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I. INTRODUCTION

The origin of the large scale cosmic structure can be traced back to quantum vacuum fluctuations in the early
universe, which were amplified by a dynamical gravitational field. The inflationary paradigm provides a theoretical
framework to materialize this idea, and to make concrete predictions that can be confronted with observations (see [1, 2]
for a recent debate about the pros and cons of inflation). But despite the many interesting aspects of the inflationary
scenario, the picture of the early universe that it provides remains incomplete (for a list of open questions, see, e.g., [3]).
Among the most important open issues is the fact that inflationary models suffer from the initial big bang singularity
[4], that makes us uncertain about the way inflation begins and about the initial state of the universe at the onset
of inflation. This point is particularly relevant, since the predictions for the cosmic microwave background (CMB)
and large scale structure depend on what the initial state was. It would be more satisfactory to have a scenario in
which inflation arises in a well-defined manner, free of singularities, and in which the dynamics of the pre-inflationary
universe could be incorporated.

The idea that the universe did not begin with a big bang but rather it bounced, transitioning from a contracting
phase to an expanding one, is an attractive possibility. Bouncing models have been considered since the early days
of relativistic cosmology, e.g. by de Sitter in 1931 [5], and more recently this idea has emerged in more precise terms
within different scenarios, including loop quantum cosmology (LQC) [6–9], string theory-related models [10], higher-
derivative scalar-tensor theories [11, 12], etc. In this paper, we focus on cosmological bounces as predicted by loop
quantum cosmology, although some of our results shall apply to other models as well.

In LQC (see [13–25] for review articles), the cosmic bounce is caused by quantum gravitational effects. This scenario
has been used to provide a detailed quantum gravity extension of the inflationary scenario [26, 27] in which trans-
Planckian issues of the inflationary paradigm are addressed from first principles. After the bounce, as the value of
matter energy density and curvature invariants become smaller than the Planck scale, quantum gravitational effects
quickly become irrelevant. In the presence of a scalar field φ and an appropriate potential V (φ), the matter content
of the universe becomes dominated by this potential soon after the bounce, and the universe generically enters an
inflationary phase [28–30]. In this scenario, scalar and tensor cosmological perturbations begin their evolution in the
quantum vacuum at early times, and then evolve across the bounce, until the onset of inflation, and beyond. One
then can use this evolution to compute the state of perturbations at the onset of inflation, and to obtain predictions
for the CMB. The propagation across the bounce leaves an imprint in scalar and tensor perturbations. If the state
of perturbations at the onset of inflation happens to be completely different from the Bunch-Davies initial conditions
normally postulated in standard inflation, existing observational constraints would jeopardize the viability of the
LQC proposal for the pre-inflationary universe [31]. On the other hand, if the resulting state is close enough to the
Bunch-Davies vacuum at the onset of slow-roll, but still contains some differences, new effects would be predicted for
the CMB temperature distribution.

In the last few years, a research program has been dedicated to quantitatively analyze these possibilities (see
[14–25, 32–34], and references therein). More concretely, the primordial power spectra of perturbations have been
analyzed in detail by different groups, following different strategies. The main conclusions are that the bounce
can leave an imprint on the largest scales probed by CMB, while still being compatible with current observational
constraints. Concrete predictions have been obtained for the amplitude of the scalar and tensor power spectrum,
spectral indices, and tensor-to-scalar ratio.

In this paper we argue that the analyses done so far for the primordial power spectrum provides only a first step
towards a complete comparison of the predictions of LQC with observations. In order to declare the viability of the
theoretical framework and the compatibility of its predictions with observations, one has to go to the next order in the
perturbative expansion and show, first, that the next-to-leading order contribution introduces only small corrections,
in such a way that the perturbative expansion on which the computation rests is meaningful. But this is not enough,
since these corrections, although small enough to maintain the validity of perturbation theory, could still give rise to
large non-Gaussianity and violate observational upper bounds [35]. Such analysis was done for the standard theory
of inflation in [36], and it was shown that higher order corrections and non-Gaussianity generated during the slow-roll
era are indeed small, consistent with CMB data. But the situation could be different in presence of a cosmic bounce
that takes place at a higher curvature. Non-Gaussianity arises from self-interactions between perturbations, and these
are mediated by gravity. One expects, from general arguments, that these interactions would become ‘stronger’ at
higher curvatures. Since the bounce in LQC takes place at the Planck scale, there exists the possibility that the
resulting non-Gaussianity is too large. Here we extend the analysis of scalar perturbations in LQC to second order
and investigate the non-Gaussianity generated by the LQC bounce. This goes in three main steps. Firstly, since
LQC is based on a canonical approach to quantization, we re-write perturbation theory of cosmological perturbations
at second order in a purely phase space, or Hamiltonian language. Secondly, we extend the existing theoretical
framework to quantize cosmological perturbations in LQC, the so-called dressed metric approach, to second order in
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perturbations. Finally, as the approximations that are available during inflation and that make the computation of
non-Gaussianity tractable1 are simply not applicable in the pre-inflationary era, we have developed a numerical code
to compute non-Gaussianity in an arbitrary spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime.
Our code is dubbed class_lqc and is available in an online repository2. It uses the numerical infrastructure of class
[37, 38].

We show that the non-Gaussianity generated by the bounce in LQC are several orders of magnitude larger than
those generate by inflation alone, for length scales that were larger than the (spacetime) curvature radius at the
bounce. However, we show that these higher order correlations do not invalidate the perturbative expansion. We
compare our results with observations and re-evaluate the range of values of the parameter of the theory that make
both, the power spectrum and the non-Gaussianity compatible with observations. These results opens new possibilities
for observational signatures in the CMB and large scale structure arising from the bounce.

The rest of the paper is organized as follows. In section II, we develop the classical Hamiltonian theory of cosmo-
logical perturbations at next-to-leading order in perturbations, and devote section III to their quantization within
the dressed metric approach in LQC. In section IV we show the numerical evaluation of the three-point correlation
function, and describe “shape” of the resulting scalar non-Gaussianity. In section IV, we also explore the dependence
of our results on different freedoms in the theory, namely the ‘initial’ value of the scalar field, the value of the energy
density (or equivalently, the Ricci curvature) at the bounce, the scalar field potential V (φ), and the initial state for
perturbations, respectively. We complement this numerical analysis with an analytical justification of the main fea-
tures of the non-Gaussianty in section V. In section VI, we calculate the leading order corrections to power spectrum
and discuss the validity of perturbation theory. Finally, in section XII, we conclude with a summary of the results
and their implications in the light of observational data.

Although the effects of non-Gaussianity in the CMB arising from LQC have been discussed in previous analyses
[39, 40], these works do not incorporate the non-Gaussianity generated during the bounce. Rather, they focus on
contributions to non-Gaussianity originated during inflation, as a consequence of the fact that perturbations reach the
onset of inflation in an excited state. Since these excitations were generated by the LQC-bounce, the non-Gaussianity
they induce during inflation is a by-product of LQC. Here we provide the framework, the numerical tools, and the
computation of the full non-Gaussianity in LQC.

Throughout this paper we use reduced Planck units, in which energy and time are measured in units of the reduced
Planck mass MP` =

√
~/(8πG), and reduced Planck time TP` =

√
8πG ~. However, we will keep explicitly ~ and G

in our analytical expressions, in order to make the physical origin of our results more transparent.

II. HAMILTONIAN FORMULATION OF SECOND-ORDER PERTURBATION THEORY AROUND
SPATIALLY-FLAT FLRW BACKGROUNDS

Let us consider general relativity minimally coupled to a scalar field Φ on a spacetime manifold M = R × Σ. In
this paper we are interested in Σ having the R3 topology, although the extension to other choices is straightforward.
In the Arnowitt-Deser-Misner, or Hamiltonian formulation, the phase space Γ is made of quadruples of fields defined
on Σ, i.e., (Φ(~x), PΦ(~x), qij(~x), πij(~x)), where qij(~x) is a Riemannian metric that describes the intrinsic geometry of
Σ, and πij(~x), its conjugate momentum, describes the extrinsic geometry of Σ. (Latin indices i, j run from 1 to 3.)
The only non-zero Poisson brackets between these canonical variables are

{Φ(~x), PΦ(~x′)} = δ(3)(~x− ~x′) , {qij(~x), πkl(~x′)} = δk(iδ
l
j)δ

(3)(~x− ~x′) . (2.1)

where δk(iδ
l
j) ≡ 1

2 (δki δ
l
j + δkj δ

l
i) is the symmetrized Kronecker delta. Additionally, this phase space Γ carries the four

constraints of general relativity, the so-called scalar and vector (or diffeomorphism) constraints

S(~x) =
2κ√
q

(
πijπij −

1

2
π2

)
−
√
q

2κ
(3)R+

1

2
√
q
P 2

Φ +
√
q V (Φ) +

√
q

2
DiΦD

iΦ ≈ 0 , (2.2)

Vi(~x) = −2
√
q qij Dk(q−1/2πkj) + PΦDiΦ ≈ 0 , (2.3)

where κ = 8πG and V (Φ) is a potential for the field Φ. In these expressions, q, (3)R, and Di are the determinant, the
Ricci scalar, and the covariant derivative associated with qij , respectively.3

1 Namely, the slow-roll approximation and the availability of analytical approximation for the evolution of perturbations based on the
quasi-de Sitter symmetry of the inflationary spacetime.

2 website: https://github.com/borisbolliet/class lqc public
3 In terms of the ordinary derivative associated with a reference frame, the components of vector constraint read Vi(~x) = −2∂k(qijπ

jk) +
πjk∂iqjk + PΦ∂iΦ ≈ 0.

https://github.com/borisbolliet/class_lqc_public
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The Hamiltonian that generates time evolution in Γ is a combination of constraints

H =

∫
d3x

[
N(~x)S(~x) +N i(~x)Vi(~x)

]
, (2.4)

where the Lagrange multipliers N(~x) and N i(~x) are the so-called lapse and shift. They can be chosen to depend on
the phase space variables. We now apply this formalism to the early universe.

One of the main assumptions in cosmology is that the primordial universe is described by a solution to Einstein’s
equations that is very close to a FLRW geometry. In the Hamiltonian language, this means that we want to focus on
a sector of the phase space Γ of general relativity, consisting of a small neighborhood around the homogeneous and
isotropic subspace, ΓFLRW ∈ Γ. In this neighborhood, the canonical variables can be written as

Φ(~x) = φ+ δφ(~x) ,

PΦ(~x) = pφ + δpφ(~x) ,

qij(~x) = q̊ij + δqij(~x) ,

πij(~x) = π̊ij + δπij(~x) , (2.5)

where δφ(~x), δpφ(~x), δqij(~x), δπij(~x) describe small perturbations around the homogenous and isotropic background
variables φ, pφ, q̊ij , π̊

ij .

