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Within canonical single field inflation models, we provide a method to reverse engineer and re-
construct the inflaton potential from a given power spectrum. This is not only a useful tool to
find a potential from observational constraints, but also gives insight into how to generate a large
amplitude spike in density perturbations, especially those that may lead to primordial black holes
(PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated
in order to generate a significant spike in the spectrum. We find that a way to achieve a very large
amplitude spike in single field models is for the classical roll of the inflaton to over-shoot a local
minimum during inflation. We provide an example of a quintic polynomial potential that imple-
ments this idea and leads to the observed spectral index, observed amplitude of fluctuations on
large scales, significant PBH formation on small scales, and is compatible with other observational
constraints. We quantify how much fine-tuning is required to achieve this in a family of random
polynomial potentials, which may be useful to estimate the probability of PBH formation in the
string landscape.

I. INTRODUCTION

Cosmological observations of the CMB and large scale
structure are compatible with the theory of early universe
inflation [1]. Inflation naturally produces an approxi-
mately scale invariant spectrum of small density per-
turbations on large scales, which also extends to small
scales in the simplest models. However, recently there
has been increasing interest in the possibility of breaking
scale invariance on small scales with a spike in the power
spectrum. A spike in the primordial power spectrum is
interesting as it may lead to structures such as primordial
black holes (PBHs) [2–5].

The idea of filling the universe with PBHs is of interest
for several reasons. One reason is that PBHs could be a
significant component of the dark matter in the universe.
Although there are several constraints on the energy den-
sity of BHs and most recent analyses suggest PBHs are
unlikely to be all the dark matter for generic masses,
there may be a small window for PBHs to be a signifi-
cant component (or all) of the dark matter near the mass
scale ∼ 1020 g [6] (much lighter or much heavier PBHs are
of interest too). A second reason is that even if PBHs are
only a small fraction of the energy budget of the universe,
they could still lead to interesting astrophysical phenom-
ena, such as acting as a seed for the production of super
massive black holes at the center of galaxies [7–9], or pro-
ducing binary mergers and gravitational waves [10–13].

Such heavy PBHs can form if there are large amplitude
primordial scalar perturbations on the relevant scale [2].
Depending on the statistical distribution, the tail of the
distribution will lead to highly over-dense regions at ran-
dom places in the universe. For sufficiently large over-
densities, these will collapse as they re-enter the horizon
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in the radiation-dominated era, leading to the formation
of a black hole [3–5].

The recent detection of binary black hole (BH) mergers
by the Advanced LIGO and Advanced Virgo detectors in-
volved BHs in the mass range of 8−35M� [14–17]. Some
of these GW events could be a merger of two PBHs [10–
13]. The merger rate can be in agreement with the one
suggested by observations if the fraction of PBHs in dark
matter is of order 10−3, and it was claimed that this is
consistent with existing observational upper bounds (see,
e.g., Refs. [18–20]).

Such an exotic interpretation requires a correspond-
ingly large amplitude of power spectrum at small scales.
However, there are many constraints on the amplitude
of the primordial power spectrum (see, e.g., Ref. [21]).
The observations of CMB temperature anisotropies pro-
vide a precise measurement of the power spectrum at
large scales [22, 23]. The large scale structure and the
Lyman-alpha forest observations give us information on
slightly smaller scales [24]. The µ-distortion [25] and the
generation of second-order gravitational waves [26] give
other severe constraints on the amplitude of primordial
perturbation for smaller scales. If the over-density is be-
yond a certain threshold, a large density region called an
ultra-compact mini-halo (UCMH) will form after matter-
radiation equality. If the main component of dark mat-
ter is a weakly interacting massive particle (WIMP), the
annihilation in an UCMH can produce highly luminous
gamma-ray or neutrino sources.1 The constraints on
these fluxes also give severe upper bounds on the power
spectrum, though they depend sensitively on the details

1 UCMHs lead to a time delay in pulsar timing by the Shapiro
effect and the PTA experiments put an upper bound on the am-
plitude of power spectrum [27, 28] (see also Refs. [29, 30]). How-
ever, in Ref. [27] they claimed that they used an optimistic value
for the sensitivity of pulsar timing experiment. The constraint is
absent when we use a realistic value, so that we do not consider
it in this paper.
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of the dark matter models [21, 31, 32]. A large scalar per-
turbation can generate gravitational waves via second-
order effects, which would affect pulsar timing [33, 34].
This gives a model-independent constraint in the range
of k ∼ 106−7 Mpc−1.

Hence any inflation model that predicts large ampli-
tude fluctuations over some range of scales must be com-
patible with these constraints. There are many infla-
tion models that can generate such a large amplitude
spike in the power spectrum [35–40] (see Refs. [41–47]
for earlier works). The most well known is in hybrid in-
flation, which involves multiple fields undergoing a tachy-
onic phase transition; though it is somewhat difficult to
achieve the correct spectral index on CMB scales in these
models (e.g., see Ref. [48]). Achieving a spike in the
power spectrum on small scales within the framework of
a canonical two-derivative single field inflationary model
is somewhat difficult to achieve, but will be the focus of
our work in this paper. In this case, a very small slope
in the potential is generally needed to generate a large
fluctuation. Some existing approaches focus on an in-
flection point inflation combined with an inflation model
that predicts a consistent spectral index. In other words,
they focus on a known inflation model and modify it so
as to reach an inflection point before the end of inflation
and give a large amplitude at a small scale.

