414145         0.331698         0.800852           46         Q0.4142_0.8000_0.8000         0.414285         0.292787         0.706729         0.800755         0.800914         -0.414142         0.469128         0.331736           47         Q0.41570.5300_0.3500         0.455744         0.313055         0.668099         0.35004         -0.530857         -0.094274         0.021466           49         Q0.45570.5300_0.3500         0.455764         0.313047         0.686948         -0.530051         0.350001         -0.373868         -0.21582         -0.473709           50         Q0.45570.5300_0.3500         0.455764         0.31047         0.68098         0.35001         -0.373868         -0.21582         0.473708           51         Q0.6667_0.0000_0.0000         0.667002         0.40002         0.59030         -0.92795         0.288172         0.480337           53         Q0.7000_0.00000_0.0000         0.7147_0.2205_0-0.7110         0.7141821         0.588337 <td>43</td> <td>Q0.4142_0.8000_0.5000</td> <td>0.414084</td> <td>0.292788</td> <td>0.707074</td> <td>0.800729</td> <td>0.500076</td> <td>-0.414343</td> <td>0.318745</td> <td>0.119163</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43  | Q0.4142_0.8000_0.5000          | 0.414084 | 0.292788  | 0.707074  | 0.800729     | 0.500076   | -0.414343    | 0.318745    | 0.119163         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44  | Q0.41420.80000.8000            | 0.414291 | 0.292797  | 0.706743  | -0.800774    | -0.800870  | -0.414136    | -0.469105   | -0.331698        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45  | Q0.41420.8000_0.8000           | 0.414282 | 0.292789  | 0.706739  | -0.800801    | 0.800878   | -0.414145    | 0.331686    | 0.800856         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46  | Q0.4142_0.80000.8000           | 0.414295 | 0.292795  | 0.706731  | 0.800715     | -0.800923  | -0.414132    | -0.331706   | -0.800862        |
| 48         Q0.43000.36340.1256         0.430043         0.300723         0.699285         -0.363411         -0.125584         -0.398559         -0.094274         0.021466           49         Q0.4557_0.3500_0.0500         0.455744         0.313055         0.686909         0.350041         -0.530087         -0.373868         -0.215832         -0.473709           50         Q0.4557_0.5300_0.3500         0.455766         0.313047         0.686948         -0.530051         0.350011         -0.373903         0.113226         0.406372           51         Q0.6667_0.0000_0.0000         0.663702         0.400002         0.593701         -0.000001         0.80799         -0.193759         0.288172         0.480383           53         Q0.7000_0.0000_0_0.0000         0.70098         0.411821         0.588233         0.00001         -0.167403         0.00003         -0.00007           54         Q0.8500_0.0000_0_0.2500         0.84997         0.459459         0.540542         -0.00000         0.250012         -0.081083         0.073049         0.135143           57         Q0.8500_0.0000_0_0.6000         0.85073         0.549459         0.540449         -0.000001         0.600166         -0.81083         0.175339         0.324401           58         Q0.8500_0_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47  | Q0.4142_0.8000_0.8000          | 0.414285 | 0.292787  | 0.706729  | 0.800765     | 0.800914   | -0.414142    | 0.469128    | 0.331736         |
| 49         Q0.4557.0.35000.5300         0.455744         0.313055         0.686909         0.35004         -0.530087         -0.373868         -0.215832         -0.473709           50         Q0.45570.5300.0.3500         0.455706         0.313047         0.686948         -0.530051         0.350011         -0.373808         -0.215832         -0.46372           51         Q0.6628.0.95000.9500         0.667002         0.400002         0.599701         -0.000001         0.80799         -0.199759         0.288172         0.480333           53         Q0.7000.00000.0000         0.70098         0.411821         0.588233         0.000017         -0.000000         -0.176403         0.000003         -0.000001           54         Q0.7147.0.2205-0.7110         0.714912         0.416820         0.58037         0.220499         -0.711415         -0.166241         -0.23582         -0.506762           55         Q0.8500.000000.2500         0.84997         0.459459         0.540542         -0.000001         -0.60166         -0.081083         -0.073050         -0.135142           56         Q0.8500.000000.6000         0.850073         0.459459         0.540494         -0.000001         -0.60166         -0.081039         -0.175345         -0.324411           57<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48  | Q0.43000.36340.1256            | 0.430043 | 0.300723  | 0.699285  | -0.363411    | -0.125584  | -0.398559    | -0.094274   | 0.021466         |
| 50         Q0.45570.5300_0.3500         0.45576         0.313047         0.686948         -0.530051         0.350011         -0.373903         0.113226         0.406372           51         Q0.6628_0.95000.9500         0.663908         0.398477         0.600199         0.950330         -0.953392         -0.201990         -0.193063         -0.952170           52         Q0.6667_0.0000_0.0000         0.667002         0.400002         0.599701         -0.000000         -0.176403         0.000003         -0.00000           53         Q0.7000_0.0000_0.0000         0.7104912         0.418820         0.583037         0.220499         -0.711415         -0.166241         -0.203582         -0.500762           54         Q0.8500_0.0000_0.2500         0.849997         0.459459         0.540542         -0.000001         -0.60166         -0.081083         -0.073050         -0.135142           56         Q0.8500_0.0000_0.6000         0.850073         0.459459         0.540144         -0.000001         -0.60166         -0.081039         -0.175349         0.324301           57         Q0.8500_0.0000_0.68000         0.850073         0.459459         0.540147         -0.000000         -0.81039         -0.175349         0.324391           59         Q0.8500_0.0000_0.85000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49  | Q0.4557_0.35000.5300           | 0.455744 | 0.313055  | 0.686909  | 0.350004     | -0.530087  | -0.373868    | -0.215832   | -0.473709        |
| 51         Q0.6628.0.9500-0.9500         0.663908         0.398477         0.60199         0.953392         -0.21990         -0.193063         -0.952170           52         Q0.6667.0.0000.0.8000         0.667002         0.400002         0.599701         -0.00001         0.800799         -0.199759         0.288172         0.480383           53         Q0.7000.00000.0000         0.70098         0.411821         0.588233         0.00001         -0.100000         -0.176403         0.00003         -0.00001           54         Q0.7147.0.2205-0.7110         0.714912         0.41821         0.588233         0.00001         -0.250012         -0.081083         -0.073050         -0.135142           56         Q0.8500.00000_0.2500         0.849997         0.459459         0.540542         -0.00001         -0.600166         -0.081039         -0.175345         -0.324401           57         Q0.8500.00000_0.0500         0.850619         0.459459         0.540494         -0.00001         -0.60166         -0.081039         -0.175345         -0.324391           59         Q0.8500_0.0000_0.85007         0.850679         0.549453         0.540147         -0.000000         -0.81077         -0.248419         0.459729           60         Q0.8500_0.02500_0         0.850070 </td <td>50</td> <td>Q0.45570.5300_0.3500</td> <td>0.455706</td> <td>0.313047</td> <td>0.686948</td> <td>-0.530051</td> <td>0.350011</td> <td>-0.373903</td> <td>0.113226</td> <td>0.406372</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50  | Q0.45570.5300_0.3500           | 0.455706 | 0.313047  | 0.686948  | -0.530051    | 0.350011   | -0.373903    | 0.113226    | 0.406372         |
| 52         Q0.6667_0.0000_0.8000         0.66702         0.40002         0.599701         -0.00001         0.800799         -0.199759         0.288172         0.480383           53         Q0.7000_0.0000_0.0000         0.70098         0.411821         0.588233         0.00017         -0.000000         -0.176403         0.00003         -0.00007           54         Q0.7147_0.2205_0.7110         0.714912         0.459459         0.540542         -0.000001         -0.250012         -0.081083         -0.073050         -0.135142           55         Q0.8500_0.0000_0.2500         0.849997         0.459459         0.540542         -0.000001         -0.60166         -0.081039         -0.175345         -0.324401           57         Q0.8500_0.0000_0.05000         0.850073         0.459458         0.540494         -0.000001         -0.60166         -0.081039         -0.175345         -0.324401           58         Q0.8500_0.0000_0.85000         0.850073         0.459458         0.540147         -0.000000         -0.880721         -0.248419         -0.459729           60         Q0.8500_0.0000_0         0.85007         0.459458         0.540542         -0.250012         -0.081087         0.052786         -0.114887           62         Q0.8500_0.0200_0         0.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51  | Q0.6628_0.95000.9500           | 0.663908 | 0.398477  | 0.600199  | 0.950330     | -0.953392  | -0.201990    | -0.193063   | -0.952170        |
| 53         Q0.7000_0.0000_0.0000         0.70098         0.411821         0.588233         0.00017         -0.00000         -0.176403         0.00003         -0.00007           54         Q0.7147_0.22050.7110         0.714912         0.416820         0.583037         0.220499         -0.711415         -0.166241         -0.203582         -0.506762           55         Q0.8500_0.00000.2500         0.849997         0.459459         0.540542         -0.00000         0.250012         -0.081083         -0.073050         -0.135142           56         Q0.8500_0.00000.6000         0.850073         0.459459         0.540494         -0.000001         -0.60166         -0.081039         -0.175345         -0.324401           57         Q0.8500_0.00000.6000         0.850073         0.459459         0.540494         -0.000001         -0.60166         -0.081039         -0.175345         -0.324401           58         Q0.8500_0.00000.8500         0.850616         0.459459         0.540147         -0.00000         -0.850782         -0.080711         -0.248419         -0.459729           60         Q0.85000.2500_0.0000         0.850070         0.459458         0.540542         -0.250012         -0.081077         -0.052787         0.114889           62         Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52  | Q0.6667_0.0000_0.8000          | 0.667002 | 0.400002  | 0.599701  | -0.000001    | 0.800799   | -0.199759    | 0.288172    | 0.480383         |
| Q0.7147_0.22050.7110         0.714912         0.416820         0.583037         0.220499         -0.711415         -0.166241         -0.203582         -0.506762           55         Q0.8500_0.00000.2500         0.849997         0.459459         0.540542         -0.000001         -0.250012         -0.081083         -0.073050         -0.135142           56         Q0.8500_0.00000.6000         0.850073         0.459459         0.540542         -0.000001         -0.600166         -0.081039         -0.175345         -0.324401           57         Q0.8500_0.00000.6000         0.850073         0.459459         0.5401493         -0.000001         0.600146         -0.081039         -0.175345         -0.324401           58         Q0.8500_0.00000.8500         0.850013         0.459459         0.540147         -0.000000         -0.850782         -0.08071         0.248419         -0.459729           60         Q0.85000.2500_0.0000         0.850017         0.459458         0.540134         -0.250012         -0.080719         0.248419         -0.459729           61         Q0.85000.2500_0.02000         0.850007         0.459458         0.540534         -0.250017         -0.081077         0.052787         0.114889           62         Q0.85000.2500_0_0.25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53  | Q0.7000_0.0000_0.0000          | 0.700098 | 0.411821  | 0.588233  | 0.000017     | -0.000000  | -0.176403    | 0.000003    | -0.000007        |
| 55         Q0.8500_0.0000_0.2500         0.849997         0.459459         0.540542         -0.000001         -0.250012         -0.081083         -0.073050         -0.135142           56         Q0.8500_0.0000_0.2500         0.849997         0.459459         0.540542         -0.00000         0.250009         -0.081083         0.073049         0.135140           57         Q0.8500_0.0000_0.0600         0.850073         0.459459         0.540494         -0.00001         -0.600166         -0.081039         -0.175345         -0.324401           58         Q0.8500_0.0000_0.0600         0.850073         0.459458         0.540147         -0.00000         0.800146         -0.081039         0.175339         0.324391           59         Q0.8500_0.0000_0.08500         0.850616         0.459458         0.540147         -0.000000         0.850760         -0.08721         -0.248419         -0.459729           60         Q0.8500_0.0000         0.850070         0.459458         0.540534         -0.25001         -0.08007         0.02787         0.114889           61         Q0.8500_0.2500_0.02500         0.850002         0.459452         0.250014         -0.250012         -0.081080         -0.125288         -0.020272         -0.25011           61         Q0.8500_0.2500_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54  | Q0.7147_0.22050.7110           | 0.714912 | 0.416820  | 0.583037  | 0.220499     | -0.711415  | -0.166241    | -0.203582   | -0.506762        |
| 56         Q0.8500_0.0000_0.2500         0.849997         0.459459         0.540542         -0.000000         0.250009         -0.081083         0.073049         0.135140           57         Q0.8500_0.0000_0.6000         0.850073         0.459459         0.540494         -0.000001         -0.600166         -0.081039         -0.175345         -0.324401           58         Q0.8500_0.0000_0.6000         0.850073         0.459458         0.540493         -0.000001         0.600146         -0.081039         0.175339         0.324391           59         Q0.8500_0.0000_0.8500         0.850616         0.459459         0.540147         -0.000000         0.850760         -0.080719         0.248412         0.459717           61         Q0.8500_0.02500_0.0000         0.850007         0.459458         0.540534         -0.250017         -0.08077         -0.052787         0.114889           62         Q0.8500_0.02500_0.02500         0.850007         0.459452         0.250014         -0.250012         -0.081080         -0.125288         -0.02076           64         Q0.8500_0.02500_0.2500         0.850002         0.459462         0.540542         0.250010         -0.250112         -0.081080         -0.02272         -0.250011           65         Q0.8500_0.02500_0.2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55  | Q0.8500_0.00000.2500           | 0.849997 | 0.459459  | 0.540542  | -0.000001    | -0.250012  | -0.081083    | -0.073050   | -0.135142        |
| 57       Q0.8500_0.00000.6000       0.850073       0.459459       0.540494       -0.00001       -0.600166       -0.081039       -0.175345       -0.324401         58       Q0.8500_0.00000.6000       0.850073       0.459458       0.540493       -0.00001       0.600146       -0.081039       0.175345       -0.324401         59       Q0.8500_0.00000.8500       0.850616       0.459459       0.540147       -0.00000       -0.850782       -0.080719       0.248412       0.459717         60       Q0.85000.2500_0.0000       0.850007       0.459458       0.540534       -0.25001       -0.00000       -0.081077       -0.052787       0.114889         61       Q0.85000.25000.2500       0.850007       0.459458       0.540534       -0.250012       -0.081080       -0.125828       -0.020270         64       Q0.85000.25000.2500       0.850002       0.459462       0.540542       -0.250014       -0.250012       -0.081080       -0.125828       -0.020270         64       Q0.85000.25000.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       -0.22272       -0.250011         65       Q0.8500_0.2500_0_2500       0.850007       0.459442       0.540542       0.250010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56  | Q0.8500 0.0000 0.2500          | 0.849997 | 0.459459  | 0.540542  | -0.000000    | 0.250009   | -0.081083    | 0.073049    | 0.135140         |
| 58         Q0.8500_0.0000_0.6000         0.850073         0.459458         0.540493         -0.00001         0.600146         -0.081039         0.175339         0.324391           59         Q0.8500_0.00000.8500         0.850616         0.459463         0.540153         -0.00000         -0.850782         -0.080721         -0.248419         -0.459729           60         Q0.8500_0.0000_0.8500         0.850619         0.459459         0.540147         -0.00000         -0.850782         -0.080719         0.248412         0.459717           61         Q0.8500_0.2500_0.0000         0.85007         0.459458         0.540534         -0.250011         -0.080717         -0.052787         0.114889           62         Q0.8500_0.2500_0.0000         0.85007         0.459458         0.540534         0.250017         -0.081077         -0.052787         0.114887           63         Q0.8500_0.2500_0.02500         0.850002         0.459462         0.540542         -0.250012         -0.081080         -0.125828         -0.020270           64         Q0.8500_0.2500_0.2500         0.85002         0.459462         0.540542         0.250012         -0.081080         0.125826         0.20270           65         Q0.8500_0.2500_0_0.2500         0.85007         0.459448 <t< td=""><td>57</td><td>Q0.8500 0.0000 -0.6000</td><td>0.850073</td><td>0.459459</td><td>0.540494</td><td>-0.000001</td><td>-0.600166</td><td>-0.081039</td><td>-0.175345</td><td>-0.324401</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57  | Q0.8500 0.0000 -0.6000         | 0.850073 | 0.459459  | 0.540494  | -0.000001    | -0.600166  | -0.081039    | -0.175345   | -0.324401        |
