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Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts
(GRBs). During the early evolution of the post-merger remnant, the state of the torus is determined
by a combination of neutrino cooling and magnetically-driven heating processes, so realistic models
must include both effects. In this paper, we study the post-merger evolution of a magnetized black
hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial post-
merger state provided by previous numerical relativity simulations. We use a finite-temperature
nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve
the needed accuracy, we introduce improvements to SpEC’s implementation of general-relativistic
magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved
method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We
find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are
largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum
transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly
over the first 20 ms but in roughly the same way for magnetized and nonmagnetized disks. The
heating rate and disk’s luminosity decrease much more slowly thereafter. These features of the
evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and
seed field strength, although turbulent effects are not fully converged.

I. INTRODUCTION

The cause of short-hard gamma ray bursts (GRBs) re-
mains unknown, but some of the most promising central
engine models involve rapid (∼M� s−1) accretion onto a
stellar mass black hole (BH). Such systems are naturally
produced by some black hole-neutron star (BHNS) and
neutron star-neutron star (NSNS) binary mergers. (For
reviews of short GRBs, see [1, 2].)

Given the requisite dense, hot accretion flow, there are
several ways energy could be channeled into a baryon-
poor ultra-relativistic outflow of the sort needed to ex-
plain GRB properties. The accretion gas cools primarily
by neutrino emission, and so such systems are classified
as neutrino-dominated accretion flows (NDAFs) [3–6].
Some emitted neutrino energy can be transferred to a
pair fireball through neutrino-antineutrino annihilations
outside the disk [7–10]. Magnetic fields can also extract
energy from the disk or black hole spin [11, 12], and the
energy outflow can be Poynting flux dominated.

The lifetime of a short GRB (<∼ 1s, presumably related

to the disk lifetime τacc) is much greater than the dynam-
ical timescale (τd ∼ ms) and perhaps also the thermal
timescale (τth ∼ α−1τd ∼ (H/r)2τacc in the standard al-
pha viscosity, thin disk model [13]). Therefore, the GRB
mechanism is a process that takes place in the accretion
system’s dynamical and probably also thermal equilib-
rium.

The post-merger accretion disks formed in
BHNS/NSNS mergers have densities of ρ ∼ 1011 g cm−3

and temperatures of T ∼ 1 MeV. Hence, photons
are trapped and in equilibrium, and radiation is by
neutrinos. For high enough accretion rate Ṁ , the disk is
opaque to neutrinos, which must diffuse out and provide
an additional source of pressure. Neutrino luminosities
can reach Lν ∼ 1053 − 1054 erg s−1, and this emission
will strongly affect the disk (on a secular timescale τth)
by cooling it and altering the composition, quantified
by the electron fraction Ye, the fraction of nucleons
that are protons. Unstable entropy or Ye gradients
can drive convection in the disk [14]. In addition to
these emission effects, there are also neutrino transport
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effects. Neutrino absorption near the neutrinosphere
can drive thermal winds [15, 16]; neutrino momentum
transport can create a viscosity that slows the growth
of the magnetorotational instability [17, 18] (although
probably not for BHNS mergers [19, 20]).

In previous papers [19, 21, 22], we simulated BHNS
mergers at realistic mass ratios using a finite-temperature
nuclear equation of state and incorporating neutrino ef-
fects. The latter were modeled in some cases with a
leakage scheme (which includes emission but not trans-
port) [21–25] and in some cases with an energy-integrated
two-moment M1 transport scheme [19, 26]. Comparing
to the earlier times of evolution we found that the post-
merger accretion disks become cold, and more neutron-
rich with dimmer neutrino emission after a few tens of
milliseconds. Comparing leakage to M1, we find that
the former gives a reasonable estimate for the neutrino
emission and global thermal evolution, although it over-
estimates temperature gradients, and cannot accurately
track the Ye evolution in low-density regions. No signif-
icant neutrino-driven winds were seen. The cooling and
dimming of the disks is unsurprising, given that these
simulations included the major cooling mechanisms–
neutrino emission and advection of the hot inner gas into
the black hole–but contained only one significant heating
mechanism (in addition to numerical dissipation heat-
ing): shock heating from the circularization and pulsa-
tion of the disk gas.

Long-term accretion requires an angular momentum
transport process that will naturally release orbital en-
ergy and heat the gas. This is probably provided by mag-
netic fields, which were not included in the above simula-
tions. Weakly magnetized accretion flows are subject to
the magnetorotational instability (MRI) [27], inducing
turbulence which dissipates energy at small scales and
whose mean (mostly Maxwell) stresses transport angular
momentum outward, driving accretion [28]. Magnetic
fields also transport angular momentum through mag-
netic winding (the ω effect). Reconnection at current
sheets provides a way to convert magnetic energy into
plasma thermal and kinetic energy. Simulations of ra-
diatively inefficient magnetized accretion tori find strong
winds along disk surfaces and magnetically dominated
poles [29, 30]. Large-scale fields threading the BH ergo-
sphere enables extraction of the black hole spin energy
into a Poynting flux-dominated jet [11, 30]. Field lines
connecting the spinning black hole to the disk may facil-
itate energy and angular momentum transport from the
former to the latter. [31].

There have been successful GRMHD simulations, ne-
glecting neutrino effects, of BHNS [20, 32–35] and
NSNS [36–41] mergers. The highest resolution BHNS
simulations with an initial seed field confined in the neu-
tron star [20] find strong winds and Poynting-dominated
jets only at very high resolutions (and even here, it is
unclear that convergence has been achieved). There are
also indications that unconfined seed fields produce jets
more readily [35], consistent with disk studies that find

jets but not disk interiors to be very sensitive to the seed
field [42]. The helicity of the magnetic field may also have
subtle long-term effects [43]. These merger simulations
used simplified thermal components of the equation of
state and neglected neutrino effects; they had the main
heating effects but not a major cooling effect.

Clearly, accurate evolution on thermal timescales re-
quires both neutrino cooling and magnetoturbulent heat-
ing. The two will influence each other. The neutrino
luminosity, and hence the viability of “neutrino” mech-
anisms for driving a GRB, depends on magnetic heat-
ing, while the saturation strength of the magnetic field
in an MRI turbulent disk will depend on the temper-
ature of the gas [44, 45] set partly by neutrino cool-
ing. NSNS merger simulations with both effects have
been performed [46, 47], but our understanding of long-
term post-merger evolution of BHNS (and high-mass
NSNS) systems relies on accretion disk models. In most
cases, turbulent transport and dissipation is modeled by
a phenomenological “alpha” viscosity [13]. These include
the original one-dimensional (axisymmetric, vertically
summed), equilibrium NDAF studies [3–5]. The inward
advection of magnetic field has been added to such mod-
els in an approximate way [48]. One-dimensional NDAFs
were evolved by Janiuk et al. [49], who found disks can
become visco-thermally unstable in some regions, but
only for very high accretion rates (Ṁ >∼ 10M� s−1). Evo-
lutions have also been carried out in higher dimensions,
again in the alpha viscosity framework, yielding valuable
information on neutrino-antineutrino energy release and
late-time outflows [14, 50–52]. Efficient release of energy
by radiation requires low α (so τacc > τth), proving [14]
the importance of first-principles, magnetohydrodynamic
(MHD) simulations to assess the adequacy of viscosity
models and to reveal the actual efficiency of angular mo-
mentum transport.