In this paper we begin by developing a method to
reconstruct inflaton potentials from an arbitrary power
spectrum within the framework of single field two-
derivative actions; this acts to “reverse engineer” the
model from the data. This is not only a useful tool to
find a potential from observational constraints, but also
gives insight into how to generate large amplitude per-
turbations that break scale invariance. In particular, we
find that the slow-roll condition has to be violated [35–40]
and we can achieve this by having the inflaton overshoot
a local minimum during inflation [38, 40]. Equipped with
these facts, we then provide a polynomial potential that
leads to the observed spectral index and significant PBH
formation. We estimate the level of fine-tuning such ran-
dom potentials need in order to generate PBHs in that
are both appreciable and compatible with current con-
straints. These types of random potentials may be rep-
resentative of the type of phenomena that can emerge in
the string landscape (see, e.g., Ref. [49]).

This paper is organized as follows: In Section II we re-
view the calculation of PBH formation from a primordial
perturbation and the constraints on the power spectrum.
In Section III we explain the method to reconstruct in-
flaton potentials from a given power spectrum. In Sec-
tion IV we then apply this method to some examples,
including the one that predicts PBH dark matter with
M ∼ 1020 g. We show that the slow-roll conditions need
to be violated and the inflaton may overshoot a local
minimum during inflation in order to generate a large
amplitude of power spectrum. In Section V we provide
an explicit quintic polynomial potential that predicts a
consistent spectral index with the observed value and a

spike in the power spectrum as large as 10−2 at small
scales, and we quantify the level of fine-tuning required
to achieve this. Finally, we conclude and discuss our re-
sults in Section VI.

II. PBH FORMATION FROM PRIMORDIAL
FLUCTUATIONS

In this section we briefly review the formation and
constraints on PBHs from primordial fluctuations. For
brevity, we will not go into the full details, but follow a
simple conventional analysis to illustrate the situation.

A. PBH Abundance

Suppose that a large amplitude of primordial fluctua-
tion is generated at a small scale during inflation. After
inflation ends, the comoving horizon increases and the
mode re-enters the horizon at a later time. If on some
scales the amplitude of primordial fluctuations is signif-
icantly large, there will be some number of over-dense
regions where the density of matter is so large that it
collapses to form a PBH upon horizon re-entry. For the
PBH masses of interest this collapse will occur in the
radiation era.

The mass of the resulting PBHs is comparable to the
horizon mass at the time of re-entry:

M(k) = γ ρ
4πH−3

3

∣∣∣∣
k=aH

,

' 1020g
( γ

0.2

)( g∗
106.75

)− 1
6

(
k

7× 1012 Mpc−1

)−2
, (1)

where γ (∼ 0.2) is a proportionality constant [5] and g∗
is the effective number of relativistic degrees of freedom.
The ratio of the relevant wavenumber k and the pivot
scale k∗ (= 0.05 Mpc−1) is given by

ln

(
k

k∗

)
' 33− 1

2
ln

(
M(k)

1020 g

)
, (2)

where we assumed γ = 0.2 and g∗ = 106.75.
Assuming that the primordial fluctuations are Gaus-

sian, we can provide a rough estimate for the fraction of
PBHs formed with mass M compared to the total radia-
tion energy density as follows

β(M) ≡ ρPBH(M)

ρtot
≈
∫ ∞
δc

dδ√
2πσ2(M)

e
− δ2

2σ2(M) , (3)

'
√

2

π

σ(M)

δc
e
− δ2c

2σ2(M) , (4)

where δc (∼ 0.3) is the threshold of density perturbation
above which a PBH forms at the time of re-entry [5].
In the second line we have used the fact that it is only
fluctuations in the upper tail of the distribution that form
black holes in order to approximate the error function.
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Here the variance σ2(M) is the coarse-grained variance
of density perturbations smoothed on a scale R = 1/k.
During the radiation dominated era, it is given by [50]

σ2(M(1/R)) =
16

81

∫
d ln k′ (k′R)

4 Pζ(k′)W (k′R)2, (5)

where Pζ is the power spectrum of the primordial comov-
ing curvature perturbations. Here W (x) is a smoothing
window function. Its form is often taken to be a Gaussian
W (x) = exp

(
−x2/2

)
in the literature. Note that the fac-

tor of (4 k′2R2/9)2 essentially comes from the (relativistic
version of) Poisson equation to convert curvature pertur-
bations to density perturbations.

In order to determine the total energy density in PBHs,
we integrate over all masses M as follows

ΩPBH,tot

Ωc
=

∫
d lnM

ΩPBH(M)

Ωc
, (6)

where Ωch
2 (' 0.12) is the total dark matter abundance.

The conversion from the energy density fraction in the
radiation era to the fraction of dark matter today can be
obtained by simple red-shifting as

ΩPBH(M)

Ωc
=

(
TM
Teq

Ωmh
2

Ωch2

)
γ β(M),

'
(

β(M)

8× 10−15

)( γ

0.2

) 3
2

(
106.75

g∗

) 1
4
(

M

1020 g

)− 1
2

. (7)

Here, TM is the temperature at the time of re-entry and
Teq is the temperature at matter-radiation equality.

Hence an appreciable abundance of PBHs on some
mass scale M , say within a few orders of magnitude of
1020 g, requires β(M) to be within a couple of orders
of magnitude of 10−15, or so. For much heavier PBHs,
such as M ∼ 30M�, then β(M) should be . 10−7 to
avoid over-closure and may in fact need to be a couple
orders of magnitude smaller to be compatible with other
observational constraints. In any case, since Eq. (4) is
exponentially sensitive to σ2(M), then in order to have
appreciable PBH production σ2(M) should be on the or-
der ∼ 10−2, or so. This in turn arises from a power
spectrum Pζ in Eq. (5) that is also on the order of 10−2,
or so, on the relevant scale.

B. Constraints on Power Spectrum

There are various constraints on the abundance of BHs.
We will neglect the mass growth of PBHs via the accre-
tion of matter onto PBHs after formation because we
expect most of the PBHs remain in dark matter halos,
whose density is too low to accrete onto these relatively
small black holes. Hence we can directly relate the con-
straints on the abundance of PBHs ΩPBH(M) to con-
straints on the primordial matter power spectrum Pζ .