A. Background

The variables φ, pφ, q̊ij , π̊
ij are chosen to describe a spatially flat FLRW universe. This implies the following. First

of all, because we are dealing here with homogenous fields and Σ has the non-compact R3 topology, the spatial
integrals involved in the definition of the Hamiltonian and the symplectic form, diverge. But this is a spurious
infrared divergence, which can be eliminated by restricting the integrals to some finite, although arbitrarily large
cubical coordinate volume V0. This infrared regulator will appear only in intermediate expressions, and physical
predictions will not depend on it, therefore allowing us to take V0 → ∞ at the end of the calculation. Secondly, the
basic Poisson brackets of these background variables are

{φ, pφ} =
1

V0
, {q̊ij , π̊kl} =

1

V0
δk(iδ

l
j) . (2.6)

The rest of Poisson brackets between background variables, as well as the ‘mixed’ brackets involving both background
and perturbation fields, all vanish. Thirdly, homogeneity and isotropy allow us to choose a gauge in which the metric
variables take the manifestly homogeneous and isotropic form

q̊ij = a2 δij , π̊ij =
πa
6 a

δij , (2.7)

where δij is the Euclidean metric on Σ and δij its inverse, and numerical factors have been chosen to make a and
πa canonically conjugated variables, {a, πa} = 1

V0 . Furthermore, homogeneity makes the vector constraint to vanish
identically, since the spatial derivatives of background variables are all zero. Therefore, the background degrees of
freedom are subject only to the scalar constraint (2.2), which takes the form

S(0) = −κπ
2
a

12 a
+

p2
φ

2 a3
+ a3 V (φ) ≈ 0 . (2.8)

This is the familiar Friedmann constraint. And finally, dynamics is generated by the Hamiltonian

H
FLRW

=

∫
d3xN S(0) = V0N

[
−κπ

2
a

12 a
+

p2
φ

2 a3
+ a3 V (φ)

]
. (2.9)

Only uniform lapses N contribute to the right hand side of (2.9). Commonly used choices are (i) N = 1, which
corresponds to using proper—or cosmic—time t, (ii) N = a that corresponds to conformal time η, (iii) or N = a3

associated with the so-called harmonic time τ . Friedmann equations are easily obtained from Hamilton’s equations
of motion which, in cosmic time, read

ȧ = {a,HFLRW} = −κ πa
6 a

, π̇a = {πa,HFLRW} = −
[

κ

12a2
π2
a −

3

2

1

a4
p2
φ + 3a2 V (φ)

]
, (2.10)
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φ̇ = {φ,H
FLRW

} =
pφ
a3
, ṗφ = {pφ,HFLRW

} = −a3 dV (φ)

dφ
. (2.11)

These equations can be combined into the more familiar set of second-order differential equations

φ̈+ 3
ȧ

a
φ̇+

dV (φ)

dφ
= 0 ,

ä

a
= −κ

2
(
1

3
ρ+ P ) , (2.12)

where ρ ≡ 1
2 φ̇

2 + V (φ) and P ≡ 1
2 φ̇

2 − V (φ) are the energy and pressure density of φ, respectively.

By solving (2.12) one directly obtains the spacetime background metric ds2 = −dt2+q̊ij(t) dx
idxj = −dt2+a(t)2 d~x2,

and the scalar field φ(t). These are the background fields upon which perturbations propagate.

Remark: From now on, we choose to raise and lower all indices with the FLRW background metric q̊ij and its
inverse q̊ij .

B. Perturbations

Perturbation fields are defined by equations (2.5). The Poisson brackets of the physical fields (2.1) together with
those of the background variables (2.6), imply

{δφ(~x), δpφ(~x′)} = δ(3)(~x− ~x′)− 1

V0
, {δqij(~x), δπkl(~x′)} = δk(iδ

l
j)

(
δ(3)(~x− ~x′)− 1

V0

)
. (2.13)

The distribution appearing in the right hand side, δ(3)(~x− ~x′)− 1
V0 , is simply the Dirac delta on the space of purely

inhomogeneous fields.4

We have a total of 7 degrees of freedom (per point of space) in configuration variables—6 in δqij(~x) (gravity) and
one in δφ(~x) (matter)—and 7 more in the conjugate momenta. But perturbations are subject to the 4 constraints
(2.2), hence leaving a total of 3 physical degrees of freedom in configuration variables, and a total of 6 in the phase
space of perturbations—recall that each first class constraint actually removes two degrees of freedom in phase space.
In order to isolate these physical fields, it is convenient to first decompose δqij(~x) and δπij(~x) in a way that is adapted
to the symmetries of the background metric q̊ij . This leads to the well-know scalar-vector-tensor decomposition of
metric perturbations. This decomposition can be achieved either in position or Fourier space. We choose to do it in
Fourier space (see, e.g, [41, 42] for earlier references), with the aim of complementing the more extended analysis in
position space (see, e.g., [43], and [44] for a recent study of non-Gaussianity in position space, also in the canonical
framework). We start by expanding the metric perturbations in Fourier modes

δqij(~x) =
1

V0

∑
~k

δq̃ij(~k) ei
~k·~x , δπij(~x) =

1

V0

∑
~k

δπ̃ij(~k) ei
~k·~x . (2.14)

Since the perturbation fields in position space are real, one has δq̃?ij(
~k) = δq̃ij(−~k), and similarly for δπ̃ij(~k), where

the star indicates complex conjugation.
The Poisson brackets (2.13) translate to

{δq̃ij(~k), δπ̃kl(~k′)} = V0 δ
k
(iδ

l
j) δ~k,−~k′ , (2.15)

for any non-zero ~k and ~k′.

4 This can be checked by smearing the left hand side of (2.13) with arbitrary functions f(~x) and g(~x), and noticing that the presence of
the term −1/V0 removes the homogeneous components of those functions. Thus, only the inhomogeneous components of f(~x) and g(~x),
defined as finh(~x) ≡ f(~x)− 1/V0

∫
dx3f(~x) and similarly for g(~x′), contribute to the right hand side of (2.13). Note also that at second

order, the equations of motion for perturbations are non-linear. This implies that perturbation will pick a homogenous contribution
throughout the evolution, even if the initial data is purely inhomogeneous. Therefore, strictly speaking, perturbations cannot be assumed
to be purely inhomogeneous at this order in perturbations. However, the Poisson brackets (2.13) imply that the homogenous part of
the perturbations will Poisson-commute with its conjugate momentum, and hence will have no dynamics in our formulation. This is
equivalent to saying that, in perturbation theory, this homogenous mode is neglected, since it is assumed to always be much smaller
that the background fields. This is the reason why, in practice, one can treat perturbations as purely inhomogeneous even at second
order.
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The matrices δq̃ij(~k) belong to the vector space of 3×3 symmetric matrices. The scalar-vector-tensor decomposition

is obtained by writing δq̃ij(~k) in a convenient basis in this space, namely

A
(1)
ij =

q̊ij√
3

A
(2)
ij =

√
3

2

(
k̂i k̂j −

q̊ij
3

)
A

(3)
ij =

1√
2

(
k̂i x̂j + k̂j x̂i

)
A

(4)
ij =

1√
2

(
k̂i ŷj + k̂j ŷi

)
A

(5)
ij =

1√
2

( x̂i ŷj + x̂j ŷi ) A
(6)
ij =

1√
2

( x̂i x̂j − ŷi ŷj ) ,

where k̂ is the unit vector in the direction of ~k, and k̂, x̂, ŷ form an orthonormal set of unit vectors (with respect to

q̊ij). These six matrices form an orthonormal basis, with respect to the inner product A
? (n)
ij Aij(m) = δnm. Now, we

expand the perturbation fields in this basis:

δq̃ij(~k) =

6∑
n=1

γ̃n(~k)A
(n)
ij (~k) , δπ̃ij(~k) =

6∑
n=1

π̃n(~k)Aij(n)(
~k) . (2.16)

These equations can be seen as the definition of γ̃n(~k) ≡ Aij(n)δq̃ij(
~k) and π̃n(~k) ≡ A(n)

ij δπ̃
ij(~k). Consider the group of

rotations around the direction k̂, i.e. the SO(3) subgroup that leaves k̂ invariant—but rotates x̂ and ŷ. It is evident

from their definition that A
(1)
ij and A

(2)
ij are unaffected by these rotations, A

(3)
ij and A

(4)
ij transform as vectors, and

A
(5)
ij and A

(6)
ij as two-covariant tensors. For this reason γ̃n and π̃n are called scalar modes for n = 1, 2, vector modes

for n = 3, 4, and tensor modes for n = 5, 6. The canonical Poisson brackets (2.15) are equivalent to

{γ̃n(~k), π̃m(~k′)} = Aij(n)A
(m)
rs × {δq̃ij(~k), δπ̃rs(~k′)} = V0 δnm δ~k,−~k′ ,

{γ̃n(~k), γ̃m(~k′)} = 0 ,

{π̃n(~k), π̃m(~k′)} = 0 . (2.17)

Note that the conjugate variable of γ̃n(~k) is π̃m(−~k) = π̃?m(~k).

C. Physical degrees of freedom

There are two common strategies to isolate physical degrees of freedom in perturbations from pure gauge ones,
namely gauge fixing or working with the so-called gauge invariant variables. Gauge invariant variables are combinations
of δφ̃ and γ̃n’s that are invariant under the Hamiltonian flow generated by some of the constraints. More precisely,
when working at linear order in perturbations, gauge invariant variables are defined to be invariant under the flow
generated by the terms in the constraints (2.2) that are linear in perturbations, and these variables are commonly
used in the literature (see, e.g., [41], and section III.C of [42]). However, finding gauge invariant perturbations at
second order is more tedious [44], since one must involve second-order constraints in their definition. The gauge fixing
strategy is more efficient, and more common in the literature (see, e.g., [36]), and we shall follow it in this paper.

Recall also that in making predictions for primordial perturbations, the important point is to write the answer in
terms of the comoving curvature perturbations R (see, e.g., [36] for its definition at higher order in perturbations).
This is because Fourier modes of R remains constant from the time they exit the Hubble radius during inflation until
they re-enter towards the end of the radiation era. This property of R is crucial, since it allows us to connect the
inflationary predictions with observables in the late time universe, even if we are uncertain about the evolution of the
universe immediately after inflation. Therefore, irrespective of what strategy one decides to follow—gauge invariant
variables or gauge fixed ones—the important point is to write the answer in terms of R at the end of inflation.

However, performing all computations using R presents some difficulties. When the universe is dominated by a
scalar field φ, the variable R is ill-defined whenever φ̇ vanishes. During inflation this situation does not occur, because
the evolution of the scalar field during this period is monotonic, rolling down the potential, as long as the slow-roll
conditions are satisfied. In the scenario under consideration in this paper, φ̇ vanishes just before the onset of inflation,
thus making the variable R unsuitable for our purposes (see [27, 45] for further details). Therefore, in our analysis
below we work with the scalar perturbations δφ in the spatially flat gauge, and rewrite the answers in terms of
comoving curvature perturbation R at the end of the inflation, when all modes of interest are in super-Hubble scales.
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The spatially flat gauge is defined as the gauge in which the scalar and vector modes of metric perturbations vanish,
i.e., γ̃i = 0 for i = 1, 2, 3, 4. The physical degrees of freedom are therefore encoded in the scalar perturbations δ̃φ and
the tensor modes γ̃5 and γ̃6. This strategy completely fixes the gauge freedom.

We are now ready to write the Hamiltonian that generates dynamics, including terms up to third order in pertur-
bations. This will produce equations of motion that incorporate terms up to second order.

D. Third-order Hamiltonian

This paper focuses on non-Gaussianity of scalar perturbations. Therefore, we will not write terms containing tensor
modes in this section. Including them, however, does not add any conceptual difficulty (for a treatment of tensor
modes in the context of inflation, see for instance, [36, 46, 47]), although the expressions below become significantly
longer. The third order Hamiltonian for scalar perturbations in the spatially flat gauge is obtained as follows:

(i) Expand the constraints (2.2) in perturbations

S(~x) = S(0) + S(1)(~x) + S(2)(~x) + S(3)(~x) + · · · ,
V(~x) = V(0) + V(1)(~x) + V(2)(~x) + V(3)(~x) + · · · , (2.18)

where the superscript (0) denotes the terms that are independent of perturbations, (1) the linear terms, (2) and
(3) the second- and third-order terms, respectively. Expressions for each of these terms can be obtained directly
from (2.2) and (2.3), and are reported in Appendix A.

Expand also the lapse and shift as N + δN and N i + δN i, where N and N i are the homogenous lapse and
shift. For consistency with the FLRW gauge fixing [Eqn. (2.7)], we take N i = 0. On the other hand, δN(~x) and
δN i(~x) are the inhomogeneous part of the lapse and shift, which may depend on perturbations.

(ii) Impose the gauge conditions γ̃1 = 0, γ̃2 = 0 in the constraints (2.2).5 (Since we are interested in terms involving
only scalar perturbations, the gauge conditions γ̃3 = 0, γ̃4 = 0 are not needed.)

(iii) Find the lapse δÑ and shift δÑ i associated with this gauge fixing by demanding that the gauge conditions are
preserved upon evolution; i.e., use the equations

˙̃γ1 = {γ̃1,H} = 0 , ˙̃γ2 = {γ̃2,H} = 0 , (2.19)

to obtain δÑ and and δÑ i in terms of π̃1, π̃2, δφ̃, and δp̃φ. To write the third order Hamiltonian it is sufficient

to keep terms in δÑ and and δÑ i up to first order in perturbations.

(iv) Impose the first order constraints, S(1)(~x) = 0, V(1)
i (~x) = 0 to eliminate the conjugated variables π̃1, π̃2 in favor

of δφ̃ and δp̃φ, i.e., to find the relations π̃1 = π̃1(δφ̃, δp̃φ), π̃2 = π̃2(δφ̃, δp̃φ).