MHD disk simulations with neutrino cooling have been
carried out in 2D beginning from analytic, constant angu-
lar momentum equilibrium tori by several groups [53–56]
, and recently in 3D by Siegel and Metzger [57]. They
identify the MRI, with associated heating, neutrino emis-
sion, and powerful outflows. These studies probably pro-
vide the most realistic picture available of the evolution of
the post-merger disk, but their artificial disk profiles ne-
glect the strong angular momentum gradients, high com-
pactness, and nonaxisymmetric features seen in merger
simulations. These neglected features will most likely
have strong effects in the early, and most neutrino lumi-
nous, post-merger phase. In addition, the 2D (axisym-
metric) simulations [53–56] are affected by the known
differences between the saturation of the MRI in 2D vs.
3D [58, 59], including the impossibility of an axisymmet-
ric dynamo [60, 61].

In this paper, we study the effects of magnetic fields on
the post-merger evolution of a BHNS binary system. We
evolve in 3D using as initial data the BH accretion flow
produced by a BHNS merger simulation [22]. In addition
to MHD, we employ a realistic finite-temperature nuclear
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equation of state and neutrino cooling via a leakage ap-
proximation, giving us all the basic ingredients needed
for a realistic thermal evolution. For this first study, we
restrict ourselves to a simple seed field geometry with
high field strength, for which the MRI is resolved with
modest grid sizes. Studying a strongly magnetized disk
most likely gives us a sense of the maximum effect that
magnetic fields can have. Our simulations use the Spec-
tral Einstein Code (SpEC) and required the development
of new numerical techniques for SpEC: MHD on a cubed-
sphere multipatch grid, coordinate maps to optimize grid
use, and an improved technique to control entropy evo-
lution in regions where kinetic energy dominates over in-
ternal energy.

Comparing disk evolutions with and without magnetic
fields, we find some expected effects. The magnetic field
drives strong and sustained accretion, while the late-time
accretion rate of a nonmagnetized disk is, by comparison,
negligible. Magnetic effects also do increase the disk’s
specific entropy, as a result of magnetoturbulent heating
and numerical reconnection, leading to a roughly steady
entropy in comparison to the secularly decreasing entropy
of a nonmagnetized disk. However, at early times the
nonmagnetized disk’s cooling rate is significantly slower
than neutrino emission would predict, indicating the con-
tinued importance of shock heating 30 ms after merger as
a heating source of comparable strength to MHD-related
heating. The effects of disk depletion and heating on the
neutrino luminosity roughly cancel, and the magnetized
disk dims at roughly the same rate as the nonmagne-
tized disk. Thus, for the case we consider, MHD tur-
bulence does little to assist neutrino-related mechanisms
for powering a GRB during the most neutrino luminous
phase of the accretion, even in the case of an extremely
strong seed field.

This paper is organized as follows. In Sec.II, the ini-
tial configuration and set up is discussed. Section III
briefly describes the numerical methods used. In Sec.IV,
numerical results are presented, focusing on the effects
of magnetic field on the accretion rate, thermal evolu-
tion and general properties of the disk. Finally, Sec.V is
devoted to the summary and conclusion. A detailed dis-
cussion of new numerical techniques is reserved for the
Appendix.

II. INITIAL STATE

A. Input physics

As in our recent BHNS merger studies [21, 22] we em-
ploy the Lattimer-Swesty equation of state [62] with nu-
clear incompressibility K0 = 220 MeV (LS220), using the
table available at http://www.stellarcollapse.org and de-
scribed in [25].

Neutrino emission effects are captured using a simple
leakage scheme, described in [21, 22]. Leakage schemes
remove energy and alter lepton number at rates based

on the local free-emission and diffusion rates. They ac-
count for these emission effects within factors of ∼ 2− 3
accuracy (as determined by comparisons with genuine
neutrino transport schemes [19]) but do not include the
effects of neutrino transport and absorption. Our leak-
age scheme integrates out spectral information, assuming
Fermi-Dirac distributions at the local temperature (with
chemical potentials estimated as in [22]), although we can
estimate an average energy of emitted neutrinos from the
total luminosity and number emission rate. (See [16, 63]
for approximate ways, not pursued in this study, to in-
corporate absorption and spectral information in a leak-
age framework.) Our leakage scheme includes β-capture
processes, e+ − e− pair annihilation, plasmon decay and
nucleon-nucleon Bremsstrahlung interactions. In opti-
cally thick regions, the neutrinos contribute to the pres-
sure.

B. Initial Configuration

For our initial state, we use the BHNS configuration
M12-7-S9 presented in [22]. (See Table 2 of that pa-
per.) The initial masses of the BH and NS are 7M� and
1.2M� respectively. The BH is rapidly spinning with
SBH/MBH

2 = 0.9. The remnant torus mass is about
0.14M�, with maximum density of ∼ 2 × 1012 g cm−3,
and average temperature of ∼ 2.7 MeV. We restart our
simulation using data of this case at t = 15 ms after
merger. At this time, the spacetime has settled to a
nearly stationary BH metric in the coordinate system
produced by the numerical relativity simulation, but the
disk remains significantly nonaxisymmetric and nonsta-
tionary. We therefore evolve only the fluid, keeping the
metric at its initial state.

We set up an initially poloidal magnetic field via a
toroidal vector potential

Aφ = Ab$
2 max(ρ− ρcut, 0) , (1)

where ρ is the axisymmetrized density field (to initiate

the field with large poloidal loops), $ =
√
x2 + y2 is the

cylindrical radius in grid coordinates, Ab sets the overall
strength of the resulting B-field, and the cutoff density
ρcut, set to 6% of the maximum density, confines the
initial field to regions of high-density matter. We follow
the same prescription as that in Noble et al. [64] to set
the initial magnetic field strength, so that the ratio of the
volume-weighted integrated gas pressure to the volume-
weighted integrated magnetic pressure ≡ β is about 13
for our strongly magnetized disk. This magnetic field at
the maximum value is about 3.8× 1015 G. This is likely
much stronger than realistic BHNS post-merger magnetic
fields. We focus on this extreme case first for two reasons.
First, it allows us to resolve the rapidly-growing modes
of the MRI very well with modest resolution. Second, an
extreme field might be expected to reveal the maximum
effect that magnetic fields might have.
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FIG. 1. Comparison of the total density-averaged entropy for
different numerical methods for nonmagnetized and stronger
magnetized cases. The τ method for energy evolution shows
extra heating happening at the late time evolution for the non-
magnetized case using both puncture and multipath methods.

Strong seed fields may induce qualitatively different
behavior from weaker seeds if it is strong enough to sup-
press the MRI before the disk can become turbulent.
This will certainly be the case where β is near or be-
low unity, so the fastest-growing MRI mode wavelength
λMRI (∼ (2π/Ω)(B/

√
4πρ)) exceeds the disk height. This

is not a danger in most of our disk. However, MRI growth
might also be affected if λMRI is comparable to the length
scale on which λMRI itself varies (due to variation in
Alfven speed) [59, 65, 66] or comparable to the radius
of curvature of the field lines, which occurs even in some
strong-field, high-density regions. In order to estimate
the effect of seed field strength, we carry out another
simulation with a weaker seed field, set by β ≈ 36. This
corresponds to a maximum field strength of 2 × 1015 G.
This simulation does show weaker heating and less out-
flow, confirming our expectation (also suppported by 2D
strong-seed disk simulations [56]) that a strong field max-
imizes MHD-related effects.

III. NUMERICAL METHODS

Previous SpEC hydrodynamics simulations evolved
fluids on Cartesian grids with points inside a radius
rEX inside the BH horizon excised, resulting in an
irregular-shaped cubic-sphere or “legosphere” excision re-
gion. Points within a stencil of rEX were evolved with
one-sided differencing. This proved numerically unsta-
ble for MHD evolutions–an unsurprising result given the
presence of incoming characteristic speeds on legosphere
boundary faces.