As a convenient way of parameterizing a peak (spike)
in the power spectrum, with a peak on a scale ∼ kp, we
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FIG. 1. Example of power spectrum (blue line) that is put
in by hand so that it produces a significant number of PBHs
and is consistent with present constraints (shaded region is
allowed): CMB and LSS survey (purple) [21–24], µ (yellow)
and y-distortions (green) [25], pulsar timing (orange) [51–53],
and PBH constraints (black dashed). We take δc = 0.3 as an
example. In Section IV B 2, we approximately reconstruct a
potential from this blue input power spectrum. To check the
consistency of our method, we take the approximate recon-
structed potential and then numerically compute the power
spectrum (red line) from it exactly.

assume the following form of the power spectrum:

Pζ(k) = Max

 4A[
(kp/k)

a
+ (k/kp)

b
]2 , PSI

ζ (k)

 , (8)

where A, a, b, are parameters and PSI
ζ (k) is the usual

(nearly) scale invariant spectrum with spectral index
ns − 1 ≈ −0.04 . We take a = 3/2 and b = 1/2 as an
example. We plot this as the blue curve in Fig. 1. Here
σ2(M(k = 1/R)) is given by (ignoring the approximately
scale invariant tails)

σ2(M(1/R)) = A
16

81

[√
π x (1− 4x2 − 2x4)

+π x4(5 + 2x2)ex
2

(1− erf(x))
]
, (9)

where x = kpR. This function has a maximum σ2
(max) '

0.116A at x = 0.695. We use this to compute the PBH
fraction β(M(k = 1/R)). We can then relate a constraint
on the number of PBHs to a constraint on the ampli-
tude of spike A and in turn to a constraint on the power
Pζ(k = kp); this is shown as the black dashed line in
Fig. 1. These constraints arise from extragalactic γ-rays
from evaporation and consistency of big-bang nucleosyn-
thesis [54], femtolensing of γ-ray bursts [55], white-dwarf
explosions [56], microlensing [57–60], and accretion ef-
fects [61] (see Ref. [13] for a review of these constraints).
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In Fig. 1 we also plot other constraints on the am-
plitude of power spectrum. Note that we neglect some
model dependent constraints that depend on the de-
tailed nature of dark matter, and focus on model inde-
pendent constraints. The observation of CMB temper-
ature anisotropy gives a precise measurement of power
spectrum at large scales. The large scale structure and
Lyman-α forest observations put constraints on smaller
scales. We adopted those constraints from Ref. [21] and
plot them as the purple line. On smaller scales, the µ
and y-distortions are generated from the Silk damping
of the perturbations. The COBE/FIRAS experiment
puts the constraint on the amount of these distortions
as µ . 9 × 10−5 and y . 1.5 × 10−5 [62], which can
places an upper bound on the amplitude of power spec-
trum [25]; we assume a delta-function power spectrum
to plot this constraint. If the scalar perturbation are
quite large, then second-order effects lead to the gener-
ation of gravitational waves [33, 34]. The constraint on
the energy density of gravitational waves by the pulsar-
timing experiment, such as EPTA [51], PPTA [52], and
NANOGrav [53], can be recast into that of the amplitude
of scalar perturbation. To plot the constraint, we adopt
the calculation in Ref. [26] assuming a delta-function
power spectrum.

In Ref. [6], the authors claimed that the PBHs can be
all the dark matter for masses of order 1020 g. In this
case, the amplitude of power spectrum should be around
10−2 at k ' 7×1012 Mpc−1. An example of such a power
spectrum is shown in Fig. 1, where we assume Eq. (8)
with A ∼ 0.01 and k0 ∼ 7× 1012 Mpc−1 (but with small
deviations from these values for later convenience). Note
that a relatively sharp peak in the power spectrum may
be possible at around k ∼ 105 Mpc−1. Interestingly, this
corresponds to black holes within an order of magnitude
of M ∼ 30M�, which is the range currently observed
by LIGO/Virgo. Some analyses suggest that this might
not be a significant fraction of the dark matter, though
a small fraction is possible.

In the next section, we outline a method to reconstruct
the inflaton potential from these types of power spectra.
In Section V, we provide a polynomial potential model
that leads to similar power spectra.

III. RECONSTRUCTION OF INFLATON
POTENTIAL

We study the standard two-derivative action for grav-
ity with a single scalar field φ. Without loss of generality,
one can perform field re-definitions to obtain the familiar
Einstein-Hilbert action, minimally coupled to φ

S =

∫
d4x
√
−g
[

1

16πG
R+

1

2
∂µφ∂

µφ− U(φ)

]
. (10)

From here on we will work in natural units ~ = c =
8πG = 1.

As we discussed in the previous section, we are inter-
ested in the case where the power spectrum has a peak at
a cosmologically small scale. In this section, we describe
a method to reconstruct the inflaton potential U(φ) from
a given power spectrum, assuming ε (≡ (U ′/U)2/2)� 1,
but η (≡ U ′′/U) can be larger than unity during infla-
tion.2

A. Background Evolution

Let us first describe the evolution of the FRW homo-
geneous background, which we take to be spatially flat.
It is governed by the following equations:

Ne(t) =

∫ t

tend

H(t) dt, (11)

φ̈+ 3Hφ̇+
dU

dφ
= 0, (12)

H2 =
1

3

(
1

2
φ̇2 + U(φ)

)
, (13)

where tend is the time at which inflation ends. Here and
hereafter, dots represent derivatives with respect to time.
The latter two equations can be rewritten exactly as

Ḣ = − φ̇
2

2
, (14)

U = 3H2 + Ḣ. (15)

An accelerating expansion, inflation, occurs when the fol-
lowing slow-roll parameter is smaller than unity:

