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Simulations of neutrino flavor evolution in compact merger environments have shown that neu-
trino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino
resonances (MNRs), where there is a cancelation between the matter and the neutrino potential.
Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-
consistency requires all trajectories to be treated simultaneously, and it has not been known whether
MNR phenomena would still occur in multi-angle models. In this paper, we present the first fully
multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos trans-
form to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation
between the matter and neutrino potential, still occurs for a subset of angular bins, although the
flavor transformation is not as efficient as in the single-angle case. In addition, we find other types
of flavor transformation that are not seen in single-angle simulations. These flavor transformation
phenomena appear to be robust and are present for a wide range of model parameters, as long as
an MNR is present. Although computational constraints currently limit us to models with spherical
symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino
flavor evolution in multi-angle systems.
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I. INTRODUCTION

Neutron star - neutron star mergers produce neutrinos
in vast numbers. In fact a substantial fraction of the grav-
itational binding energy of two neutron stars can be lost
in neutrinos. The neutrinos produced in such a compact
object merger play a role in the dynamics of the object,
e.g. [1–5], in the nucleosynthesis in produces, e.g. [2, 6–
17],and in the prospects for forming a jet, e.g. [18–22]. If
a merger were close enough, neutrinos would be detected
in the same ways core collapse supernova neutrinos will
be detected [23, 24].

Many of the neutrino interaction processes relevant to
compact object mergers have flavor dependent rates. For
example, processes that convert protons to neutrons and
vice versa proceed in large part through absorption and
emission of electron flavor neutrinos. The ratio of neu-
trons to protons has a strong effect on element synthesis
and flavor transformation has been shown to alter that
ratio in winds from compact object mergers [25–30]. Sim-
ilarly, the reactions by which merger neutrinos would be
detected on earth are the same as those by which super-
nova neutrinos will be detected and these reactions have
significant flavor dependence, e.g. [24, 31]. Thus, there is
strong motivation for understanding well the flavor con-
tent of neutrinos produced by compact object mergers
and how this flavor content evolves.

Neutrinos can flavor transform both when they are
trapped, i.e. changing their momentum through scat-
tering often in the interior of the merger remnant, and
when they are free streaming, i.e. scattering rarely above
the remnant. Significant strides have been made into
the theory of neutrino flavor transformation in trapped
and semi-trapped regime [32–34], but as this problem is
numerically challenging, only initial attempts have been

made to apply this theory to flavor evolution in astro-
physical systems [35, 36]. Also numerically challenging
has been the study of the growth of small perturba-
tions located near the beginning of the free streaming
region. The simplified models that have been explored
to date suggest that significant growth of these insta-
bilities may occur and further exploration is necesssary
[37–40, 40, 41], and new techniques for determining flavor
transformation are under study [42].
In this work we focus on the free streaming regime in

the absence of perturbations. Neutrino flavor evolution
in the free streaming region is governed by a Schrödinger-
like equation with the Hamiltonian of the form

H = HVAC +HM +Hνν

where HVAC is the vacuum Hamiltonian (the neutrino
mass term), HM is the matter potential stemming from
coherent forward scattering of neutrinos on the matter
background, and Hνν is the neutrino-neutrino interac-
tion potential generated by coherent forward scattering
of neutrinos on different trajectories with each other.
The flavor evolution Hamiltonian is an NF × NF ma-
trix, where NF is the number of neutrino flavors, and
the Hamiltonian for anti-neutrinos differs from that of
neutrinos by the sign of the vacuum term. The matter
potential is diagonal in the flavor basis, so in the pres-
ence of large matter densities, flavor evolution can be
suppressed. However, even in the presence of large mat-
ter density, the nonlinearity of the last term produces
a variety of interesting flavor evolution behaviors under
certain conditions. For example, collective neutrino oscil-
lations may occur in supernovae e.g. [43–50] as well as in
the accretion disks and hypermassive neutron stars that
can arise from compact object mergers [25, 28, 29, 51].
In the presence of non-standard interactions (NSI), other
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types of flavor transformation can occur both in super-
novae, e.g. [52], and in compact object mergers [53], and
there may also be the possibility of neutrino spin trans-
formation [54].

In addition, compact object mergers offer an alterna-
tive path for neutrino flavor transformation in the pres-
ence of a high matter density. In certain epochs, the elec-
tron anti-neutrino flux exceeds the electron neutrino flux,
which leads to a largely flavor-diagonal neutrino-neutrino
interaction potential with the opposite sign to the mat-
ter potential. When a cancelation between the neutrino-
neutrino and the matter potentials occurs, large-scale fla-
vor evolution can take place. This is known as a matter-
neutrino resonance (MNR) [26, 55, 56]. In addition to
compact object mergers, MNRs can also be found in su-
pernovae in the presence of NSI [52] as well as in the early
universe [57].

Previous work [25–29] has shown that the presence of
MNRs may drastically alter neutrino flavor content in re-
gions of compact object mergers where wind nucleosyn-
thesis takes place. These studies have followed neutrino
flavor evolution along a single trajectory, making the as-
sumption that neutrinos on all other trajectories follow
the same flavor evolution, in what is known as the single-
angle or single-trajectory approximation. However, in a
real compact object merger, neutrinos on different tra-
jectories pass through different environments and have
different histories of flavor evolution, and all trajectories
contribute to the neutrino-neutrino potential. Therefore,
a self-consistent calculation must solve for flavor evolu-
tion on all trajectories simultaneously. One calculation
of MNR transformation with multiple neutrino trajecto-
ries has been performed in [58], which examined flavor
evolution of a neutrino beam with a nonzero opening an-
gle passing through a constant matter profile. However,
flavor evolution due to MNR in fully multi-angle com-
pact object environments has largely remained an open
problem.

Neutron star - neutron star mergers are now thought
to form hypermassive neutron stars surrrounded by ac-
cretion disks, with a considerable fraction of the neutrino
emission originating from the hypermassive neutron star,
e.g. [2, 14]. In a full multi-angle flavor evolution cal-
culation, neutrinos may be labeled by position, time,
propagation angle and neutrino energy. Unfortunately,
the high dimensionality, together with high resolution
required in some of the dimensions, makes the full fla-
vor evolution problem computationally unfeasible for the
forseeable future. Therefore, we take an inital step by
considering a spherically symmetric model as an approx-
imation for the hypermassive neutron star. Even though
real compact object mergers are not spherically symmet-
ric because they also have a surrounding accretion disk,
this model shares some key features with the full prob-
lem, and allows us for the first time to examine whether
MNRs may have an effect on flavor evolution in a fully
self-consistent calculation that includes multiple neutrino
trajectories.
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FIG. 1: Geometry of the neutrino bulb model. The distance
from the center to the neutrino emission surface is represented
by RNS , the distance from the center to the current propa-
gation distance is given by R. The angle θ0 represents the
emission angle of the neutrino: a neutrino emitted perpen-
dicular to the emission surface has θ0 = 0, while a neutrino
emitted trangentially to the surface has θ0 = π/2. The prop-
agation angle is represented by θ.