We implemented two fixes to enable stable magnetized
inflow into the BH. The first is to map to a new coordi-

16 18 20 22 24
t-t merger (ms)

8

8.5

9

9.5

10

<S
> 

(k
B
ba

ry
on

-1
)

β13-P-τ-L0
β13-P-τ-L1
β13-P-τ-L2
β13-M-Ent-L0
β13-M-Ent-L1
β13-M-Ent-L2

FIG. 2. Convergence test on the specific entropy in the first
10 ms of evolution for the magnetized disk with puncture-
tau and multipatch-entropy methods. A smoothing of scalar
primitive variables after the interpolation onto multipatch
grids causes slightly higher initial average entropy in these
runs, but the difference quickly decreases and the subsequent
evolutions for both methods are in good agreement at differ-
ent resolutions.
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FIG. 3. Comparison of the magnetic energy to the thermal en-
ergy ratio for different magnetized cases with different meth-
ods. The β36-P-τ -L1 case reaches the same saturation level
as the stronger field cases, but the magnetic energy starts
to dissipate in the β36-M-Ent-L2 case, leading the ratio to
decrease over time and finally saturate at a lower level (see
table I for simulation labels).

nate system in which the sphere rEX is mapped to a point,
so that the interior of this sphere is not on the grid (”ex-
cision by coordinates”). This method is implicitly used in
non-vacuum numerical relativity moving puncture evolu-
tions [67–69] and has been explicitly used for MHD by
Etienne et al [70]. We then evolve the MHD equations as
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Name Ni
a ∆rb(m) ∆zb(m) BH singularityc Energy evolutionc < β >init

B0-P-τ -L0 213 2880 580 Puncture τ ∞
B0-P-τ -L1 266 2285 467 Puncture τ ∞
β13-P-τ -L0 213 2880 580 Puncture τ 13
β13-P-τ -L1 266 2285 467 Puncture τ 13
β13-P-τ -L2 332 1806 376 Puncture τ 13
B0-M-τ -L1 178 2360 573 Multipatch τ ∞
β13-M-τ -L1 178 2360 573 Multipatch τ 13
B0-M-Ent-L0 138 3128 763 Multipatch Entropy ∞
B0-M-Ent-L1 178 2360 573 Multipatch Entropy ∞
B0-M-Ent-L1r 178 1675 573 Multipatch Entropy ∞
β13-M-Ent-L0 138 3128 763 Multipatch Entropy 13
β13-M-Ent-L1 178 2360 573 Multipatch Entropy 13
β13-M-Ent-L1r 178 1675 573 Multipatch Entropy 13
β13-M-Ent-L2 231 1790 426 Multipatch Entropy 13
β36-M-Ent-L1 178 2360 573 Multipatch Entropy 36
β36-M-Ent-L2 231 1790 426 Multipatch Entropy 36
β36-P-τ -L1 266 2285 467 Puncture τ 36

TABLE I. A list of simulations reported. Simulations vary by grids, numerical methods, and strength of seed field.
a The cube of Ni is the total number of grid points.
b ∆r and ∆z are the radial and vertical grid spacing, respectively, on the equator at the radius of the initial density maximum.
c See Appendix for details.

in [71] with constrained transport and no explicit exci-
sion. We call this a “puncture” method. The second fix
is to replace Cartesian grids with cubes deformed so as
to fit together and fill the space between inner and outer
spherical shells, the so called “cubed-sphere” configura-
tion which has already been successfully applied by other
codes to numerical relativity [72–76], hydrodynamics [77–
80], and MHD [81–83]. Each deformed sphere is evolved
on its local coordinate system. We call this method “mul-
tipatch”. For the induction equation, we implement a
centered hyperbolic divergence cleaning method. Details
of these methods and code tests are provided in the Ap-
pendix.

An additional numerical challenge is posed by the non-
magnetized disk which, as it cools, becomes more super-
sonic. In our conservative MHD formulation, only the
total energy and momentum density are evolved, so it
becomes difficult to accurately extract temperature in-
formation when internal energy is much less than kinetic
energy. SpEC has a procedure [71] for “fixing” energy
and momentum evolution variables when they fail to map
to any physical temperature and velocity. In previous
papers, this fixing was invoked only in unimportant low
density regions, but here it leads to glitches in tempera-
ture inside the high-density region of the torus and un-
physical heating. We cure this problem by introducing
an auxiliary entropy variable used to exclude unphysical
jumps in temperature, similar to a technique used in the
HARM3D code [64]. Details are given in the Appendix.

A list of the combinations of methods and resolutions
reported in this paper is provided in Table I. A compar-
ison of results for the average entropy evolution is given
in Fig. 1. Entropy is a particularly useful diagnostic of
thermal evolution because it responds only to physical

heating and cooling effects. Unlike temperature, entropy
is unaffected by adiabatic expansion/compression and by
nuclear reactions (if, as here, the gas remains in nuclear
statistical equilibrium). We see that the methods give
overall agreement, except that only simulations with the
new entropy variable can maintain cooling of the non-
magnetized disk.

In Fig. 2, we test convergence of magnetized disk runs
by evolving with both grid types at three resolutions.
Fortunately, puncture and multipatch runs seem to con-
verge to each other. Puncture grids have more gridpoints
for a given resolution of the disk interior, but they also
allow larger timesteps (because they don’t have the mul-
tipatch code’s concentration of angular grid points near
the horizon).

For the nonmagnetized disk evolution, we have inves-
tigated the effect of numerical viscosity on the late-time
cooling rate. We evolve in multipatch mode at three reso-
lutions (the same as in the magnetized disk convergence
test). We also perform a fourth simulation with a ra-
dial map that concentrates resolution near the maximum-
density ring, increasing resolution there by a factor of
2.5. (See Appendix for details.) In all cases, the entropy
curves, and especially the late-time cooling slopes, are
nearly identical. We conclude that numerical viscosity
cannot be an important part of the energy budget for
this disk’s evolution.

In the magnetized disk simulations it is essential to re-
solve the MHD instabilities to capture all MHD effects.
Resolving the MRI requires high resolution (≈ 10 grid
points, to capture the growth of fastest-growing mode,
along λMRI [84]). We achieve this resolution despite a
modest number of grid zones by using strong seed fields
and by using coordinate maps to increase the resolution
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in high density regions near the disk midplane as de-
scribed in the Appendix. Measuring λMRI/∆x at the
initial time shows that MRI fastest-growing mode is re-
solvable in over 80% of the magnetized fluid (medium
resolution). We find that the thermal evolution is much
more sensitive to vertical than to radial resolution, pre-
sumably because it is the mode of the axisymmetric MRI
with vertical wavenumber that is most significant in the
high-density region, so we use grids with ∆z < ∆r.

Although it is simple to check λMRI/∆x, it is not pos-
sible to disentangle MRI-driven field amplification from
other effects. Local field amplification on the orbital time
is seen–in fact, it is seen even in some regions where the
MRI fastest-growing mode is certainly not resolved, as
would be expected from nonmodal shearing wave ampli-
fication [85]. In our case, there is the additional compli-
cation that our initial state is not a hydrodynamic equi-
librium but an extremely dynamical configuration.