| 59       Q0.8500_0.00000.8500       0.850616       0.459463       0.540153       -0.00000       -0.850782       -0.080721       -0.248419       -0.459729         60       Q0.8500_0.0000_0.8500       0.850619       0.459459       0.540147       -0.000000       0.850760       -0.080719       0.248412       0.459717         61       Q0.8500_0.02500_0.0000       0.850077       0.459458       0.540534       -0.250051       -0.00000       -0.081077       -0.052787       0.114889         62       Q0.8500_0.2500_0.0000       0.850007       0.459458       0.540534       0.250047       -0.000000       -0.081077       -0.052786       -0.114887         63       Q0.8500_0.2500_0.02500       0.850002       0.459462       0.540542       -0.250012       -0.081080       -0.125828       -0.020270         64       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       -0.020272       -0.250011         65       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       0.125826       0.020270         67       Q0.8500_0.2500_0.2500       0.850007       0.459448       0.540523       -0.499981 <td< td=""><td>58</td><td>Q0.8500 0.0000 0.6000</td><td>0.850073</td><td>0.459458</td><td>0.540493</td><td>-0.000001</td><td>0.600146</td><td>-0.081039</td><td>0.175339</td><td>0.324391</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58  | Q0.8500 0.0000 0.6000          | 0.850073 | 0.459458  | 0.540493  | -0.000001    | 0.600146   | -0.081039    | 0.175339    | 0.324391         |
| 60       Q0.8500_0.0000_0.8500       0.850619       0.459459       0.540147       -0.000000       0.850760       -0.080719       0.248412       0.459717         61       Q0.8500_0.2500_0.0000       0.850007       0.459458       0.540534       -0.250051       -0.000000       -0.881077       -0.052787       0.114889         62       Q0.8500_0.2500_0.0000       0.850007       0.459458       0.540534       0.250047       -0.000000       -0.881077       -0.052786       -0.114887         63       Q0.8500_0.2500_0.02500       0.850002       0.459462       0.540542       -0.250014       -0.250012       -0.081080       -0.125828       -0.020270         64       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540542       -0.250014       -0.250012       -0.081080       -0.020272       -0.250011         65       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       0.125826       0.020270         67       Q0.8500_0.0500_0.5000       0.85007       0.459448       0.540523       -0.499981       0.50051       -0.081077       0.251658       0.500019         68       Q0.8500_0.5000_0.5000       0.85007       0.459448       0.540523       0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59  | Q0.8500 0.0000 -0.8500         | 0.850616 | 0.459463  | 0.540153  | -0.000000    | -0.850782  | -0.080721    | -0.248419   | -0.459729        |
| 61       Q0.85000.2500_0.0000       0.85007       0.459458       0.540534       -0.250051       -0.00000       -0.081077       -0.052787       0.114889         62       Q0.8500_0.2500_0.0000       0.850007       0.459458       0.540534       0.250047       -0.00000       -0.081077       0.052786       -0.114887         63       Q0.8500_0_0.2500_0_0.2500       0.850002       0.459462       0.540542       -0.250014       -0.250012       -0.081080       -0.125828       -0.020270         64       Q0.8500_0_0.2500_0_0.2500       0.850002       0.459462       0.540542       -0.250014       -0.250019       -0.081080       -0.020279       0.250011         65       Q0.8500_0_0.2500_0_0.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       0.020269       0.250011         66       Q0.8500_0_0.2500_0_0.2500       0.850002       0.459462       0.540542       0.250010       0.250009       -0.081080       0.125826       0.020270         67       Q0.8500_0_0.2500_0_0.5000       0.850007       0.459448       0.540523       -0.499981       0.500051       -0.081080       0.125826       0.020270         68       Q0.8500_0_0.5000_0_0.5000       0.850007       0.459448       0.54052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60  | Q0.8500 0.0000 0.8500          | 0.850619 | 0.459459  | 0.540147  | -0.000000    | 0.850760   | -0.080719    | 0.248412    | 0.459717         |
| 62       Q0.8500_0.2500_0.0000       0.850007       0.459458       0.540534       0.250047       -0.000000       -0.081077       0.052786       -0.114887         63       Q0.85000.25000.2500       0.850002       0.459462       0.540534       0.250047       -0.250012       -0.081080       -0.125828       -0.020270         64       Q0.85000.25000.2500       0.850002       0.459462       0.540542       -0.250014       -0.250019       -0.081080       0.020269       0.250011         65       Q0.8500_0.25000.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       -0.020272       -0.250011         66       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       0.125826       0.020270         67       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540523       -0.499981       0.500051       -0.081080       0.125826       0.020270         68       Q0.8500_0.5000_0.5000       0.850007       0.459448       0.540523       0.499964       -0.500066       -0.081077       0.251658       0.400562         69       Q0.8500_0.5000_0.5000       0.850007       0.459448       0.540523       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61  | Q0.8500 -0.2500 0.0000         | 0.850007 | 0.459458  | 0.540534  | -0.250051    | -0.000000  | -0.081077    | -0.052787   | 0.114889         |
| 63       Q0.85000.25000.2500       0.850002       0.459462       0.540542       -0.250014       -0.250012       -0.081080       -0.125828       -0.020270         64       Q0.85000.2500_0.2500       0.850002       0.459462       0.540542       -0.250014       0.250009       -0.081080       0.020269       0.250011         65       Q0.8500_0.25000.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       0.020269       0.250011         66       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540542       0.250010       -0.250012       -0.081080       -0.020272       -0.250011         67       Q0.8500_0.2500_0.2500       0.850002       0.459462       0.540542       0.250010       0.250009       -0.081080       0.125826       0.020270         67       Q0.8500_0.5000_0.5000       0.850007       0.459448       0.540523       -0.499981       0.500051       -0.081078       0.040558       0.500019         68       Q0.8500_0.5000_0.5000       0.850007       0.459448       0.540523       0.500044       -0.500066       -0.081077       -0.251658       0.040562         70       Q0.8500_0.8000_0.2500       0.849605       0.459247       0.540541       0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62  | Q0.8500 0.2500 0.0000          | 0.850007 | 0.459458  | 0.540534  | 0.250047     | -0.000000  | -0.081077    | 0.052786    | -0.114887        |
| 64       Q0.85000.2500_0.2500       0.850002_0.459462_0.540542_0_250014       0.250012_0_0.081080_0.020269_0_0.25001         65       Q0.8500_0.2500_0.2500       0.850002_0.459462_0.540542_0_250010_0_0.250012_0_0.081080_0_0.020269_0_0.250011         66       Q0.8500_0.2500_0.2500_0_0.2500       0.850002_0.459462_0.540542_0_0.250010_0_0.250010_0_0.250019_0_0.081080_0_0.020272_0_0.250011         67       Q0.8500_0_0.2500_0_0.2500_0_0.850002_0.459462_0_0.540542_0_0.250010_0_0.250009_0_0.081080_0_0.125826_0_0.020270         67       Q0.8500_0_0_0.5000_0_0.850007_0_0.459447_0_0.540523_0_0.499981_0_0.500051_0_0.081078_0_0.040558_0_0.500019         68       Q0.8500_0_0_0.5000_0_0.850007_0_0.459448_0_0.540522_0_0.499964_0_0.500066_0_0.081077_0_0.040565_0_0.500019         69       Q0.8500_0_0_0.5000_0_0.850007_0_0.459448_0_0.540523_0_0.500044_0_0.500048_0_0.081077_0_0.251658_0_0.040562         70       Q0.8500_0_0_0.8000_0_0.2500_0_0.850014_0_0.459248_0_0.540283_0_0.800777_0_0.250011_0_0.081312_0_0.242042_0_0.232662         71       Q0.8500_0_0.8000_0_0.8000_0_0.850014_0_0.459248_0_0.540283_0_0.800750_0_0.800830_0_0.081073_0_0.64933_0_0.800814         72       Q0.8500_0_0.8000_0_0.8000_0_0.850021_0.459246_0_0.540276_0_0.800777_0_0.800851_0_0.80166_0_0.064949_0_0.800817         73       Q0.8500_0_0.8000_0_0.8000_0_0.850021_0.459246_0.540276_0_0.800777_0_0.800851_0_0.80166_0_0.403042_0.064958         74       Q0.8514_0.73430.8267_0_0.851718_0.459758_0.539801_0.734715_0_0.827713_0_0.80078_0_0.880978_0_0.885957_0_0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63  | Q0.8500 -0.2500 -0.2500        | 0.850002 | 0.459462  | 0.540542  | -0.250014    | -0.250012  | -0.081080    | -0.125828   | -0.020270        |
| 65Q0.8500_0.25000.25000.8500020.4594620.5405420.250010-0.250012-0.081080-0.020272-0.25001166Q0.8500_0.2500_0.25000.8500020.4594620.5405420.2500100.250009-0.0810800.1258260.02027067Q0.8500_0.05000_0.50000.8500050.4594470.540523-0.4999810.500051-0.0810780.0405580.50001968Q0.8500_0.5000_0.50000.8500070.4594480.5405220.499964-0.500066-0.081077-0.040565-0.50001969Q0.8500_0.5000_0.50000.8500070.4594480.5405230.5000440.500048-0.0810770.2516580.04056270Q0.8500_0.8000_0.25000.8496050.4592470.5405410.8007770.250011-0.0813120.242042-0.23266271Q0.8500_0.8000_0.25000.8500140.4592480.540283-0.8007950.800830-0.0810730.0649330.80081472Q0.8500_0.8000_0.80000.8500260.4592510.5402760.8007770.800873-0.081066-0.064949-0.80081773Q0.8500_0.8000_0.80000.8500210.4592460.5402760.8007770.800851-0.0810690.4030420.06495874Q0.8514_0.73430.82670.8517180.4597580.5398010.734715-0.827713-0.080078-0.085957-0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64  | Q0.8500 -0.2500 0.2500         | 0.850002 | 0.459462  | 0.540542  | -0.250014    | 0.250009   | -0.081080    | 0.020269    | 0.250011         |
| 66Q0.8500_0.2500_0.25000.8500020.4594620.5405420.2500100.250019-0.0810800.1258260.02027067Q0.85000.5000_0.50000.8500050.4594470.540523-0.4999810.50051-0.0810780.0405580.50001968Q0.8500_0.50000.50000.8500070.4594480.5405220.499964-0.500066-0.081077-0.040565-0.50001969Q0.8500_0.5000_0.50000.8500070.4594480.5405230.5000440.500048-0.0810770.2516580.04056270Q0.8500_0.8000_0.25000.8496050.4592470.5405410.8007770.250011-0.0813120.242042-0.23266271Q0.8500_0.8000_0.25000.8500140.4592480.540283-0.8007950.800830-0.0810730.0649330.80081472Q0.8500_0.8000_0.80000.8500260.4592510.5402760.8007700.800873-0.081066-0.064949-0.80081773Q0.8500_0.8000_0.80000.8500210.4592460.5402760.8007770.800851-0.0810690.4030420.06495874Q0.8514_0.73430.82670.8517180.4597580.5398010.734715-0.827713-0.080078-0.085957-0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65  | Q0.8500 0.2500 -0.2500         | 0.850002 | 0.459462  | 0.540542  | 0.250010     | -0.250012  | -0.081080    | -0.020272   | -0.250011        |
| 67Q0.85000.5000_0.50000.8500050.4594470.540523-0.4999810.500051-0.0810780.0405580.50001968Q0.8500_0.50000.50000.8500070.4594480.5405220.499964-0.500066-0.081077-0.040565-0.50001969Q0.8500_0.5000_0.50000.8500070.4594480.5405230.5000440.500048-0.0810770.2516580.04056270Q0.8500_0.8000_0.25000.8496050.4592470.5405410.8007770.250011-0.0813120.242042-0.23266271Q0.8500_0.8000_0.280000.8500140.4592480.540283-0.8007950.800830-0.0810730.0649330.80081472Q0.8500_0.8000_0.80000.8500260.4592510.5402780.800750-0.800873-0.081066-0.064949-0.80081773Q0.8500_0.8000_0.80000.8500210.4592460.5402760.8007770.800851-0.0810690.4030420.06495874Q0.8514_0.73430.82670.8517180.4597580.5398010.734715-0.827713-0.080078-0.085957-0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66  | Q0.8500 0.2500 0.2500          | 0.850002 | 0.459462  | 0.540542  | 0.250010     | 0.250009   | -0.081080    | 0.125826    | 0.020270         |
| 68       Q0.8500_0.50000.5000       0.850007       0.459448       0.540522       0.499964       -0.500066       -0.081077       -0.040565       -0.500019         69       Q0.8500_0.5000_0.5000       0.850007       0.459448       0.540523       0.500004       0.500048       -0.081077       0.251658       0.040562         70       Q0.8500_0.8000_0.2500       0.849605       0.459247       0.540541       0.800777       0.250011       -0.081312       0.242042       -0.232662         71       Q0.8500_0.8000_0.28000       0.850014       0.459248       0.540283       -0.800795       0.800830       -0.081073       0.064933       0.800814         72       Q0.8500_0.8000_0.8000       0.850026       0.459251       0.540278       0.800750       -0.800873       -0.081066       -0.064949       -0.800817         73       Q0.8500_0.8000_0.8000       0.850021       0.459246       0.540276       0.800777       0.800851       -0.081069       0.403042       0.064958         74       Q0.8514_0.73430.8267       0.851718       0.459758       0.539801       0.734715       -0.827713       -0.080078       -0.085957       -0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67  | Q0.8500 -0.5000 0.5000         | 0.850005 | 0.459447  | 0.540523  | -0.499981    | 0.500051   | -0.081078    | 0.040558    | 0.500019         |
| 69       Q0.8500_0.5000_0.5000       0.85007       0.459448       0.540523       0.50004       0.500048       -0.081077       0.251658       0.040562         70       Q0.8500_0.8000_0.2500       0.849605       0.459247       0.540541       0.80077       0.250011       -0.081077       0.251658       0.040562         71       Q0.8500_0.8000_0.2500       0.849605       0.459247       0.540541       0.800777       0.250011       -0.081312       0.242042       -0.232662         71       Q0.8500_0.8000_0.8000       0.850014       0.459248       0.540283       -0.800795       0.800830       -0.081073       0.064933       0.800814         72       Q0.8500_0.8000_0.8000       0.850026       0.459251       0.540278       0.800750       -0.800873       -0.081066       -0.064949       -0.800817         73       Q0.8500_0.8000_0.8000       0.850021       0.459246       0.540276       0.800777       0.800851       -0.081069       0.403042       0.064958         74       Q0.8514_0.73430.8267       0.851718       0.459758       0.539801       0.734715       -0.827713       -0.080078       -0.085957       -0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68  | Q0.8500 0.5000 -0.5000         | 0.850007 | 0.459448  | 0.540522  | 0.499964     | -0.500066  | -0.081077    | -0.040565   | -0.500019        |
| 70       Q0.8500_0.8000_0.2500       0.849605       0.459247       0.540541       0.800777       0.250011       -0.081312       0.242042       -0.232662         71       Q0.8500_0.8000_0.8000       0.850014       0.459248       0.540283       -0.800795       0.800830       -0.081073       0.064933       0.800814         72       Q0.8500_0.8000_0.8000       0.850026       0.459251       0.540278       0.800750       -0.800873       -0.081066       -0.064949       -0.800817         73       Q0.8500_0.8000_0.8000       0.850021       0.459246       0.540276       0.800777       0.800851       -0.081069       0.403042       0.064938         74       Q0.8514_0.73430.8267       0.851718       0.459758       0.539801       0.734715       -0.827713       -0.080078       -0.085957       -0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69  | Q0.8500 0.5000 0.5000          | 0.850007 | 0.459448  | 0.540523  | 0.500004     | 0.500048   | -0.081077    | 0.251658    | 0.040562         |
| 71       Q0.85000.8000_0.8000       0.850014       0.459248       0.540283       -0.800795       0.800830       -0.081073       0.064933       0.800814         72       Q0.8500_0.80000.8000       0.850026       0.459251       0.540278       0.800750       -0.800873       -0.081066       -0.064949       -0.800817         73       Q0.8500_0.8000_0.8000       0.850021       0.459246       0.540276       0.800777       0.800851       -0.081069       0.403042       0.064958         74       Q0.8514_0.73430.8267       0.851718       0.459758       0.539801       0.734715       -0.827713       -0.080078       -0.085957       -0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70  | Q0.8500_0.8000_0.2500          | 0.849605 | 0.459247  | 0.540541  | 0.800777     | 0.250011   | -0.081312    | 0.242042    | -0.232662        |
| 72       Q0.8500_0.80000.8000       0.850026       0.459251       0.540278       0.800750       -0.800873       -0.081066       -0.064949       -0.800817         73       Q0.8500_0.8000_0.8000       0.850021       0.459246       0.540276       0.800777       0.800851       -0.081069       0.403042       0.064958         74       Q0.8514_0.73430.8267       0.851718       0.459758       0.539801       0.734715       -0.827713       -0.080078       -0.085957       -0.784938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71  | $Q_{0.8500} = 0.8000 = 0.2000$ | 0.850014 | 0.459248  | 0.540283  | -0.800795    | 0.800830   | -0.081073    | 0.064933    | 0.800814         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72  | Q0.8500 0.8000 -0.8000         | 0.850026 | 0.459251  | 0.540278  | 0.800750     | -0.800873  | -0.081066    | -0.064949   | -0.800817        |
| $74  Q0.8514 \_ 0.7343 \0.8267  0.851718  0.459758  0.539801  0.734715  -0.827713  -0.080078  -0.085957  -0.784938$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73  | Q0.8500_0.8000_0.8000          | 0.850021 | 0.459246  | 0.540276  | 0.800777     | 0.800851   | -0.081069    | 0.403042    | 0.064958         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74  | Q0.8514_0.73430.8267           | 0.851718 | 0.459758  | 0.539801  | 0.734715     | -0.827713  | -0.080078    | -0.085957   | -0.784938        |