In this paper, we explore multi-angle effects on the
MNR phenomnenon in astrophysically motivated scenar-
ios. In Sec. II we describe the model and set up the
calculations as well as explain our numerical implemen-
tation. In Sec. III we discuss our results for several
different scenarios and in Sec. IV we present our conclu-
sions.

II. DESCRIPTION OF THE MODEL

To describe the evolution of the neutrinos we use a
model which is almost identical to the usual treatment
of supernova flavor evolution developed in, e.g. [43],
sometimes called the bulb model. However, to cap-
ture the essential physical difference that creates MNR
conditions, we make the crucial change that the initial
neutrino spectrum contains an excess of electron anti-
neutrinos. In terms of geometry, this model, which is
illustrated schematically in Fig. 1, is spherically sym-
metric, with neutrinos that are emitted semi-isotropically
from a spherical surface of fixed radius (the neutri-
nosphere) and propagate outward. The outward arrow in
Fig 1 shows just one neutrino trajectory, labeled by the
cosine of the emission angle u0, but in our simulations, all
outward-directed neutrino trajectories, 0 ≤ u0 ≤ 1, are
tracked simultaneously: this is multi-angle aspect of the
calculation. We follow the standard treatment where the
flavor field is assumed to be static in time and backscat-
tered neutrinos are neglected, so the equations for neu-
trino flavor evolution can be written as an initial value
problem in radius. At a given radius, the flavor state is
function of energy and emission angle. The energy and
emission angle are binned, giving a large set of nonlin-
early coupled differential equations that simultaneously
describe the flavor evolution of the entire system. We
give a more detailed description of our calculations in
the remainder of this section.
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A. The Hamiltonian in the bulb model

We begin by describing these nonlinearly coupled dif-
ferential equations and explaining a key point of this pa-
per, which is that the location of the MNR, approxi-
mately defined as the point where the neutrino potential
and the matter potential are equal and opposite, will dif-
fer for different neutrinos depending on their emission
angle.
The flavor state for a given energy and angle can be

represented with a pair of NF × NF flavor density ma-
trices, one for neutrinos and one for anti-neutrinos. For
simplicity, we consider only two flavors, labeled as νe
and νx, although the extension to three or more flavors
is straightforward. For two flavors, the density matrices
take on the form:

ρ =

(

ρee ρex
ρxe ρxx

)

ρ̄ =

(

ρ̄ee ρ̄ex
ρ̄xe ρ̄xx

)

(1)

The density matrices are Hermitean, so that ρxe = ρ∗ex,
and ρee, ρxx are real. Here, they are defined so that
the real diagonal elements correspond to the occupation
numbers for the electron flavor and the µ/τ flavor, for a
particular energy and angular bin.
The matrices ρ and ρ̄ follow Schrödinger-like evolution

equations along each trajectory:

dρ (E, u0)

ds
= −i

[

H+ (E, u0) , ρ (E, u0)
]

dρ̄ (E, u0)

ds
= −i

[

H− (E, u0) , ρ̄ (E, u0)
]

(2)

where the trajectories are labeled by the neutrino or anti-
neutrino energy E, and the cosine of the emission an-
gle u0 = cos θ0, which corresponds to the direction of
neutrino propagation at the neutrinosphere as shown in
Fig. 1. The variable s is the neutrino propagation dis-
tance. The Hamiltonian for neutrinos and anti-neutrinos
consists of a vacuum part, a matter potential, and a
neutrino-neutrino interaction potential:

H± = ∓HVAC +HM +Hνν (3)

Due to the presence of the commutators on the right-
hand side, only the traceless part of the Hamiltonian af-
fects the flavor evolution, and the traces of the density
matrices are conserved. For two flavors, we can decom-
pose the density matrices as

ρ = ρT1+ ρiσ
i = ρT1+ ~ρ · ~σ (4)

and similarly for ρ̄ and H . Here, ρT is proportional to
the total number of neutrinos of all species on a given
trajectory, while the components of ~ρ describe the flavor
asymmetry.
In this notation,

ρT =
1

2
(ρee + ρxx) ρ3 =

1

2
(ρee − ρxx)

ρ1 = Re (ρex) ρ2 = Im (ρex) (5)

For two flavors, the traceless part of the vacuumHamil-
tonian can be written in the flavor basis as:

HVAC =
∆m2

4E

(

cos 2θVAC sin 2θVAC

sin 2θVAC − cos 2θVAC

)

(6)

where θVAC is the vacuum mixing angle. In components,

HVAC,1 =
∆m2

4E
sin 2θVAC

HVAC,2 = 0

HVAC,3 =
∆m2

4E
cos 2θVAC (7)

With the sign convention as given by Eqn. 3, a positive
sign for cos 2θVAC corresponds to the normal mass hier-
archy, and a negative sign to the inverted. In this paper,
we use the normal hierarchy.
The traceless part of the matter potential is

HM =
√
2GFnBYe

(

1 0
0 −1

)

(8)

where nB is the baryon number density and Ye is the
electron to baryon ratio. While nB and Ye profiles may
be obtained from hydrodynamic simulations of compact
object mergers, we note that the matter density typically
decreases roughly as 1/R3, and adopt the following for
the matter potential profile:

HM =
√
2GFnB,NSYe

R3
NS

R3

(

1 0
0 −1

)

(9)

where RNS is the neutrinosphere radius, Ye is the electron
fraction and nB,NS is the baryon number density at the
neutrinosphere. In components,

HM,3 =
√
2GFnB,NSYe

R3
NS

R3

HM,1 = HM,2 = 0 (10)

We follow [43] in writing the neutrino potential as

Hνν = H0 − uHR (11)

where u is the cosine of the propagation angle of the
neutrino of interest at a particular radius, as shown in
Fig. 1. The components of the neutrino Hamiltonian H0

and HR are proportional to the neutrino lepton number
density and radial lepton number flux and can be written
as

H0 =
√
2GF

∫ ∞

0

E2dE

4π2

∫ 1

uMIN

du′ [ρ− ρ̄]

HR =
√
2GF

∫ ∞

0

E2dE

4π2

∫ 1

uMIN

u′ du′ [ρ− ρ̄] (12)

The quantity u′ indicates the cosine of the angle of the
background neutrino. For a trajectory with a given emis-
sion angle u0 = cos θ0, the cosine of the propagation angle
at radius R is

u (u0, R) =

√

1− R2
NS

R2
(1− u2

0) (13)



4

Thus if a neutrino is emitted perpendicularly to the neu-
trino sphere, its propagation angle will remain the same
as its emission angle, u = u0 = 1. At any given radius,
the largest angle, uMIN, with which neutrinos arrive at
a distance R above the neutrino emission surface occurs
for u0 = 0. Eqns. 12 now be written as

H0 =
√
2GF

R2
NS

R2

∫ ∞

0

E2dE

4π2

∫ 1

0

u′
0

u′
du′

0 [ρ− ρ̄]