Fig. 3 shows another comparison of results for the to-
tal magnetic energy to the thermal energy ratio for the
magnetized cases. There is a good agreement between
the puncture and multipatch methods for the stronger
field case; The energy ratio grows by more than one or-
der of magnitude and saturates at the same level for both
methods. For the weaker field case, puncture and mul-
tipatch runs agree at early times, corresponding to the
linear phase of magnetic winding and MRI amplification,
but the nonlinear saturation process is apparently more
difficult to resolve, so differences appear at these later
times. For the puncture run, the magnetic field saturates
at the same level as the stronger field, indicating that the
saturation state is independent of the initial seeded mag-
netic field (at least for our range of seed fields). The
weakly magnetized-multipatch simulation (case β36-M-
Ent-L2 in table I) on the other hand, tracks the similar
puncture simulation β36-P-τ -L1 for about 5 ms, and then
it decreases for about 10 ms and finally saturates at a
level that is lower by a factor of two. This shows that our
puncture method can resolve the magnetic field growth
better for weakly magnetized case. Based on the methods
comparison and convergence studies, we present punc-
ture simulation for the weakly magnetized case (β = 36),
and multipatch simulations for the nonmagnetized and
strongly magnetized (β = 13) cases in the next section.

IV. RESULTS

We concentrate only on the results of simulations using
multipatch grid and auxiliary entropy evolution meth-
ods with moderate resolution for the nonmagnetized case
(B0-M-Ent-L1), and high resolution for strongly magne-
tized case (β13-M-Ent-L2), and the puncture τ evolu-
tion methods for the weakly magnetized case (β36-P-τ -
L1) in Table I. All grids and evolution methods give
similar results for the first ∼25 ms, but these particular
runs give more reasonable results in the subsequent evo-
lution (see the detailed discussion in appendix A). At

the initial time, the thermal timescale is estimated as
τthermal ∼ Ethermal/Lν ∼ 10 ms. We evolve for about
50 ms, long enough to see the disk altered by thermal
effects.

A. Dynamical evolution

In Fig. 4, we plot several global quantities of the disk.
As expected, adding a magnetic field enables angular mo-
mentum transport by magnetic winding and the MRI.
Field growth also leads to strong magnetic pressure that
influences the disk. Cumulatively, magnetic effects lead
to an accretion rate roughly one order of magnitude
higher than that of the disk evolved without a magnetic
field. The accretion rate does not appear very sensitive
to the strength of the seed field, at least for the very
limited range studied here. The settled accretion rate
of ∼ 0.4M� s−1 is low enough that a thermal instabil-
ity is not expected [49]. MHD effects can also cause the
disk to expand radially and vertically, as is expected from
angular momentum transport (see the 2D images of the
density profile Figs. 6 and 5 showing the nonmagne-
tized and magnetized disks at t = 45 ms respectively).
This transport especially drives matter into the inner
radii (r ∼ 30 km), leading to higher densities there. The
nonmagnetized disk, on the other hand, contracts ver-
tically and radially, becoming more ring-like as it loses
thermal pressure support. Evolution without a magnetic
field leads to a significantly denser disk, which explains
why the magnetized disks have lower average tempera-
ture even though they have higher average entropy (last
panel in Fig. 4).

The lower three panels of Fig. 4 show the effect of
magnetic fields on the average entropy per baryon 〈S〉,
electron fraction 〈Ye〉, and temperature 〈T 〉. Even with
no magnetic field, cooling (as measured by 〈S〉) is delayed
10 ms by shock heating; once the disk has settled, it com-
mences cooling. If a seed field is introduced, 〈S〉 increases
with time. The slope for the first 10 ms is higher and
quite seed field-strength dependent and should perhaps
be considered a transient as the field saturates, while sub-
sequent heating is slower and less sensitive to seed field
strength.

With no magnetic field, 〈Ye〉 decreases monotoni-
cally, continuing the behavior seen in our earlier simula-
tions [22], while magnetized runs show a leveling off and
slight increase. Siegel and Metzger’s 3D magnetized disk
simulations also find that the inner disk remains neutron
rich [57]. Radial profiles of Ye, displayed in Fig. 7, show
that the magnetized disk has higher Ye mostly in a region
around radius r ≈ 40 km. This can be understood from
the equilibrium electron fraction Ye,eq. In this region, the
magnetized disk has lower ρ0 and higher T . As shown in
Fig.18 of [22], Ye,eq increases with T and decreases with
ρ0, so the higher Ye is consistent with Ye,eq. The outer
regions of the disk, on the other hand, are too cool for
Ye to equilibrate on the simulated timescale.
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Figure 8 shows gas pressure, total and poloidal mag-
netic pressures versus distance from the black hole at two
times in the two configurations β13 (top panel) and β36
(bottem panlel). The toroidal field quicky grows to be
the dominant component, contributing about 90% of the
total magnetic energy at the late time evolution for our
stronger field case (as seen in either puncture or multi-
patch runs). This figure also shows that the total field
pressure exceeds the gas pressure in the inner regions.
Because of our rather large seed fields, the field can only
grow one to two orders of magnitude before reaching over-
all equipartition with the internal energy. Strong toroidal
fields can suppress the MRI, especially at low wavenum-
bers [86], and this suppression may take place in some
regions of our disk.

B. Neutrino emission and optical depth

Fig 9 shows the neutrino luminosity for electron-flavor
species. The electron antineutrino luminosity is the
strongest in both the magnetized and nonmagnetized
cases. The neutrino luminosity is higher in the mag-
netized case for all the species, but the changes are not
as large as might have been expected. In all cases, the
total neutrino luminosity drops from about 1053 erg s−1

to a few times 1052 erg s−1 over about 30 ms after merger.
Radial emission profiles show that the luminosity drops
by a comparable factor throughout the high-density re-
gion; The drop in emission does not reflect some local
effect, but rather the global evolution of the disk: the
contributions to the luminosity are distributed smoothly
throughout the high-density region.

One possible influence on Lν would be a change in
the neutrino optical depth. Figure 10 plots the energy-
averaged optical depth of electron neutrinos (the only
neutrino flavor with optical depth sometimes greater
than unity). The nonmagnetized disk maintains an op-
tical depth of a few, while spreading of the magnetized
disk makes it optically thin. Our disk has too low den-
sity to show the optically thin to optically thick transition
from the inner radii to the outer radii seen in some alpha
disk studies [14, 49]. On the other hand, the total neu-
trino luminosity, and the fact that electron anti-neutrino
emission is brightest, are consistent with the literature
for α ∼ 0.01− 0.1 disks [14, 51].

Measuring the effective α parameter from the accretion
rate, we get the value of ∼ 0.3 for our stronger magne-
tized case, which in fact, includes the angular momentum
transport due to the magnetic winding, hydro shocks and
the MRI turbulence. Computing the effective α viscos-
ity due to MRI turbulence from Maxwell and Reynolds
stress tensors, < T rφ >= α < P >, we get the maximum

value of α ∼ 0.1 at r ∼ 30km (close to the maximum den-
sity), and the density averaged value of α ∼ 0.03. (This
difference shows how much the accretion rate is affected
by other factors than the magnetic turbulence.) The ac-

cretion efficiency Lν/Ṁc2 for the stronger magnetic field

case is≥ 15%. This efficiency is a few percent higher than
the optically thin NDAF α disk models (α ∼ 0.01− 0.1)
with high spin black holes a ≥ 0.9 as reported by Shibata
et al. (2007) [53]

C. Thermal evolution

The transport mechanism in an accretion disk affects
the luminosity in two ways. By heating the disk, it tends
to increase the luminosity. By spreading the disk to
larger radii and lower densities and by facilitating higher
accretion rates onto the black hole, it tends to decrease
the luminosity. For a thin alpha disk, τthermal � τviscous,
so the former effect should initially dominate, but our
disk is quite thick (H/r ≈ 0.3), so the timescales on
which these effects operate are not well separated. To
understand the actual disk evolution, we must quantify
the major heating and cooling effects.