εH ≡ −
dH

dNe
= − Ḣ

H2
. (16)

B. Fluctuations

Fluctuations in scalar modes around the homogeneous
background are described by the curvature perturba-

tion ζ̂. Its variance in fluctuations are measured by

the matter power spectrum:
〈
ζ̂(k)ζ̂(k′)

〉
= (2π)3δ3(k +

k′)(2π2/k3)Pζ(k), where

Pζ(k) =
2k3

8π2

∣∣∣∣ vk
a
√
εH

∣∣∣∣2 . (17)

Here k (≡ |k|) is a comoving wavenumber of a Fourier
mode and vk is the mode function associated with the

2 Reconstruction of full inflaton potential was discussed in
Ref. [63], where they assume the slow-roll approximation. Their
method was generalized in Ref. [64], which is similar to our
method. On the other hand, reconstruction of “local” inflaton
potential has been extensively studied, where some derivatives
or slow-roll parameters are reconstructed from the spectral in-
dex and its derivatives. See, e.g., Refs. [65–68].
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Mukhanov-Sasaki (MS) variable. The mode function
obeys the MS equation [69, 70]

d2vk
dη2

+

(
k2 − 1

z

d2z

dη2

)
vk = 0, (18)

where z ≡ a
√
εH and η is conformal time (dη ≡ dt/a).

The initial condition for the quantum state is taken to
be the standard Bunch-Davies vacuum, wherein

vk →
1√
2k
e−ikη, as

k

aH
→∞. (19)

For the purpose of numerical simulation, it is convenient
to rewrite the MS equation in terms of ζk ≡ vk/(a

√
2εH):

d2ζk
dη2

+ (2 + εH2) aH
dζk
dη

+ k2ζk = 0, (20)

where

εH2 ≡
dεH
dNe

=
ε̇H
HεH

. (21)

An infinitesimal change of comoving wavenumber be-
tween k and k+ dk that corresponds to the scale leaving
the horizon between time t and t+ dt can be written as

d ln k = d(ln(aH)) ' −dNe = −Hdt, (22)

where we use εH � 1. This gives

ln(kend/k) ' Ne, (23)

where kend is the scale that leaves the horizon at t = tend.

C. Key Approximation

Now our key simplifying approximation is to neglect
εH2 in Eq. (20) when we compute the power. We shall
see that this is not precise in the non-slow-roll regime,
where the potential term in the background equation of
motion U ′(φ) is sub-dominant to the acceleration φ̈ and

friction 3Hφ̇ terms. But in the regular slow-roll regime
(where it is the acceleration term φ̈ that is negligible),
this assumption is precise. In any case, we shall take the
power spectrum of the form

Pζ(k) ' H2

8π2εH
, (24)

which comes from the solution of Eq. (20) with εH2 ne-
glected. We shall use this formula to reconstruct the
inflaton potential. After the reconstruction, we will nu-
merically compare to the exact result from solving the
MS equations exactly, finding that while there are cor-
rections, it does not change the result tremendously and
certainly suffices to capture the qualitative behavior.3

3 If ε decreases faster than about a−3 during the non-slow-roll
regime, the so-called decaying mode of ζk grows faster on super-
horizon scales than the constant mode that we used to derive
Eq. (24). Our exact result from solving the MS equations takes
into account both modes, so that we will see that neglecting the
decaying mode does not affect the qualitative behavior in the
case we are interested in.

Note that we will still use the full expression for
εH = −Ḣ/H2, rather than the simple ε = (U ′/U)2/2
that is used in the usual slow-roll treatments. In partic-
ular, this means we do not demand that the acceleration
φ̈ is always negligible to U ′; this is important near a crit-
ical point in the potential where U ′ → 0. So we are still
going beyond the standard slow-roll regime and captur-
ing, at least qualitatively, the non-slow-roll regime too.
This “partial” slow-roll approximation is useful to recon-
struct the inflaton potential and allows us to reproduce a
discontinuity or small hill in the potential as we will see
below.

D. Reconstruction

Now we would like to derive formulas that allow us to
calculate the potential for a given Pζ(k). First one comes
from Eqs. (16), (24), and (22):

1

H4

dH2

d ln k
=

1

4π2Pζ
. (25)

So we can integrate dH2 as

1

H2(k)
− 1

H2
∗

= − 1

4π2

∫ k

k∗

1

Pζ(k′)
d ln k′. (26)

Here we defined an arbitrary pivot scale k∗ and corre-
sponding Hubble parameter H∗. The potential U as a
function of k can be calculated from Eq. (15) as

U(k) = 3H2 − H4

8π2Pζ(k)
. (27)

Although the second term in the right hand side is much
smaller than the first one in the regular slow-roll regime
ε � 1, it is important in the non-slow-roll regime as we
explain below.

The potential can be implicitly determined by the
power spectrum, by obtaining the inverse function of
φ = φ(k). This can be determined by first using Eq. (14)

to express φ̇ as

dφ

dt
=

√
dH2

d ln k
. (28)

Then we use Eq. (25) to obtain

φ(k)− φ∗ = −
∫ k

k∗

√
H2

4π2PR
d ln k′. (29)

Note that we can always shift the field value such that
φ∗ = 0. Thus there is only one unknown parameter H∗
in the above formulas, which defines a height of the po-
tential at the pivot scale U∗. By using Eq. (27) and an
inverse function of (29), we can calculate a one-parameter
family of potentials U that reproduces exactly the same
spectrum.
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The shape of the spectrum is conveniently specified by
the spectral index ns(k) as

ns(k)− 1 ≡ d lnPζ
d ln k

. (30)

The spectral index can be written by slow-roll parameters
as

ns(k)− 1 = 2εH(k) + εH2(k). (31)

Note that in the regular slow-roll regime εH , εH2 � 1,
the usual slow-roll parameters ε and η can be written as
ε ' εH , η ' εH2/2 + 4εH , which reproduces the familiar
ns ' 1 − 6ε + 2η. But in general and in the non-slow-
roll regime, when εH2 is not necessarily small, the more
general expression of (31) is required.