HR =
√
2GF

R2
NS

R2

∫ ∞

0

E2dE

4π2

∫ 1

0

u′

0du
′

0 [ρ− ρ̄] (14)

where the intergals are now performed over the emission
angle u′

0 of the background neutrinos.
The neutrino-neutrino interaction potential, Hνν at

large distance R >> RNS , decreases as 1/R4. This
comes from a combination of the geometric flux dilution,
seen as the 1/R2 term outside both integrals and the
the structure of the neutrino forward scattering poten-
tial which causes a cancellation of the first order terms
in Eq. 11. On the other hand, HM decreases as 1/R3.
Therefore, if we begin with initial conditions where the
neutrino potential is of opposite sign and larger magni-
tude than the matter potential, at some larger radius the
neutrino and matter potentials will cancel, and an MNR
will occur.
As mentioned earlier, a key point of this paper is that

the location of the MNR will differ for different neutri-
nos depending on the emission angle. This can be un-
derstood as follows. Neutrinos emitted vertically, with
θ0 = 0 and u0 = 1, have the smallest neutrino potential
and will therefore cross the MNR first, while neutrinos
emitted tangentially, with θ0 = π/2 and u0 = 0, have the
largest neutrino potential and will encounter the MNR
farther out, where the neutrino potential has decreased
further compared to the matter potential. This point is
true of any multi-angle model, with or without spherical
symmetry, and contrasts the single-angle approximation,
where all neutrinos cross the resonance at the same time.

B. Equations of motion for the single-energy and

small-angle approximations

Eqn.s. 2 conserve the trace of the density matrices
ρ0, ρ̄0 as well as the magnitude of the traceless part, |ρ| =
√

ρ21 + ρ22 + ρ23. We can therefore write ρ = ρT 1 + |ρ| ρ̂,
and similarly for ρ̄. In this notation, the EOMs for the
density matrix of each angle and energy become

ρT , ρ̄T = constant |ρ| , |ρ̄| = constant (15)

dρ̂

ds
= ~H+ × ρ̂

d ˆ̄ρ

ds
= ~H− × ˆ̄ρ (16)

The initial conditions for the flavor unit vectors, as-
suming that there is an excess of both electron neutrinos

and anti-neutrinos over the µ/τ flavor and that the neu-
trinos start in a flavor eigenstate, are

ρ̂ (R0) = ˆ̄ρ (R0) = ê3 (17)

where R0 is the radius at which the calculation begins.
Throughout this paper, R0 is chosen to be above the
neutrinosphere, but sufficiently below the region where
flavor transformation takes place that changing the value
has no impact on the results of the calculation.
In our calculations, we use the single energy approxi-

mation, which reduces the computational complexity of
the problem and improves numerical stability, while re-
taining many of the important features.
In our single-energy model, we assume that the flavor

evolution for neutrinos and anti-neutrinos of all energies
is the same, and integrate all density matrices over en-
ergy. Thus, the energy-integrated analogues of the con-
served quantities of Eqn.s. 15 are

ρT =

∫

E2dE

2π2

1

2
(ρee + ρxx)

ρ̄T =

∫

E2dE

2π2

1

2
(ρ̄ee + ρ̄xx)

|ρ| =
∣

∣

∣

∣

∫

E2dE

2π2

1

2
(ρee − ρxx)

∣

∣

∣

∣

|ρ̄| =
∣

∣

∣

∣

∫

E2dE

2π2

1

2
(ρ̄ee − ρ̄xx)

∣

∣

∣

∣

(18)

We further define two quantites as follows:

k =
√
2GF

∫

E2dE

4π2

1

2
(ρee,0 − ρxx,0)

α =

∫

E2dE (ρ̄ee,0 − ρ̄xx,0)
∫

E2dE (ρee,0 − ρxx,0)
. (19)

The quantity k gives the overall scale of the neutrino
potential, while the quantity α gives the anti-neutrino
contribution to the potential relative to the neutrino con-
tribution. MNR can occur when α > 1.
The components of the neutrino Hamiltonian corre-

sponding to Eqn. 14 can now be written as

~H0 = k
R2

NS

R2

∫ 1

0

u′
0

u′
du′

0

[

ρ̂− α ˆ̄ρ
]

~HR = k
R2

NS

R2

∫ 1

0

u′

0du
′

0

[

ρ̂− α ˆ̄ρ
]

(20)

The matter potential is unchanged in the single energy
approximation. The energy in the vacuum Hamiltonian
is replaced with 〈E〉 or 〈Ē〉, the average neutrino or anti-
neutrino energy.
In addition to adopting the single-energy approxima-

tion, we adopt the small-angle approximation. This is
advantageous because at R >> RNS, the two terms in
Eqn. 12 are nearly equal. Since one is subtracted from
the other, this can lead to numerical instability. For the
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choice of model parameters used in this paper, the small-
angle approximation introduces errors in the potentials
on the order of one to a few percent. In Sec. III C, we will
justify use of the small-angle approximation by showing
that the flavor transformation in our model is insensi-
tive to these corrections, and that the pattern of flavor
evolution in the small-angle approximation is practically
indistinguishable from that seen in the exact calculation.
Using Eqns. 12-14, expanding u to leading order in in

RNS/R and adopting the single-energy approximation,
we obtain

~Hνν ≈ k
R4

NS

R4

[(

1− 1

2
u2
0

)

~Φ1 −
1

2
~Φ3

]

(21)

where

~ΦN ≡
∫ 1

0

du′

0u
′N
0

(

ρ̂− α ˆ̄ρ
)

(22)

It is convenient to represent the emission angle by v ≡ u2
0

instead of u0. With this change of variables,

~Φ1 =
1

2

∫ 1

0

dv′
(

ρ̂− α ˆ̄ρ
)

~Φ3 =
1

2

∫ 1

0

v′dv′
(

ρ̂− α ˆ̄ρ
)

(23)

In the small-angle approximation, neutrinos travel nearly
radially outward. This, together with the fact that the
angular bin label u0 is conserved along each neutrino
trajectory, means that the operator d/ds on the left-
hand side of Eqn. 16 can be approximated as d/dR +
O(R2

NS/R
2). Since, in the small-angle approximation, we

are keeping terms to leading order, we will use dρ̂/ds ≈
dρ̂/dR ≡ ˙̂ρ.