Figures 11, 12, and 13 show the major entropy sources
and sinks for different levels of initial magnetization.
From the energy and lepton number source terms pro-
vided by the leakage code, a radiative entropy sink term
Ṡ−ν can be computed (see Appendix for details). Cool-

ing from advection into the black hole Ṡ−Adv is straight-
forwardly measured by monitoring entropy flux at the
inner boundary. Adiabatic expansion and nuclear reac-
tions (in nuclear statistical equilibrium) do not affect en-
tropy, while shocks, reconnection, and turbulent dissipa-
tion should only heat. Thus, the total heating rate Ṡ+

should be

Ṡ+ = Ṡ + Ṡ−ν + Ṡ−Adv, (2)

where Ṡ is the time derivative of the total entropy. Un-
fortunately, it is difficult to separate the various possible
heating sources, as they will all appear in the code via
the stabilizing dissipation terms in our shock-capturing
MHD scheme. We normalize each source term by the in-
stantaneous total entropy of the disk, giving the source
terms the quality of inverse timescales.

The entropy budget plots Figs. 11, 12, and 13 tell a
clear story. At early times, there is strong heating in
all cases from shocks as the disk, still nonlinearly per-
turbed from equilibrium, pulsates and axisymmetrizes.
This heating ceases about 30 ms after merger as the disk
settles. It is especially clear in the nonmagnetized case
(Fig. 11) that this happens before the neutrino luminosity
drops. The neutrino luminosity drops quickly thereafter,
on a fraction of the initial thermal timescale, as radia-
tion cools the disk enough to decrease itself. This rapid
cooling stops when the thermal timescale has increased
to about 100 ms.

It is worth mentioning that the unmagnetized simu-
lations show this initial strong heating regardless of the
grid and methods used. Indeed, it is seen even in the orig-
inal simulation presented in [22]. The exact amount of
early-time heating does vary noticeably from one method
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FIG. 4. The evolution of the accretion rate Ṁ (first panel from the top), the electron fraction Ye (second panel), the specific
entropy s (third panel), and temperature T (last panel) for magnetized β13-P-τ -L1 (dashed dot line), β36-P-τ -L1 (dashed
line), and nonmagnetized B0-M-Ent-L1 cases (solid line). The accretion rate is higher by about one order of magnitude for the
magnetized cases due to magnetic winding and magnetorotational instablity. The entropy grows higher as a result of effective
viscous heating, while the temperature decreases over time because of adiabatic cooling for the magnetized cases.

FIG. 5. Snapshot of the rest-mass density in the meridional
x-z plane at t = 45 ms for β13 case. The solid line shows
magnetic field magnitude contours correspond to ≈ [1012,
1013,1014,1015,1016] G.

to another. It is greatest for the multipatch runs, perhaps
because of numerical perturbations caused by switching
to a radically different grid (Fig. 1).

For the nonmagnetized case, the final state is neutrino
cooling-dominated. Accretion has nearly stopped, and
advective cooling is negligible. The heating rate is sig-
nificantly lower than the neutrino cooling rate, although
the average of the former is still around a third of the
latter. Note that the heating rate does occasionally be-
come negative, presumably a sign of numerical error in
the difficult-to-follow thermal evolution of the gas as it
becomes ever more supersonic. This negative heating
could be removed by a stricter lower limit on the en-
tropy (see the Appendix for details), but this would bias
numerical error toward heating, which might have an un-
desirable cummulative effect.
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FIG. 6. Snapshot of the rest-mass density in the meridional
x-z plane at t = 45 ms for the nonmagnetized case.
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FIG. 7. Vertically and azimuthally averaged electron fraction
profiles at the initial time, t = 25 ms, and t = 55 ms. Ye
decreases at densest regions and increases at low-density outer
radii regions in nomnagnetized case. In the magnetized case,
Ye starts decreasing in the high-density regions only at late
times.

For magnetized cases, the heating rate remains above
the neutrino cooling rate. However, this effect is largely
cancelled by the strong advective cooling that takes place
as hot material accretes into the black hole. Although the
component entropy sources and sinks are larger than in
the nonmagnetized case, the thermal timescale in these
cases also increases to ∼100 ms. At late times, the neu-
trino luminosity decreases slightly faster in the most
highly magnetized case, although in all cases a luminos-
ity of around 1052 erg s−1 will be maintained till the end
of the evolution.

In Figure 14, we plot late-time convergence for repre-
sentative global quantities. Convergence at these times is
difficult to achieve because it requires resolving not only
the fastest-growing MRI wavelength but also sufficient
inertial range that the average transport effects of turbu-
lence are accurately captured. In the highest-resolution
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FIG. 8. Vertically and azimuthally averaged radial profiles
of gas pressure, total and poloidal component magnetic pres-
sures at t = 25 ms, and t = 55 ms for β13 (top panel) and
β36 (bottom panel) magnetized cases. The toroidal compo-
nent becomes dominant after the magnetic field saturates in
all the magnetized cases.
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FIG. 9. Neutrino luminosity evolution for electron-flavor neu-
trinos and antineutrinos in the β = 13 and nonmagnetized
simulations. The magnetized run has systematically higher
electron neutrino and antineutrino luminosities.

study to date of a BHNS post-merger system, Kiuchi
et al. [20] were unable to demonstrate convergence even
with grid spacing a few times smaller than we can afford.
Thus, it is not surprising that we also obtain no better
than qualitative convergence, i.e. the overall behavior is
similar at all resolutions. Like Kiuchi et al., we see a ten-
dency toward more vigorous turbulent heating at higher
resolutions.
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FIG. 10. The energy-averaged optical depth of electron neu-
trinos radial profiles at the initial time, t = 25 ms, and
t = 55 ms. The nonmagnetized case becomes more opaque
in the high-density region. This makes the neutrino cooling
less efficient than in the magnetized case, which becomes more
transparent during the evolution.
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FIG. 11. The evolution of the total heating rate Ṡ+, neutrino
cooling rate Ṡ−

ν and advection cooling rate Ṡ−
Adv ratios to

the total entropy for the nonmagnetized case. Heating and
neutrino cooling rates drop significantly around t = 30 ms.
The advection cooling is almost zero at the end of the simu-
lation.

D. Comparison with previous studies

Magnetized black hole-neutron star mergers have been
carried out by other groups [20, 32, 33, 35]. In particu-
lar, Etienne et al. [34] have also inserted a poloidal field
into a post-merger BHNS disk. The highest-resolution
MHD BHNS merger simulation is that of Kiuchi et al [20].
These simulations, like ours, have more realistic initial
disk profiles than analytic tori would provide. How-
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FIG. 12. The evolution of the total heating rate Ṡ+, neutrino
cooling rate Ṡ−

ν and advection cooling rate Ṡ−
Adv ratios to

the total entropy for the case with weaker seed field (β =
36). Like in the nonmagnetized case, the total heating and
neutrino cooling rates decrease significantly comparing with
the early time. The advection cooling rate is considerably
higher due to the MHD effects.
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FIG. 13. The evolution of the total heating rate Ṡ+, neutrino
cooling rate Ṡ−

ν and advection cooling rate Ṡ−
Adv ratios to

the total entropy for the standard, stronger seed field. The
disk shows the same qualitative thermal behavior as in the
weaker seed field case.

ever, there are important differences in our treatment of
the thermal evolution of the disk. The above-mentioned
studies, since they did not employ a finite-temperature
nuclear equation of state, did not include neutrino cool-
ing, which is present in our simulations, so their disks
were presumably too hot. On the other hand, by in-
serting a seed field only when it was safe to apply the
Cowling approximation, our disk had cooling for 15 ms
without one of the major heating sources, so our disk is
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FIG. 14. Convergence study of the total neutrino luminos-
ity and heating rate for nonmagnetized and strong seed field
multipatch runs. The results are qualitatively convergent in
both cases.

likely over-cooled. Furthermore, the convergence studies
in [20] find that heating in the inner disk is very reso-
lution dependent, with insufficient resolution leading to
underestimates of thermally driven outflows in particu-
lar. A truly realistic thermal state of the disk would pre-
sumably be somewhere in between these extremes. (Of
course, a truly realistic treatment would also require neu-
trino transport, not just a leakage approximation.)