TABLE VII: Table of the initial orbital frequency  $m\omega_i$ , number of orbits to merger, N, and the initial and final eccentricities,  $e_i$  and  $e_f$  for the spinning cases.

| Run             | Config.                                  | $m\omega_i$ | N            | $e_i$  | $e_f$   |
|-----------------|------------------------------------------|-------------|--------------|--------|---------|
| 1               | Q0.1429_0.8000_0.8000                    | 0.0311      | 16.3         | 0.0020 | 0.0010  |
| 2               | Q0.2000_0.00000.5000                     | 0.0193      | 15.2         | 0.0046 | 0.0007  |
| 3               | Q0.2000_0.0000_0.5000                    | 0.0188      | 24.7         | 0.0025 | 0.0003  |
| 4               | Q0.20000.50000.2500                      | 0.0192      | 16.6         | 0.0049 | 0.0006  |
| 5               | Q0.20000.5000_0.2500                     | 0.0189      | 21.4         | 0.0042 | 0.0005  |
| 6               | Q0.2000_0.50000.2500                     | 0.0191      | 17.8         | 0.0023 | 0.0006  |
| 7               | Q0.2000_0.5000_0.2500                    | 0.0189      | 22.7         | 0.0024 | 0.0006  |
| 8               | Q0.20000.50000.6500                      | 0.0194      | 13.2         | 0.0029 | 0.0009  |
| 9               | Q0.20000.5000_0.6500                     | 0.0188      | 25.8         | 0.0015 | 0.0003  |
| 10              | Q0.2000_0.50000.6500                     | 0.0194      | 14.3         | 0.0027 | 0.0011  |
| 11              | Q0.2000_0.5000_0.6500                    | 0.0187      | 27.2         | 0.0020 | 0.0004  |
| 12              | Q0.2000_0.80000.5000                     | 0.0193      | 15.9         | 0.0029 | 0.0012  |
| 13              | Q0.20000.80000.8000                      | 0.0196      | 11.8         | 0.0039 | 0.0015  |
| 14              | Q0.20000.8000_0.8000                     | 0.0187      | 27.3         | 0.0037 | 0.0003  |
| 15              | Q0.2000 0.8000 -0.8000                   | 0.0195      | 13.5         | 0.0043 | 0.0013  |
| 16              | Q0.3333 0.8250 -0.8250                   | 0.0257      | 6.8          | 0.0071 | 0.0028  |
| 17              | 004142000000000000000000000000000000000  | 0.0192      | 14.2         | 0.0059 | 0.0007  |
| 18              | 00.4142.0.0000 = 0.5000                  | 0.0102      | 12.2         | 0.0039 | 0.00012 |
| 19              | 004142000000000000000000000000000000000  | 0.0190      | 17.0         | 0.0061 | 0.00012 |
| 20              | 00.4142.0.0000 - 0.8500                  | 0.0196      | 10.0         | 0.0054 | 0.0010  |
| 20<br>21        | $00.4142.0.0000 \pm 0.0000$              | 0.0150      | 18.4         | 0.0004 | 0.0010  |
| 21<br>99        | $Q_{0.4142} = 0.0000 \pm 0.0000$         | 0.0103      | 13.0         | 0.0000 | 0.0000  |
| 22              | $Q_{0.4142} = 0.4000 \pm 0.0000$         | 0.0102      | 14.5         | 0.0000 | 0.0000  |
| 20<br>94        | $Q_{0.4142} = 0.4000 \pm 0.0000$         | 0.0192      | 14.0         | 0.0000 | 0.0000  |
| 24<br>95        | $Q_{0.4142} = 0.4000 \pm 0.1057$         | 0.0192      | 14.4         | 0.0052 | 0.0007  |
| 20<br>26        | $O0.4142_{-}0.4000_{-}0.1037$            | 0.0192      | 19.1         | 0.0055 | 0.0000  |
| $\frac{20}{97}$ | $Q_{0.4142} = 0.5000 \pm 0.2500$         | 0.0195      | 14.1         | 0.0052 | 0.0007  |
| 21<br>98        | $Q_{0.4142} = 0.5000 \pm 0.2500$         | 0.0191      | 19.7         | 0.0055 | 0.0007  |
| 20<br>20        | $Q_{0.4142} = 0.5000 \pm 0.2500$         | 0.0192      | 16.4         | 0.0055 | 0.0008  |
| 29<br>20        | $Q_{0.4142} = 0.5000 \pm 0.2500$         | 0.0190      | 10.4         | 0.0033 | 0.0000  |
| 91              | $Q_{0.4142} = 0.5000 \pm 0.0500$         | 0.0195      | 10.2         | 0.0047 | 0.0012  |
| อา<br>อก        | $Q_{0.4142} = 0.5000 \pm 0.0500$         | 0.0190      | 11.7         | 0.0050 | 0.0007  |
| 0∠<br>99        | $Q_{0.4142} = 0.5000 \pm 0.0500$         | 0.0194      | 10.7         | 0.0000 | 0.0008  |
| 00<br>94        | $Q_{0.4142} = 0.5000 \pm 0.0500$         | 0.0109      | 10.7         | 0.0051 | 0.0007  |
| 94<br>95        | $Q_{0.4142} = 0.8000 \pm 0.0000$         | 0.0193      | 15.0         | 0.0052 | 0.0007  |
| 36              | O0.4142 = 0.8000 = 0.0000                | 0.0191      | 12.5         | 0.0005 | 0.0010  |
| 30<br>97        | $Q_{0.4142} = 0.8000 \pm 0.1373$         | 0.0192      | 14.7         | 0.0000 | 0.0010  |
| 01<br>90        | $Q_{0.4142} = 0.8000 = 0.1373$           | 0.0192      | 14.7         | 0.0005 | 0.0010  |
| 20<br>20        | $Q_{0.4142} = 0.8000 \pm 0.3314$         | 0.0191      | 14.1         | 0.0051 | 0.0011  |
| 39<br>40        | $Q_{0.4142} = 0.8000 = 0.5314$           | 0.0195      | 14.1         | 0.0000 | 0.0008  |
| 40<br>41        | $Q_{0.4142} = 0.8000 = 0.5000$           | 0.0195      | 15.0         | 0.0050 | 0.0008  |
| 41<br>49        | $Q_{0.4142} = 0.8000 \pm 0.5000$         | 0.0191      | 12.9         | 0.0051 | 0.0000  |
| 42<br>19        | $Q_{0.4142} = 0.8000 = 0.5000$           | 0.0193      | 10.2         | 0.0059 | 0.0012  |
| 43<br>44        | $Q_{0.4142} = 0.8000 \pm 0.5000$         | 0.0190      | 10.0         | 0.0059 | 0.0009  |
| 44<br>15        | $Q_{0.4142} = 0.8000 = 0.8000$           | 0.0197      | 9.4          | 0.0052 | 0.0014  |
| 40<br>40        | $Q_{0.4142} = 0.8000 \pm 0.8000$         | 0.0190      | 11.7         | 0.0050 | 0.0000  |
| 40<br>47        | $Q_{0.4142} = 0.8000 = 0.8000$           | 0.0195      | 11.7<br>20.6 | 0.0002 | 0.0010  |
| 41<br>10        | $Q_{0.4142} = 0.8000 = 0.8000$           | 0.0189      | 20.0         | 0.0057 | 0.0002  |
| 48              | QU.43000.30340.1250                      | 0.0180      | 14.2         | 0.0037 | 0.0007  |
| 49<br>50        | Q0.4557_0.35000.5300                     | 0.0153      | 1(.)         | 0.0002 | 0.0008  |
| 50              | QU.45570.5300_0.3500                     | 0.0152      | 21.1         | 0.0038 | 0.0004  |
| 51<br>50        | QU.0028_U.9500U.9500                     | 0.0290      | 5.4          | 0.0076 | 0.0032  |
| 52<br>50        |                                          | 0.0203      | 14.4         | 0.0041 | 0.0011  |
| 53              | QU.7000_0.0000_0.0000                    | 0.0222      | 8.4          | 0.0083 | 0.0014  |
| 54<br>55        | QU.7147_0.22050.7110                     | 0.0161      | 14.6         | 0.0064 | 0.0007  |
| 55<br>50        | QU.8500_0.00000.2500                     | 0.0152      | 17.0         | 0.0105 | 0.0006  |
| 56              | Q0.8500_0.0000_0.2500                    | 0.0151      | 18.9         | 0.0099 | 0.0004  |
| 22              | 0.0.0.00.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 |             |              |        | 0 0010  |
| 57              | Q0.8500_0.00000.6000                     | 0.0194      | 10.6         | 0.0069 | 0.0012  |

|     | TABLE VII – continued         | l from j    | previe | ous pag | е      |
|-----|-------------------------------|-------------|--------|---------|--------|
| Run | Config.                       | $m\omega_i$ | N      | $e_i$   | $e_f$  |
| 59  | Q0.8500_0.00000.8500          | 0.0195      | 10.0   | 0.0068  | 0.0012 |
| 60  | Q0.8500_0.0000_0.8500         | 0.0191      | 15.3   | 0.0043  | 0.0013 |
| 61  | Q0.85000.2500_0.0000          | 0.0153      | 17.3   | 0.0123  | 0.0008 |
| 62  | Q0.8500_0.2500_0.0000         | 0.0152      | 18.7   | 0.0115  | 0.0005 |
| 63  | $Q0.8500_{-}0.2500_{-}0.2500$ | 0.0153      | 16.2   | 0.0111  | 0.0009 |
| 64  | Q0.85000.2500_0.2500          | 0.0151      | 18.1   | 0.0103  | 0.0006 |
| 65  | Q0.8500_0.25000.2500          | 0.0152      | 17.7   | 0.0098  | 0.0005 |
| 66  | Q0.8500_0.2500_0.2500         | 0.0151      | 19.6   | 0.0095  | 0.0005 |
| 67  | Q0.85000.5000_0.5000          | 0.0152      | 18.3   | 0.0067  | 0.0005 |
| 68  | Q0.8500_0.50000.5000          | 0.0152      | 17.5   | 0.0068  | 0.0005 |
| 69  | Q0.8500_0.5000_0.5000         | 0.0151      | 21.3   | 0.0061  | 0.0006 |
| 70  | Q0.8500_0.8000_0.2500         | 0.0151      | 21.3   | 0.0066  | 0.0008 |
| 71  | Q0.85000.8000_0.8000          | 0.0152      | 18.3   | 0.0039  | 0.0007 |
| 72  | Q0.8500_0.80000.8000          | 0.0152      | 17.2   | 0.0036  | 0.0007 |
| 73  | Q0.8500_0.8000_0.8000         | 0.0151      | 23.1   | 0.0032  | 0.0008 |
| 74  | Q0.8514_0.73430.8267          | 0.0158      | 16.0   | 0.0038  | 0.0007 |