We can write the slow-roll parameters εH and εH2 in
terms of the spectrum Pζ and potential U as.

εH(k) =
H2(k)

8π2Pζ(k)
, (32)

εH2(k) = −2εH2 +
d lnPR
d ln k

. (33)

This shows that εH2 & 1 when d lnPR/d ln k & 1. Thus
we need to consider the non-slow-roll inflation to generate
a large amplitude of power spectrum at small scales [39].

Finally, we comment on the second term in Eq. (27).
One might think that the second term is negligible for
εH � 1. However, the second term is relevant for the
equation of motion, in which the derivative of potential
is important. To see this, let us calculate

dU

dφ
=
dt

dφ

d

dt

[
(3− εH)H2

]
. (34)

The derivatives are given by

3
d

dt
H2 = −6εHH

3, (35)

H2 d

dt
εH = εHεH2H

3, (36)

which shows that the second term is as large as the first
term when εH2 is of order unity or larger, as it is in the
non-slow-roll inflation regime.

IV. EXAMPLES

In this section we carry out the above program of re-
constructing the inflaton potential from a given power
spectrum by using the above formulas derived. We also
solve the MS equation (20) numerically and check that
the power spectrum calculated from the reconstructed
potential is qualitatively in agreement with the original
one.

A. Analytically Tractable Models

We first give two simple examples where calculations
can be done analytically, before moving to more compli-
cated examples which will required numerics.

1. Flat Power Spectrum

Let us begin by considering the special case in which
the spectrum is perfectly flat, i.e., Pζ(k) = A = const.
From Eq. (26), we obtain

H2(k) =

[
1

H2
∗
− 1

4π2A
ln

k

k∗

]−1
. (37)

Inserting this into Eq. (29) and carrying out the integral
we obtain

φ(k) = φ∗ − 2

√
4π2A

H2
∗
− ln

k

k∗
+ 2

√
4π2A

H2
∗
, (38)

Inverting this for k = k(φ) and inserting into the expres-
sion for the Hubble parameter (37) we obtain

H2(k(φ)) =
16π2A(

φ− φ∗ −
√

16π2A
H2
∗

)2 , (39)

with the corresponding potential from Eq. (27) given by

U(φ) = 3H2(φ)− H4(φ)

8π2A
. (40)

We have numerically checked that by solving for the per-
turbations in this (moderately complicated) potential we
indeed get an approximately flat spectrum.

2. Flat Power Spectrum with a Discontinuity

Next we consider the case where the spectrum has a
discontinuity, suddenly changing from one flat spectrum
with amplitude A1 to another flat spectrum with ampli-
tude A2 at a wavenumber k1 as

Pζ(k) = A1 for k∗ < k < k1,

Pζ(k) = A2 for k1 < k. (41)

In each regime, the solution can be written in the form
of Eqs. (38) and (39). Defining

H2
1 =

[
1

H2
∗
− 1

4π2A1
ln
k1
k∗

]−1
, (42)

φ1 = φ∗ − 2

√
4π2A1

H2
∗
− ln

k1
k∗

+ 2

√
4π2A1

H2
∗

, (43)

we can write the solution as

H2(k(φ)) =
16π2A1(

φ− φ∗ −
√

16π2A1

H2
∗

)2 for k∗ < k < k1,

H2(k(φ)) =
16π2A2(

φ− φ1 −
√

16π2A2

H2
1

)2 for k1 < k. (44)

The potential U(φ) is then calculated from Eq. (27).
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Note that the potential itself has a discontinuity at
φ = φ1, just as the power spectrum does. Interestingly,
in the case of A1 < A2, the potential jumps to a higher
value as φ crosses φ1. We now check that the classical
evolution of the inflaton can actually climb this potential
barrier at φ = φ1. The kinetic energy of the inflaton
before it reaches φ1 is given by

φ̇2

2
= −Ḣ = εH H

2 =
H4

8π2A1
. (45)

The difference in the potential energy across the discon-
tinuity is given by

∆V = limδ→0 (U(φ1 + δ)− U(φ1 − δ)) ,

=
H4

8π2

(
1

A1
− 1

A2

)
. (46)

This is always smaller than the kinetic energy (45), so
that the inflaton can in fact climb the potential at φ = φ1.

B. Numerical Calculations

Here we would like to consider more complicated mod-
els which are no longer analytically tractable. In this case
we need to calculate Eqs. (26) and (29) numerically for
some input power spectrum and then insert into Eq. (27)
to obtain the reconstructed potential.

1. Flat Spectrum with a Rapid Change

We use the following toy model to improve on the
model of Section IV A 2, where the discontinuity in the
power spectrum from values A1 to A2 at some scale k1
is now smoothed out. As a useful example, we use a hy-
perbolic tangent as the smoothing function described by
some smoothing scale σk:

Pζ(k) = A1 + (A2 −A1)

[
tanh

(
ln(k/k1)

σk

)
− 1

]
.(47)

We take A1 = 0.1, A2 = 1, σk = 1, and k1 = 1013 to
illustrate the results (of course these are not realistic val-
ues for cosmology, but we return to realistic parameters
in the next Section).

We first reconstruct the potential by using the method
of Section III. We take U∗ = 1 as an illustration. By
comparison, we also solve the MS equation (20) and cal-
culate the power spectrum from the reconstructed poten-
tial to check the accuracy of our method. The compar-
ison is shown in Fig. 2. Here the blue line is the input
power spectrum (47) and the red line is the one calculated
from Eq. (24) using the reconstructed potential. We can
see that the approximate spectrum is in good qualitative
agreement with the exact one.