C. Calculation of the matter potential

The components of the matter potential are given by
Eq. 10. To explicitly calculate the matter potential from
this expression, we must determine the electron fraction,
which in turn depends on the neutrino and anti-neutrino
flux and flavor content, as well as on the history of the
system’s evolution. A realistic calculation of matter com-
position is a complicated problem, and a sophisticated
treatment is beyond the scope of our paper. Instead,
we qualitatively estimate the electron fraction by mak-
ing several simplifying assumptions.
We first assume that matter consists of only neutrons,

protons and leptons and that it is in equilibrium (that is,
the matter is stationary, and the proton ratio at a given
radius does not change over time). These assumptions
lead to the rate balance equation:

Γpe−→nν + Γpν̄→ne+ = Γnν→pe− + Γne+→pν̄ (24)

Together with neutrino spectra, baryon number den-
sity, entropy per baryon, and the constraint of charge

neutrality, the rate balance equation can be solved for
the equilibrium value of Ye.
Here, we are using a single-energy model of neutrino

spectra, so we do not have the full energy-dependent
neutrino distributions. To approximately reconstruct the
spectra that enter into the energy balance equation, we
use our assumption that neutrinos and anti-neutrinos at
all energies transform in the same way. Then, flavor evo-
lution simply leads to a partial swap of initial electron
and x−flavor spectra, to an extent given by the neutrino
and anti-neutrino survival probabilities PS and P̄S :

fe(E,R) = PS(R)fe(E,R0) + (1− PS(R))fx(E,R0)

f̄e(E,R) = P̄S(R)f̄e(E,R0) + (1− P̄S(R))f̄x(E,R0) (25)

For the initial spectra at R = R0, we use Fermi-Dirac-
like distributions given in terms of parameters X and T :

fi (E) =
(

1 + eE/T−X
)−1

(26)

As an example, in our benchmark model presented be-
low, we use the following parameters for electron neu-
trinos, electron anti-neutrinos, and neutrinos and anti-
neutrinos of other flavors:

Te = 3.5MeV Xe = 2.5

Tē = 4.0MeV Xē = 2.3

Tx = 4.5MeV Xx = 0.0 (27)

This gives a value of α = 1.4 and a neutrino potential of
4.6× 105 km−1 at the neutrinosphere.
Since we are only seeking a qualitative approximation

of Ye, we can make further simplifications. At the neu-
trino fluxes and matter densities used in our model with
RMNR = 60 km, the rate balance equation in the vicinity
of the MNR transition is dominated by neutrino and anti-
neutrino capture, provided that the entropy per baryon
ratio is sufficiently high (∼ 50kB). Electron capture pro-
duces a small shift in Ye towards lower values at smaller
radius, but this effect has little impact on the qualita-
tive features of the solution, so we neglect electron and
positron capture processes and retain only the neutrino
feedback. The rate balance equation then becomes

Γpν̄→ne+ ≈ Γnν→pe− (28)

The capture rate on protons is proportional to the pro-
ton number density, np = nBYe, and the capture rate on
neutrons is proportional to the neutron number density,
nn = nB(1−Ye). Both sides of the equation are also pro-
portional to the total neutrino density, which decreases
with radius as R2

NS/R
2. Therefore, we can factor out

nBR
2
NS/R

2 and write

Yeγpν̄→ne+ = (1− Ye) γnν→pe− (29)

where the quantities γ are simply proportional to to-
tal scattering cross-sections for neutrinos on protons or
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neutrons, multiplied by the neutrino spectra, integrated
over energy and angle:

γnν→pe− ∝
∫

E2dEfe (E,R)σnν→pe− (E)

γpν̄→ne+ ∝
∫

E2dEf̄e (E,R)σpν̄→ne+ (E) (30)

Substituting the expression for the spectra from Eq. 25
then gives

γnν→pe− = PSγe + (1− PS) γx

γpν̄→ne+ = P̄S γ̄e +
(

1− P̄S

)

γ̄x (31)

where

γe(x) ∝
∫ ∞

0

E2dEfe(x) (E,R0)σnν→pe−

γ̄e(x) ∝
∫ ∞

Q+me

E2dEf̄e(x) (E,R0)σpν̄→ne+ (32)

where Q is the neutron - proton mass difference. Since
we only need the ratios of the γ quantities, we can drop
the common factors of coupling constants from the cross-
sections and only retain the energy dependence:

σnν→pe− ∝ E2

(

1 +
Q

E

)

√

1 + 2
Q

E
+

Q2 −m2
e

E2

σpν̄→ne+ ∝ E2

(

1− Q

E

)

√

1− 2
Q

E
+

Q2 −m2
e

E2
(33)

Note that γe, γx, γ̄e and γ̄x are all constant with radius,
so the only radial dependence of Ye comes from changes
in the neutrino and anti-neutrino survival probabilities.
Solving Eqn. 29 for Ye and substituting Eqn.31 gives

Ye =
PSγe + (1− PS) γx

PSγe + (1− PS) γx + P̄S γ̄e +
(

1− P̄S

)

γ̄x
(34)

Since the γ quantities appear in every term in the nu-
merator and denominator, they are defined only up to
a common proportionality constant. Choosing the con-
stant so that γe−γx = 1, we obtain γe = 1.51, γx = 0.51,
γ̄e = 1.83, γ̄x = 0.39 for the choice of parameters given
by Eqn. 27. Then, we obtain the following expression for
Ye:

Ye =
PS + 0.51

PS + 1.44P̄S + 0.90
(35)

This gives a value of Ye = 0.45 for untransformed neu-
trino spectra, which is on the higher end of Ye ≈ 0.35−
0.45 seen in this region in merger simulations. The slight
over-estimate of Ye is largely due to neglecting electron
absorption, which, albeit subdominant at these densities
and neutrino fluxes, would drive Ye a few percent lower.
The final parameter in the matter potential is the

baryon number density at the neutrinosphere, nB,NS.

Here, we set this value to give a desired MNR ra-
dius, RMNR, defined as the radius at which the radially-
emitted neutrinos first cross the resonance. For our
benchmark model, we choose a value of nB,NS that gives
RMNR = 60 km, which corresponds to HM (RNS) =
1.15 × 105 km−1 or nB,NS = 3.9 × 1032 cm−3. By the
onset of the MNR transition, the value of nB decreases
to 6.1× 1030 cm−3.

D. Numerical implementation

To numerically solve the integro-differential equations
16, we bin neutrinos by equal intervals of v = u2

0 and
arrive at a set of ODEs:

˙̂ρi =

[

~HM − ~HV + k
R4

NS

2R4

[

(2− vi) ~Φ1 − ~Φ3

]

]

× ρ̂i

˙̄̂ρi =

[

~HM + ~̄HV + k
R4

NS

2R4

[

(2− vi) ~Φ1 − ~Φ3

]

]

× ˆ̄ρi(36)

where the dot indicates a derivative with respect to R,
the subscript i is an integer label indicating a particular
angular bin, and the moments are calculated as follows:

Φ1 =
1

2N

∑

j

[

ρ̂j − α ¯̂ρj
]

Φ3 =
1

2N

∑

j

vj
[

ρ̂j − α ¯̂ρj
]

(37)