TABLE VIII: The final energy radiated and spin as measured using the IH formalism The error bars are due to variations in the measured mass and spin with time.

| Run | Config.               | $\delta {\cal M}^{IH}$  | $\alpha_{ m rem}^{IH}$   |
|-----|-----------------------|-------------------------|--------------------------|
| 1   | Q0.1429_0.8000_0.8000 | $0.028570 \pm 0.000022$ | $0.868808 \pm 0.001039$  |
| 2   | Q0.2000_0.00000.5000  | $0.013777 \pm 0.000000$ | $0.116641 \pm 0.000009$  |
| 3   | Q0.2000_0.0000_0.5000 | $0.025525 \pm 0.000002$ | $0.706681 \pm 0.000034$  |
| 4   | Q0.20000.50000.2500   | $0.015035 \pm 0.000001$ | $0.260381 \pm 0.000005$  |
| 5   | Q0.20000.5000_0.2500  | $0.020200 \pm 0.000001$ | $0.557126 \pm 0.000003$  |
| 6   | Q0.2000_0.50000.2500  | $0.015740 \pm 0.000002$ | $0.274468 \pm 0.000013$  |
| 7   | Q0.2000_0.5000_0.2500 | $0.021363 \pm 0.000002$ | $0.569568 \pm 0.000002$  |
| 8   | Q0.20000.50000.6500   | $0.012792 \pm 0.000006$ | $0.017695 \pm 0.000001$  |
| 9   | Q0.20000.5000_0.6500  | $0.028898 \pm 0.000007$ | $0.785570 \pm 0.000367$  |
| 10  | Q0.2000_0.50000.6500  | $0.013300\pm 0.000003$  | $0.032429 \pm 0.000002$  |
| 11  | Q0.2000_0.5000_0.6500 | $0.031030 \pm 0.000003$ | $0.796451 \pm 0.000140$  |
| 12  | Q0.2000_0.80000.5000  | $0.014268 \pm 0.000008$ | $0.128310 \pm 0.000006$  |
| 13  | Q0.20000.80000.8000   | $0.012305\pm0.000005$   | $-0.079520 \pm 0.000004$ |
| 14  | Q0.20000.8000_0.8000  | $0.034591 \pm 0.000002$ | $0.865364 \pm 0.000030$  |
| 15  | Q0.2000_0.80000.8000  | $0.013080 \pm 0.000002$ | $-0.054961 \pm 0.000003$ |
| 16  | Q0.3333_0.82500.8250  | $0.021962 \pm 0.000001$ | $0.195468 \pm 0.000002$  |
| 17  | Q0.4142_0.0000_0.0000 | $0.034138 \pm 0.000002$ | $0.587952 \pm 0.000006$  |
| 18  | Q0.4142_0.00000.5000  | $0.027620 \pm 0.000003$ | $0.396793 \pm 0.000031$  |
| 19  | Q0.4142_0.0000_0.5000 | $0.045781 \pm 0.000013$ | $0.770264 \pm 0.000636$  |
| 20  | Q0.4142_0.00000.8500  | $0.024805 \pm 0.000007$ | $0.258618 \pm 0.000034$  |
| 21  | Q0.4142_0.0000_0.8500 | $0.062374 \pm 0.001886$ | $0.889965 \pm 0.022510$  |
| 22  | Q0.41420.4000_0.0686  | $0.033843 \pm 0.000001$ | $0.595727 \pm 0.000006$  |
| 23  | Q0.4142_0.40000.0686  | $0.034480 \pm 0.000001$ | $0.579913 \pm 0.000005$  |
| 24  | Q0.41420.4000_0.1657  | $0.035583 \pm 0.000000$ | $0.632002 \pm 0.000048$  |
| 25  | Q0.4142_0.40000.1657  | $0.032926 \pm 0.000003$ | $0.543420 \pm 0.000001$  |
| 26  | Q0.41420.50000.2500   | $0.029015 \pm 0.000002$ | $0.469594 \pm 0.000018$  |
| 27  | Q0.41420.5000_0.2500  | $0.036837 \pm 0.000001$ | $0.658840 \pm 0.000052$  |
| 28  | Q0.4142_0.50000.2500  | $0.032029 \pm 0.000003$ | $0.515960 \pm 0.000008$  |
| 29  | Q0.4142_0.5000_0.2500 | $0.041543 \pm 0.000001$ | $0.701325 \pm 0.000064$  |
| 30  | Q0.41420.50000.6500   | $0.025086 \pm 0.000008$ | $0.313259 \pm 0.000024$  |
| 31  | Q0.41420.5000_0.6500  | $0.047826 \pm 0.000005$ | $0.802599 \pm 0.000204$  |
| 32  | Q0.4142_0.50000.6500  | $0.027365 \pm 0.000005$ | $0.362188 \pm 0.000012$  |
| 33  | Q0.4142_0.5000_0.6500 | $0.055611 \pm 0.000001$ | $0.840878 \pm 0.000026$  |
| 34  | Q0.41420.8000_0.0000  | $0.031632 \pm 0.000000$ | $0.551033 \pm 0.000008$  |
| 35  | Q0.4142_0.8000_0.0000 | $0.037628 \pm 0.000004$ | $0.622402 \pm 0.000020$  |
| 36  | Q0.41420.8000_0.1373  | $0.033696 \pm 0.000001$ | $0.603189 \pm 0.000006$  |
| 37  | Q0.4142_0.80000.1373  | $0.034986 \pm 0.000000$ | $0.571495 \pm 0.000001$  |
| 38  | Q0.41420.8000_0.3314  | $0.037454 \pm 0.000010$ | $0.675315 \pm 0.000082$  |
|     |                       | С                       | ontinued on next page    |

TABLE VIII – continued from previous page

| Run | Config.               | $\delta \mathcal{M}^{IH}$ | $\alpha_{\rm rem}^{IH}$ |
|-----|-----------------------|---------------------------|-------------------------|
| 39  | Q0.4142_0.80000.3314  | $0.032070 \pm 0.000000$   | $0.498352 \pm 0.000029$ |
| 40  | Q0.41420.80000.5000   | $0.025856 \pm 0.000001$   | $0.357068 \pm 0.000011$ |
| 41  | Q0.41420.8000_0.5000  | $0.041461 \pm 0.000006$   | $0.736638 \pm 0.000097$ |
| 42  | Q0.4142_0.80000.5000  | $0.029913 \pm 0.000001$   | $0.434062 \pm 0.000033$ |
| 43  | Q0.4142_0.8000_0.5000 | $0.051732 \pm 0.000007$   | $0.800926 \pm 0.000459$ |
| 44  | Q0.41420.80000.8000   | $0.023689 \pm 0.000002$   | $0.237460 \pm 0.000025$ |
| 45  | Q0.41420.8000_0.8000  | $0.052231 \pm 0.000043$   | $0.842865 \pm 0.000800$ |
| 46  | Q0.4142_0.80000.8000  | $0.027042 \pm 0.000000$   | $0.317570 \pm 0.000013$ |
| 47  | Q0.4142_0.8000_0.8000 | $0.068924 \pm 0.000177$   | $0.900204 \pm 0.000799$ |
| 48  | Q0.43000.36340.1256   | $0.031827 \pm 0.000001$   | $0.531874 \pm 0.000000$ |
| 49  | Q0.4557_0.35000.5300  | $0.030419 \pm 0.000002$   | $0.438311 \pm 0.000005$ |
| 50  | Q0.45570.5300_0.3500  | $0.040932 \pm 0.000001$   | $0.699399 \pm 0.000007$ |
| 51  | Q0.6628_0.95000.9500  | $0.039279 \pm 0.000003$   | $0.512350 \pm 0.000002$ |
| 52  | Q0.6667_0.0000_0.8000 | $0.066064 \pm 0.000001$   | $0.847699 \pm 0.000056$ |
| 53  | Q0.7000_0.0000_0.0000 | $0.044700 \pm 0.000032$   | $0.670010 \pm 0.000085$ |
| 54  | Q0.7147_0.22050.7110  | $0.037970 \pm 0.000002$   | $0.529130 \pm 0.000005$ |
| 55  | Q0.8500_0.00000.2500  | $0.044218 \pm 0.000001$   | $0.635849 \pm 0.000003$ |
| 56  | Q0.8500_0.0000_0.2500 | $0.051983 \pm 0.000002$   | $0.728555 \pm 0.000010$ |
| 57  | Q0.8500_0.00000.6000  | $0.040159 \pm 0.000003$   | $0.568325 \pm 0.000041$ |
| 58  | Q0.8500_0.0000_0.6000 | $0.059521 \pm 0.000012$   | $0.790074 \pm 0.000018$ |
| 59  | Q0.8500_0.00000.8500  | $0.038076 \pm 0.000005$   | $0.519162 \pm 0.000079$ |
| 60  | Q0.8500_0.0000_0.8500 | $0.066872 \pm 0.000039$   | $0.831514 \pm 0.000752$ |
| 61  | Q0.85000.2500_0.0000  | $0.045132 \pm 0.000002$   | $0.651197 \pm 0.000013$ |
| 62  | Q0.8500_0.2500_0.0000 | $0.050852 \pm 0.000002$   | $0.713600 \pm 0.000011$ |
| 63  | Q0.85000.25000.2500   | $0.041894 \pm 0.000001$   | $0.603620 \pm 0.000001$ |
| 64  | Q0.85000.2500_0.2500  | $0.048841 \pm 0.000002$   | $0.697779 \pm 0.000008$ |
| 65  | Q0.8500_0.25000.2500  | $0.046830 \pm 0.000002$   | $0.667348 \pm 0.000002$ |
| 66  | Q0.8500_0.2500_0.2500 | $0.055581 \pm 0.000001$   | $0.758492 \pm 0.000021$ |
| 67  | Q0.85000.5000_0.5000  | $0.050149 \pm 0.000007$   | $0.712483 \pm 0.000024$ |
| 68  | Q0.8500_0.50000.5000  | $0.046038 \pm 0.000006$   | $0.651123 \pm 0.000009$ |
| 69  | Q0.8500_0.5000_0.5000 | $0.066578 \pm 0.000021$   | $0.829624 \pm 0.000792$ |
| 70  | Q0.8500_0.8000_0.2500 | $0.066026 \pm 0.000001$   | $0.820640 \pm 0.000050$ |
| 71  | Q0.85000.8000_0.8000  | $0.052249 \pm 0.000001$   | $0.728871 \pm 0.000089$ |
| 72  | Q0.8500_0.80000.8000  | $0.045661 \pm 0.000000$   | $0.631530 \pm 0.000003$ |
| 73  | Q0.8500_0.8000_0.8000 | $0.088583 \pm 0.000323$   | $0.907636 \pm 0.004740$ |
| 74  | Q0.8514_0.73430.8267  | $0.044689 \pm 0.000002$   | $0.619100 \pm 0.000016$ |

TABLE IX: The recoil velocity (in km/s) and peak luminosity as calculated using  $\ell_{max} = 6$  and  $r_{max} = 113.0m$  for spinning systems.  $W_V$  and  $W_{\mathcal{L}}$  are the weights used in the least-squares fitting.

| -   |                       |                    |                   |                                             |                   |
|-----|-----------------------|--------------------|-------------------|---------------------------------------------|-------------------|
| Run | Config.               | $V  [\rm km/s]$    | $W_V  [\rm km/s]$ | $\mathcal{L}_{	ext{max}}$                   | $W_{\mathcal{L}}$ |
| 1   | Q0.1429_0.8000_0.8000 | $9.00\pm 6.89$     | 6.77              | $3.4148e-04 \pm 3.9140e-05$                 | 1.0600e-05        |
| 2   | Q0.2000_0.00000.5000  | $188.07\pm6.77$    | 5.53              | $2.2478\text{e-}04 \pm 2.3403\text{e-}05$   | 2.3097e-05        |
| 3   | Q0.2000_0.0000_0.5000 | $61.54 \pm 11.35$  | 5.53              | $4.0031 \text{e-}04 \pm 2.8094 \text{e-}05$ | 2.3097e-05        |
| 4   | Q0.20000.50000.2500   | $159.44\pm8.51$    | 5.53              | $2.4906\text{e-}04 \pm 2.3609\text{e-}05$   | 2.3097e-05        |
| 5   | Q0.20000.5000_0.2500  | $101.21\pm11.69$   | 5.53              | $3.3109e-04 \pm 2.5973e-05$                 | 2.3097e-05        |
| 6   | Q0.2000_0.50000.2500  | $170.47\pm8.64$    | 5.53              | $2.5227 \text{e-}04 \pm 2.3526 \text{e-}05$ | 2.3097e-05        |
| 7   | Q0.2000_0.5000_0.2500 | $107.36 \pm 11.25$ | 5.53              | $3.3546\text{e-}04 \pm 2.5964\text{e-}05$   | 2.3097e-05        |
| 8   | Q0.20000.50000.6500   | $194.57\pm6.39$    | 5.53              | $2.1025\text{e-}04 \pm 2.3236\text{e-}05$   | 2.3097e-05        |
| 9   | Q0.20000.5000_0.6500  | $37.07 \pm 10.97$  | 5.53              | $4.4690e-04 \pm 3.1983e-05$                 | 2.3097e-05        |
| 10  | Q0.2000_0.50000.6500  | $206.82\pm6.73$    | 5.53              | $2.1396\text{e-}04 \pm 2.3188\text{e-}05$   | 2.3097e-05        |
| 11  | Q0.2000_0.5000_0.6500 | $36.12 \pm 7.64$   | 2.05              | $4.7210e-04 \pm 2.1541e-05$                 | 1.3361e-05        |
| 12  | Q0.2000_0.80000.5000  | $197.49\pm7.00$    | 5.53              | $2.3004\text{e-}04 \pm 2.3318\text{e-}05$   | 2.3097e-05        |
| 13  | Q0.20000.80000.8000   | $202.40\pm6.17$    | 5.53              | $2.0063\text{e-}04 \pm 2.3126\text{e-}05$   | 2.3097e-05        |
| 14  | Q0.20000.8000_0.8000  | $25.16 \pm 9.50$   | 5.53              | $5.4878\text{e-}04 \pm 4.5807\text{e-}05$   | 2.3097e-05        |
| 15  | Q0.2000_0.80000.8000  | $222.64 \pm 6.44$  | 5.53              | $2.0140\text{e-}04 \pm 2.3224\text{e-}05$   | 2.3097e-05        |
| 16  | Q0.3333_0.82500.8250  | $358.27 \pm 6.34$  | 6.33              | $3.9122\text{e-}04 \pm 5.2010\text{e-}06$   | -5.2000e-06       |
| 17  | Q0.4142_0.0000_0.0000 | $171.83\pm4.45$    | 3.28              | $6.5636\text{e-}04 \pm 6.9340\text{e-}06$   | -3.8000e-06       |
| 18  | Q0.4142_0.00000.5000  | $283.81\pm10.64$   | 8.11              | $5.3579\text{e-}04\pm9.9130\text{e-}06$     | -3.2700e-07       |
|     |                       |                    |                   | Continued of                                | n next page       |