105 109 1013 1017
0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

P
(k
)

FIG. 2. Example of an input hyperbolic tangent power spec-
trum (blue curve). We reconstruct a potential from this power
spectrum making use of the approximation Eq. (24). To check
the consistency of our method, we numerically calculate a
power spectrum (red curve) from the reconstructed potential
without any approximation.

2. Spectrum with a Spike at a Small Scale

Next we move to more interesting and realistic power
spectra. Here we input the power spectrum of Eq. (8); it
is shown as the solid blue line in Fig. 1. This spectrum
is physically motivated by having significant PBH forma-
tion due to a spike in the spectrum and it is consistent
with existing observations.

A reconstructed potential from spectrum of Eq. (8) is
shown in Fig. 3, where we take the overall height of the
potential to be U∗ = 24π2Pζ(k∗)/103. We do not plot the
potential for φ larger than about 1.75, which corresponds
to the field value at which a mode at the right edge of
Fig. 1 (k = 1018 Mpc−1) crosses the horizon. We also
plot a reconstructed potential from a power spectrum
without the spike (a featureless potential); this is the
dashed green line. The field value reaches about 3.2 when
the mode k = 1018 Mpc−1 crosses the horizon. We zoom
in on a region where the reconstructed potential deviates
somewhat from the featureless one. This shows that a
small difference of inflaton potential can result in a large
deviation for the power spectrum, especially when one
curve has a derivative that is becoming small at one point
when the other is not.

An interesting observation is that PBH formation from
primordial density perturbations might not be consistent
with some constraints unless the spike is rather narrow.
This in turn requires an ordinary slow-roll condition to
be violated |η| � 1 [39]. To generate significant num-
bers of PBHs, we need Pζ ∼ 10−2. Then the slope of
the spectrum has to be appreciable d lnPR/d ln k & 1
in some range in the interval of (10 Mpc−1, 1013 Mpc−1).
This means that εH2 and η are as large as of order unity
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FIG. 3. Reconstructed potential from the power spectrum of
Eq. (8), which is representative of a spectrum with a large
spike in it on small scales and is shown as the blue curve
in Fig. 1. Here we assume U∗ = 24π2PR(k∗)/103. We plot
the case with the spike (blue) and without the spike (green
dashed).

and we cannot use the usual slow-roll approximation in
these scales if one demands high accuracy in computa-
tion.

We have checked that the approximate formula (24),
which neglects this correction, is nonetheless a reason-
able approximation in this example. We solved the MS
equation with the reconstructed potential and obtain the
resulting power spectrum. The result is shown as the
red line in Fig. 1. We can see that it is qualitatively in
agreement with the original one.

V. PBH FORMATION AND POLYNOMIAL
POTENTIAL

According to the results of the previous section, we
need to violate the usual slow-roll conditions in which φ̈
is always subdominant to U ′ to generate PBHs from pri-
mordial perturbation, and enter the non-slow-roll regime.
We also found that the inflaton potential can have a pos-
itive gradient during this non-slow-roll regime [38, 40].
In this section, we provide an example of a simple poly-
nomial potential, with a small local minimum and corre-
sponding small hill at which a large perturbation is gen-
erated. This is found to produce PBHs and satisfies all
known constraints. We then remark on the fine-tuning
required to achieve this.

A. Polynomial Potential

Motivated by an effective theory with a cutoff Λ, we
consider the following polynomial potential:

U(φ) = U0

[
1 + c1

φ

Λ
+
c2
2

φ2

Λ2
+
c3
3!

φ3

Λ3
+
c4
4!

φ4

Λ4
+
c5
5!

φ5

Λ5

]
,

(48)

where U0 is the energy scale of inflaton potential and ci
are constants. In principle one can (and should) add a
tower of higher order terms, but we truncate the potential
here to this quintic polynomial, as it suffices to illustrate
our main points.

We can shift and redefine the origin of φ such that
c2 = 0 at φ = 0 without loss of generality. We can also
set c4 = 1 by rescaling Λ without loss of generality. We
consider the case where (slow-roll) inflation starts and the
CMB scale leaves the horizon when φ is in the vicinity of
the origin, where we can neglect terms higher order than
cubic

U(φ) ' U0

[
1 + c1

φ

Λ
+
c3
3!

φ3

Λ3

]
. (49)

The inflaton starts to roll fast after the time at which
|U ′′/U | ' 1 or φ ' Λ3/c3. We denote the number of
e-foldings number after the ordinary slow-roll phase as
NNSR, as this enters the non-slow-roll phase. We choose
parameters such that εH is much smaller than unity and
so inflation continues even after the ordinary slow-roll
phase ends. We are interested in the case where εH de-
creases by a factor of order 10−7 during this regime so
that PBHs can be later formed from these primordial
fluctuations.

The maximum number of e-foldings that can be real-
ized in the slow-roll region (|φ| . Λ3/c3) is given by

Nmax,0 '
√

2π
Λ2

√
c1c3

, (50)

where we assume U(φ) ' U0. The spectral index on large
scales corresponding to the CMB (Ne = NCMB = 50−60)
can be computed using the standard slow-roll methods
giving [71, 72]

1− ns '
4π

Nmax,0
cot(x), (51)

where

x ≡ πNCMB −NNSR

Nmax,0
, (52)

and we assume Nmax,0 � 1. We determine c1 so that the
resulting spectral index is consistent with the measured
spectrum on the CMB by the Planck satellite (and turns
out to be c1 ∼ −10−4). The energy scale of inflaton
potential U0 is determined such that the amplitude of
curvature perturbation at the CMB scale is consistent
with the COBE normalization. This requires

Pζ(k∗) '
N4

CMB c
2
3 U0

48πΛ6

sin4(x)

x4
. (53)
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The higher order terms in (48) that take us beyond the
cubic approximation in (49) are important as φ increases
out of the slow-roll (CMB) stage and enters the non-
slow-roll phase. The parameter c5 is fine-tuned so that
the velocity of inflaton and εH can decrease significantly
near a small hill in the potential and yet still make it over
the top to the other side. We find that significant fine-
tuning is required in c5 so that the amplitude of power
spectrum can be as large as 10−2; which we will analyze
further in Section V C. In the examples we use in this
paper, c5 is taken to be a certain value about 0.55− 0.6
with a precision of order 10−7%.