(v) Plug these results in the Hamiltonian (2.4) and keep terms up to third order in perturbations.

We performed these calculations using the Mathematica package xAct6[48]. The result is

δÑ = − 2N

aπa
(
√

3 π̃1 +
√

6 π̃2) ,

δÑ i = ikiχ̃ , where χ̃ = N

√
6κ

k2a
π̃2 ,

π̃1 =

√
3 a5 Vφ
κπa

δφ̃+

√
3 pφ

κ aπa
δp̃φ ,

π̃2 =

√
3

2

[(
pφ
2
− a5 Vφ

κπa

)
δφ̃ − pφ

κ aπa
δp̃φ

]
, (2.20)

where k2 ≡ kikj δij = a2kik
i is the so-called comoving wave-number.

5 From the phase space viewpoint, this is equivalent to introducing two new (second class) constraints.
6 http://www.xact.es



8

Moving back to position space, we obtain the expression for the Hamiltonian up to third order for scalar perturba-
tions Hpert = H(2) +H(3). The second-order Hamiltonian is7

H(2) =

∫
d3xN S(2)(~x) = N

1

2

∫
d3x

[
1

a3
δp2
φ + a3 (~∂δφ)2 + a3 A δφ2

]
, (2.21)

with the potential A given by

A = −9
p4
φ

a8π2
a

+
3

2
κ
p2
φ

a6
− 6 pφ
a πa

Vφ + Vφφ+6
pφṗφ
a4 πa

− 3
p2
φ π̇a

a4 π2
a

− 3
ȧ p2

φ

a5 πa
. (2.22)

The ‘dot’ on background variables must be understood as ẋ ≡ {x,HFLRW}, and each subscript φ for the potential V
means a derivative with respect to φ.

The third order Hamiltonian is

H(3) =

∫
d3x

(
δN S(2)(~x) + δN iV(2)(~x) + N S(3)(~x)

)
= N

∫
d3x

[(
9κ p3

φ

4 a4 πa
−

27 p5
φ

2 a6π3
a

− 3 a2 pφ Vφφ
2πa

+
a3 Vφφφ

6

)
δφ3

− 3 pφ
2 a4 πa

δp2
φ δφ −

9 p3
φ

a5π2
a

δpφδφ
2 − 3 a2 pφ

2πa
δφ (~∂δφ)2 +

3 p2
φ

N aπa
δφ2∂2χ +

3

2

a2 pφ
N2 κπa

δφ ∂2χ∂2χ

+ 3
p2
φ

N aπa
δφ ∂iχ∂iδφ+

1

N
δpφ ∂iδφ ∂

iχ − 3

2

a2 pφ
N2 κπa

δφ ∂i∂jχ∂
i∂jχ

]
. (2.23)

By performing a Legendre transformation, it can be checked that these expressions agree with the third-order La-
grangian derived in [36] (recall that, unlike [36], we use the physical background metric q̊ij = a2 δij and its inverse,
to lower and raise indices). Note that we have not used the Friedmann constraint (2.8) to derive, or simplify, the
second- and third-order Hamiltonians.

The second-order Hamiltonian H(2) provides the free evolution of perturbations, i.e., it leads to the linear equations
of motion

˙δφ = {δφ,H(2)} , ˙δpφ = {δpφ,H(2)} −→ (�− A(t)) δφ(~x, t) = 0 , (2.24)

where � is the d’Alembertian of the FLRW background metric.
The third oder piece of the Hamiltonian, H(3), is the so-called interaction Hamiltonian, which provides self-

interactions between perturbations (quadratic terms in the equations of motion). Some of these interactions are
generated by the scalar field’s potential V (φ), but note that most terms in H(3) are independent of V (φ), and there-
fore would be present even if V (φ) = 0. These are self-interaction mediated by gravity.

Finally, the relation between δφ to the comoving curvature perturbations R, needed to write our results in terms
of R at the end of inflation, is given by [36]

R(~x, t) = −a
z
δφ+

[
−3

2
+ 3

Vφ a
5

κ pφ πa
+
κ

4

z2

a2

](a
z
δφ
)2

− 3 a2

κπa

d

dt

[a
z
δφ
]2
− 9

a4

κ2 π2
a

a2

z2

(
~∂δφ

)2

+ 9
a4

κ2 π2
a

a2

z2
∂−2∂i∂j

(
∂iδφ∂jδφ

)
+ 3

a4

κπa

a

z
∂iχ∂

iδφ− 3
a4

κπa

a

z
∂−2∂i∂j

[
∂iχ∂jδφ

]
. (2.25)

where z ≡ − 6
κ
pφ
πa

. Although this relation looks complicated, we will only need to use it at the end of the inflation,
and at that time the terms in the second and third lines become negligible compared to those in the first line. The
reason for this is that perturbations that can affect our CMB have wave-lengths much larger than the Hubble radius
at the end of inflation. As previously mentioned, these super-Hubble modes of R become time independent. These
two facts—super-Hubble wavelength and time independence—make both the spatial and time derivatives appearing
in the second and third line negligibly small.

7 We have, in addition, performed the canonical transformation (δφ, δpφ) → (δφ, δp̄φ = δpφ −
3 p2φ
a πa

δφ) to eliminate a term proportional

to δpφδφ in the second-order Hamiltonian. From now on we will work with δp̄φ, but we will drop the bar to simplify the notation.
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III. EXTENSION OF THE DRESSED METRIC APPROACH TO SECOND ORDER

In this section we obtain the equations that describe the propagation of scalar perturbations in the Planck era of
the universe, using LQC. We use the so-called dressed metric approach, introduced in [49], and further developed
in [27, 42] (see also the review articles [14, 17, 21]). Here we extend the existing formalism to second order in
perturbations.

In semiclassical cosmology, to account for the CMB temperature fluctuations it has sufficed to consider just the
first-order perturbations around a FLRW solution, ignoring their back-reaction. In the Planck era of the universe, to
begin with, one has a quantum gravitational field instead of a smooth metric. The question is whether we can find
solutions in loop quantum cosmology that deviate from a quantum FLRW configuration only by small perturbations,
and whose effect on the background quantum geometry can be neglected. Such solutions exist [27, 42, 49] and can
be calculated, and they can be used to build a self-consistent quantum gravity extension of the inflationary scenario
[26, 27]. We first summarize how these solutions are obtained, and then extend previous analyses by including terms
up to second order in perturbations.

Our goal is to find the quantum theory of the classical midi-superspace made of spatially flat FLRW geometries
sourced by a scalar field φ, together with scalar perturbations δφ(~x) propagating thereon. In LQC, dynamics is

extracted from the constraint equation (the analog of the Wheeler-deWitt equation) ĤΨ = 0, where Ĥ = ĤFLRW +

Ĥpert is the operator associated with the Hamiltonian obtained in the previous section, and Ψ is the total wave-
function describing both the background degrees of freedom, a and φ, as well as scalar perturbations δφ. In LQC it
is convenient to trade the scale factor a for the ‘volume’ v, defined as v ≡ a3 V0 4/κ and use the lapse Nτ ≡ a3 (see

[50], and references therein, for additional details). The constraint equation ĤΨ(v, φ, δφ) = 0 takes the form

− ~2∂2
φΨ(v, φ, δφ) =

(
Ĥ2

0 − Ĥ2
1 − 2V0 Ĥpert[Nτ ]

)
Ψ(v, φ, δφ). (3.1)

where Ĥ2
1 ≡ 1

8κ
2v̂2V̂ (φ), and Ĥ2

0 is a difference operator, whose explicit form is not important for our discussion

(it can be found, e.g., in equation (2.2) of [50]; see also the original references [6–9, 51]). Both Ĥ0 and Ĥ1 act only

on background degrees of freedom, while Ĥpert acts on both, background and perturbations. We are interested in
solutions to this equation of the form Ψ(v, φ, δφ) = Ψ0(v, φ) ⊗ δΨ(v, φ, δφ), with Ψ0(v, φ) representing a quantum
FLRW gravitational field, and δΨ(v, φ, δφ) describing inhomogeneous scalar perturbations.

A. Background

The states Ψ0(v, φ) are chosen to be a normalized solution, with respect to a suitably defined inner product [14],

of (3.1) with Ĥpert = 0. They describe a quantum FLRW geometry. The Hilbert space HFLRW to which the states

Ψ0(v, φ) belong to, was studied in detail in [6, 9, 14] in absence of a potential V (φ), i.e., with Ĥ1 = 0.
Adding a potential introduces additional subtleties related to the definition of the inner product on the Hilbert

space. This issue has been discussed in [50], and the reader is referred there for details. In this paper, we will
focus only on bounces that are “kinetic dominated”, since this is the regime of phenomenological interest for us (see

sections VII). For such bounces, one can check that 〈Ĥ2
0 〉 � 〈Ĥ2

1 〉 during the Planck era [50].8 This makes the

term proportional to Ĥ1 in our quantum equations to produce negligible effects on physical observables (e.g., the
primordial power spectrum), several orders of magnitude smaller than observational error bars. Hence, although the

mathematical subtleties that appear in the inclusion of Ĥ1 are important from the conceptual and mathematical
viewpoint, they are not of direct relevance for phenomenological considerations. Therefore, in this paper we will work
with states Ψ0(v, φ) obtained by neglecting Ĥ1 in the Planck era.

The Hilbert space of the states for the background geometries that we are interested in, HFLRW

∈Ψ0(v, φ), is then
made of solutions to the ‘Schrödinger-like’ equation

− i~ ∂φΨ0(v, φ) = Ĥ0 Ψ0(v, φ) , (3.2)

with finite norm ||Ψ0||2 ≡
∑
v |Ψ0(v, φ)|2 < ∞. This equation is simply the positive ‘square root’ of (3.1) with

Ĥ1 = 0 and Ĥpert = 0. HFLRW is the analog of the space of states of the more familiar example of a scalar field

8 This epoch is defined as the period for which the quantum gravity corrections to the dynamics are larger than a 0.1%.
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in Minkowski spacetime, that is made of positive frequency solutions to the Klein-Gordon equation. It is useful—
although not essential—to think of φ in Ψ0(v, φ) as a relational time variable with respect to which the wave-function
‘evolves’.

As shown in [9], states in (a dense subspace of) HFLRW are free of curvature singularities, in the sense that
curvature invariants are all bounded. The eigenvalues of the matter energy density and pressure have also an absolute
supremum on HFLRW, given by a fraction of the Planck scale. Furthermore, every state Ψ0(v, φ) experiences precisely
one ‘instant’ φB at which the expectation value of the volume of the fiducial box, or of any other finite region of
space, attains its minimum, while energy density and curvature reach their maximum. In other words, in this theory
a cosmic bounce replaces the big bang singularity of classical general relativity.

1. Effective theory

To gain physical intuition, consider states Ψ0(v, φ) that are sharply peaked in the volume v, i.e., states with small
relative dispersion in v (or equivalently, in the scale factor a) during the entire ‘evolution’. Such solutions to (3.2)
exist, and have been studied in detail [7, 8, 52, 53]. For these states, it has been shown [14, 54] that the expectation
value of the scale factor, ā ≡ 〈â〉, and the rest of background quantities, can be obtained very accurately from an
effective theory. This effective theory takes the form of a classical theory whose equations of motion incorporate the
leading quantum corrections. The phase space is four dimensional, made of quadruples (ā, π̄a, φ̄, p̄φ), and dynamics
on it is generated by the effective Hamiltonian constraint9

H(eff)
FRW

[N ] = V0N

[
1

2 ā3
p̄2
φ −

3 a3

κ

1

`20
sin2

(
`0
κ

6

π̄a
ā2

)
+ ā3 V (φ̄)

]
, (3.3)

where `20 ≡ ∆3
0

48π2 `
2
P`, and ∆0 is area gap in LQC—the lowest non-zero eigenvalue of the area operator. This Hamiltonian

depends on ~ through `0. In the limit `0 → 0, it reduces to the classical FLRW Hamiltonian given in (2.9). In terms
of the energy density ρ ≡ 1

2 p̄
2
φ ā
−6 + V (φ̄), the equation H(eff)

FRW
= 0 becomes

1

`20
sin2

(
`0
κ

6

π̄a
ā2

)
=
κ

3
ρ . (3.4)

The trigonometric function on the left hand side revelas that the energy density is bounded above by ρsup = 3
κ`20

.