These moments are the same for all angular bins, and
therefore must be calculated only once per step. While,
for three or more flavors of neutrinos, it can be impor-
tant to use integrators that explicitly preserve unitar-
ity, the two-flavor system of equations (36) can usually
be integrated via common adaptive Runge-Kutta meth-
ods. However, in some situations, particularly with MNR
where there is a near-cancelation between the neutrino
and matter terms, the equations become stiff and the
adaptive step size becomes prohibitively small. At points
where stiffness occurs, it can be advantageous to switch
to implicit integrators, which, although far more com-
putationally expensive per step, are able to take much
larger steps.
The number of angular bins necessary for convergence

varies with conditions. We check for convergence by re-
peating each run at a lower angular resolution, and, if the
results of the calculation (the evolution of the Hamilto-
nian and the survival probabilities) remain the same, we
conclude that the angular resolution is sufficiently high.
We find that typically a rather high number of angular
bins, of O(4000) or more, is required, especially under
conditions where MNR occurs at a high matter and neu-
trino density. This is largely because an accurate calcula-
tion of the MNR crossing requires multiple angular bins
to be near resonance at the same time, to avoid stochas-
tic noise from individual bins going on and off resonance.
At high densities, the resonance is very narrow, so only a
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FIG. 2: Survival probabilities for neutrinos and anti-neutrinos
in the single-energy, single-angle calculation, as a function of
radius.

small fraction of angular bins are near resonance at any
given time, and the overall number of angular bins must
be very large. This difficulty could perhaps be addressed
in the future via dynamical binning schemes (e.g., adap-
tive mesh refinement), but at present we continue to use
static binning with a large number of angular bins.

III. RESULTS

A. Comparison of multi-angle to single-angle model

We use the model described in the previous section
wth parameter choices that are guided by the physical
scales in merger scenarios. For our benchmark example,
the specific parameters we choose are α = 1.4 and RNS =
15 km, with Ye response to neutrino flavor transformation
given by Eq. 35. The radially-emitted neutrinos cross
the matter-neutrino resonance at RMNR = 60 km, which
is roughly the scale at which the MNR transformation
takes place in the dynamical calculation of Ref. [27]. We
compare the results of our single-energy, multi-angle bulb
calculation with the results of a single-angle calculation,
in which all neutrinos cross the resonance at RMNR = 60
km.
Fig. 2 shows the survival probabilities for neutrinos,

Pνe = ρ̂3 + 1/2 and anti-neutrinos Pν̄e = ˆ̄ρ3 + 1/2 in
the single-angle calculation. As seen in previous single-
angle MNR calculations, at first, both neutrinos and anti-
neutrinos transform, but then the anti-neutrinos return
to the initial flavor state while the neutrinos continue to
transform until the flavor is completely swapped. This re-
sults in a feedback effect which keeps the matter plus neu-
trino potential close to zero, so that the system remains
near resonance until the flavor transformation is com-
plete. Fig. 3 shows the evolution of the flavor-diagonal
part of the total potential, Hνν,3 +HM,3 relative to the
matter potential, HM,3 for the single angle case.
Fig. 4 shows the angle averaged survival probabilities

for the multi-angle calculation. Unlike in the single-angle
calculation, the anti-neutrino survival probability does
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FIG. 3: Ratio of flavor-diagonal part of total potential H =
Hν +HM to matter potential HM in the single-energy, single-
angle calculation.

not return to 1, and the neutrinos do not completely
transform. However, like in the single-angle case, neutri-
nos transform to a greater extent than anti-neutrinos.
Comparing with Fig. 2 we see that the range of ra-
dius over which flavor transformation occurs is smaller
in the multi-angle case than it is in the single-angle case,
∼ 100 km instead of ∼ 300 km.
Fig. 5 shows the evolution of the flavor-diagonal com-

ponent of the matter plus neutrino potentialpotential for
the radially-emitted bin (u0 = 0) and the tangentially-
emitted bin, (u0 = 1) in the multi-angle calculation.
There is a range in radius, between about 120 km and 200
km, at which the multi-angle potential remains relatively
flat, similar to what is seen in the single-angle case. How-
ever, compared to the single-angle case, this ‘plateau’ is
of limited extent, and comparing with Fig. 4 we see that
it occurs toward the end of the transformation. Much of
the transformation occurs earlier at 60 km < R < 120
km and interestingly, the net effect on the potential is op-
posite to what is seen in the single angle MNR. Instead
of a “plateau”, the potential changes more steeply than
it would if no transformation were to take place. Be-
cause of this rapid change, the angular bins which cross
the resonance in that region spend relatively little time
near resonance. Those that cross in the “plateau” region
will spend more time near the resonance, allowing for a
feedback loop similar to the single angle case.

B. Properties of the multi-angle MNR solution

As noted in Sec. II, a key feature of the multi-angle
bulb model is that different angular bins pass through
resonance at different times. Fig. 6 shows the survival
probabilities as a function of angle at R = 120 km,
about halfway through the transformation, as well as
at R = 240 km, after all bins have passed through
the resonance. At R = 120 km, the more tangen-
tially emitted bins, with u2 < 0.4, have not yet passed
through resonance, so they are untransformed. Bins with
0.4 < u2 < 0.6 have recently gone through resonance
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FIG. 4: Angle-averaged survival probabilities for neutrinos
and anti-neutrinos in the multi-angle, single-energy calcula-
tion with RMNR = 60 km, as a function of radius.
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FIG. 5: Ratio of flavor-diagonal part of total potential H =
Hν,3+HM to matter potentialHM for the radially-emitted bin
(upper curve) and the tangentially-emitted bin (lower curve).
Curves for intermediate bins lie between these two extremes.
Dashed lines show the ratio without flavor transformation.

and are undergoing flavor transformation, while bins with
u2 > 0.6 have moved far away from resonance, completed
their flavor transformation and approached the final fla-
vor state seen in the R = 240 km curve. Looking at this
final flavor state curve, we see that survival probabilities
vary with angle, but in general, neutrinos transform more
than anti-neutrinos in all angular bins.

In the single-angle model, the magnitude of the neu-
trino potential is always enhanced by the flavor transfor-
mation. Because the untransformed neutrino potential
drops off faster than the matter potential, this enhance-
ment allows the system to maintain a cancelation be-
tween the neutrino and matter potentials and remain on
resonance for a wide range of R. However, in the multi-
angle model, the magnitude of the neutrino potential is
at first suppressed, causing the total potential to rise and
the angular bins to pass through resonance faster. This
is seen in Fig. 5 for the range 100 km< R < 120 km.
However, at R > 120 km, when the most tangential bins
begin to reach the resonance, the neutrino potential is
again enhanced, just like in the single-flavor case.

This phenomenon may be related to the pattern of fla-
vor transformation of each individual angular bin. Fig. 7
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FIG. 6: Survival probabilities as a function of emission angle
squared at R = 120 km and 240 km.
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FIG. 7: Survival probabilities for neutrinos and anti-neutrinos
on trajectories with u2

0 = cos2 θ = 0.9, 0.5 and 0.1 as a func-
tion of radius.

shows the flavor evolution of several angular bins. We
see that initially, when the bin has just passed through
resonance, both neutrinos and anti-neutrinos transform
in the same way. This is to be expected, because most of
this transformation takes place somewhat after the bin
has passed through resonance, so that the matter plus
neutrino potential is already much larger than the vac-
uum term. Because the only difference between the neu-
trino and anti-neutrino Hamiltonian is the vacuum term,
neutrinos and anti-neutrinos initially have almost the
same flavor evolution. However, after some time, enough
difference accumulates between the neutrino and anti-
neutrino flavor vectors that the two begin to separate,
just like in single-angle MNR. But unlike in single-angle
MNR, the bin in question is moving rapidly away from
resonance, so the transformation does not have time to
complete. Thus neutrinos do not transform completely,
and the anti-neutrinos do not return to the initial flavor
state.