TABLE IX – continued from previous page

| Run      | Config.                                 | $V [\mathrm{km/s}]$                    | $W_V  [\rm km/s]$ | $\mathcal{L}_{\max}$                              | $W_{\mathcal{L}}$     |
|----------|-----------------------------------------|----------------------------------------|-------------------|---------------------------------------------------|-----------------------|
| 19       | Q0.4142_0.0000_0.5000                   | $53.64 \pm 18.02$                      | 8.11              | $8.4119e-04 \pm 3.65$                             | 04e-05 -3.2700e-07    |
| 20       | Q0.4142_0.00000.8500                    | $354.99 \pm 9.19$                      | 8.11              | $4.8190e-04 \pm 5.01$                             | 50e-06 -3.2700e-07    |
| 21       | Q0.4142_0.0000_0.8500                   | $48.63 \pm 12.71$                      | 8.11              | $1.1045e-03 \pm 6.79$                             | 57e-05 -3.2700e-07    |
| 22       | Q0.41420.4000_0.0686                    | $138.56 \pm 5.38$                      | 3.28              | $6.5938e-04 \pm 6.49$                             | 80e-06 -3.8000e-06    |
| 23       | Q0.4142_0.40000.0686                    | $209.72 \pm 4.04$                      | 3.28              | $6.5341e-04 \pm 7.36$                             | 00e-06 -3.8000e-06    |
| 24       | Q0.41420.4000_0.1657                    | $114.17 \pm 16.72$                     | 8.11              | $6.8400e-04 \pm 2.28$                             | 96e-05 -3.2700e-07    |
| $25^{$   | Q0.4142_0.40000.1657                    | $230.43 \pm 12.11$                     | 8.11              | $6.1957e-04 \pm 1.41$                             | 96e-05 -3.2700e-07    |
| 26       | Q0.41420.50000.2500                     | $198.31 \pm 12.55$                     | 8.11              | $5.6874e-04 \pm 1.33$                             | 84e-05 -3.2700e-07    |
| 27       | Q0.41420.5000_0.2500                    | $96.96 \pm 18.63$                      | 8.11              | $7.0249e-04 \pm 2.31$                             | 53e-05 -3.2700e-07    |
| 28       | Q0.4142_0.50000.2500                    | $256.76 \pm 11.96$                     | 8.11              | $6.0094e-04 \pm 1.29$                             | 42e-05 -3.2700e-07    |
| 29       | Q0.4142_0.5000_0.2500                   | $125.97 \pm 12.72$                     | 8.11              | $7.6366e-04 \pm 2.85$                             | 92e-05 -3.2700e-07    |
| 30       | Q0.41420.50000.6500                     | $281.17\pm10.11$                       | 8.11              | $4.9209e-04 \pm 6.70$                             | 60e-06 -3.2700e-07    |
| 31       | Q0.41420.5000_0.6500                    | $79.92 \pm 15.38$                      | 8.11              | $8.6833e-04 \pm 3.71$                             | 50e-05 -3.2700e-07    |
| 32       | Q0.4142_0.50000.6500                    | $346.13\pm10.42$                       | 8.11              | $5.2023e-04 \pm 7.66$                             | 80e-06 -3.2700e-07    |
| 33       | Q0.4142_0.5000_0.6500                   | $29.39 \pm 14.03$                      | 8.11              | $9.7239e-04 \pm 4.50$                             | 06e-05 -3.2700e-07    |
| 34       | Q0.41420.8000_0.0000                    | $135.68\pm16.28$                       | 8.11              | $6.2116e-04 \pm 1.69$                             | 83e-05 -3.2700e-07    |
| 35       | Q0.4142_0.8000_0.0000                   | $209.57\pm12.36$                       | 8.11              | $6.9419e-04 \pm 2.03$                             | 00e-05 -3.2700e-07    |
| 36       | Q0.41420.8000_0.1373                    | $122.06\pm5.91$                        | 3.28              | $6.6903\text{e-}04\pm5.91$                        | 20e-06 -3.8000e-06    |
| 37       | Q0.4142_0.80000.1373                    | $248.99 \pm 3.97$                      | 3.28              | $6.4856\text{e-}04\pm6.53$                        | 00e-06 -3.8000e-06    |
| 38       | Q0.41420.8000_0.3314                    | $93.65 \pm 19.91$                      | 8.11              | 7.0564e-04 $\pm$ 2.32                             | 00e-05 -3.2700e-07    |
| 39       | Q0.4142_0.80000.3314                    | $296.13 \pm 11.09$                     | 8.11              | 6.0388e-04 $\pm$ 1.23                             | 31e-05 -3.2700e-07    |
| 40       | Q0.41420.80000.5000                     | $231.12\pm11.39$                       | 8.11              | $5.0490 \text{e-} 04  \pm  6.67$                  | 60e-06 -3.2700e-07    |
| 41       | Q0.41420.8000_0.5000                    | $95.65 \pm 17.79$                      | 8.11              | 7.6998e-04 $\pm$ 2.77                             | 74e-05 -3.2700e-07    |
| 42       | Q0.4142_0.80000.5000                    | $334.99\pm10.54$                       | 8.11              | 5.5928e-04 $\pm$ 1.04                             | 29e-05 -3.2700e-07    |
| 43       | Q0.4142_0.8000_0.5000                   | $68.44 \pm 10.96$                      | 8.11              | 9.1361e-04 $\pm$ 4.22                             | 43e-05 -3.2700e-07    |
| 44       | Q0.41420.80000.8000                     | $290.17\pm9.60$                        | 8.11              | 4.6513e-04 $\pm$ 5.95                             | 10e-06 -3.2700e-07    |
| 45       | Q0.41420.8000_0.8000                    | $115.98\pm15.08$                       | 8.11              | 9.5208e-04 $\pm$ 4.74                             | 89e-05 -3.2700e-07    |
| 46       | Q0.4142_0.80000.8000                    | $396.52\pm10.01$                       | 8.11              | $5.0573e-04 \pm 6.14$                             | 80e-06 -3.2700e-07    |
| 47       | Q0.4142_0.8000_0.8000                   | $11.74\pm8.11$                         | 8.11              | $1.1441e-03 \pm 7.97$                             | 53e-05 -3.2700e-07    |
| 48       | Q0.43000.36340.1256                     | $179.06 \pm 4.53$                      | 2.51              | $6.3181e-04 \pm 7.03$                             | 00e-06 3.3600e-06     |
| 49       | Q0.4557_0.35000.5300                    | $317.02 \pm 0.97$                      | -0.18             | $5.9995e-04 \pm 5.16$                             | 70e-06 -3.0700e-06    |
| 50       | Q0.45570.5300_0.3500                    | $90.16 \pm 7.57$                       | -0.18             | $8.1272e-04 \pm 1.27$                             | 73e-05 -3.0700e-06    |
| 51       | Q0.6628_0.95000.9500                    | $500.81 \pm 0.49$                      | 0.00              | $7.9523e-04 \pm 1.77$                             | 20e-06 0.0000e+00     |
| 52       | Q0.6667_0.0000_0.8000                   | $92.28 \pm 6.31$                       | 0.00              | $1.2748e-03 \pm 4.60$                             | 67e-05 0.0000e+00     |
| 53       | Q0.7000_0.0000_0.0000                   | $94.36 \pm 4.40$                       | 2.64              | $9.5241e-04 \pm 1.58$                             | 86e-05 7.9930e-06     |
| 54       | Q0.7147_0.22050.7110                    | $314.09 \pm 2.14$                      | 0.08              | $8.0837e-04 \pm 5.03$                             | 80e-06 2.5100e-07     |
| 55       | Q0.8500_0.00000.2500                    | $105.78 \pm 2.34$                      | 0.99              | $9.4488e-04 \pm 3.65$                             | 10e-06 -3.6280e-06    |
| 56       | Q0.8500_0.0000_0.2500                   | $36.22 \pm 1.18$                       | 0.99              | $1.0832e-03 \pm 4.63$                             | 30e-06 -3.6280e-06    |
| 57       | Q0.8500_0.00000.6000                    | $198.63 \pm 1.17$                      | 0.26              | $8.7115e-04 \pm 8.64$                             | 20e-06 7.0430e-06     |
| 58       | Q0.8500_0.0000_0.6000                   | $99.54 \pm 1.32$                       | 0.26              | $1.2072e-03 \pm 1.81$                             | 20e-05 7.0430e-06     |
| 59<br>CO | Q0.8500_0.00000.8500                    | $266.69 \pm 0.92$                      | 0.26              | $8.2504e-04 \pm 8.61$                             | 30e-06 7.0430e-06     |
| 60<br>C1 | Q0.8500_0.0000_0.8500                   | $130.69 \pm 1.49$                      | 0.26              | $1.3259e-03 \pm 2.27$                             | 64e-05 7.0430e-06     |
| 61<br>C0 | Q0.85000.2500_0.0000                    | $34.43 \pm 4.20$                       | 2.76              | $9.5753e-04 \pm 1.49$                             | 16e-05 1.0846e-05     |
| 62<br>62 | Q0.8500_0.2500_0.0000                   | $86.83 \pm 2.95$                       | 2.76              | $1.0533e-03 \pm 1.58$                             | 77e-05 1.0846e-05     |
| 03       | Q0.85000.25000.2500                     | $38.42 \pm 1.24$                       | 0.99              | $9.0338e-04 \pm 3.03$                             | 30e-00 -3.0280e-00    |
| 04<br>65 | $Q_{0.8500} = 0.2500 = 0.2500$          | $83.23 \pm 2.32$                       | 0.99              | $1.0311e-03 \pm 3.09$                             | 40e-00 -3.0280e-00    |
| 00<br>66 | $Q_{0.8500} = 0.2500 = 0.2500$          | $100.00 \pm 1.00$<br>$28.84 \pm 1.02$  | 0.99              | $9.0092e-04 \pm 3.00$<br>$1.1497_{0.02} \pm 4.07$ | 30e-00 -3.0280e-00    |
| 67       | $\bigcirc 0.8500 \_ 0.2300 \_ 0.2300$   | $20.04 \pm 1.00$<br>$104.72 \pm 4.10$  | 0.99              | $1.14210-00 \pm 4.91$<br>1.06220 02 $\pm 1.70$    | -302-00 $-3.02000-00$ |
| 68       |                                         | $134.13 \pm 4.12$<br>$268.68 \pm 4.64$ | 0.20              | $1.0022e-03 \pm 1.79$<br>$0.7748_0 0.04 \pm 1.96$ | 670-05 7.04300-00     |
| 60       | $O0.8500 \pm 0.5000 \pm 0.5000$         | $200.00 \pm 4.04$<br>$14.74 \pm 1.68$  | 0.20              | $1.3295e_0? + 1.5?$                               | 886-05 -3 62800-06    |
| 70       | Q0 8500 0 8000 0 2500                   | 10072 + 320                            | 0.99              | $1.32300-03 \pm 1.03$<br>$1.3070e-03 \pm 8.05$    | 30e-06 7 0430e-06     |
| 71       | Q0.8500 -0.8000 0 8000                  | $325.26 \pm 7.03$                      | 0.20              | $1.1040e-03 \pm 1.86$                             | 41e-05 7.0430e-06     |
| 72       | Q0.8500 0.8000 -0.8000                  | $409.24 \pm 4.09$                      | 0.20              | 9.5279e-04 + 1.17                                 | 34e-05 7.0430e-06     |
| 73       | Q0.8500_0.8000_0.8000                   | $3.74 \pm 4.62$                        | 0.26              | 1.6679e-03 + 2.13                                 | 06e-05 7.0430e-06     |
| 74       | Q0.8514_0.73430.8267                    | $406.25 \pm 1.51$                      | 1.25              | 9.4077e-04 + 7.31                                 | 40e-06 3.0400e-06     |
|          | • · · · · · • • • • • • • • • • • • • • | * =                                    |                   |                                                   |                       |

TABLE X: The peak gravitational wave frequency and amplitude of the 22 strain mode for the most recent runs presented in this paper.