Some analyses of black hole entropy in loop quantum gravity [55–57] suggest the value ∆0 = 5.17 for the area gap,
that in turn makes ρsup = 0.4092ρPl (see, e.g., [58] for an alternative view). In this paper we treat ∆0 as a free
parameter, and derive results for the CMB for different values of ∆0.

The equations of motion (using cosmic time) for the canonical variables ā, π̄a, φ̄, and p̄φ that describe the effective
geometry, read

˙̄a = {ā,H(eff)
FRW
} =⇒ H̄ ≡

˙̄a

ā
= − 1

2`0
sin
(

2 `0
κ

6

π̄a
ā2

)
, (3.5)

˙̄πa = {π̄a,H(eff)
FRW
} =

3

2

p̄2
φ

ā4
+ 9

a2

κ

1

`20
sin2

(
`0
κ

6

π̄a
ā2

)
− π̄a
`0

sin
(

2 `0
κ

6

π̄a
ā2

)
− 3 ā2 V (φ̄) ,

˙̄φ = {φ̄,H(eff)
FRW
} = p̄φ/ā

3 ,

˙̄pφ = {p̄φ,H(eff)
FRW
} = − ā3 dV (φ̄)

dφ̄
.

These equations reproduce the classical FRLW dynamics (2.10)–(2.11) in the limit `0 → 0. Equation (3.5) implies,
due the presence of the trigonometric function, that the Hubble rate of the effective geometry is also bounded from
above, by |H̄sup| = 1

2`0
=
√

κ
12ρsup.

Now, a relation between energy density and Hubble rate, that generalizes the classical Friedmann constraint, can
be obtained by combining (3.4) and (3.5). More precisely, using the identity sin2 (2x) = 4 sin2 x (1− sin2 x), together
with (3.4), equation (3.5) takes the form

H̄2 =
κ

3
ρ

(
1− ρ

ρsup

)
. (3.6)

9 We have included the potential V (φ̄) because, as emphasized before, it plays an important role at late times, out of the Planck era.
However, within the Planck era it is completely subdominant in all solutions of interest for this article. Hence, the way we use this
effective Hamiltonian is consistent with the previous discussion, where the potential V was neglected in deriving the wave-function Ψ0

in the Planck era.
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The term in parenthesis breaks the linearity between the Hubble parameter H̄2 and the energy density κ
3 ρ that holds

in general relativity. Moreover, H̄ vanishes when ρ reaches its maximum value ρsup; such instant corresponds to a
smooth transition between a contracting and an expanding universe, i.e., a cosmic bounce. When ρ is small compared
to ρsup, the classical relation H̄2 = κ

3 ρ is recovered.
The set of equations (3.5)–(3.6) can be recast as a system of two second-order differential equations

¨̄a

ā
= −κ

6
ρ

(
1− 4

ρ

ρsup

)
− κ

2
P

(
1− 2

ρ

ρsup

)
,

¨̄φ + 3H̄ ˙̄φ+ Vφ̄ = 0 , (3.7)

where P ≡ 1
2

˙̄φ−V (φ̄) is the pressure density of the scalar field, and the dot indicates derivative with respect to cosmic

time t.10 These are the so-called effective equations of LQC. The solutions to these equations provide an effective
FLRW metric ḡab around which the quantum geometry Ψ0(v, φ) is sharply peaked.

It is important to notice that solutions of the effective equations are characterized by two parameters, which can
be chosen to be the value of the scalar field at the time of the bounce φ̄(tB) ≡ φB and its energy density at that
same time, ρ(tB) ≡ ρB = ρsup. To understand why we only need two numbers to characterize a solution, even
though the phase space we are working with is four dimensional, consider the following. Note first that in a spatially
flat FLRW geometry, the scale factor a can be re-scaled freely without altering the physics. We choose āB = 1.
On the other hand, at the bounce ˙̄a = 0 in all solutions. Additionally, because the energy density equals ρsup

at the bounce, φB determines ˙̄φ(tB). Therefore, from the apparently four initial data required to solve the system
(3.5)–(3.6), the value of φB and ρsup (together with the convention āB = 1), suffices to uniquely characterize a solution.

2. Generalized effective equations

What about states Ψ0(v, φ) that are not sharply peaked? They, of course, are not accurately described by the
effective equations. In particular, the geometry they describe cannot be approximated in any reasonable sense by
a smooth metric tensor. For those states, quantum fluctuations play an important role. Nevertheless, it has been
proven in [59] that the expectation value of the scale factor ā = 〈Ψ0|â|Ψ0〉 is still accurately described by equations
(3.7), with the only difference that ρsup must be replaced by the actual value of the energy density at the bounce, ρB,
which satisfies ρB ≤ ρsup. That is, ā bounces at an energy density ρB smaller than or equal to ρsup for states Ψ0(v, φ)
with large dispersion. It turns out that ρB decreases when the relative quantum dispersion in volume ∆v/v increases.
(The authors of [59] also derive an analytical relation between ρB and ∆v/v, valid for Gaussian states.) This behavior
is sensible: since ρsup is a supremum, only infinitely sharply peaked states reach ρB = ρsup, while quantum fluctuation
can only decrease ρB. However, it is remarkable that, even in presence of large quantum fluctuations, the mean values
of Ψ0(v, φ) are still very well approximated by ‘generalized effective equations’ which are identical to the equations
(3.7) with ρsup replaced by ρB.

B. Perturbations

Recall that we are interested in solutions of (3.1) of the form Ψ(v, φ, δφ) = Ψ0(v, φ)⊗ δΨ(v, φ, δφ), where Ψ0(v, φ)
is one of the quantum FLRW states described above, and δΨ is a small perturbation around it. Intuition tells us that
states of this type exist, as long as δΨ(v, φ, δφ) remains a small perturbation throughout the evolution—i.e., as long
as the test field approximation is valid. As we will see below, this is in fact the case.

The states we are looking for are the ‘positive frequency’ solutions to the constraint equation (3.1), i.e., states
satisfying [49]

− i~ ∂φΨ(v, φ, δφ) =

√
Ĥ2

0 [Nτ ]− 2V0 Ĥpert[Nτ ] Ψ(v, φ, δφ) . (3.8)

10 Recall that in LQC evolution has been defined, at the fundamental level, in a relational manner. I.e. we have studied how the gravitational
degree of freedom a evolves with respect to the matter degree of freedom φ. In this sense, the ‘time’ variable t in this effective theory
arises just as a parameter that changes monotonically with φ̄, that allows us to ‘separate’ the relation a(φ) into a(t) and φ(t). This is
the way the ordinary time we use in general relativity ‘emerges’ in loop quantum cosmology.
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Here Ĥ0 represents the Hamiltonian of the ‘heavy’ degree of freedom (background), and Ĥpert[Nτ ] = Ĥ(2)[Nτ ] +

Ĥ(3)[Nτ ] the Hamiltonian of ‘light’ ones (perturbations). Recall, Nτ = a3 is the lapse associated with harmonic time.

We can now expand out the square-root, and keep only terms linear in Ĥpert

− i~ ∂φΨ(v, φ, δφ) ≈
[
Ĥ0 − V0

(
(Ĥ0)−1/2 Ĥpert[Nτ ] (Ĥ0)−1/2

)]
Ψ(v, φ, δφ) , (3.9)

where we have chosen a symmetric order to write the operators in the right hand side. Note that the factors that
multiply Ĥpert are physically consistent, since in the classical theory Nφ = V0H

−1
0 Nτ is precisely the lapse associated

with the relational time φ. Hence V0 (Ĥ0)−1/2 Ĥpert[Nτ ] (Ĥ0)−1/2 is a specific quantization of Hpert[Nφ].
Now, introducing our ansatz Ψ(v, φ, δφ) = Ψ0(v, φ) ⊗ δΨ(v, φ, δφ), and using that Ψ0 satisfies the background

equation (3.2), we obtain from (3.9) the equation of motion for δΨ

Ψ0 ⊗ [i~ ∂φδΨ] = Ĥpert[Nφ] (Ψ0 ⊗ δΨ) . (3.10)

The test field approximation has been crucial to derive this equation, but no other simplification has been used. Also,
recall that Ĥpert[Nφ] acts on both Ψ0 and δΨ. However, the presence of Ψ0 in the left hand side indicates that we
can take the inner product with Ψ0 without loosing any information, and obtain

i~ ∂φδΨ = 〈Ψ0|Ĥpert[Nφ]|Ψ0〉 δΨ . (3.11)

where we have used that Ψ0 is normalized. In other words, the information regarding the background FLRW geometry
that influences the evolution of perturbations under the test field approximation is simply the expectation values of
the background operators that appear in Ĥpert[Nφ]; no other ‘moment’ of Ψ0 contributes to the dynamics.

Equation (3.11) is a Schrödinger equation for δΨ, with evolution Hamiltonian 〈Ĥ〉pert ≡ 〈Ψ0|Ĥpert[Nφ]|Ψ0〉, were
the hat reminds us that this expectation value is only on the background state, and therefore this quantity is still
an operator when acting on perturbations. To solve this dynamics and compute physical observables, we will follow
techniques that are standard in quantum field theory in curved spacetimes. That is, states of perturbations belong
to a Fock space Hpert, on which dynamics is dictated by 〈Ĥ〉pert in the standard way. (The total Hilbert space is
therefore HFLRW ⊗Hpert; this is the quantum analog of the classical phase space ΓFLRW × Γpert of FLRW metrics
plus perturbations propagating thereon.)

Now, we shall describe the dynamics of perturbations in more detail. As seen in section II B, at the next-to-leading
otder in perturbations the Hamiltonian has a quadratic and a cubic piece 〈Ĥ〉pert = 〈Ĥ(2)〉 + 〈Ĥ(3)〉, where 〈Ĥ(2)〉
and 〈Ĥ(3)〉 are the quantum operators associated with the classical expressions (2.21) and (2.23), respectively. The

quadratic Hamiltonian 〈Ĥ(2)〉 provides the free evolution, and 〈Ĥ(3)〉 describes self-interactions between perturbations,
which will be introduced perturbatively.

1. Free evolution of perturbation: the power spectrum

The free evolution, which is obtained from (3.11) by using 〈Ĥ(2)〉 as the evolution Hamiltonian, can be now re-written
in a more familiar form. Moving to the Heisenberg picture, dynamics is given by the Heisenberg equations

∂φδ̂φ = i~−1
[
δ̂φ, 〈Ĥ(2)[Nφ]〉

]
,

∂φ ˆδpφ = i~−1
[

ˆδpφ, 〈Ĥ(2)[Nφ
]
〉] . (3.12)

Now, by simple algebraic manipulations, these equations can be written as the second-order differential equation [49]

(�̃− Ã) δ̂φ(~x, η̃) = 0 , . (3.13)

This equation has the same form as in semiclassical cosmology. The difference is that the differential operator
�̃ ≡ g̃ab∇̃a∇̃b and the potential Ã are now constructed using the state Ψ0(v, φ) chosen to describe the quantum

FLRW geometry. More precisely, �̃ is the d’Alembertian associated with a smooth FLRW metric tensor

g̃abdx
adxb = ã2(η̃) (−dη̃2 + d~x2) , (3.14)

where ã is given by

ã4 =
〈Ĥ−1/2

0 â4Ĥ
−1/2
0 〉

〈 Ĥ−1
0 〉

, (3.15)
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and the conformal time η̃ is defined in terms of the internal time φ of LQC via

dη̃ = V0 (〈Ĥ−1
0 〉)1/2 (〈Ĥ−1/2

0 â4Ĥ
−1/2
0 〉)1/2 dφ . (3.16)

The tensor g̃ab is known as the effective dressed metric. Furthermore, the dressed potential Ã(η̃) is defined by

Ã =
〈Ĥ−

1
2

0 â2 Â â2 Ĥ
− 1

2
0 〉

〈Ĥ−
1
2

0 â4 Ĥ
− 1

2
0 〉

, (3.17)

where Â is the operator associated with the classical potential A defined in (2.22). All expectation values are evaluated

in the state Ψ0(v, φ). Recall, Ĥ0 is the Hamiltonian used in the evolution of Ψ0(v, φ) and â is the operator associated
with the scale factor. Hence, under the test field approximation, the evolution of δφ at leading order in perturbations
is mathematically equivalent to a quantum field theory of δφ on a curved FLRW spacetime described by g̃ab. ([27]
has analyzed the validity of the test field approximation by studying the energy-momentum tensor of perturbations.)