When neutrinos and anti-neutrinos transform identi-
cally, the magnitude of the neutrino potential is sup-
pressed by the flavor transformation, since the contri-
bution to the potential from this bin is proportional to
ρ̂ − α ˆ̄ρ. However, when only the neutrinos transform,
the electron flavor component of the neutrino potential
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FIG. 8: Effect of flavor transformation on electron fraction as
a function of radius.

becomes more negative. Thus, the flavor transformation
in each bin contributes to suppression of the neutrino
potential in the early stages, but enhances the neutrino
potential later on.
To obtain the overall effect on the neutrino potential,

we can average over all angular bins that are undergoing
flavor transformation at a given radius. Early on, the
suppression effect predominates. However, near the end
of the flavor transformation, when there are only a few
bins remaining near resonance and they are all in the
later stage of their flavor evolution, the enhancement ef-
fect is greater. In this region, the only neutrinos remain-
ing near resonance are the almost tangentially-emitted
ones, all propagating at nearly the same trajectory angle,
and the situation begins to resemble single-angle MNR.
Finally, Fig. 8 shows the effect of neutrino flavor trans-

formation on the electron fraction Ye. In the approxima-
tion made here, that matter is in equilibrium with neu-
trinos and electron capture reaction rates are negligible,
Ye depends only on neutrino and anti-neutrino survival
probabilities, and remains constant in the absense of fla-
vor transformation. We see that flavor transformation
decreases Ye by a small amount (∼ 5 percent). While
this effect is modest compared to what one would ob-
tain with single-angle MNR, even small changes in Ye

can have a strong effect on nucleosynthesis.

C. Validity of the small-angle approximation

In the calculations above, we adopted the small-angle
approximation. In this approximation, path-length dif-
ferences between neutrinos traveling on different trajecto-
ries are neglected, and the neutrino potential is expanded
to leading order, O

(

R4
NS/R

4
)

, neglecting corrections of

O
(

R6
NS/R

6
)

. These corrections introduce changes in the
equations of motion of O (10%) in the beginning of the
MNR transition and of O (1%) in the region where most
flavor transformation takes place. In this section, we
justify the use of this approximation by showing that
it causes negligible changes in the flavor evolution.
Using the notation of Sec. II B, without the small-angle
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FIG. 9: Angle-averaged survival probabilities for neutrinos
and anti-neutrinos, with and without the small-angle approx-
imation, for the same case as in Fig. 4.

approximation, the equations of motion become

u
dρ̂

dR
= ~H+ × ρ̂ u

d ˆ̄ρ

dR
= ~H− × ˆ̄ρ (38)

where u as a function of emission angle is given by
Eqn. 13, and the neutrino contribution to the Hamil-
tonian is

~Hνν = ~H0 − u ~HR (39)

with components ~H0 and ~HR given by Eqn. 20. There
are two key differences between the full treatment and
the small-angle approximation. First, neutrinos on dif-
ferent paths now cover slightly different distances over
the same radial step dR, so effectively the matter and
vacuum potentials have a small angular dependence. Sec-
ond, at smaller values of R, the neutrino potential devi-
ates slightly from the R−4 dependence.

We now repeat the calculation of Sec. III B, but with-
out the small-angle approximation. The resulting sur-
vival probabilities are shown in Fig. 9. We see that
the solutions to the small-angle and to the exact equa-
tions are practically identical, to O (1%). This may be
surprising, because in the beginning of the MNR transi-
tion, the correction to the small-angle approximation is of
O (10%). However, relatively little flavor transformation
occurs promptly at RMNR, so a change in the equations
of motion at this location has almost no effect. Most of
the flavor transformation takes place between R = 100
and 200 km, where corrections to the small-angle approx-
imation are already negligible.

We will also see below that multi-angle MNR phenom-
ena are fairly insensitive to changes in the neutrino and
the matter potential, at least on a qualitative level. The
corrections to the small-angle approximation are equiva-
lent to small, trajectory-dependent shifts in the scale of
the matter potential and in the scale and shape of the
neutrino potential. Due to the low sensitivity of MNR
to details of the potentials, these shifts do not strongly
affect flavor transformation.
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FIG. 10: Survival probabilities for different choices of neutri-
nosphere radius, RNS = 10 km and 20 km, with fixed α = 1.4
and RMNR = 60 km.

D. Dependence of solution on matter and neutrino

densities

The calculation described above was performed using
the parameters RNS = 15 km, α = 1.4 and RMNR =
60 km. To determine whether the phenomena we found
are robust under different conditions, we perform several
calculations with varying parameters.
First, we perform two calculations with different

choices of neutrinosphere radius, RNS = 10 km and 20
km. A larger neutrinosphere radius corresponds to a
higher flux (by a factor of R2

NS) and larger opening angle
between neutrino trajectories (also by a factor of R2

NS at
a given radius), and therefore a larger neutrino poten-
tial relative to the vacuum term. The matter potential
is adjusted to keep RMNR fixed at 60 km.
The evolution of total survival probabilities from these

two calculations are shown in Fig. 10. As expected, a
larger neutrinosphere radius partially suppresses flavor
transformation: there is less flavor transformation over-
all, and it takes longer to complete. This can be at-
tributed to two effects: first, a larger RNS leads to a
larger opening angle between neutrino trajectories at a
given radius. Therefore, a smaller fraction of angular
bins is on resonance at any given time. Second, for a
larger RNS, the ratio of the neutrino and matter poten-
tials to the vacuum mixing term is larger. Therefore, the
in-medium mixing angle is smaller, and flavor transfor-
mation is suppressed.
Next, we examine the effects of changing the MNR

radius. As discussed above, this parameter is related to
the density of the matter profile: for a given neutrino
flux, a smaller RMNR corresponds to a higher density of
matter. We perform two calculations with RMNR = 40
km and 80 km, both with α = 1.4 and RNS = 15 km.
Survival probabilities from these calculations are

shown in Fig. 11. We see that flavor transformation is
less efficient for a smaller choice MNR radius. The mech-
anism is similar to the suppression of flavor evolution by
a large neutrinosphere radius: because the MNR tran-
sition begins at a smaller radius, the neutrino and mat-
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FIG. 11: Survival probabilities for different choices of the
MNR radius, RMNR = 40 and 80 km, with fixed α = 1.4 and
RNS = 15 km.
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FIG. 12: Survival probabilities with matter density profile
M ∝ R−1, for different choices of the MNR radius, RMNR =
40, 80 and 100 km, with fixed α = 1.4 and RNS = 15 km.