| Run      | Config.                          | $m\omega_{22}^{peak}$                      | $(r/m) h_{22}^{peak} $                     |
|----------|----------------------------------|--------------------------------------------|--------------------------------------------|
| 1        | Q0.1429 0.8000 0.8000            | $0.4184 \pm 0.0038$                        | $0.1650 \pm 0.0005$                        |
| 2        | Q0.2000 0.0000 -0.5000           | $0.2823 \pm 0.0029$                        | $0.2049 \pm 0.0002$                        |
| 3        | Q0.2000 0.0000 0.5000            | $0.3670 \pm 0.0052$                        | $0.2110 \pm 0.0008$                        |
| 4        | Q0.2000 -0.5000 -0.2500          | $0.2942 \pm 0.0025$                        | $0.2065 \pm 0.0010$                        |
| 5        | Q0.2000 -0.5000 0.2500           | $0.3375 \pm 0.0025$                        | $0.2088 \pm 0.0014$                        |
| 6        | Q0.2000 0.5000 -0.2500           | $0.2970 \pm 0.0044$                        | $0.2060 \pm 0.0009$                        |
| 7        | Q0.2000 0.5000 0.2500            | $0.3357 \pm 0.0030$                        | $0.2094 \pm 0.0016$                        |
| 8        | Q0.2000 -0.5000 -0.6500          | $0.2712 \pm 0.0030$                        | $0.2038 \pm 0.0001$                        |
| 9        | Q0.20000.5000_0.6500             | $0.3887 \pm 0.0030$                        | $0.2126 \pm 0.0009$                        |
| 10       | Q0.2000_0.50000.6500             | $0.2732 \pm 0.0043$                        | $0.2045 \pm 0.0007$                        |
| 11       | Q0.2000_0.5000_0.6500            | $0.3871 \pm 0.0078$                        | $0.2108 \pm 0.0007$                        |
| 12       | Q0.2000_0.80000.5000             | $0.2842 \pm 0.0028$                        | $0.2029 \pm 0.0002$                        |
| 13       | Q0.20000.80000.8000              | $0.2620 \pm 0.0028$                        | $0.2021\pm0.0002$                          |
| 14       | Q0.20000.8000_0.8000             | $0.3394 \pm 0.0016$                        | $0.2047 \pm 0.0009$                        |
| 15       | Q0.2000_0.80000.8000             | $0.2594 \pm 0.0038$                        | $0.2012\pm0.0003$                          |
| 16       | Q0.3333_0.82500.8250             | $0.2893 \pm 0.0028$                        | $0.2799\pm0.0006$                          |
| 17       | Q0.4142_0.0000_0.0000            | $0.3395 \pm 0.0031$                        | $0.3188\pm0.0006$                          |
| 18       | Q0.4142_0.00000.5000             | $0.3139 \pm 0.0034$                        | $0.3182\pm0.0005$                          |
| 19       | Q0.4142_0.0000_0.5000            | $0.3795 \pm 0.0055$                        | $0.3174\pm0.0011$                          |
| 20       | Q0.4142_0.00000.8500             | $0.2993 \pm 0.0033$                        | $0.3186\pm0.0010$                          |
| 21       | Q0.4142_0.0000_0.8500            | $0.4344 \pm 0.0080$                        | $0.3176\pm0.0019$                          |
| 22       | Q0.41420.4000_0.0686             | $0.3379 \pm 0.0032$                        | $0.3192 \pm 0.0006$                        |
| 23       | Q0.4142_0.40000.0686             | $0.3401 \pm 0.0042$                        | $0.3194 \pm 0.0004$                        |
| 24       | Q0.41420.4000_0.1657             | $0.3460 \pm 0.0043$                        | $0.3192 \pm 0.0003$                        |
| 25       | Q0.4142_0.40000.1657             | $0.3327 \pm 0.0034$                        | $0.3181 \pm 0.0000$                        |
| 26       | Q0.41420.50000.2500              | $0.3175 \pm 0.0035$                        | $0.3173 \pm 0.0001$                        |
| 27       | Q0.41420.5000_0.2500             | $0.3499 \pm 0.0041$                        | $0.3201 \pm 0.0004$                        |
| 28       | Q0.4142_0.50000.2500             | $0.3260 \pm 0.0034$                        | $0.3180 \pm 0.0002$                        |
| 29<br>30 | $Q0.4142_0.5000_0.2500$          | $0.3003 \pm 0.0032$<br>0.2006 $\pm 0.0035$ | $0.3208 \pm 0.0000$<br>$0.3177 \pm 0.0006$ |
| 30<br>31 | Q0.4142 - 0.5000 - 0.0500        | $0.2990 \pm 0.0033$<br>$0.3747 \pm 0.0064$ | $0.3177 \pm 0.0000$<br>$0.3207 \pm 0.0000$ |
| 32       | $Q_{0.4142} = 0.5000 \pm 0.0500$ | $0.3053 \pm 0.0034$                        | $0.3267 \pm 0.0003$<br>$0.3151 \pm 0.0007$ |
| 33       | Q0 4142 0 5000 0 6500            | $0.0005 \pm 0.0001$<br>$0.4065 \pm 0.0049$ | $0.3219 \pm 0.00016$                       |
| 34       | Q0.4142 -0.8000 0.0000           | $0.3345 \pm 0.0037$                        | $0.3162 \pm 0.0000$                        |
| 35       | Q0.4142_0.8000_0.0000            | $0.3479 \pm 0.0049$                        | $0.3164 \pm 0.0001$                        |
| 36       | Q0.41420.8000_0.1373             | $0.3452 \pm 0.0033$                        | $0.3227 \pm 0.0001$                        |
| 37       | Q0.4142_0.80000.1373             | $0.3326 \pm 0.0065$                        | $0.3167 \pm 0.0005$                        |
| 38       | Q0.41420.8000_0.3314             | $0.3400 \pm 0.0033$                        | $0.3156\pm0.0003$                          |
| 39       | Q0.4142_0.80000.3314             | $0.3331 \pm 0.0042$                        | $0.3184 \pm 0.0006$                        |
| 40       | $Q0.4142\0.8000\0.5000$          | $0.2991 \pm 0.0032$                        | $0.3170\pm0.0005$                          |
| 41       | Q0.41420.8000_0.5000             | $0.3478 \pm 0.0047$                        | $0.3172 \pm 0.0003$                        |
| 42       | Q0.4142_0.80000.5000             | $0.3224 \pm 0.0033$                        | $0.3204 \pm 0.0008$                        |
| 43       | Q0.4142_0.8000_0.5000            | $0.3766 \pm 0.0064$                        | $0.3184 \pm 0.0011$                        |
| 44       | Q0.41420.80000.8000              | $0.2894 \pm 0.0034$                        | $0.3170 \pm 0.0004$                        |
| 45       | Q0.41420.8000_0.8000             | $0.4038 \pm 0.0064$                        | $0.3265 \pm 0.0009$                        |
| 46       | Q0.4142_0.80000.8000             | $0.2975 \pm 0.0040$                        | $0.3104 \pm 0.0008$                        |
| 47       | Q0.4142_0.8000_0.8000            | $0.4263 \pm 0.0081$                        | $0.3220 \pm 0.0018$                        |
| 48       | QU.43000.30340.1250              | $0.3291 \pm 0.0025$<br>0.2170 $\pm 0.0066$ | $0.3239 \pm 0.0000$                        |
| 49<br>50 | $Q_{0.4557} = 0.5500 = -0.5500$  | $0.3170 \pm 0.0000$<br>$0.2572 \pm 0.0025$ | $0.3303 \pm 0.0000$<br>0.2218 $\pm$ 0.0005 |
| 51       | $Q0.4337 \pm 0.3300 \pm 0.3300$  | $0.3373 \pm 0.0023$<br>$0.3282 \pm 0.0103$ | $0.3318 \pm 0.0003$<br>$0.3744 \pm 0.0043$ |
| 52       | $Q_{0.0028} = 0.3300 = -0.3300$  | $0.3232 \pm 0.0133$<br>$0.4073 \pm 0.0074$ | $0.3744 \pm 0.0045$<br>$0.3753 \pm 0.0016$ |
| 53       | Q0.7000_0.0000_0.0000            | 0.3547 + 0.0014                            | $0.3806 \pm 0.0010$                        |
| 54       | Q0.7147_0.22050.7110             | $0.3266 \pm 0.0027$                        | $0.3795 \pm 0.0013$                        |
| 55       | Q0.8500_0.00000.2500             | $0.3474 \pm 0.0028$                        | $0.3915 \pm 0.0003$                        |
| 56       | Q0.8500_0.0000_0.2500            | $0.3690 \pm 0.0041$                        | $0.3915 \pm 0.0004$                        |
| 57       | Q0.8500_0.00000.6000             | $0.3339 \pm 0.0035$                        | $0.3909 \pm 0.0010$                        |
| 58       | Q0.8500_0.0000_0.6000            | $0.3858 \pm 0.0048$                        | $0.3911\pm0.0010$                          |
| 59       | Q0.8500_0.00000.8500             | $0.3268 \pm 0.0031$                        | $0.3918\pm0.0015$                          |
|          |                                  | Continu                                    | ied on next page                           |

TABLE X – continued from previous page

| Run | Config.               | $m\omega_{22}^{peak}$ | $\frac{1}{(r/m) h_{22}^{peak} }$ |
|-----|-----------------------|-----------------------|----------------------------------|
| 60  | Q0.8500_0.0000_0.8500 | $0.4011 \pm 0.0059$   | $0.3897 \pm 0.0011$              |
| 61  | Q0.85000.2500_0.0000  | $0.3503 \pm 0.0038$   | $0.3912 \pm 0.0002$              |
| 62  | Q0.8500_0.2500_0.0000 | $0.3643 \pm 0.0052$   | $0.3910\pm0.0006$                |
| 63  | Q0.85000.25000.2500   | $0.3408 \pm 0.0029$   | $0.3915\pm0.0003$                |
| 64  | Q0.85000.2500_0.2500  | $0.3606 \pm 0.0031$   | $0.3915\pm0.0005$                |
| 65  | Q0.8500_0.25000.2500  | $0.3543 \pm 0.0027$   | $0.3915\pm0.0004$                |
| 66  | Q0.8500_0.2500_0.2500 | $0.3781 \pm 0.0057$   | $0.3916\pm0.0011$                |
| 67  | Q0.85000.5000_0.5000  | $0.3642 \pm 0.0023$   | $0.3914\pm0.0006$                |
| 68  | Q0.8500_0.50000.5000  | $0.3497 \pm 0.0022$   | $0.3915\pm0.0012$                |
| 69  | Q0.8500_0.5000_0.5000 | $0.4024 \pm 0.0112$   | $0.3922\pm0.0023$                |
| 70  | Q0.8500_0.8000_0.2500 | $0.4035 \pm 0.0061$   | $0.3921\pm0.0017$                |
| 71  | Q0.85000.8000_0.8000  | $0.3694 \pm 0.0021$   | $0.3891\pm0.0037$                |
| 72  | Q0.8500_0.80000.8000  | $0.3491 \pm 0.0031$   | $0.3914\pm0.0038$                |
| 73  | Q0.8500_0.8000_0.8000 | $0.4416 \pm 0.0083$   | $0.3951\pm0.0032$                |
| 74  | Q0.8514_0.73430.8267  | $0.3485 \pm 0.0052$   | $0.3897 \pm 0.0023$              |

TABLE XI: The peak gravitatonal wave frequency and amplitude of the 22 strain mode for the runs presented in Ref [22]

| Run | Config.               | $m\omega_{22}^{peak}$ | $(r/m) h_{22}^{peak} $ |
|-----|-----------------------|-----------------------|------------------------|
| 75  | Q0.1667_0.0000_0.0000 | $0.3078 \pm 0.0025$   | $0.1812 \pm 0.0004$    |
| 76  | Q0.2000_0.0000_0.0000 | $0.3152 \pm 0.0028$   | $0.2074 \pm 0.0005$    |
| 77  | Q0.2500_0.0000_0.0000 | $0.3205 \pm 0.0033$   | $0.2406 \pm 0.0005$    |
| 78  | Q0.3333_0.0000_0.0000 | $0.3328 \pm 0.0034$   | $0.2859 \pm 0.0002$    |
| 79  | Q0.3333_0.00000.5000  | $0.3003 \pm 0.0036$   | $0.2836 \pm 0.0000$    |
| 80  | Q0.3333_0.0000_0.5000 | $0.3785 \pm 0.0024$   | $0.2878 \pm 0.0001$    |
| 81  | Q0.3333_0.00000.8500  | $0.2857 \pm 0.0045$   | $0.2806 \pm 0.0002$    |
| 82  | Q0.3333_0.0000_0.8500 | $0.4056 \pm 0.0072$   | $0.2891 \pm 0.0003$    |
| 83  | Q0.33330.50000.2500   | $0.3113 \pm 0.0029$   | $0.2842 \pm 0.0003$    |
| 84  | Q0.33330.5000_0.2500  | $0.3482 \pm 0.0024$   | $0.2866 \pm 0.0003$    |
| 85  | Q0.3333_0.50000.2500  | $0.3186 \pm 0.0046$   | $0.2850 \pm 0.0000$    |
| 86  | Q0.3333_0.5000_0.2500 | $0.3568 \pm 0.0035$   | $0.2872 \pm 0.0001$    |
| 87  | Q0.33330.50000.6500   | $0.2905 \pm 0.0040$   | $0.2832 \pm 0.0001$    |
| 88  | Q0.33330.5000_0.6500  | $0.3864 \pm 0.0026$   | $0.2884 \pm 0.0002$    |
| 89  | Q0.3333_0.50000.6500  | $0.2961 \pm 0.0039$   | $0.2839 \pm 0.0001$    |
| 90  | Q0.3333_0.5000_0.6500 | $0.4025 \pm 0.0061$   | $0.2885 \pm 0.0003$    |
| 91  | Q0.33330.8000_0.0000  | $0.3232 \pm 0.0029$   | $0.2829 \pm 0.0002$    |
| 92  | Q0.3333_0.8000_0.0000 | $0.3403 \pm 0.0031$   | $0.2885 \pm 0.0001$    |
| 93  | Q0.33330.80000.5000   | $0.2950 \pm 0.0031$   | $0.2814 \pm 0.0000$    |
| 94  | Q0.33330.8000_0.5000  | $0.3610 \pm 0.0037$   | $0.2881 \pm 0.0003$    |
| 95  | Q0.3333_0.80000.5000  | $0.3024 \pm 0.0038$   | $0.2829 \pm 0.0001$    |
| 96  | Q0.3333_0.8000_0.5000 | $0.3810 \pm 0.0024$   | $0.2888 \pm 0.0002$    |
| 97  | Q0.33330.80000.8000   | $0.2814 \pm 0.0044$   | $0.2826 \pm 0.0001$    |
| 98  | Q0.3333_0.8000_0.8000 | $0.4331 \pm 0.0051$   | $0.2895 \pm 0.0002$    |
| 99  | Q0.4000_0.0000_0.0000 | $0.3382 \pm 0.0029$   | $0.3139 \pm 0.0000$    |
| 100 | Q0.5000_0.0000_0.0000 | $0.3462 \pm 0.0031$   | $0.3450 \pm 0.0004$    |
| 101 | Q0.5000_0.00000.8000  | $0.3080 \pm 0.0036$   | $0.3423 \pm 0.0009$    |
| 102 | Q0.5000_0.0000_0.8000 | $0.4040 \pm 0.0046$   | $0.3477 \pm 0.0010$    |
| 103 | Q0.50000.50000.1000   | $0.3332 \pm 0.0037$   | $0.3452 \pm 0.0001$    |
| 104 | Q0.5000_0.5000_0.1000 | $0.3609 \pm 0.0047$   | $0.3456 \pm 0.0003$    |
| 105 | Q0.50000.5000_0.5000  | $0.3712 \pm 0.0028$   | $0.3459 \pm 0.0005$    |
| 106 | Q0.5000_0.50000.5000  | $0.3246 \pm 0.0038$   | $0.3436\pm0.0005$      |
| 107 | Q0.50000.50000.6000   | $0.3092 \pm 0.0034$   | $0.3439 \pm 0.0006$    |
| 108 | Q0.5000_0.5000_0.6000 | $0.4021 \pm 0.0044$   | $0.3462 \pm 0.0010$    |
| 109 | Q0.6000_0.0000_0.0000 | $0.3517 \pm 0.0029$   | $0.3661 \pm 0.0004$    |
| 110 | Q0.6667_0.0000_0.0000 | $0.3525 \pm 0.0028$   | $0.3757 \pm 0.0003$    |
| 111 | Q0.7500_0.0000_0.0000 | $0.3560 \pm 0.0028$   | $0.3844 \pm 0.0007$    |
| 112 | Q0.7500_0.0000_0.2500 | $0.3674 \pm 0.0047$   | $0.3843 \pm 0.0003$    |
| 113 | Q0.7500_0.00000.5000  | $0.3336 \pm 0.0042$   | $0.3846 \pm 0.0003$    |
| 114 | Q0.7500_0.0000_0.5000 | $0.3827 \pm 0.0044$   | $0.3848 \pm 0.0006$    |
|     |                       | Continu               | ied on next page       |