Now, if Ψ0(v, φ) is taken to be one of the sharply peaked state, then �̃ becomes the d’Alembertian associated with

the LQC effective metric obtained by integration of (3.7), and the potential Ã is obtained from the classical expression
(2.22) by just replacing the background variables a, πa, φ and pφ by the solution of (3.7). Hence, for sharply peaked
states Ψ0, the evolution of perturbation proceeds in the same mathematical manner as in semiclassical cosmology,
with the difference that the background FLRW metric is not a solution to Einstein equations, but a solution to the
LQC effective dynamics (3.7).

For other states Ψ0(v, φ) containing large dispersion in v, the differential operator �̃ and the potential Ã are
sensitive not only to the mean values of the scale factor and other simple operators, but also about a few specific
‘moments’ of Ψ0(v, φ), precisely those appearing in equations (3.15), (3.16), and (3.17). These moments, although
non-trivial in appearance, can be computed numerically, and the result can be used to predict observable effects in
the CMB anisotropies. Such analysis has been carried out in [50] using states Ψ0(v, φ) with relative dispersion ∆v/v
as large as 168% in the Planck regime. Interestingly, these computations show that, among all the effects that a large
dispersion produces on the power spectrum, the only one that becomes significant compared to observational error
bars is a direct consequence of ρB being smaller than ρsup [see discussion below equation (3.7)]. This means that, in
order to compute the primordial power spectrum in LQC for states Ψ0(v, φ) with large dispersion, we can simply use
the solution to the effective equations (3.7) after replacing ρsup by the actual value of the energy at the bounce (i.e.,
use the generalized effective equations). This is an accurate and simple recipe to extend the phenomenology in LQC
to states Ψ0(v, φ) that are not sharply peaked [50]. 11

Remark: To simplify the notation, from now on we will drop the ‘tilde’ on the conformal time of the dressed
metric, and the ‘bar’ on solutions to the effective, and generalized effective equations.

Once we have the dressed metric gab and the dressed potential A, the computation of observable quantities follow
the standard procedure.12 First, expand the field operator in terms of creation and annihilation operators

δ̂φ(~x, η) =

∫
d3k

(2π)3
δ̂φ~k(η) ei

~k·~x =

∫
d3k

(2π)3

(
Â~k ϕk(η) + Â†

−~k
ϕ∗k(η)

)
ei
~k·~x, (3.18)

where [Â~k, Â
†
~k′

] = ~ (2π)3 δ(3)(~k + ~k′), [Â~k, Â~k′ ] = 0 = [Â†~k
, Â†~k′

], and the set of mode functions ϕk(η) form a basis of

solutions to the equation

ϕ′′k + 2
a′

a
ϕ′k + (k2 + a2 Ã)ϕk = 0 , (3.19)

with normalization

ϕkϕ
′∗
k − ϕ∗kϕ′k =

i

a2
, (3.20)

11 In [50] wave functions Ψ0(v, φ) with different “shapes” in the v variable and having large relative dispersion in v, although not arbitrarily
large, were explored. However, the Hilbert space is infinite dimensional, and one could find states for which the conclusions of [50] do
not apply.

12 Note that, since we have already solved for the background dynamics, we can take the volume of the fiducial cell to infinity, V0 → ∞,
in this section. Not taking this limit would only introduce a discretization of the wave-numbers ~k, and the integrals in ~k below would
have to be replaced by sums.
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where k2 ≡ kikj δij is the comoving wave-number, and prime indicates derivative with respect to conformal time. The

scalar power spectrum of δ̂φ is extracted from the two-point function in momentum space via

〈0|δ̂φ~k(η)δ̂φ~k′(η)|0〉 ≡ (2π)3δ(3)(~k + ~k′)
2π2

k3
Pδφ(k, η) , (3.21)

where |0〉 is the vacuum annihilated by the operators Â~k for all ~k. In terms of mode functions, we have Pδφ(k, η) =

(~ k3/2π2) |ϕk(η)|2. The power spectrum of comoving curvature perturbations at the end of inflation, is obtained
from Pδφ by using the relation between δφ and R, written in (2.25), truncated at linear order

PR(k) ≡
(
a(ηend)

z(ηend)

)2

Pδφ(k, ηend) =

(
a(ηend)

z(ηend)

)2 ~ k3

2π2
|ϕk(ηend)|2 , (3.22)

where z = − 6
κ
pφ
πa

.

Remark:
An ambiguity appears in the analysis presented in this section, and it deserves some comments. Note that the

potential A that appears in the classical Hamiltonian of scalar perturbations [equation (2.22)] contains powers of
πa, the momentum conjugated to the scale factor a. In the quantum theory one finds the problem that, in loop
quantum cosmology, there is no operator associated with πa; only complex exponentials of πa—i.e., holonomies of
the connection—are defined as operators. This fact is intrinsic to the quantization strategy used in loop quantum
gravity/cosmology, and it is a consequence of diffeomorphism invariance.

There are several strategies that one can follow in order to compute the dressed potential in (3.17). We spell here
three of them, which have been chosen based on the criteria of simplicity.

(i) Use the classical Friedmann constraint (2.8) to trade πa for a, φ and pφ. There is no loss of generality in using
the classical constraints; it is an identity in the classical theory, which is the departing point for quantization.

(ii) At a more practical level, when working with sharply peaked states, we can simply replace the expectation
values of πa by the solution π̄a(t) to the effective equations of LQC.

(iii) Again, at the level of effective equations, replace factors 1/πa in the classical Hamiltonian by −H/(2a2ρ), where
ρ is the energy density in the background. This equation holds in general relativity. In loop quantum cosmology, such
relation is also valid after taking advantage of the freedom in the quantization strategy (see, e.g., [60], and references
therein for discussions on quantization ambiguities in LQC).

In view of the existing freedom, we have compared the results for the power spectrum and non-Gaussianity by
using all three strategies, in order to understand how sensitive observables are to these quantization ambiguities. Our
results (see section IV G) show that the results of this paper remain the same regardless of the choice we make for πa,
out of the three strategies explained above. For the sake of simplicity, we will use strategy (ii) in the main calculations
presented in the next section.

2. Interaction Hamiltonian: the bispectrum

The self-interaction of perturbations are described, at the lowest order, by the interaction Hamiltonian Ĥint ≡
〈Ψ0|Ĥ(3)[Nφ]|Ψ0〉, where the classical expression for H(3) was given in (2.23). As for the linear evolution, we are not
free of factor ordering ambiguities, and we choose a symmetric ordering. At second order, therefore, the evolution of
perturbations is sensitive to other moments of the state Ψ0(v, φ) chosen to describe the quantum FLRW geometry, in
addition to the three already involved in the free evolution, written in (3.15), (3.16), and (3.17). The new moments
follow straightforwardly from (2.23)—keeping in mind the expression for Nφ and the symmetric ordering—and we do
not explicitly write them here.

To begin with, in the computation of the three-point function of scalar perturbations, we restrict ourselves to
sharply peaked states Ψ0 for the background geometry. As discussed above, at the practical level this is equivalent to
replacing expectation values of background quantities by solutions to the effective equations (3.7). Furthermore, as
described at the end of section III A 1, the leading effects introduced by using more generic states can be accounted
for by varying the value of the mean energy density at the bounce ρB. We postpone such analysis to section IV D.

The equal-time n-point correlation functions of scalar perturbations δφ, can be now computed at second order in
perturbations by using the standard time-dependent perturbation theory:

〈0|δ̂φ(~x1, η)δ̂φ(~x2, η) · · · δ̂φ(~xn, η)|0〉 = 〈0|U†(η, η0) δ̂φ
I
(~x1, η)δ̂φ

I
(~x2, η) · · · δ̂φI

(~xn, η)U(η, η0)|0〉 , (3.23)
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where the superscript I denotes operators in the interaction picture, and

U(η, η0) = T exp

(
−i/~

∫ η

η0

dη′ ĤI
int(η

′)

)
,

is the time evolution operator relative to ĤI
int.

The observable quantity we are interested in is the bispectrum BR(k1, k2, k3) of comoving curvature perturbations
evaluated at the end of inflation. It is defined from the three-point correlation function of R in Fourier space, via

〈0|R̂~k1R̂~k2R̂~k3 |0〉 ≡ (2π)3δ(3)(~k1 + ~k2 + ~k3)BR(k1, k2, k3) . (3.24)

The bispectrum BR(k1, k2, k3) has dimensions of (length)
6
. The presence of the Dirac-delta distribution is a conse-

quence of the homogeneity of the background FLRW metric. This delta distribution implies that only triads (~k1,~k2,~k3)
that form a triangle may have a non-zero bispectrum. Additionally, isotropy makes the orientation of this triangle

irrelevant. These two facts combined are the reason why BR depends on the wave-numbers (~k1,~k2,~k3) only via three

real parameters. Common choices are (k1, k2, k3) with k3 . k1 + k2, or (k1, k2, µ ≡ k̂1 · k̂2).
It is common, and convenient, to quantify the amplitude of the bispectrum in terms of the dimensionless function

fNL(k1, k2, k3), defined as

BR(k1, k2, k3) ≡ −6

5
fNL(k1, k2, k3) × (∆k1∆k2 + ∆k1∆k3 + ∆k2∆k3) , (3.25)

or, equivalently, by

f
NL

(k1, k2, k3) ≡ −5

6
BR(k1, k2, k3) × (∆k1∆k2 + ∆k1∆k3 + ∆k2∆k3)−1 , (3.26)

where ∆k ≡ 2π2

k3 PR(k) is the dimensionful power spectrum. (See [61] for the origin of the convention leading to the
numerical factor −5/6, and see Appendix A of [62] for a summary of different conventions for the sign). Looking at
expression (3.26), we can intuitively think about f

NL
as the amount of correlations in “units” of ∆2

k.
Now, in order to compute the bispectrum BR(k1, k2, k3) in terms of δφ, we use the relation between both variables

given in section II D

R(~x, η) = −a
z
δφ(~x, η) +

[
−3

2
+ 3

Vφ a
5

κ pφ πa
+
κ

4

z2

z2

](a
z
δφ(~x, η)

)2

+ · · · , (3.27)

where, the dots represent terms producing subdominant contributions to correlation functions at the end of inflation

for the wave-numbers ~k that we can observe today (see equation (2.25) and the discussion after it). With this, we
have

〈0|R̂~k1R̂~k2R̂~k3 |0〉 =
(
−a
z

)3

〈0|δ̂φ~k1 δ̂φ~k2 δ̂φ~k3 |0〉

+

(
−3

2
+ 3

Vφ a
5

κ pφ πa
+
κ

4

z2

a2

) (
−a
z

)4 [ ∫ d3p

(2π)3
〈0|δ̂φ~k1 δ̂φ~k2 δ̂φ~p δ̂φ~k3−~p|0〉+ (~k1 ↔ ~k3) + (~k2 ↔ ~k3)

+ · · ·
]
. (3.28)

In this equation, (~ki ↔ ~kj) indicates terms obtained from the first term in the second line after interchanging ~ki and
~kj , and the dots indicate subdominant contributions. To obtain the scalar bispectrum BR and f

NL
at leading order

we need to compute the three- and four-point correlation functions of δ̂φ~k.
Let us begin with the three-point function, appearing in the first line in (3.28). At leading order in the interaction

Hamiltonian, it is given by

〈0|δ̂φ~k1(η)δ̂φ~k2(η)δ̂φ~k3(η)|0〉 = 〈0|δ̂φI
~k1(η)δ̂φ

I
~k2(η)δ̂φ

I
~k3(η)|0〉

− i/~
∫
dη′〈0|

[
δ̂φ

I
~k1(η)δ̂φ

I
~k2(η)δ̂φ

I
~k3(η), ĤI

int(η
′)
]
|0〉

+O(H2
int) . (3.29)
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The first term in the right hand side vanishes, 〈0|δ̂φI
~k1 δ̂φ

I
~k2 δ̂φ

I
~k3 |0〉 = 0, since δ̂φ

I
~k in the interaction picture is a

Gaussian field. Hence, the term in the second line gives the leading order contribution. By using the mode expansion
(3.18), we find

〈0|δ̂φ~k1(η)δ̂φ~k2(η)δ̂φ~k3(η)|0〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bδφ(k1, k2, k3) , (3.30)

where

Bδφ(k1, k2, k3) = 2 ~2 Im
[
ϕ~k1(η)ϕ~k2(η)ϕ~k3(η)

×
∫ η

η0

dη′
(
f1(η′)ϕ?k1(η′)ϕ?k2(η′)ϕ?k3(η′) + f2(η′)ϕ?k1(η′)ϕ?k2(η′)ϕ′

?
k3(η′) + f3(η′)ϕ?k1(η′)ϕ′

?
k2(η′)ϕ′

?
k3(η′)

+ (~k1 ↔ ~k3) + (~k2 ↔ ~k3)
)]

+O(H2
int) , (3.31)

where the functions f1(η), f2(η) and f3(η) are combinations of background functions, given in Appendix B.