Both the Etienne et al poloidal seed study and the
highest-resolution simulations of Kiuchi et al [20] find
sustained Blandford-Znajek Poynting flux polar jets. Our
MHD disk evolutions do produce some unbound out-
flow over the simulation period (Mub ∼ 10−5M�, aver-

age Ṁub ∼ 10−3M� s−1) and a magnetically-dominated
polar region, but the polar field does not organize it-
self into a radial Blandford-Znajek like structure. The
above-mentioned differences in thermal treatment in our
simulation and resolution effects may play a role here.
However, we also find that the presence or absence of
strong winds and Poynting flux outflows is sensitive to
the choice of seed field. When we evolve with a less con-
fined initial field, we do see stronger matter outflow and
polar magnetic flux. One might worry that these effects
could somehow be suppressed by too strong a seed field,
but simulations of neutrino-cooled disks with analytic ini-
tial conditions all find that stronger fields (as high as
〈β〉 ∼ 5) yield stronger winds and stronger Blandford-
Znajek luminosity [56]. Even these analytic disks with
weaker initial magnetic field (〈β〉 ∼ 200) find strong un-
bounded outflows after evolving the magnetized disk long
enough [57], and this might also turn out to be the case
for our more confined B-field evolutions if evolved longer.

V. CONCLUSIONS

We have carried out simulations of a BHNS post-
merger system with a realistic initial state provided by
a numerical relativity merger simulation , including both
neutrino emission effects and magnetic field evolution.
The initial magnetic field is applied as large poloidal
loops confined in the post-merger disk. Because our sim-
ulations include the major heating and cooling sources,
we can study the contribution of each thermal driving
process as the disk settles toward thermal equilibirum.
Without a magnetic field, there is no such thermal equi-
librium, so after an initial phase of shock heating, the disk
enters a phase of long-term cooling by neutrinos. With
a strong seed magnetic field, the final state after sev-
eral initial thermal timescales is a rough balance between
MHD-related heating and advective cooling, with neu-
trino cooling being a secondary effect, driving the entropy
down over longer timescales. This is roughly consistent
with the long term evolution of two dimensional neutrino
cooled α-viscosity disks reported by Fernandez et al. [52],
where neutrino cooling is only important at early times.
In both magnetized and nonmagnetized cases, the main
reason for settling is not a precise achievement of equi-
librium, but an increase in the thermal timescale (from
∼ 10 ms to ∼ 100 ms) as the initially-high neutrino lumi-
nosity drops.

The considered magnetized 3D BHNS post-merger
configuration provided the opportunity to test multiple
methods for evolving the relativistic MHD equations.
These show reassuring consistency over the first ≈ 20 ms,
but realistic long-term evolution requires careful treat-
ment of the energy variable, especially in how one handles
the problematic recovery of primitive variables. The mul-
tipatch methods employed in some of our simulations can
easily be applied to more general grid configurations [75].

The initial study of magnetized 3D BHNS post-merger
disk evolution presented in this paper is limited in many
ways. Only one BHNS system and one magnetic seed
field geometry were used. Neutrino effects might be dif-
ferent for an opaque disk (e.g., [21]), and magnetohydro-
dynamic effects are known to be seed field-dependent [42].
Our leakage scheme neglects neutrino absorption, which
could smooth temperature profiles and launch winds. Ex-
isting neutrino transport codes (e.g., [87]) can in the fu-
ture be used to capture these effects. Finally, it would be
interesting to carry out a similar study on NSNS post-
merger systems.
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Appendix A: Numerical improvements

1. Formulation

The fundamental equations to be evolved are the same
as in our earlier MHD work [71]. We write the metric

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (A1)

The fluid at each grid point is described by its set of
“primitive variables”: baryonic density ρ0, temperature
T , electron fraction Ye, and spatial components of the
covariant 4-velocity ui. From ρ0, T , and Ye, the equation
of state supplies the gas pressure P , specific enthalpy h,
and sound speed cs. From u · u = −1, we know the
Lorentz factor W = αut. The stress tensor is

Tab = ρ0huaub + Pgab + FacFb
c − 1

4
F cdFcdgab , (A2)

where Fab is the Faraday tensor. We assume a per-
fectly conducting fluid, F abub = 0, which fixes the elec-
tric field. The variables actually evolved (aside from
the magnetic field, whose evolution is described be-
low) are the conservative variables: a density variable
ρ =
√
γWρ0, the proton density ρYe, an energy density

variable τ =
√
γα2T 00 − ρ, and a momentum density

variable Si =
√
γαT 0

i. In the above, γ is the determi-
nant of the spatial metric. We evolve using an HLLE
approximate Riemann solver [88]. Conservative formu-
lations have the advantage that numerical dissipation in
shock or turbulent subscale structures is automatically
conservative. They have the disadvantage of not evolv-
ing a separate variable for the internal energy or entropy.
Such information must be recovered by root finding from
the conservative variables after each timestep, which can
be expensive and (especially if kinetic energy dominates
over internal energy in τ) inaccurate.

The magnetic field can be described via the compo-
nents of its 2-form B̃i or its vector field Bi, related as

B̃i =
√
γBi. In a conducting medium, field lines advect

with the fluid: ∂tB̃ = −£vB̃ = −d(v · B̃). Since dB̃ = 0,
we can alternatively evolve the vector potential 1-form
A, where B̃ = dA. A vector potential evolution will au-
tomatically satisfy dB̃ = 0 but will require specifying a
gauge.

Our Cartesian grid simulations suppress monopoles via
a constrained transport scheme, which requires stagger-
ing B̃i or Ai between gridpoints. For the multipatch sim-
ulations described below, this would be very inconvenient
because the patch coordinate transformations would have
to account for each component of the field being at a dif-
ferent location, so we instead code two well-known meth-
ods that control dB̃ while keeping all variables centered
at the same gridpoints. The first is a centered vector po-
tential method, implemented as in [38]. We find that the
generalized Lorentz gauge, introduced in [89], provides
the best stability. The evolution for Ai and the scalar
potential Φ are given by

∂tAi = εijkv
jBk − (αΦ− βjAj),i, (A3)

∂t(
√
γΦ) = −∂j(α

√
γAj −√γβjΦ)− ξα√γΦ ,(A4)

where ξ is a specifiable constant of order the mass of the
system. Lorentz-type gauges lead to luminal characteris-
tic speeds, but fortunately the speeds used in the HLLE
fluxes used in the evolution of Ai (see [38]) can still be set
to the physical, MHD wave maximum speed. The signal
speeds for HLLE fluxes in the Φ evolution, on the other
hand, are set to the null −βi ± αγii.

The second magnetic evolution scheme is a covariant
hyperbolic divergence cleaning method [90–92], in which
an auxiliary evolution variable Ψ is introduced to damp
monopoles. The Maxwell equation dF = 0 is replaced
by ?dF = g · dΨ − λΨt, where g is the 4-metric, F the
Faraday tensor, t the unit time vector, and λ a specifiable
damping constant. In components

∂tB̃
i = ∂i(v

jB̃i − viB̃j) + α
√
γγijΨ,j + B̃j ,jβ

i,(A5)

∂tΨ = βiΨ,i − αγ−1/2B̃j ,j − λΨ, (A6)

where we set λ = 1.4. Eq. A5 is in conservative form
and can be evolved using our usual HLLE scheme, while
Eq. A6 is evolved via straightforward second-order cen-
tered finite differencing.