TABLE XI – continued from previous page

| Run | Config.               | $m\omega_{22}^{peak}$ | $\frac{1}{(r/m) h_{22}^{peak} }$ |
|-----|-----------------------|-----------------------|----------------------------------|
| 115 | Q0.7500_0.00000.8000  | $0.3218 \pm 0.0039$   | $0.3840 \pm 0.0007$              |
| 116 | Q0.7500_0.0000_0.8000 | $0.3998 \pm 0.0054$   | $0.3843 \pm 0.0010$              |
| 117 | Q0.75000.2500_0.2500  | $0.3605 \pm 0.0045$   | $0.3844 \pm 0.0002$              |
| 118 | Q0.7500_0.25000.2500  | $0.3507 \pm 0.0039$   | $0.3842 \pm 0.0002$              |
| 119 | Q0.75000.5000_0.0000  | $0.3439 \pm 0.0041$   | $0.3845 \pm 0.0003$              |
| 120 | Q0.7500_0.5000_0.0000 | $0.3708 \pm 0.0041$   | $0.3845 \pm 0.0003$              |
| 121 | Q0.75000.5000_0.2500  | $0.3537 \pm 0.0044$   | $0.3842 \pm 0.0001$              |
| 122 | Q0.7500_0.50000.2500  | $0.3566 \pm 0.0042$   | $0.3846\pm0.0000$                |
| 123 | Q0.75000.50000.5000   | $0.3242 \pm 0.0037$   | $0.3855\pm0.0005$                |
| 124 | Q0.75000.5000_0.5000  | $0.3675 \pm 0.0043$   | $0.3847\pm0.0002$                |
| 125 | Q0.7500_0.50000.5000  | $0.3454 \pm 0.0044$   | $0.3846\pm0.0004$                |
| 126 | Q0.7500_0.5000_0.5000 | $0.4011 \pm 0.0047$   | $0.3856\pm0.0010$                |
| 127 | Q0.75000.5000_0.8000  | $0.3794 \pm 0.0062$   | $0.3848\pm0.0003$                |
| 128 | Q0.75000.8000_0.0000  | $0.3379 \pm 0.0040$   | $0.3849\pm0.0004$                |
| 129 | Q0.7500_0.8000_0.0000 | $0.3772 \pm 0.0051$   | $0.3862\pm0.0004$                |
| 130 | Q0.75000.8000_0.8000  | $0.3738 \pm 0.0027$   | $0.3869\pm0.0021$                |
| 131 | Q0.75000.8500_0.6375  | $0.3657 \pm 0.0038$   | $0.3844\pm0.0018$                |
| 132 | Q0.7500_0.85000.6375  | $0.3448 \pm 0.0042$   | $0.3847\pm0.0007$                |
| 133 | Q0.82000.4400_0.3300  | $0.3588 \pm 0.0032$   | $0.3899\pm0.0002$                |
| 134 | Q0.8500_0.0000_0.0000 | $0.3574 \pm 0.0027$   | $0.3909\pm0.0005$                |
| 135 | Q1.0000_0.00000.5000  | $0.3413 \pm 0.0041$   | $0.3943\pm0.0004$                |
| 136 | Q1.0000_0.00000.8000  | $0.3314 \pm 0.0042$   | $0.3934\pm0.0005$                |
| 137 | Q1.00000.2500_0.0000  | $0.3502 \pm 0.0041$   | $0.3939\pm0.0001$                |
| 138 | Q1.00000.25000.2500   | $0.3408 \pm 0.0047$   | $0.3938\pm0.0002$                |
| 139 | Q1.00000.2500_0.2500  | $0.3571 \pm 0.0049$   | $0.3937\pm0.0002$                |
| 140 | Q1.0000_0.2500_0.2500 | $0.3768 \pm 0.0051$   | $0.3938\pm0.0008$                |
| 141 | Q1.00000.50000.5000   | $0.3265 \pm 0.0038$   | $0.3949\pm0.0004$                |
| 142 | Q1.0000_0.5000_0.5000 | $0.4036 \pm 0.0044$   | $0.3943\pm0.0011$                |
| 143 | Q1.00000.80000.4000   | $0.3213 \pm 0.0042$   | $0.3944 \pm 0.0008$              |
| 144 | Q1.00000.80000.8000   | $0.3109 \pm 0.0038$   | $0.3951\pm0.0005$                |
| 145 | Q1.0000_0.8000_0.8000 | $0.4368 \pm 0.0066$   | $0.3970 \pm 0.0018$              |

Appendix B: Tables of fitting parameters

Here we provide the values for the 19 (or 17) fitting parameters needed to represent the fourth order expansion of the remnant and radiation quantities we model. Table XIII give the 19 parameters for the final mass, Eq. (22) and spin, Eq. (23) formulae. Table XIV gives a reduced set of 9 and 10 parameters fit making use of the accurate determination of the final mass and spin via the isolated horizon formalism [34]. The residuals for these reduced fits, while not as low as the full fit, are comparable. The mass fit RMS increases to 4.4e-4 from 2.6e-4 and the spin fit RMS increases to 9.3e-4 from 7.9e-4. This may provide helpful in a hierarchical approach to extend these formulae to precessing binaries.

Table XV provides the 17 parameters for the aligned recoil formula, Eq. (25) and the 19 of the peak luminosity, Eq. (19). Table XVI completes the fourth order parameterization of the peak strain amplitude and frequency used in Eq. (20) and Eq. (21).

| Run | Config.         | $m\omega_{22}^{peak}$ | $(r/m) h_{22}^{peak} $ |
|-----|-----------------|-----------------------|------------------------|
| 146 | Q1.00_0.00_0.00 | $0.3580 \pm 0.0080$   | $0.3937 \pm 0.0029$    |
| 147 | Q1.00_0.00_0.40 | $0.3738 \pm 0.0031$   | $0.3935 \pm 0.0002$    |
| 148 | Q1.00_0.00_0.60 | $0.3806 \pm 0.0043$   | $0.3935 \pm 0.0005$    |
| 149 | Q1.00_0.00_0.80 | $0.3921 \pm 0.0031$   | $0.3937 \pm 0.0005$    |
| 150 | Q1.00_0.20_0.80 | $0.4010 \pm 0.0046$   | $0.3948 \pm 0.0009$    |
| 151 | Q1.000.40_0.40  | $0.3584 \pm 0.0032$   | $0.3934 \pm 0.0002$    |
| 152 | Q1.00_0.40_0.80 | $0.4134 \pm 0.0032$   | $0.3951 \pm 0.0010$    |
| 153 | Q1.000.60_0.60  | $0.3583 \pm 0.0031$   | $0.3947 \pm 0.0002$    |
| 154 | Q1.000.80_0.80  | $0.3530 \pm 0.0024$   | $0.3989 \pm 0.0006$    |
| 155 | Q1.33_0.000.25  | $0.3450 \pm 0.0034$   | $0.3848 \pm 0.0003$    |
| 156 | Q1.330.80_0.45  | $0.3524 \pm 0.0040$   | $0.3840 \pm 0.0002$    |
| 157 | Q1.33_0.800.45  | $0.3565 \pm 0.0035$   | $0.3856 \pm 0.0002$    |
| 158 | Q1.330.800.60   | $0.3145 \pm 0.0027$   | $0.3850 \pm 0.0005$    |
| 159 | Q1.33_0.80_0.60 | $0.4242 \pm 0.0039$   | $0.3865 \pm 0.0012$    |
| 160 | Q1.33_0.800.80  | $0.3398 \pm 0.0032$   | $0.3828 \pm 0.0009$    |
| 161 | Q2.00_0.000.50  | $0.3170 \pm 0.0030$   | $0.3435 \pm 0.0004$    |
| 162 | Q2.00_0.00_0.50 | $0.3853 \pm 0.0035$   | $0.3454 \pm 0.0004$    |
| 163 | Q2.000.80_0.20  | $0.3429 \pm 0.0031$   | $0.3449 \pm 0.0003$    |
| 164 | Q2.00_0.800.20  | $0.3448 \pm 0.0033$   | $0.3461 \pm 0.0002$    |
| 165 | Q2.000.800.40   | $0.3143 \pm 0.0029$   | $0.3433 \pm 0.0003$    |
| 166 | Q2.00_0.80_0.40 | $0.3885 \pm 0.0041$   | $0.3456 \pm 0.0005$    |
| 167 | Q2.000.800.80   | $0.2980 \pm 0.0026$   | $0.3437 \pm 0.0006$    |
| 168 | Q2.000.80_0.80  | $0.3707 \pm 0.0027$   | $0.3426 \pm 0.0002$    |
| 169 | Q2.00_0.800.80  | $0.3116 \pm 0.0024$   | $0.3457 \pm 0.0009$    |
| 170 | Q2.00_0.80_0.80 | $0.4315 \pm 0.0063$   | $0.3487 \pm 0.0012$    |
| 171 | Q3.00_0.000.67  | $0.2921 \pm 0.0023$   | $0.2833 \pm 0.0003$    |
| 172 | Q3.00_0.00_0.67 | $0.4046 \pm 0.0043$   | $0.2888 \pm 0.0006$    |
| 173 | Q3.000.80_0.80  | $0.3734 \pm 0.0023$   | $0.2871 \pm 0.0001$    |
| 174 | Q3.00_0.800.80  | $0.2827 \pm 0.0022$   | $0.2810 \pm 0.0005$    |
| 175 | Q4.00_0.000.75  | $0.2764 \pm 0.0021$   | $0.2370 \pm 0.0002$    |
| 176 | Q4.00_0.00_0.75 | $0.3998 \pm 0.0038$   | $0.2448 \pm 0.0004$    |
| 177 | Q4.00_0.800.80  | $0.2773 \pm 0.0046$   | $0.2378 \pm 0.0002$    |
| 178 | Q5.00_0.000.80  | $0.2637 \pm 0.0021$   | $0.2011 \pm 0.0003$    |
| 179 | Q5.00_0.00_0.80 | $0.4248 \pm 0.0050$   | $0.2081 \pm 0.0006$    |
| 180 | Q6.00_0.000.83  | $0.2569 \pm 0.0023$   | $0.1760 \pm 0.0002$    |
| 181 | Q6.00_0.00_0.83 | $0.4382 \pm 0.0313$   | $0.1854 \pm 0.0004$    |

TABLE XII. The peak gravitational wave frequency and amplitude of the 22 strain mode for the runs presented in Ref [21].

TABLE XIII. Table of fitting parameters for the mass, and spin formulas.

| M0  | $0.951714 \pm 0.000019$  | L0  | $0.686786 \pm 0.000019$  |
|-----|--------------------------|-----|--------------------------|
| K1  | $-0.052203 \pm 0.000129$ | L1  | $0.614468 \pm 0.000125$  |
| K2a | $-0.005305 \pm 0.000232$ | L2a | $-0.149948 \pm 0.000249$ |
| K2b | $-0.061114 \pm 0.000416$ | L2b | $-0.115787 \pm 0.000417$ |
| K2c | $-0.001567 \pm 0.000116$ | L2c | $-0.004314 \pm 0.000108$ |
| K2d | $1.995914 \pm 0.000235$  | L2d | $0.800085 \pm 0.000228$  |
| K3a | $-0.003966 \pm 0.001365$ | L3a | $-0.073908 \pm 0.001334$ |
| K3b | $-0.005392 \pm 0.000618$ | L3b | $-0.011940 \pm 0.000717$ |
| K3c | $-0.110043 \pm 0.000980$ | L3c | $-0.079447 \pm 0.000956$ |
| K3d | $0.015735 \pm 0.000855$  | L3d | $1.546260 \pm 0.000886$  |
| K4a | $-0.038715 \pm 0.002467$ | L4a | $-0.038602 \pm 0.002548$ |
| K4b | $-0.001674 \pm 0.000547$ | L4b | $-0.003690 \pm 0.000658$ |
| K4c | $-0.000351 \pm 0.000146$ | L4c | $0.000511 \pm 0.000134$  |
| K4d | $-0.157569 \pm 0.002262$ | L4d | $-0.056376 \pm 0.002168$ |
| K4e | $0.009310 \pm 0.001646$  | L4e | $-0.001008 \pm 0.000340$ |
| K4f | $2.977562 \pm 0.000601$  | L4f | $0.958901 \pm 0.000610$  |
| K4g | $0.001792 \pm 0.000712$  | L4g | $-0.107740 \pm 0.001174$ |
| K4h | $-0.004809 \pm 0.000972$ | L4h | $-0.016576\pm0.001058$   |
| K4i | $0.084504 \pm 0.001929$  | L4i | $-0.082960 \pm 0.001991$ |

|     | 0.                       |     |                          |
|-----|--------------------------|-----|--------------------------|
| M0  | $0.951432 \pm 0.000014$  | L0  | $0.685913 \pm 0.000014$  |
| K1  | $-0.052209 \pm 0.000077$ | L1  | $0.613022\pm0.000092$    |
| K2a | 0                        | L2a | $-0.148075\pm0.000174$   |
| K2b | $-0.060308 \pm 0.000349$ | L2b | $-0.102671 \pm 0.000348$ |
| K2c | 0                        | L2c | 0                        |
| K2d | $1.996335 \pm 0.000210$  | L2d | $0.806511 \pm 0.000206$  |
| K3a | 0                        | L3a | 0                        |
| K3b | 0                        | L3b | 0                        |
| K3c | $-0.108377 \pm 0.000612$ | L3c | $-0.074281 \pm 0.000598$ |
| K3d | $0.038011 \pm 0.000376$  | L3d | $1.556791 \pm 0.000684$  |
| K4a | 0                        | L4a | 0                        |
| K4b | 0                        | L4b | 0                        |
| K4c | 0                        | L4c | 0                        |
| K4d | $-0.154938 \pm 0.001817$ | L4d | $-0.086944 \pm 0.001545$ |
| K4e | 0                        | L4e | 0                        |
| K4f | $2.977785 \pm 0.000568$  | L4f | $0.948992 \pm 0.000553$  |
| K4g | 0                        | L4g | $-0.110623 \pm 0.000940$ |
| K4h | 0                        | L4h | 0                        |
| K4i | $0.082810 \pm 0.001171$  | L4i | 0                        |

TABLE XIV. Table of fitting parameters for the mass and spin formulas using a reduced number of fitting parameters.