The terms in the second line of (3.28) involve the four-point correlation function of δ̂φ
I
~k. Applying again time-

dependent perturbation theory, we get

〈0|δ̂φ~k1(η)δ̂φ~k2(η)δ̂φ~p(η)δ̂φ~k3−~p(η)|0〉 = 〈0|δ̂φI
~k1(η)δ̂φ

I
~k2(η)δ̂φ

I

~p(η)δ̂φ
I
~k3−~p(η)|0〉+O(Hint) . (3.32)

In this case, the first term does not vanish, and provides the leading order contribution. There is no need to compute
higher order terms, since they are subdominant. The first term, furthermore, does not involve any time integral of
the interaction Hamiltonian, and its expression in terms of the mode functions ϕk reads∫

d3p

(2π)3
〈0|δ̂φ~k1 δ̂φ~k2 δ̂φ~p δ̂φ~k3−~p|0〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3) 2 ~2 |ϕk1 |2|ϕk2 |2 . (3.33)

Substituting these results in (3.28) we obtain the desired expression for BR

BR(k1, k2, k3) =
(
−a
z

)3

Bδφ(k1, k2, k3) (3.34)

+

[
−3

2
+ 3

Vφ a
2

κ pφ πa
+

√
κ

4

z2

a2

](a
z

)4

2 ~2
(
|ϕk1 |2|ϕk2 |2 + |ϕk1 |2|ϕk2 |2 + |ϕk2 |2|ϕk3 |2

)
,

where all quantities are evaluated at the end of inflation.

IV. NUMERICAL EVALUATION OF THE THREE-POINT CORRELATION FUNCTION

The main goal of this section is to evaluate the bispectrum BR(k1, k2, k3), written in (3.34), at the end of inflation,
for different values of the three momenta k1, k2, and k3, and to compute the function fNL(k1, k2, k3) from it. This
section shows the results of numerical computations, while in section V we present analytical arguments that will help
us to better understand their physical origin.

Scalar perturbations are evolved starting at an early time, to be specified below, across the bounce, and until the
modes of interest become super-Hubble during the inflationary phase. The power spectrum and bispectrum will be
computed at that time. In order to perform these calculations we need to:

1. Specify a potential V (φ) for the scalar field.

2. Specify a solution (a(η), πa(η), φ(η), pφ(η)) to the effective equations (3.5)–(3.6) of LQC. As discussed in the
last two paragraphs of section III A 1, these solutions are uniquely characterized by specifying the value of φ
and its energy density at the time of bounce.

3. Specify the quantum state of scalar perturbations at some initial time η0.

These are the freedoms that we have in our calculation. In this section we choose:
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FIG. 1. Power spectrum for comoving curvature perturbations for φB = 7.62MP`, and ρB = 1M4
P`. Gray dots indicate the

numerical value of PR for individual values of k. The black curve denotes the average of the gray points. As expected, the
spectrum is scale invariant for k � kLQC. The effects from the bounce appear for k . kLQC. For the value of φB used in this
plot, the number of e-folds between the bounce and horizon exit for the pivot scale k?, is, NB? = 12.3. This number is large
enough to make the effects created by the bounce to be redshifted to super-Hubble scales at the present time (recall that the
observable window is approximately k ∈ [k∗/10, 1000k∗]). Section IV C and IV D contain plots of PR for other values of φB

and ρB for which the enhancement of the power spectrum occurs for observable scales (see also [66]).

1. The quadratic potential V (φ) = 1
2m

2 φ2, with the value of m that is obtained from the Planck normalization

[63], m = 6.4× 10−6MP`.

2. A background effective geometry with φB = 7.62MP` and ρB = 1M4
P`.

3. A Minkowski-like vacuum for perturbations, specified at an early enough time before the bounce such that
all Fourier modes of interest are in an adiabatic regime. More precisely, we choose ϕk(η0) = 1

a(η0)
√

2 k
and

ϕ′k(η0) = [−i k+ a′(η0)
a(η0) ]ϕk(η0) as initial data for the modes, for η0 = −2.8× 103 TP` (the bounce takes place at

η0 = 0).

In sections IV C - IV F we analyze the way the results vary for other choices.

To carry out the calculation we use the numerical infrastructure of class [37], a standard Einstein-Boltzmann
solver for cosmological perturbations, written in C. First, we solve the background dynamics, and then we use the
result to solve the dynamics of perturbations. We compute the time integrals in (3.31) by writing it as a first order
differential equation for the integrands, and we solve them simultaneously with the equation of motion (3.19) for each
Fourier mode. This ensures that the time step of the numerical integrator is adapted to achieve the desired accuracy
for the bispectrum. For solving the differential equations, we have used the Runge Kutta evolver provided by CLASS.

There are other codes aimed at computing primordial non-Gaussianity (e.g. BINGO [64], PyTransport and
CppTransport [65], and a code to compute three-point functions involving tensor perturbations [46]). But they
are mostly oriented towards computations during the inflationary epoch, and they cannot be used for our purposes.

Before computing the bispectrum, we first summarize our results for the power spectrum.
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A. The power spectrum

The mathematical and physical aspects of the primordial power spectrum PR(k) in LQC have been discussed in
detail in [42, 45, 66, 67], so we will be brief here. To compute PR(k), we need to solve the second-order differential
equation (3.19) for the set of wave-numbers of interest for observations. The values of k that we can probe in the
CMB, range approximately from kmin = k∗/10, to kmax = 1000k∗, where k∗ is a pivot, or reference wave-number whose
physical value at present is k∗/a(ttoday) = 0.002 Mpc−1. We will, however, compute PR(k) for values of k smaller
than kmin, because these modes, although not directly observable in the CMB, may indirectly affect the observable
power spectrum once non-Gaussianity are taken into account [39].

In order to better understand the form of the power spectrum, it is convenient to define the re-scaled mode functions
vk(η) ≡ a(η)ϕk(η). The wave equation (3.19), when written in terms of vk, takes the form

v′′k (η) + (k2 + f(η))vk(η) = 0 , (4.1)

where f(η) ≡ a(η)2 A(η)− a′′

a (η) = a2(A− R
6 ), and R(η) is the Ricci scalar of the effective spacetime geometry. The

potential A was defined in (2.22). It is clear from this equation that whenever k2 � |f(η)|, the solutions are simple
oscillatory functions with time independent frequency equal to k. On the contrary, vk(η) will have a more complicated
behavior when k2 . |f(η)|. In particular, when the function f(η) becomes negative, the oscillatory behavior of these
modes changes to an exponentially varying amplitude, that results in a modulation of the amplitude of vk(η), and
consequently of the power spectrum.

During the inflationary era, f(η) remains approximately constant, and is proportional to the Ricci scalar R, or the
square of the Hubble radius. This value sets up the wave-number scale for which amplification of perturbations takes
place. Similarly, the amplification of perturbations around the time of bounce can be characterized in terms of the
physical scale associated with the bounce. This scale is given by the value of the function f(η) at the bounce, which is
approximately equal to a2R

6 evaluated at that time (see the definition of f(η) above, and take into account that A is

of the same order as R/6 around the bounce). Therefore, we define the bounce scale kLQC as kLQC ≡ a(ηB)
√
RB/6 ≈

a(ηB)
√
κ ρB, where the subscript B indicates quantities evaluated at the bounce. Qualitatively, we expect the power

spectrum to be significantly affected by the bounce for modes with k . kLQC. On the other hand, the bounce is
expected to have little effect on k � kLQC, since these modes are “too ultraviolet to feel the bounce”.

In figure 1 we show the LQC power spectrum PR(k) for scalar perturbations computed using the settings specified
at the beginning of this section. The scale invariant inflationary prediction is recovered for k � kLQC. In contrast,
for k . kLQC there is an extra contribution coming from the propagation of perturbations across the bounce. This
contribution breaks scale invariance, and makes PR(k) to grow significantly for small wave-numbers. As discussed
in section IV F, all other choices of initial data for perturbations explored in this paper produce a power spectrum
that grows for k . kLQC. Note, however, that there exist other choices in the literature for which the spectrum is
suppressed, rather than enhanced, on these scales [68–70]. We do not consider such states in the analysis presented
here.

B. The bispectrum

The numerical evaluation of the bispectrum requires more effort than what is needed to compute non-Gaussianity
during inflation. The first reason is that, in the inflationary era, only the terms in the third order Hamiltonian (2.23)
that are leading order in the slow-roll parameters need to be considered. This provides a significant simplification of the
Hamiltonian, which, after integration by parts, reduces to a single term [36]. The second reason is that the background
geometry during slow-roll inflation is very close to be described by de Sitter geometry. This makes an analytical
approximation for the modes ϕk(η) available, which in turn allows for an analytical calculation of the bispectrum. All
these simplifications cannot be used in our case because, first of all, before inflation the slow-roll approximation is no
longer valid. And secondly, in our problem the spacetime goes through a contracting phase, followed by a bounce, a
pre-inflationary phase on which the kinetic energy of the scalar field is converted to potential energy, and finally an
inflationary phase. In each of these phases the scale factor behaves in a quite different manner and, as a consequence,
it is difficult to arrive at an analytical approximation for ϕk(η) valid during the entire evolution.13

We present our results for non-Gaussianity in terms of the function f
NL

(k1, k2, k3), defined in (3.26). We evaluate
f
NL

(k, α1 k, α2 k) as a function of k, for different values of α1 and α2. Following standard terminology, we will

13 There exist efforts to compute non-Gaussianity in more complicated inflationary scenarios involving deviations from slow-roll, both
analytically (see, e.g., [71, 72]) and numerically [64, 73]. However, the pre-inflationary evolution that we are interested in is more
complicated than the scenarios previously considered.
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FIG. 2. Equilateral configurations. Plot of fNL(k, k, k) versus k. We have used here the same parameter as in the plot of
the power spectrum, figure 1, namely φB = 7.62MP`, and ρB = 1M4

P`, and Minkowski-like initial data for perturbations at
η0 = −2.8 103 TP` (or equivalently, t0 = −105TP` in cosmic time). The plot shows that fNL(k, k, k) is highly oscillatory, and
its amplitude is strongly scale dependent. For the value of the φB, and ρB chosen in this plot, fNL grows only for the most
infrared scales that we can observe in the CMB, which correspond to angular multipoles ` . 30.
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FIG. 3. Equilateral configurations. Plot of |fNL(k, k, k)| versus k. We have used the same values of the parameter as in the
previous plot.
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refer to triads (k, α1 k, α2 k) for which (α1 = α2 = 1) as equilateral configurations of wave-numbers. Similarly,
(α1 ≈ 1, α2 � α1) and (α2 ≈ 1− α1) are known as squeezed and flattened configurations, respectively. These names

are motivated by the shape of the triangles formed by ~k1, ~k2, and ~k3.
In figure 2 we show f

NL
in the equilateral configuration as a function of k/k∗. In the regime k & kLQC the result

agrees with the inflationary prediction, i.e., f
NL
∼ ε where ε is the slow-roll parameter evaluated at horizon exit.