As we see below, the parameter c3 determines the e-
folding number realized near the hilltop. In this paper,
we take −c3 = 0.5− 0.65 as an example. We check that
the result does not change qualitatively even if we change
Λ within the range of (0.2, 0.4), though we take Λ = 0.3
(in reduced Planck units) for definiteness.

An example of a potential is shown in the upper panel
of Fig. 4, where we take Nmax,0 = 65, c3 = −0.52,
c5 = −0.64072504, and Λ = 0.3. The light-green col-
ored region represents the domain of φ where we can use
the slow-roll approximation is accurate. The blue (red)
dot represents a local minimum (maximum) where one

can obviously not assume that φ̈ is negligible compared
to U ′ as U ′ → 0 at the minimum. It is the acceleration
term that allows the field to roll over the small hill; see
the inset for a close-up of this shape. Finally, inflation
terminates when the inflaton reaches the black-dashed
line.

B. Results

We solve the equation of motion of inflaton Eq. (12)
with the Friedmann equation Eq. (13). We then solve
the MS equation from the Bunch-Davis vacuum and cal-
culate the power spectrum from Eq. (17). The resulting
power spectrum is shown as a red line in lower panel of
Fig. 4. We also calculate the power spectrum using the
approximation Eq. (24) and the result is shown as the
solid blue line. These results are rather different, though
they do share some qualitative similarities. We see that
the full result by solving Eq. (20) exactly is important
here for accuracy.

We change the parameters c3 and c5 to see the param-
eter dependences of power spectrum. The upper panel of
Fig. 5 shows the maximum amplitude of power spectrum
as a function of of c5, with all other parameters fixed (we
used the exact numerical solution of the MS equation to
produce Fig. 5.) We use |c5 − c5,cr| / |c5,cr| to represent
the amount of fine-tuning, where c5,cr is the value of c5
at which the power spectrum diverges at a small scale;
this is associated with the critical shape of the potential
U where the classical evolution is unable to roll over the
small hill. We can see that we need at least ∼ 10−3%
fine-tuning to realize an enhancement. The amplitude
can be enhanced by an amount of order 107 compared

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ϕ

U
(ϕ
)/U

(0
)

0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.7365

0.7370

0.7375

0.7380

0.001 10.000 105 109 1013 1017

10-14

10-11

10-8

10-5

10-2

k [Mpc-1]

P
ζ
(k
)

FIG. 4. Upper panel: Quintic polynomial potential that
gives rise to PBHs. The light-green colored region repre-
sents the domain of φ where the standard slow-roll approxi-
mation is accurate. The blue (red) dot represents a local min-
imum (maximum). Inflation ends when the inflaton reaches
the black-dashed line. We take Nmax,0 = 65, c3 = −0.52,
c5 = −0.64072504, and Λ = 0.3. Lower panel: Corresponding
power spectrum. The red curve is the exact result from solv-
ing the MS equation and the blue curve is an approximate
result using Eq. (24).

with the pivot scale when c5 is fine-tuned by ∼ 10−6.5%;
we discuss this further in Section V C.

The e-folding number realized after the end of slow-
roll, NNSR, depends on c3. We plot NNSR (= Ntot −
Nmax,0) in the bottom panel of Fig. 5, where Ntot is the
total e-folding number from the beginning of inflation.
We can see that NNSR decreases as |c3| increases. Thus
the parameter c3 determines the e-folding number real-
ized in the vicinity as φ rolls over the top of the small hill
in the potential. This is important to calculate the total
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FIG. 5. Upper panel: Ratio of the amplitude of power spec-
trum at a maximum (k = kp) and at a pivot scale (k = k∗) as
a function of the amount of c5, with other parameters fixed
to be c3 = −0.52 and Λ = 0.3. Lower panel: The number
of e-foldings after the start of the non-slow-roll phase NNSR

(= Ntot−Nmax,0) as a function of −c3, with other parameters
fixed to be |c5 − c5,cr| / |c5,cr| ' 10−8.5 and Λ = 0.3. Note we
solved the MS equation exactly in this figure.

e-folding number and the spectral index from Eq. (51).
We checked that the difference in e-folding number be-

tween the one at the pivot scale and the one at the peak
changes by ≈ 1.5 when c3 changes from −0.5 to −0.65.
This is quite small compared with Nmax,0 and NNSR.
This implies that the inflaton reaches the top of the hill
soon after the slow-roll ends. Since the power spectrum
reaches the maximal value within a few e-folds after the
end of slow-roll, we should take NCMB − NNSR ' 30 to
generate PBHs with M ∼ 1020 g, and correspondingly
even larger values of NNSR for even larger PBHs. The

observed spectral index n
(obs)
s ' 0.965 can be realized if

the maximum number of e-foldings is Nmax,0 ' 65.

C. Level of Fine-Tuning

In this section we provide an explanation as to why
Pζ(kp)/Pζ(k∗) roughly scales as∝ (|c5 − c5,cr| / |c5,cr|)−2,
as seen in upper panel of Fig. 5. Here, the critical value
c5,cr is defined by the value of c5 above which the po-
tential has a sufficiently deep local minimum causing the
classical evolution of φ to become trapped there. Note
that we will only use very rough estimates in this sub-
section to capture the qualitative physics, rather than for
acurracy.