Both of these methods require added numerical dis-
sipation. Thus, we add Kreiss-Oliger dissipation to the
magnetic evolution equations. For multipatch simula-
tions, this step is done while time derivatives are being
computed in the local patch coordinate system of evolu-
tion variable components in these coordinates.

∂tX = · · · − Σi∆x
3
iD2i(FD2iX) . (A7)

X is (B̃i,Ψ) for divergence cleaning and (Ai,Φ) for the
vector potential method. D2i is a second-derivative op-
erator, and ∆xi is the grid spacing in the i-th direction,
both computed in local patch coordinates. F is a function
of space, which vanishes on boundary points but may be
otherwise chosen according to the problem [93].



13

2. Cubed-sphere Multipatch Grids

Several groups have already implemented dynamics on
spherical surfaces [94, 95], 3D hydrodynamics [77–80],
3D MHD [81–83], and Einstein’s equations [72–76] with
multipatch methods and cubed-sphere-like grids. The
basic idea is to divide the computational domain into
patches, each of which has its own local coordinate sys-
tem in which it is a uniform Cartesian mesh. In the global
coordinate system, each patch is distorted, and six dis-
torted cubes can be fit together to fill a volume with
spherical inner and outer boundaries. Time derivative
calculations for timesteps are computed within the lo-
cal patch coordinates and then transformed to the global
coordinate system. Multipatch methods easily generalize
to any combination of distorted cubes. For example, the
central hole can be filled with a cube (as done in a test
problem below), or the cubed-sphere could be surrounded
by non-distorted cubes.

This method can be contrasted with other popular
ways of evolving grids around black holes. One is the use
of spherical-polar coordinate grids. The second is the use
of Cartesian grids, with removal of the black hole inte-
rior accomplished either by excising all gridpoints within
a spherical region (leading to an irregular-shaped “lego-
sphere”) or by removing the interior via a radial coor-
dinate transformation (“puncture”) [96]. All previous
SpEC black hole-neutron star simulations use Cartesian
grids with legosphere excision. We have been unable to
find a stable implementation of this method for magne-
tized flows into a black hole. This is not surprising, since
Cartesian grid faces even inside the horizon will have
characteristic fields flowing into the grid, making the evo-
lution ill-posed without boundary conditions providing
information about the excised interior. Both spherical-
polar and multipatch grids can naturally excise spherical
regions (which can be distorted by coordinate transfor-
mations to fit the horizon shape as needed) and have
no incoming characteristics if placed inside the apparent
horizon (and outside the Cauchy horizon) of a stationary
black hole. Multipatch methods have an advantage over
spherical-polar grids that they do not suffer from coordi-
nate singularities and grid pileup near the poles, which
can be an issue for high-resolution spherical-polar simula-
tions [97]. Spherical-polar grids, on the other hand, have
two advantages. First, for nearly axisymmetric systems,
one can have much lower resolution in longitude than in
latitude, a freedom not present in multipatch grids. Sec-
ond, communication between patches in multipatch grids
is by ghost zone overlaps. Ghost zone gridpoints will not
match gridpoints on the overlapping live patch, so they
must be filled by interpolation. This introduces a new
source of error which will generally not exactly respect
conservation laws and may create magnetic monopoles,
although it should converge away with resolution. Which
method is best most likely depends on the problem.

Since our conservative evolution equations are gener-
ally covariant, it is straightforward to evolve them in

interface

JIHGF

EDCBA

FIG. 15. An illustration of the synchronization of ghost zone
regions at internal patch boundaries. As is standard practice
with uniform grids, one grid is extended the full ghost zone
width (three points, in our case) beyond the interface, while
the other grid extends two points. For a cubed spheres setup,
ghost zone extensions must be chosen to guarantee sufficient
overlaps on 3-patch edges. Above, open circles are ghost zone
points; filled circles are live points. The points B and H over-
lap and mark the interface. First H is set to B (which does
not require interpolation). Then H can be used in the inter-
polation to get C.

the local patch coordinates, shifting to global coordinates
for ghost zone synchronization. For our WENO5 recon-
struction method, we need three ghost zone layers on
patch interior boundaries. Because of our methods of
“fixing” problematic points described below, synchroniz-
ing variables is not quite the same as just synchroniz-
ing their time derivatives, and we find the former to be
needed for stability. For the divergence cleaning method,
any monopoles generated by interpolation of B̃i in ghost
zones are damped (by design of Eqs A5 and A6) and
remain small. For the vector potential method, we syn-
chronize B̃i computed from Ai on patch faces, where in-
formation is lacking on one side to compute the curl. It
is crucial here to synchronize only the outermost layer
of points, not the full 3-layer ghost zone region, because
the latter will introduce monopoles in the ghost zones
and lead rapidly to an instability there.

Our cubed-sphere grids are largely the same as those
of other groups. A minor alteration in the ghost zones is
illustrated in Fig. 15 to eliminate the presence of overlap
regions which are “live” for both grids (i.e. neither is
synced with respect to the other). Our fears that “live
overlaps” would be dangerous have not been borne out,
but the new arrangement does seem to propagate shocks
a bit better and show less deviation in rest mass (inter-
polated ghost zones do not allow strict mass conservation
in either case), although it cannot be generalized to more
general multipatch structures.

Figures 16, 17, and 18 show some standard MHD test
problems applied to the multipatch MHD code. Fig. 16 is
the first Riemann problem from [98] and [99], containing
a left-going fast rarefaction wave, a left-going compound
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wave, a contact discontinuity, a right-going slow shock
and a right-going fast rarefaction wave. To test rela-
tivistic terms, we set lapse α = 0.5 and shift βn = 0.1,
yielding the expected slowdown and advection. A cubical
patch is added to the center to fill the inner hole, while
the planar symmetry is imposed on the outer boundary,
setting functions in the outer points to their values at
the closest point in the interior on a line in the symmetry
plane. The waves travel through interpolated boundaries
without incident.

In Fig. 17, we evolve a Bondi accretion problem (the
same as in [71]) with a radial magnetic field and maxi-
mum β−1 of 2.5. Both of these tests are performed with
the divergence cleaning code. As in our earlier paper [71],
we find better behavior when we add Kreiss-Oliger dis-
sipation to all variables, with F = 0.06r−2. Errors satu-
rate after a few M of evolution, with second-order con-
vergence demonstrated except at the sonic point and the
inner boundary.

Finally, we evolve a constant angular momentum
Fishbone-Moncrief torus [100] around a rapidly spinning
black hole. We set the dimensionless spin of the black
hole to a/MBH = 0.938, the angular momentum param-
eter to ` = 4.281 (` = utuφ), average β = 100, and the
equation of state to a Gamma law with Γ = 4/3, making
the problem very similar to a standard scenario studied
by the HARM code [30, 97]. We use the same radial and
angular coordinate maps as in these studies. Like in [82],
we find that it is necessary to tilt the grid in order for
the current sheet formed by winding of the seed field to
break in a reasonable time and initiate turbulence. We
agree with their observation that this is an artifact of
symmetries in the setup and should not be a worry for
general problems. Fig. 18 shows on the left a snapshot
of the density at t = 1600M , on the right a represen-
tation of the grid with resolution quartered for clarity.
The actual evolution grid used 120 radial points and 60
angular points across each of the six patches. For this
problem, we found it advantageous to have higher dis-
sipation in problematic regions (low density regions and
the viscinity of the black hole) and low dissipation in-
side the torus, where we wanted to resolve the MRI with
modest resolution. There we set F = 0.01 (F = 0.001)

inside the disk for X = B̃i (X = Ai), and we set F = 0.1
for ρ0/ρ0max < 0.05 or r/MBH < 3. Results qualita-
tively match the literature, with mass flow into the hori-
zon < Ṁ >∼ 1, electromagnetic energy flux out of the
horizon < LEM >∼ 10−2Ṁ , and the generation of un-
bound matter.