For scales that were larger than the curvature radius at the bounce, i.e., k . kLQC, f
NL

oscillates between positive
and negative values with an amplitude of order 103. In figure 3 we show the absolute value of f

NL
in the equilateral

configuration in order to analyze the scale dependence of f
NL

more carefully. In figure 4 we show f
NL

in a few different
configurations. In figure 5 we present two-dimensional plots for f

NL
containing all configurations, by fixing k1 to three

different values.
These results can be summarized as follows:

1. fNL(k1, k2, k3) is highly oscillatory. This is a consequence of the oscillatory behavior of the mode functions
around the bounce.

2. As expected, in the regime k & kLQC, f
NL

(k1, k2, k3) reduces to standard inflationary prediction (f
NL
∼ 10−2).

This is similar to the large-k behavior of the power spectrum (see figure IV A). The fact that we recover the
inflationary result for large wave-numbers is a good consistency test of our numerical computations.

3. The amplitude of f
NL

(k1, k2, k3) is strongly scale dependent. A scale invariant f
NL

would not change under
simultaneous re-scaling of k1, k2, and k3. The bounce breaks the scale invariance, and makes the amplitude of
f
NL

(k1, k2, k3) to grow for wave-numbers comparable or smaller than kLQC. This is a key feature that may allow
to contrast this framework with observational data.

4. By comparing figures 1 and 2, we can see that, while the power spectrum deviates from scale invariance for
k ≤ kLQC, fNL does it for k ≤ 10 kLQC. This is consistent with the fact that non-Gaussianity generally provides
a better probe of new physics than the power spectrum [74].

5. Consider, without loss of generality, that k1 ≥ k2 ≥ k3. Now, on the one hand, figure 5 tells that, for fixed
k1, the amplitude of f

NL
, although quite uniform when we change k2 and k3, attains its maximum value in the

upper left region of the triangle. These are configurations for which k3 � k2 ≈ k1, and k3 + k2 ≈ k1, i.e.,
squeezed-flattened configurations. But note that f

NL
becomes small again when k3 → 0 (upper-left corner), that

corresponds to very squeezed configurations. Hence, f
NL

is maximum in the squeezed-flattened, but not too
squeezed configurations. A shape of this type was anticipated in more general terms in [75, 76], and the physical
model discussed in this paper provides a concrete example of a single field model in which non-Gaussianity is
enhanced in squeezed configurations.

C. Dependence of fNL on the value of the scalar field at the bounce

The value of φB determines the number of e-folds of expansion between the bounce and the onset of the observable
phase of inflation, dubbed NB ? [27, 30, 50, 66].14 We are interested in effective trajectories for which NB ? ≈ 12.
For this value the effects created by the bounce on the power spectrum and non-Gaussianity would appear only in
the smallest wave-numbers—or equivalently, the lowest multipoles `— that we can observe in the CMB. For larger
values of NB ?, scales affected by the bounce are red-shifted outside our observable universe, and these effects become
unobservable. On the contrary, if NB ? is smaller than 12, the effects of the bounce would appear on all scales in the
CMB, and our predictions would be a strongly scale dependent power spectrum with large non-Gaussianity, in clear
tension with observations. NB ? ≈ 12 corresponds to φB ≈ 7.6MP`. This small value of the field makes the kinetic
energy to dominate over the potential energy at the bounce.15

What effect should we expect on the observable quantities if we change φB? Since a change in φB modifies the
amount of expansion NB ?, we expect that changing φB will shift PR(k) and fNL with respect to the set of wave-numbers
that we can directly observe. However, the shape of PR(k) and fNL is not expected to change, since the bounce itself
is not modified by changing φB.16

14 By “onset” of inflation we refer in this paper to the time η = η∗ at which the reference scale k∗ that today has a physical value
k∗/atoday = 0.002M−1

Pc , exits the Hubble radius during inflation. Since inflation lasts approximately 61 additional e-folds after η∗, the
number of e-folds from the bounce to the end of inflation is NB ? + 61.

15 This is the reason why in this paper, as well as in previous analyses [27, 50, 66], one focuses on kinetic dominated bounces. In the
subsequent evolution, the ratio of the potential energy to the total energy of φ grows and, at time η = η? when slow roll inflation begins,
the potential energy dominates over kinetic.

16 The bounce is dominated by quantum gravity effects, rather than by matter, and therefore a small change on φB does not modify the
spacetime geometry around the time of the bounce in any significant amount.
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FIG. 4. Plots of |fNL(k, k, k/2)| (top), |fNL(k, k, k/10)| (middle) and |fNL(k, k, k/100)| (bottom) versus k. We have used the
same values of the parameter as in the previous plot.
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FIG. 5. Plots of fNL(k1, k2, k3) versus x2 ≡ k2/k1 and x3 ≡ k3/k1, for k1 = 0.5 k? (top panel), k1 = k? (middle panel) and

k1 = 3k? (bottom panel). The figure shows configurations allowed by the triangle condition ~k1 +~k2 +~k3 = 0. Choosing, without
loss of generality, k1 ≥ k2 ≥ k3, the triangle condition is equivalent to 1 ≥ x2 ≥ 1/2, 1 − x2 ≥ x3 ≥ x2. By comparing the
values of fNL among the three plots, we see again its scale dependent character. These three plots also show the oscillatory
behavior of fNL , although this feature is more clearly displayed in figures 2-4. Furthermore, the plots reveal that the amplitude
of fNL is quite uniform when k2 and k3 are varied while k1 is kept fixed, except for a small change that makes fNL maximum
in the upper left region of the triangle, corresponding to “squeezed-flattened” (although not too squeezed) configurations.
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FIG. 6. Power spectrum (upper panel), and |fNL | in the equilateral configuration (bottom panel) for ρB = 1M4
P`, for different

values of φB. The horizontal axis shows wave-number relative to the reference scale k∗ that today corresponds to 0.002 Mpc−1.
Hence the window of observable modes is approximately k ∈ [k∗/10, 1000k∗]. The plot shows that different values of φB give
rise to power spectra and fNL with exactly the same shape, with the only difference that they are shifted from each other.

Figure 6 shows the power spectrum and f
NL

in the equilateral configuration for different values of φB, and for
ρB = 1M4

P`. The results are qualitatively the same for other configurations. As expected, the only effect of changing
φB is a shift of PR(k) and f

NL
relative to k∗. We see, for instance, that for φB = 8.02MP` both the power spectrum

and f
NL

are indistinguishable from the standard results of slow-roll inflation for observable modes k ∈ [k∗/10, 1000k∗].
All the effects from the bounce are red-shifted to super-Hubble scales for this value of φB. On the contrary, for
φB = 7.42MP` the bounce affects both the power spectrum and non-Gaussianity, although only for infra-red scales
in the CMB.

In summary, the scalar field at the bounce φB determines the amount of cosmic expansion accumulated after the
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FIG. 7. Power spectrum (upper panel), and |fNL | in the equilateral configuration (bottom panel) for φB = 7.62MP`, for
different values of ρB. The plot shows that different values of ρB change the maximum value of fNL . We also see that both,
the power spectrum and fNL are shifted towards more infrared scales relative to k∗ for large values of ρB.

bounce, and changing it produces a shift of the power spectrum and non-Gaussianity with respect to the scales that
are directly observable in the CMB, without modifying their shape.

D. Dependence of fNL on the energy density at the bounce

Changing the energy density at the bounce also changes the amount of expansion from the bounce to the onset
of inflation. This is because larger the value of ρB, larger would be the expansion needed for the energy density
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to decrease and reach the inflationary value. Therefore, we expect f
NL

, as well as the power spectrum, to shift its
position in relation to observables scales, in a way similar to the effect of changing φB.

There two different factors that could change the energy density at the bounce: (i) a change in the value of the are
gap ∆0, (iii) a change in the quantum state Ψ(v, φ) that describes the background quantum geometry. The analysis
of this section is, therefore, well-motivated.

Figure 7 shows the power spectrum and fNL in the equilateral configuration (the result is similar for other con-
figurations) for different values of ρB, with φB = 7.62MP`. As expected, both PR and fNL are redshifted towards
infra-red scales for larger values of ρB. We also observe that PR and fNL are more enhanced for large values of ρB. For
the power spectrum, the change in the amplitude produced by changing ρB is very small, and therefore the dominant
effect is simply a shift relative to k∗. Therefore, regarding PR(k), changing ρB and φB produces the same results.
This fact was analyzed in [50], and it was pointed out that, if one restricts to observable scales and takes into account
observational error bars, the effect produced by a change in ρB in the power spectrum PR(k) can be compensated by
a change in φB. Hence, observations of the power spectrum alone can only provide information about a combination
of φB and ρB, and not about their individual values. We find that this does not happen for f

NL
. Hence the degeneracy

between the observable effects of φB and ρB disappears for non-Gaussianity. Consequently, an observation of the power
spectrum and non-Gaussianity generated by the bounce would provide information about the energy (or curvature)
scale of the bounce.

The results of this section can be interpreted in more general terms. Recall that, as discussed in [59] and [50] and
summarized in section III A 1, a change in the quantum state Ψ0(v, φ) that describes the background geometry has
effects on observable quantities that, with great accuracy, can be mimicked by a change in ρB. Therefore, the content
of this section can be also understood as an investigation of the sensitivity of observable quantities to the choice of
Ψ0(v, φ).

E. Influence of the scalar field’s potential

In this section, we investigate the sensitivity of the results for non-Gaussianity in LQC under a change of the
scalar field’s potential. In LQC the bounce is generated by quantum gravity effects, and the contribution of V (φ) is
subdominant. Therefore, we expect that the results for f

NL
(k1, k2, k3) obtained in the previous sections by using the

quadratic potential will remain largely unaltered for other choices of V (φ). We compute f
NL

(k1, k2, k3) in this section
for the so-called Starobinsky potential [77–80],

V (φ) =
3M2

4κ

(
1 − e−

√
2κ
3 φ
)2

. (4.2)

The power spectrum in LQC has been analyzed in detail in [81, 82], and the results are qualitatively similar to the
quadratic potential.

We compute f
NL

(k1, k2, k3) by using (4.2) for the value of M obtained from the Planck normalization, M =
2.51×10−6MP`. Figure 8 shows the results for two different configurations, and for φB = −4.88MP` and ρB = 1M4

P`.
The initial state of perturbations has been chosen to be the Minkowski-like vacuum at η0 = −281.5TP` (equivalently,
t0 = −2.32× 105 TP`). At this time all modes of interest are in the adiabatic regime. Our analysis indicate that the
conclusion reached in all previous section remain true, as expected, since most of these features are due to the bounce.

At the quantitative level, the results also agree, although some small difference appear both for large and small
wave-numbers. The value of |fNL(k1, k2, k3)| for large ki is proportional to the slow-roll parameter ε evaluated at
horizon exit during inflation. This parameter is smaller for the Starobinsky potential (grey squares) than for the
quadratic potential (black circles), and explains the small difference in amplitude in figure 8. The differences in the
bottom panel of figure 8 are larger, and they originate from the discrepancies in the background dynamics at early
and late times, far from the bounce. These differences can be reduced by adjusting appropriately the value of the free
parameters φB and ρB.

F. Dependence of fNL on the initial states for perturbations

We explore in this section the sensitivity of non-Gaussianity to different choices of initial state for the quantum
scalar perturbations. This question is relevant because in spacetimes with no time-like isometries, such as the spatially
flat FLRW spacetime considered in this paper, the notion of quantum vacuum for a test field is ambiguous: there are
infinitely many candidates for Fock vacua, and none are preferred with respect to the other [83] (see [84] for further
discussions). In FLRW, one can narrow the freedom by restricting to homogenous and isotropic states that are
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FIG. 8. Comparison of |fNL(k, k, k)| (upper panel) and |fNL(k, k, k/5)| (bottom) evaluated at the end of inflation for the
quadratic and the Starobinsky potential. The figure illustrates that the spectral shape is very similar regardless of the potential.
The differences, more evident in the bottom panel, arise from contributions generated far from the bounce.

adiabatic of, at least, fourth order—so that the energy-momentum tensor is well-defined for these states [85]—but the
mathematical freedom is still large. Consequently, one could in principle obtain very different results by appropriately
tuning the initial state.