First, we note that the power spectrum can be very
roughly estimated using the slow-roll approximation as

Pζ(k) ∼ H4

Ḣ
∼ H4

φ̇2
. (54)

This diverges as φ̇ → 0, which is realized as c5 → c5,cr.
Suppose that c5 is just below the critical value. Since we
are interested in a peak of power spectrum kp, we shall

focus on a minimum value of φ̇ during the evolution of
φ. Since φ̈ = 0 at the minimum, the equation of motion

implies φ̇ = − U ′

3H and we obtain

Pζ(kp) ∼
H6

U ′2
, (55)

at a peak. Near the critical value, c5 is close to c5,cr
and the time t is close to t∗ the corresponding time at
which φ̇ = 0 in the critical case. The derivative of the
potential can be calculated perturbatively by a double
Taylor series as

U ′(t∗ + δt∗, c5,cr + δc5)

' U ′(t∗, c5,cr) + φ̇U ′′(t∗, c5,cr)δt∗ +
∂U ′

∂c5
(t∗, c5,cr)δc5.(56)

where we have parameterized the distance from criticality
by t = t∗ + δt∗ and c5 = c5,cr + δc5. Now the first

and second terms in (56) vanish because U ′ ∝ φ̇ = 0 at
t = t∗ for c5 = c5,cr in the slow-roll approximation. The
coefficient of the third term is just given by U0φ

4
∗/(4!Λ5)

and is nonzero. Thus we obtain the estimate

Pζ(kp) ∼
U3
0

U2
0 (δc5)2

Λ10

φ8∗
, (57)

where we used H6 ∼ U3
0 for small φ̇. The power spectrum

at the CMB scale is given by

Pζ(k∗) ∼
U3
0

c21U
2
0

Λ2. (58)

Thus we obtain our very rough estimate for the spike in
power

Pζ(kp)
Pζ(k∗)

∼ c21
(δc5)2

(
Λ

φ∗

)8

. (59)
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Now we are considering models with typical field dis-
placements φ∗ ∼ Λ when this peak appears. Also c1 is
determined by the CMB normalization, which requires
c1 ∼ −10−4. Hence we obtain

Pζ(kp)
Pζ(k∗)

' Max

{
C

10−8

(δc5)2
, 1

}
. (60)

where we included a fudge factor C that comes from
(Λ/φ∗)

8 and other numerical factors that we have omit-
ted, and also to capture the fact that these slow-roll
estimates are inaccurate in this regime. This result is
consistent with the precise result of Fig. 5 if we take
C ∼ 0.01. Since Pζ(k∗) ∼ 10−9 and it is desirable to
achieve Pζ(kp) ∼ 10−2 for significant PBH production,
this requires δc5 ∼ 10−8.5 = 10−6.5% fine-tuning.

VI. CONCLUSIONS AND DISCUSSION

PBHs are a fascinating possibility in modern cosmol-
ogy, which could conceivably have some bearing on the
dark matter, BH merger events observed by Advanced
LIGO and Advanced Virgo, or other astrophysical phe-
nomena such as acting as the seeds for supermassive BHs.
Any of these possibilities is highly speculative and al-
ready somewhat constrained from existing data, but de-
serves to be fully investigated. A PBH requires very large
over-densities to be produced in the early universe which
could plausibly arise from some non-trivial behavior dur-
ing inflation. In this paper we examined the canonical
class of single field inflation models, organized by the
standard two-derivative action, which is entirely speci-
fied then by the inflaton potential function U(φ).

We provided a method to reconstruct the inflaton po-
tential U(φ) from a given power spectrum Pζ(k), which
is a useful tool on its own. But in particular, it was
useful to show that the slow-roll approximation needs to
be violated in order to obtain a sufficiently narrow spike
in the spectrum, in agreement with other works in the
literature [35–40]. This requires the inflaton to enter a
regime where the potential is near a critical point. In
this paper we exploited the idea of having a very small
local minimum (with nearby local maximum) in the po-
tential which the inflaton rolls over and generates a large

spike in the matter spectrum (see also Refs. [38, 40]). We
showed that this could be realized in a simple polynomial
potential, which was compatible with all observations, in-
cluding the observed spectrum on large scales.

However an important question to ask is how generic is
this behavior? We showed that one of the coefficients in
the polynomial, c5, needs to be fine-tuned at the level of
∼ 10−6.5% to achieve the necessary enhancement in the
power spectrum, from ∼ 10−9 to ∼ 10−2. Such possi-
bilities may nevertheless occur occasionally in the string
landscape. This may suggest that the likelihood of PBHs
is small, as it is rather non-trivial to produce them in this
framework. Other approaches, in which the production
appears more natural, such as multi-field hybrid inflation
models, have their own problems of achieving the ob-
served spectral index on large scales, etc. It is interesting
that the spike in the power spectrum scales as∝ 1/(δc5)2,
meaning that if c5 is drawn randomly on a uniform dis-
tribution, as seems natural, then the power spectrum’s
probability distribution is both sharply peaked and cal-
culable. Furthermore, since the abundance of PBHs is
exponentially sensitive to the power spectrum, its proba-
bility distribution is also sharply peaked and calculable.
It is relatively rare to achieve such non-trivial and calcu-
lable behavior in a landscape.

Furthermore, an important issue to address is whether
there are other possible consequences of the small local
minimum/maximum in the potential. While the classi-
cal field rolls over this region, quantum fluctuations can
cause parts of the universe to randomly get trapped in
the minimum, leading to eternal inflation. One could
then produce bubble universes from tunneling out of this
local minimum. While such bubbles are probably unin-
habitable, since they would only have a reduced phase
of subsequent inflation and so would be rather small and
highly curved, it may be interesting to examine this fur-
ther.
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