3. Coordinate maps

In its fluid module, SpEC assumes uniform grid spac-
ing in the coordinates on which the grid is defined, so
nonuniformity can be acheived by introducing coordinate
transformations between these grid coordinates and the
original, “physical” coordinates. All simulations use log-
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FIG. 16. Magnetized Riemann problem evolved on both a
cubed-sphere multipatch grid (with about 240 grid points
across the diameter of the spherical computational domain),
together with the results for the same problem evolved on
a Cartesian one-dimensional grid which is able to utilize the
planar symmetry. The interface between the inner cube and
outer cubed spheres is at ± 0.27.
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FIG. 17. Convergence test for Bondi accretion with a radial
magnetic field. Shown here is the error in the τ conservative
variable at t = 5M , by which time it has settled. The error
plotted is the absolute change in τ . The relative change of
τ is about 2 × 10−4 at the lower resolution. Second-order
convergence breaks down at the sonic radius at r = 8, as
expected. The grid consists of 48 domains, with each of the
six patches split in two on each of its axes.

arithmic radial maps [i.e. uniform spacing in log(r)], con-
centrating grid near the black hole. For Cartesian simu-
lations, this naturally introduces a puncture, set at the
desired excision radius rEX. It leads to enormous distor-
tions on the edges of the cubical grid, but since we only
evolve in a sphere contained by the cube, this causes no
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FIG. 18. Meridional snapshot at t = 1600M of a turbulent
accretion torus. Shown on the left is the density (on a loga-
rithmic scale covering the four decades up to the maximum).
On the right is the grid, with resolution reduced by about
a factor of 4 for clarity. The effects of the radial and angu-
lar maps are visible, as is the regularity of the poles. The
unusually close radial lines are nonmatching ghost zones.

problems. For multipatch simulations, the exponential
map preserves the ratio between radial and transverse
grid spacings; both increase with distance from the cen-
ter.

We also add maps to concentrate grid near the equator.
For multipatch runs, we use the angular map common
for MHD disk simulations θ = πθ′ + (1 − h) sin(2πθ′)/2
[30] with h = 0.4. For Cartesian runs, this angular map
unacceptably distorts grid cells, leading to artifacts in
the evolution, so we instead use a cubic scale map on the
z axis (Z = z−λ(z−Rmin)3/R2

min with λ = −0.375 and
Rmin = 1.0).

Finally, we have carried out multipatch simulations us-
ing a radial map (composed with the logarithmic map)
to concentrate grid on a ring coinciding with the high-
density region. The map has the form

r′−r0 = A arctan

[
r − r0
λ

]
+B(r−r0)+C(r−r0)2 , (A8)

where r is the grid radius, r′ the physical radius, λ con-
trols the width of the zoomed region, while A, B, and

C are set so that r and r′ coincide at the inner and
outer radii, and the appropriate zoom factor (dr′/dr) is
acheived at r′ = r = r0.

4. Primitive variable recovery

Sometimes, due to numerical error, the evolved con-
servative variables (ρ, ρYe, τ, Si, B̃

i) may not correspond
to any physical (ρ0, T, Ye, ui, B

i). In this case, we can
“fix” the conservative variables to make primitive vari-
able recovery possible using the prescription described in
Appendix A of [71] (straightforwardly altered to take into
account the minimum of h being less than one [21]). Un-
fortunately, this introduces glitches in supersonic flows
such as those in thin disks, usually seen as gridpoints
at which the temperature discontinuously jumps to the
equation of state table minimum. Although this is ini-
tially a cooling effect, the glitches create artificial heat-
ing. For nonmagnetized disk simulations, this ultimately
stalls the cooling of the disk after only a small decrease
in total entropy.

We remove this problem by introducing an auxiliary
entropy evolution variable ρS, where S is the entropy
per baryon. The use of entropy variables to reset prob-
lematic gridpoints and ameliorate accuracy problems in
the evolution of internal energy by conservative codes has
already been tried by other groups [101–103].

In the absence of subgrid-scale energy dissipation
(shocks, reconnection, turbulence), the entropy of a fluid
in nuclear statistical equilibrium evolves by advection
and neutrino emission only [102, 104].

∂t(ρS) + ∂i(ρSv
i) =

mnα
√
γ

kBT
[Qν −Rν(µe + µp − µn)]

(A9)
where Qν and Rν are the net neutrino energy and lepton
number emission rates per volume, respectively, mn is
the nucleon mass, and µX are chemical potentials. Note
that, since we have excluded only heating effects, the
evolved ρS gives a lower bound on the true entropy.

Roughly speaking, we now have two energy variables,
τ and ρS, which are made to be consistent with each
other at the beginning of each timesetep. Each step, we
execute the following procedure.

1. Evolve (ρ, ρY e, ρS, τ, Si, B̃
i) using an HLL approx-

imate Riemann solver. ρS must be evolved with a
monotonic reconstructor to avoid new extrema. We
use a second-order monotonized centered (MC2)
limiter [105]. The other variables can be evolved
with higher-order reconstruction like WENO.

2. Compute S, Ye, and Bi from the appropriate divi-
sions of the conservative variables.

3. If not, attempt to solve (T,W 2) using τ and the
other conservative variables except ρS using the
gnewton method as implemented by the GSL Sci-
entific Library [106].
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4. If a root is found, use it to compute the entropy,
Sτ . If Sτ > χS, accept the root. The parameter
χ ≤ 1 but is otherwise freely specifiable. We use
χ = 0.97.

5. If a root was not found, or if it violates the condi-
tion in step 4, first check to see if the point is in
the force-free regime. If so, use force-free recovery
of (T,W ). (See [71] for details on this solver and
the conditions for its use.)

6. If the point does not meet the force-free conditions,
attempt to solve for (T 3,W 2) using ρS and the
other conservative variables except τ , again using
GSL’s gnewton. If a root was found in step 4, use
it as the initial guess for the root solve. (Using T 3

instead of T speeds up convergence in some diffi-
cult points, but probably makes little difference in
general.)

7. If a root could not be found with multidimensional
root finding, attempt again with ρS and other vari-
ables except τ , this time with GSL’s 1D brent root
finder. Here we regard W as the variable, solving
Eq. (A24) of [71], with T solved via a separate 1D
solve of the condition S = S(ρ0, T, Ye) on each iter-
ation. This 1+1D solving is much slower but more

robust than the 2D solver.

8. If this fails, attempt a 1D bracketing algorithm for
hρ0W

2 which uses τ rather than S. (See Appendix
A of [71]). If this fails, terminate the evolution with
an error.

9. If an acceptable root was found, apply other “at-
mosphere” fixes to the primitive variables at low
densities: limits to the temperature and Lorentz
factor in these regions.

10. Recompute all conservative variables from these fi-
nal primitive variables. τ and ρS are now again
consistent.

A simple sanity check on our implementation of the
source terms in Eq. A9 is to alter the above to force the
code to always use the evolved S in primitive variable
recovery, in which case one observes the disk cooling on a
timescale of the total thermal energy divided by neutrino
luminosity.

In Fig. 1, we have already shown the difference this
method makes to the entropy evolution of the nonmag-
netized disk. Significantly, all discontinuous artifacts are
gone when the new method is used. Because the magne-
tized disk does not reach such low entropies, the choice
of methods makes little difference for those simulations.
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[92] P. Mösta, B. C. Mundim, J. A. Faber, R. Haas, S. C.
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