ter potential during the transition is larger relative to
the vacuum mixing term, and the opening angle between
neutrino trajectories is also larger. In addition, the re-
gion in which MNR can take place is smaller for a smaller
choice of MNR radius, so there is less time available for
flavor transformation.
We next change the rate at which the matter density

drops off with radius. Fig. 12 shows the evolution of sur-
vival probabilities with a slowly-decreasing matter po-
tential, proportional to R−1 instead of R−3. We see that
a slowly-decreasing matter potential strongly suppresses
flavor transformation compared to the rapidly-decreasing
case. For RMNR = 60 km, RNS = 15 km and α = 1.4,
there is almost no flavor transformation. However, in-
creasing the MNR radius to 80-100 km restores the pat-
tern of flavor transformation seen in our other calcula-
tions.
Next, we examine the effects of changing the parame-

ter α, the initial ratio of the anti-neutrino to the neutrino
contribution to the potential. We perform two calcula-
tions with α = 1.2 and 1.6, both with RNS = 15 km and
RMNR = 60 km.
The results of the calculations with varying values of

α are shown in Fig. 13. While the smaller value of α ex-
hibits greater and more rapid flavor conversion, the larger
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FIG. 14: Survival probabilities for different choices of mass
hierarchy, with α = 1.4, RNS = 15 km and RMNR = 60 km.

value of α gives a greater separation between flavor evo-
lution of neutrinos and anti-neutrinos. This is because,
for a larger value of α, the neutrino potential is higher
at a given radius, suppressing flavor evolution to some
extent. However, due to the greater difference between
neutrino and anti-neutrino spectra, the system at high α
has a greater capacity to sustain the MNR, and so there
is more time for the separation between neutrino and
anti-neutrino flavor to develop. Note that the horizontal
scale of Fig. 13 is larger than that of the previous two
figures; this is because the MNR is sustained for a larger
range of radius in the α = 1.6 case.

Finally, we examine the effects of changing the mass
hierarchy. Fig. 14 shows the evolution of survival prob-
abilities for the normal and the inverted hierarchy, with
α = 1.4, , RNS = 15 km and RMNR = 60 km. We see
that in the inverted hierarchy, there is slightly more fla-
vor transformation, but otherwise, the flavor evolution is
very similar.

The pattern of flavor evolution in all these simula-
tions is qualitatively similar. Both neutrinos and anti-
neutrinos transform to some extent, with neutrinos un-
dergoing more flavor transformation than anti-neutrinos.

E. Effects of additional neutrino emission from

R > RNS

Thus far, we considered a situation where all neutri-
nos are emitted at R = RNS with a semi-isotropic an-
gular distribution. However, in a real compact object
merger, the neutrinosphere may not be sharply defined,
and in addition a significant portion of neutrinos is emit-
ted from an accretion disk at R > RNS. There may
also be a scattered halo of neutrinos that have under-
gone non-forward scattering by dense matter high above
the neutrinosphere. While, for R > RNS, the neutrinos
emitted at RNS are confined to a narrow range of trajec-
tory angles, the trajectories of these additional neutrinos
cover a much wider angular range. For this reason, neu-
trinos emitted or scattered at larger R contribute dispro-
portionately to the neutrino potential. We would like to
examine how the presence of these neutrinos affects our
results.
Current state of the art multi-angle simulations of neu-

trino flavor transformation are performed in spherical
symmetry, but we are nevertheless able to incorporate
additional sources of neutrinos in our model to assess
the importance of a more extended source of neutrinos.
To do this, we introduce the idea of an extended neu-
trinosphere [59]. In short, we keep the original spherical
emitted surface, but above it add to it an emitting volume
of neutrinos. The amount of emission from this extended
volume decreases with increasing distance from the cen-
ter of the object. We describe this model in more detail
in the next few paragraphs.
Suppose that instead of specifying the initial condi-

tions at RNS, we specify them at an extended radius
RE > RNS. In doing so, we assume that there is no
flavor transformation between RNS and RE. Instead of
labeling neutrinos by the cosine of the emission angle at
the neutrinosphere, u0, we label them by the cosine of
the trajectory angle at R = RE, uE ≡ u (RE). We also
assume that there is no significant neutrino emission or
non-forward scattering above RE .
First, consider the semi-isotropic bulb model that we

have been working with thus far. Here, the timelike and
radial components of the neutrino potential at R = RE

are given by Eq. 12. Adopting the single-energy approxi-
mation and dropping proporitonality constants, we have

~H0 (RE) ∝
∫ 1

umin
E

du′

E

(

ρ̂− α ˆ̄ρ
)

~HR (RE) ∝
∫ 1

umin
E

u′

Edu
′

E

(

ρ̂− α ˆ̄ρ
)

(40)

where umin
E =

√

1−R2
NS/R

2
E. The lower limit of integra-

tion can be set to 0 by using the Heaviside step function:

~H0 (RE) ∝
∫ 1

0

du′

Eθ
(

uE − umin
E

) (

ρ̂− α ˆ̄ρ
)

~HR (RE) ∝
∫ 1

0

u′

Edu
′

Eθ
(

uE − umin
E

) (

ρ̂− α ˆ̄ρ
)

(41)
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Following the analysis of Sec. II.A., Eq. 12-14, these
quantities at any R > RE can be written as integrals
over uE instead of u (R):

~H0 (R) ∝
∫ 1

0

u′
E

u′
du′

Eθ
(

uE − umin
E

) (

ρ̂− α ˆ̄ρ
)

~HR (R) ∝
∫ 1

0

u′

Edu
′

Eθ
(

uE − umin
E

) (

ρ̂− α ˆ̄ρ
)

(42)

where

u =

√

1− R2
E

R2
(1− u2

E) (43)

So far, this is a trivial re-parametrizaton of the orig-
inal bulb problem. In other words, as long as there
is no flavor transformation between RNS and RE, we
can change the emission radius from RNS to RE, re-
place the quantities describing neutrino flavor ρ̂ − α ˆ̄ρ
with θ

(

uE − umin
E

) (

ρ̂− α ˆ̄ρ
)

(so that no neutrinos have

trajectories shallower than umin
E at R = RE) and re-

label neutrino trajectories by uE ≡ u (RE) instead of
u0 ≡ u (RNS), leaving the model unchanged.
Having reformulated the problem in this way, we can

now add additional neutrinos emitted above RNS but be-
low RE . To do this, we replace the Heaviside step func-
tion with a general weight function F (uE):

θ
(

uE − umin
E

) (

ρ̂− α ˆ̄ρ
)

→ F (uE)
(

ρ̂− α ˆ̄ρ
)

(44)

There are now neutrinos traveling on all trajectories for
which F is nonzero, with the value of F determining the
relative number of neutrinos on a particular trajectory.
In principle, we could also make the parameter α also
depend on uE , or, equivalently, use different weight func-
tions for ρ̂ and ˆ̄ρ. This would correspond to a situation
where the emission profile for neutrinos is different from
that for anti-neutrinos. While such a situation is realis-
tic, for the sake of clarity, we do not consider it here, and
make the assumption that neutrinos and anti-neutrinos
are emitted in equal proportion on all trajectories.
Next, we choose the function F . Our goal is simply to

examine the effect of having additional neutrinos trav-
eling on trajectories with larger angles, so any conve-
nient function that provides these while remaining phys-
ically and mathematically reasonable will suffice. We
keep F (1) = 1 and F ′ (1) = 0, as in the neutrino bulb
model. We assume that neutrino emission goes to zero as
R → RE , which gives F (0) = 0. We would like F to be a
monotonically increasing function of uE , and to have at
least one free parameter that can be adjusted so that we
can choose a value for the neutrino flux. A simple choice
that satisfies these properties is

F =
(

2uE − u2
E

)

exp

[

− 1

2σ2
(1− uE)

2

]

(45)

where the parameter σ can be adjusted to give a desired
neutrino flux.
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FIG. 15: Relative numbers of neutrinos on trajectories with
uE = cos θ (40km), for the standard neutrino bulb model with
RNS = 20 km, and the extended neutrinosphere model.