TABLE XV. Table of fitting parameters (left) for the recoil (in Km/s) and (right) peak luminosity formulas. Nonspinning coefficients N0, N2d, and N4f were determined in Ref. [48].

| Н   | $7499.115 \pm 9.244136$  | N0  | $1.026e - 03 \pm 1.727e - 6$         |
|-----|--------------------------|-----|--------------------------------------|
| H2a | $-1.736510 \pm 0.032585$ | N1  | $8.839321e - 04 \pm 4.914069e - 06$  |
| H2b | $-0.598144 \pm 0.014548$ | N2a | $1.076865e - 04 \pm 1.141520e - 05$  |
| H3a | $-0.318117 \pm 0.032373$ | N2b | $6.882092e - 04 \pm 1.082919e - 05$  |
| H3b | $-0.748613 \pm 0.115497$ | N2c | $-1.342443e - 05 \pm 2.753928e - 06$ |
| H3c | $-1.749784 \pm 0.028088$ | N2d | $-4.092e - 4 \pm 2.847e - 05$        |
| H3d | $-0.011247 \pm 0.002264$ | N3a | $-1.659899e - 04 \pm 1.788769e - 05$ |
| H3e | $-0.920198 \pm 0.059910$ | N3b | $5.383661e - 04 \pm 2.373019e - 05$  |
| H4a | $-0.434318 \pm 0.131104$ | N3c | $1.238655e - 03 \pm 1.918372e - 05$  |
| H4b | $-1.716134 \pm 0.363024$ | N3d | $-5.363013e - 04 \pm 2.693090e - 05$ |
| H4c | $0.619181 \pm 0.249907$  | N4a | $9.409468e - 04 \pm 8.455768e - 05$  |
| H4d | $1.633127 \pm 0.195661$  | N4b | $3.479228e - 04 \pm 1.399697e - 05$  |
| H4e | $-2.253606 \pm 0.236644$ | N4c | $8.235426e - 06 \pm 2.416983e - 06$  |
| H4f | $-0.028194 \pm 0.041426$ | N4d | $1.780791e - 03 \pm 2.289154e - 05$  |
| a   | $2.489240 \pm 0.007421$  | N4e | $1.020294e - 03 \pm 1.690598e - 05$  |
| b   | $1.428658 \pm 0.035542$  | N4f | $2.422e - 4 \pm 6.522e - 5$          |
| с   | $0.558505 \pm 0.052263$  | N4g | $-7.775870e - 04 \pm 6.861281e - 05$ |
|     |                          | N4h | $-5.165251e - 04 \pm 1.520102e - 05$ |
|     |                          | N4i | $-1.357834e - 03 \pm 6.693734e - 05$ |

TABLE XVI. Table of fitting parameters for the peak frequency and amplitude of the strain 22 mode formulas. Nonspinning parameters W0, A0, W2d, A2d, W4f, and A4f were determined in Ref. [48]

| W0  | $0.3587 \pm 0.0008$    | A0  | $0.3937 \pm 0.0002$    |
|-----|------------------------|-----|------------------------|
| W1  | $0.14189 \pm 0.00009$  | A1  | $-0.00252\pm0.00012$   |
| W2a | $-0.01461 \pm 0.00015$ | A2a | $0.00385 \pm 0.00021$  |
| W2b | $0.05505 \pm 0.00023$  | A2b | $0.00495 \pm 0.00031$  |
| W2c | $0.00878 \pm 0.00010$  | A2c | $-0.00145 \pm 0.00012$ |
| W2d | $-0.1211 \pm 0.0036$   | A2d | $-0.0526 \pm 0.0015$   |
| W3a | $-0.16841 \pm 0.00068$ | A3a | $0.00331 \pm 0.00082$  |
| W3b | $0.04874 \pm 0.00046$  | A3b | $0.01775 \pm 0.00071$  |
| W3c | $0.09181 \pm 0.00064$  | A3c | $0.03202 \pm 0.00098$  |
| W3d | $-0.08607 \pm 0.00043$ | A3d | $0.05267 \pm 0.00074$  |
| W4a | $-0.02185 \pm 0.00105$ | A4a | $0.11029 \pm 0.00218$  |
| W4b | $0.11183 \pm 0.00047$  | A4b | $-0.00552 \pm 0.00065$ |
| W4c | $-0.01704 \pm 0.00016$ | A4c | $0.00558 \pm 0.00019$  |
| W4d | $0.21595 \pm 0.00138$  | A4d | $0.04593 \pm 0.00211$  |
| W4e | $-0.12378 \pm 0.00090$ | A4e | $-0.04754 \pm 0.00126$ |
| W4f | $0.0432 \pm 0.0034$    | A4f | $0.0179 \pm 0.0015$    |
| W4g | $0.00167 \pm 0.00028$  | A4g | $-0.00516 \pm 0.00091$ |
| W4h | $-0.13224 \pm 0.00058$ | A4h | $0.00163 \pm 0.00047$  |
| W4i | $-0.09933 \pm 0.00099$ | A4i | $-0.02098 \pm 0.00151$ |

- F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005), grqc/0507014.
- [2] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Phys. Rev. Lett. 96, 111101 (2006), grqc/0511048.
- [3] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, Phys. Rev. Lett. 96, 111102 (2006), grqc/0511103.
- [4] M. Campanelli, C. O. Lousto, H. Nakano, and Y. Zlochower, Phys. Rev. D79, 084010 (2009), arXiv:0808.0713 [gr-qc].
- [5] B. Abbott *et al.* (Virgo, LIGO Scientific), Phys. Rev. Lett. **116**, 061102 (2016), arXiv:1602.03837 [gr-qc].
- [6] B. P. Abbott *et al.* (Virgo, LIGO Scientific), Phys. Rev. Lett. **116**, 241103 (2016), arXiv:1606.04855 [gr-qc].
- [7] B. P. Abbott *et al.* (Virgo, LIGO Scientific), Phys. Rev. X6, 041015 (2016), arXiv:1606.04856 [gr-qc].
- [8] B. P. Abbott *et al.* (VIRGO, LIGO Scientific), Phys. Rev. Lett. **118**, 221101 (2017), arXiv:1706.01812 [gr-qc].
- [9] B. P. Abbott *et al.* (Virgo, LIGO Scientific), Astrophys.
   J. 851, L35 (2017), arXiv:1711.05578 [astro-ph.HE].
- B. P. Abbott *et al.* (Virgo, LIGO Scientific), Phys. Rev. Lett. (2017), 10.1103/PhysRevLett.119.141101, [Phys. Rev. Lett.119,141101(2017)], arXiv:1709.09660 [gr-qc].
- [11] B. P. Abbott *et al.* (Virgo, LIGO Scientific), Phys. Rev. D94, 064035 (2016), arXiv:1606.01262 [gr-qc].
- [12] G. Lovelace *et al.*, Class. Quant. Grav. **33**, 244002 (2016), arXiv:1607.05377 [gr-qc].
- [13] J. Healy et al., (2017), arXiv:1712.05836 [gr-qc].
- [14] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys. Rev. D74, 041501(R) (2006), gr-qc/0604012.
- [15] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Merritt, Astrophys. J. 659, L5 (2007), gr-qc/0701164.
- [16] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Merritt, Phys. Rev. Lett. 98, 231102 (2007), gr-qc/0702133.
- [17] C. O. Lousto and Y. Zlochower, Phys. Rev. Lett. 107, 231102 (2011), arXiv:1108.2009 [gr-qc].
- [18] C. O. Lousto and J. Healy, Phys. Rev. Lett. **114**, 141101 (2015), arXiv:1410.3830 [gr-qc].
- [19] C. O. Lousto, J. Healy, and H. Nakano, Phys. Rev. D93, 044031 (2016), arXiv:1506.04768 [gr-qc].
- [20] C. O. Lousto and J. Healy, Phys. Rev. D93, 124074 (2016), arXiv:1601.05086 [gr-qc].
- [21] J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D90, 104004 (2014), arXiv:1406.7295 [gr-qc].
- [22] J. Healy and C. O. Lousto, Phys. Rev. D95, 024037 (2017), arXiv:1610.09713 [gr-qc].
- [23] Y. Zlochower, J. G. Baker, M. Campanelli, and C. O. Lousto, Phys. Rev. **D72**, 024021 (2005), arXiv:grqc/0505055.
- [24] P. Marronetti, W. Tichy, B. Brügmann, J. Gonzalez, and U. Sperhake, Phys. Rev. D77, 064010 (2008), arXiv:0709.2160 [gr-qc].
- [25] C. O. Lousto and Y. Zlochower, Phys. Rev. D77, 024034 (2008), arXiv:0711.1165 [gr-qc].
- [26] Y. Zlochower, M. Ponce, and C. O. Lousto, Phys. Rev. D86, 104056 (2012), arXiv:1208.5494 [gr-qc].
- [27] Https://portal.xsede.org/sdsc-comet.
- [28] C. O. Lousto and Y. Zlochower, Phys. Rev. D88, 024001 (2013), arXiv:1304.3937 [gr-qc].
- [29] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener,

R. Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna, Class. Quant. Grav. **29**, 115001 (2012), arXiv:1111.3344 [gr-qc].

- [30] Einstein Toolkit home page: http://einsteintoolkit.org.
- [31] Cactus Computational Toolkit home page: http://cactuscode.org.
- [32] E. Schnetter, S. H. Hawley, and I. Hawke, Class. Quant. Grav. 21, 1465 (2004), gr-qc/0310042.
- [33] J. Thornburg, Class. Quant. Grav. 21, 743 (2004), grqc/0306056.
- [34] O. Dreyer, B. Krishnan, D. Shoemaker, and E. Schnetter, Phys. Rev. D67, 024018 (2003), gr-qc/0206008.
- [35] M. Campanelli, C. O. Lousto, Y. Zlochower, B. Krishnan, and D. Merritt, Phys. Rev. D75, 064030 (2007), gr-qc/0612076.
- [36] M. Campanelli and C. O. Lousto, Phys. Rev. D59, 124022 (1999), arXiv:gr-qc/9811019 [gr-qc].
- [37] C. O. Lousto and Y. Zlochower, Phys. Rev. D76, 041502(R) (2007), gr-qc/0703061.
- [38] H. Nakano, J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. **D91**, 104022 (2015), arXiv:1503.00718 [grqc].
- [39] L. E. Kidder, Phys. Rev. D52, 821 (1995), grqc/9506022.
- [40] M. Hannam, S. Husa, B. Bruegmann, and A. Gopakumar, Phys. Rev. D78, 104007 (2008), arXiv:0712.3787 [gr-qc].
- [41] D. A. Hemberger, G. Lovelace, T. J. Loredo, L. E. Kidder, M. A. Scheel, B. Szilágyi, N. W. Taylor, and S. A. Teukolsky, Phys. Rev. D88, 064014 (2013), arXiv:1305.5991 [gr-qc].
- [42] C. O. Lousto and Y. Zlochower, Phys. Rev. D89, 104052 (2014), arXiv:1312.5775 [gr-qc].
- [43] J. Healy, C. O. Lousto, Y. Zlochower, and M. Campanelli, Class. Quant. Grav. 34, 224001 (2017), arXiv:1703.03423 [gr-qc].
- [44] L. Rezzolla, E. Barausse, E. N. Dorband, D. Pollney, C. Reisswig, J. Seiler, and S. Husa, Phys. Rev. D78, 044002 (2008), arXiv:0712.3541 [gr-qc].
- [45] T. Damour, Phys. Rev. D64, 124013 (2001), arXiv:grqc/0103018.
- [46] C. O. Lousto and Y. Zlochower, Phys. Rev. D87, 084027 (2013), arXiv:1211.7099 [gr-qc].
- [47] E. Racine, Phys. Rev. D78, 044021 (2008), arXiv:0803.1820 [gr-qc].
- [48] J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D96, 024031 (2017), arXiv:1705.07034 [gr-qc].
- [49] B. P. Abbott *et al.* (Virgo, LIGO Scientific), Phys. Rev. Lett. **116**, 221101 (2016), arXiv:1602.03841 [gr-qc].
- [50] Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E. Kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D84, 124052 (2011), arXiv:1106.1021 [gr-qc].
- [51] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse, M. Boyle, *et al.*, Phys. Rev. **D86**, 024011 (2012), arXiv:1202.0790 [gr-qc].
- [52] A. Bohé *et al.*, Phys. Rev. **D95**, 044028 (2017), arXiv:1611.03703 [gr-qc].
- [53] X. Jiménez-Forteza, D. Keitel, S. Husa, M. Hannam, S. Khan, and M. Prrer, Phys. Rev. D95, 064024 (2017), arXiv:1611.00332 [gr-qc].

- [54] A. Ghosh *et al.*, Phys. Rev. **D94**, 021101 (2016), arXiv:1602.02453 [gr-qc].
- [55] A. Ghosh, N. K. Johnson-McDaniel, A. Ghosh, C. K. Mishra, P. Ajith, W. Del Pozzo, C. P. L. Berry, A. B. Nielsen, and L. London, Class. Quant. Grav. 35, 014002 (2018), arXiv:1704.06784 [gr-qc].
- [56] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Prrer, X. Jiménez Forteza, and A. Boh, Phys. Rev. D93, 044007 (2016), arXiv:1508.07253 [gr-qc].
- [57] A. Ori and K. S. Thorne, Phys. Rev. D62, 124022 (2000), arXiv:gr-qc/0003032.
- [58] N.K. Johnson-McDaniel et al., LIGO Document T1600168, https://dcc.ligo.org/LIGO-T1600168/public.
- [59] J. Healy, P. Laguna, and D. Shoemaker, Class. Quant.

Grav. 31, 212001 (2014), arXiv:1407.5989 [gr-qc].

- [60] S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, 8th Gravitational Wave Data Analysis Workshop (GWDAW 2003) Milwaukee, Wisconsin, December 17-20, 2003, Class. Quant. Grav. 21, S1809 (2004), arXiv:gr-qc/0412119 [gr-qc].
- [61] V. Baibhav, E. Berti, V. Cardoso, and G. Khanna, (2017), arXiv:1710.02156 [gr-qc].
- [62] J. Lange *et al.*, (2017), accepted to Phys. Rev. D, arXiv:1705.09833 [gr-qc].
- [63] P. Peters, Phys. Rev. 136, B1224 (1964).
- [64] A. H. Mroue, H. P. Pfeiffer, L. E. Kidder, and S. A. Teukolsky, Phys. Rev. D82, 124016 (2010), arXiv:1004.4697 [gr-qc].