We choose the flux to be twice as high as in the blub
model of RNS = 20 km, because we expect about half
the neutrino emission to come from the extended source.
Using Eqns. 42, 44, and 45

2

∫ 1

umin
E

u′

Edu
′

E =
1

4

=

∫ 1

0

u′

Edu
′

E

(

2uE − u′2
E

)

exp

[

− 1

2σ2
(1− u′

E)
2
]

(46)

where, for RNS = 20 km and RE = 40 km, umin
E =

√
3/2.

This gives us σ ≈ 0.267. In the following calculations,
we choose α = 1.4
The angular distribution of neutrinos as a function of

uE for this extended neutrinosphere model is shown in
Fig. 15, with angular distribution for the bulb model at
RE shown for comparison.
It is now straightforward to modify our calculation to

include the extended neutrinosphere: we simply replace
RNS with RE , and weight the contributions from the dif-
ferent angular bins by the function F . We first verfiy that
the use of the small angle approximation in our calcula-
tions is still valid in the context of this extended model.
We find that by the time the neutrinos reach the MNR ra-
dius the small angle approximation neutrino potential by
only a few percent relative to its unapproximated form.
One major impact of using the extended neutri-

nosphere is that the neutrino potential is significantly
enhanced, not only because we make the flux twice as
large to accomodate the large-angle neutrinos, but also
because the larger angle neutrinos contribute more to
the potential. Consider the neutrino potential for the
radially-emitted bin (u0 = uE = 1). From Eq. 21,

~Hνν (uE = 1) = k
R4

E

2R4

[

~Φ1 − ~Φ3

]

(47)

where ΦN now includes the weight function:

~ΦN =

∫ 1

0

du′

Eu
′N
E F (u′

E)
(

ρ̂− α ˆ̄ρ
)

(48)
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FIG. 16: Angle-integrated survival probabilities for neutrinos
and anti-neutrinos as a function of radius in the extended
neutrinosphere model.

In the original bulb model, F (uE) is simply
θ
(

uE − umin
E

)

, where, with our choice of parameters,

umin
E =

√
3/2. In the absence of flavor transformation,

we obtain ~Φ1 − ~Φ3 = (1/64) (1− α) ê3. In the extended
bulb model, using F given by Eq. 45, we instead obtain
~Φ1 − ~Φ3 ≈ 0.0734 (1− α) ê3, an enhancement by almost
a factor of 5. To facilitate comparison with simulations
presented above, we would like the value of the neutrino
potential in the flavor transformation region to be com-
parable to these simulations, rather than much higher.
For this reason, we choose a larger value of the MNR
radius, RMNR = 90 km, instead of 60 km as in the bench-
mark simulation. Since the neutrino potential scales as
R−4, this parameter choice sets the neutrino potential in
the flavor transformation region to a value comparable
with our other simulations.

The evolution of total survival probabilities for neu-
trinos and anti-neutrinos in the extended neutrinosphere
model is shown in Fig. 16. The pattern of flavor evolution
is similar to that seen in the neutrino bulb simulations
above: both neutrinos and anti-neutrinos partially trans-
form, but neutrinos transform to a somewhat greater ex-
tent. The separation between neutrino and anti-neutrino
survival probabilities takes somewhat longer to develop,
and is slightly less prominent, because the exponential
tail in the neutrino angular distribution takes a long time
to completely pass through resonance, and there are rel-
atively few of these neutrinos, resulting in a reduced im-
pact on survival probabilities.

The evolution of the total potential for the radially-
emitted and the most tangential bin is shown in Fig. 17.
Again, the qualitative behavior is similar to that seen for
the bulb model in Fig. 5. However, the ‘plateau’ is not
so pronounced, and is extended over a longer range (R =
250 to 400 km, instead of 125 to 200 km). This is largely
due to the presence of the long tail in the neutrino angular
distriubution, which takes a long distance to completely
pass through resonance.
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R, km
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 Η
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FIG. 17: Ratio of flavor-diagonal part of total potential to
matter potential for the radially-emitted bin (upper curve)
and for the most tangential bin (lower curve) in the extended
neutrinosphere model. Curves for intermediate bins lie be-
tween these two extremes. Dashed lines show the ratio with-
out flavor transformation.

IV. CONCLUSION

We have presented multi-angle calculations of neutrino
flavor evolution in the spherically symmetric bulb model
under MNR-like conditions. We find that, just like in
single-angle MNR calculations, the cancelation between
the neutrino potential and the matter potential leads
to large-scale flavor evolution in multi-angle systems.
However, while there are some shared features with the
single-angle model (neutrinos transform more than anti-
neutrinos and the Hamiltonian remains near zero over
a certain range of radius for a small subset of angular
bins) multi-angle flavor evolution is qualitatively differ-
ent, so treatment of MNR-like neutrino flavor evolution
in realistic systems requires multi-angle simulations.
Calculations with different model parameters indicate

that increasing the neutrino flux or the matter den-
sity (increasing RNS or decreasing RMNR) partially sup-
presses flavor transformation, while increasing the asym-
metry between neutrino and anti-neutrino spectra (the
value of α) increases the difference in flavor evolution be-
tween neutrinos and anti-neutrinos. In addition, adopt-
ing a very shallow matter density profile proportional
to R−1 instead of the more standard R−3 strongly sup-
presses flavor transformation. However, even in this case,
a significant amount of flavor transformation still oc-
curs provided that the MNR radius is sufficiently large
(80−100 km). In addition we considered a scenario with
a spatially extended neutrino emission volume that de-
clined with distance from the center of the object. In
this case, we found qualitatively similar results to the
bulb model, but the transitions more extended.
Overall, the pattern of flavor evolution is similar un-

der a wide range of physical conditions. This suggests
that the flavor transformation phenomena demonstrated
here are robust and are not disrupted by multi-angle ef-
fects. Since the cancelation between matter and neutrino
potentials is expected to occur during certain epochs in
compact object mergers, we expect this type of flavor
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transformation to play an important role in these envi-
ronments, with effects on nucleosynthesis and potentially
also other aspects of the merger.
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