Notice that this freedom is not specific to LQC. It is common to any cosmological model dealing with quantum
perturbations, including the inflationary framework. A way to make progress is to add physical principles to select
appropriate initial data for perturbations. For instance, if evolution begins at a time at which all wavelengths of
interest for observations are small compared to the curvature scale, then the adiabatic analysis [85] provides guidance.
This is the strategy that one follows in standard inflation and we adopt it here as well. We use three different proposals
for initial state, all based on reasonable criteria, and compute f

NL
in each case. A similar exploration using these
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FIG. 9. Plot of |fNL(k1, k2, k3)| in the equilateral configuration (k1 = k2 = k3) for different choices of initial quantum state
for perturbations. The plot shows that the three choices considered in this paper produce results that are all very similar.
Differences only appear for the most infrared part of the spectrum, that corresponds to unobservable scales.

three different initial states, has been done for the power spectrum in LQC in [27, 66]. The outcome of these analyses
was that the power spectrum is very similar for observable scales in all three cases considered. Here, we reach the
same conclusions for non-Gaussianity. Therefore, we argue that the results of this paper do not rely on a fine-tuned
choice of initial conditions for perturbations, and are therefore generic, within the mathematical limitations mentioned
above.

More precisely, the three types of initial state that we choose are:

• Minkowski-like initial state. This state was introduced at the beginning of section IV A. This state is not a
forth-order adiabatic state (it is only of adiabatic order zero).

• Obvious adiabatic vacuum. This state was introduced in [42]. It is the state obtained by using initial data for
the mode functions given by the first four terms of the adiabatic expansion of ϕk(η). This state is therefore of
fourth adiabatic order. This prescription, however, cannot be specified for very infrared modes, since it produces
modes with the incorrect normalization. Nevertheless, the ambiguity will only modify the most infra-red part
of our results that correspond to modes that are not directly observable, and therefore we use this state for the
purpose of this section.

• Preferred instantaneous vacuum. This state was introduced in [84], and it is defined as the only state that has
zero expectation value of the adiabatically renormalized energy-momentum tensor at the initial time η0. In this
sense, this is a generalization of the Minkowski vacuum to cosmological spacetimes. It is also a state of fourth
adiabatic order.

Figure 9 shows the function fNL for equilateral configurations computed using these three different initial states,
specified at η0 = 2.842× 103 TP`. As anticipated, the results are essentially the same.

We have also explored the sensitivity of f
NL

to the time at which the initial conditions are imposed. We found that
as long as η0 is chosen such that all modes of interest are ultra-violet compare to the curvature-scale, k2 � a′′/a, the
results for f

NL
(k1, k2, k3) are insensitive to the choice of η0.

Another physically motivated instant to specify initial data is the bounce. At that time, however, the condition
k2 � a′′/a is not satisfied for all modes of interest, and therefore the adiabatic condition is not sufficient to choose
an initial state. We found that f

NL
is very sensitive to the ambiguity in the choice of initial data for perturbations at

the bounce. Different choices produce results that differ significantly from each other, and therefore we were unable
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FIG. 10. |fNL(k1, k2, k3)| at the end of inflation computed by adding a damping factor exp [−δ (k1 + k2 + k3)/(a
√
κρ/3)] to

the numerical integrals. The plot shows the equilateral configuration, k1 = k2 = k3. For large values of δ (δ = 20, 2, 0.2) the
computation underestimate the real value of fNL . For smaller values of δ, the actual value of fNL is no longer suppressed, but
then numerical artifacts appear for large k if δ is chosen too small, as can be seen in the plot for δ = 0.002. These instabilities
originate in the highly oscillatory nature of these modes. This analysis indicates that the optimal value of δ is around 0.02.

to make any generic statement about the value of f
NL

when the evolution begins at the bounce. Unless one adds new
principles that enables us to select preferred initial data for perturbations at the bounce (see [68–70] for interesting
examples within LQC) it seems difficult to reach any conclusion. In absence of such principles, the far past well before
the bounce appears as the most natural place to specify the initial state of perturbations.

G. Tests of the numerics

In this subsection we provide further tests of the numerical computations, with the goal of increasing our confidence
on the results and rule out potential numerical artifacts.

The main challenge of the numerical evaluation of the bispectrum is that it involves integrals of highly oscillatory
functions. These integrands include products of three mode functions ϕk(η) (see equation (3.31)). As discussed in

section IV A, these functions transition from being slowly evolving when k .
√
|f(η)| =

√
|a2(A− R

6 )|, to highly

oscillatory functions when k �
√
|f(η)|. It is the latter case that produces numerical instabilities.

However, because the main contribution to the integrals comes from times when at least one of the modes satisfies
k .

√
|f(η)|, a convenient strategy to reduce numerical instabilities, and also to reduce the computation time

without affecting the result, is to remove from the integration time intervals for which all the three modes are highly
oscillatory. This can be easily done by including a damping factor to the integrand in equation (3.31) of the form

exp [−δ (k1 + k2 + k3)/
√
|f(η)|], with δ < 1, similar to the strategy followed in other approaches [36, 46, 64]. However,

because the function f(η) has a complicated behavior close to the bounce, at the practical level it is more convenient

to work with a smoother damping factor of the form exp [−δ (k1 + k2 + k3)/(a
√
κρ/3)]. Figure 10 shows the result

for fNL(k1, k2, k3) evaluated at the end of inflation for different values of the cut-off δ. As expected, for large values
of δ the integral is artificially suppressed, and the result underestimates the value of fNL . On the contrary, when
δ is very small, numerical instabilities appear for large wave-numbers. Our analysis shows that there is an optimal
value, around δ = 0.02 for which the numerical calculation is fast and reliable. This is the value that we have used to
produce the figures in section IV B.

The second test that we perform in this section concerns the ambiguity regarding the value of πa in LQC, discussed
at the end of section III B 1. There, we proposed three different strategies for evaluating πa and the various powers
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FIG. 11. The scalar power spectrum Ps(k) evaluated at the end of inflation for the three different strategies for evaluating πa
described at the end of III B 1. The power spectrum is very similar in the three cases, and important differences appear only
for the very infra-red part of the spectrum, that corresponds to wave-lengths that are several orders of magnitude larger than
today’s Hubble radius.
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FIG. 12. |fNL(k, k, k)| evaluated at the end of inflation for the three different strategies for evaluating πa described at the
end of III B 1. The results are very similar in all three cases, and the differences between them are small compared to current
observational error bars.
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of it that appear in the classical Hamiltonian for perturbations. We will now show that the results obtained for the
power spectrum and non-Gaussianity are very similar in all three cases. In order to do this, we compare the power
spectrum in figure 11, and |f

NL
| in figure 12, obtained by using the three proposed strategies. Although some small

differences appear, they are either smaller than observational error bars, or they appear for very infrared modes that
cannot be observed in our Hubble patch of the universe. Note also that the freedom that we have in changing the free
parameters of the theory, and that we explore in previous sections, make these differences even less relevant, since, as
we saw, a small change in the value of some of these parameters would compensate the effects in the power spectrum
and non-Gaussianity.

V. ANALYTICAL UNDERSTANDING OF THE EVOLUTION OF NON-GAUSSIANITY ACROSS THE
BOUNCE

A characteristic feature of the non-Gaussianity produced by the LQC bounce is an enhancement of fNL for wave-
numbers comparable to the scale kLQC set by the bounce. The goal of this section is to complement the previous
numerical analysis with an analytical understating of the origin of this feature. By doing so we will, on the one hand,
increase our confidence on the numerical results and, on the other, understand better the physical origin of such
behavior.

We will use standard techniques from asymptotic analysis of integrals to find approximate expressions for the way
the amplitude of f

NL
behaves. Although our arguments are quite simple, the result captures the physics of the problem

remarkably well, both qualitatively and quantitatively.
First of all, we want to isolate the contribution to f

NL
that comes exclusively from the bounce. For this, we go back

to the definition of f
NL

in section III B 2, and find that this contribution is given by

I(k1, k2, k3) =

∫ ∆η

−∆η

dη
(
f1(η)ϕ∗k1(η)ϕ∗k2(η)ϕ∗k3(η) + f2(η)ϕ∗k1(η)ϕ∗k2(η)ϕ′

∗
k3(η)

+ f3(η)ϕk1(η)ϕ′
∗
k2(η)ϕ′

∗
k3(η) + (~k1 ↔ ~k3) + (~k2 ↔ ~k3)

)
, (5.1)

where f1(η), f2(η) and f3(η) are background functions, given in Appendix B. We use ∆η = 1000TP` (recall the
bounce happens at η = 0). For k & kLQC the mode function can be approximated by ϕk ∼ e−ikη. With this we have

I(k1, k2, k3) ∼
∫ ∆η

−∆η

dη g(η) ei(k1+k2+k3) η ≈
∫ ∞
−∞

dη g(η) eikt ηW (η,∆), (5.2)

where kt ≡ k1 + k2 + k3; g(η) is a combination of the functions fi’s in (5.1); and W (η,∆η) is a window function that
is equal to zero for |η| > ∆η, equal to one for |η| < ∆η, and smoothly interpolates between both values. The function
W (η,∆η) allows us to extend the integration limits to −∞ and +∞, without modifying the value of the integral, and
its concrete form will be unimportant for our purposes.

Now, Cauchy’s integral theorem tells us that the right hand side of (5.2) is equal to 2πi times the sum of the
residues of the poles of g(η) with positive imaginary part. The real part of each pole contributes to the oscillatory
behavior of the integral as a function of kt, while the imaginary part adds an exponentially decreasing factor. Hence,
the asymptotic behavior of the amplitude of the integral I as a function of kt is given by the pole of g(η) with the
largest imaginary part.

To find this pole, it is sufficient to realize that, out of the four background functions a(η), πa(η), φ(η), and pφ(η)
that appear in g(η), the scale factor is the only one having a minimum at the bounce. From this, we know that
the pole we are looking for comes from factors 1

an(η) contained in g(η). To compute this pole, we use an analytical

approximation for the scale factor, valid close to the bounce, that in cosmic time reads (see, e.g., [67])

a(t) = aB
(
1 + 3κρB t

2
)1/6

, (5.3)

where we have chosen the bounce to take place at t = 0. The pole of a(t)−1 is at tp = i /
√

3κ ρB and, in conformal
time, at17

ηp = i
√
π/3

Γ[5/6]

2Γ[4/3]

1

aB
√
κ ρB

= i
α

kLQC
, (5.4)

17 The relation between t and η close to the bounce can be written in terms of a hypergeometric function as η =
∫ t
0 a(t′)−1 dt′ =

t a−1
B 2F1[ 1

6
, 1

2
, 3

2
,−3κ ρB t

2].
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FIG. 13. Comparison of the numerically-computed contribution from the bounce to fNL (gray points), called ∆fbounce
NL in

the figure, and the analytical approximation e−α(k1+k2+k3)/kLQC (black line). The comparison is made for three different
configurations of wave-numbers. The agreement is very good for all of them. ∆fbounce

NL is defined as the value of fNL given only
by the first term in equation (3.34), and evaluating the integral in (3.31) just before the onset of inflation.

where Γ[x] is the Gamma function, α ' 0.64677, and we have used kLQC = aB
√
κρB. Therefore, this argument

tells us that the bounce produces a contribution to fNL(k1, k2, k3) whose amplitude changes with ki according to
e−α(k1+k2+k3)/kLQC , when (k1 + k2 + k3) & kLQC. In figure 13 we compare this analytical approximation with the
numerical result, for three different configurations finding a good agreement.

To summarize, the analysis of this section confirms that the scale dependent enhancement of f
NL

originates from
the bounce, and it is the scale kLQC that dictates how pronounced this enhancement is. Furthermore, since it is only
the complex pole of the scale factor at the bounce that accounts for the main features of f

NL
, it is expected that

bounces in other cosmological models different from LQC will produce similar non-Gasussianity.

VI. STABILITY OF PERTURBATION THEORY

We found that a cosmic bounce taking place close to the Planck scale produces large values of f
NL

, of order 103. This
result is in agreement with the extended intuition that, near the Planck regime, self-interactions of scalar perturbations
with purely gravitational origin—i.e., described by terms in the third order interaction Hamiltonian (2.23) that are
independent of the potential V (φ)—become strong. This large value of f

NL
raises concerns about the validity of the

perturbative expansion, on which the entire analysis rests.

To evaluate the validity of the perturbative series, we need to compute the corrections that fNL (the three-point
functions) introduces in the power spectrum (the two-point function). If this correction is similar or larger than the
leading order contribution, then the perturbative expansion would break down. As we show in this section, this is
not the case.

The two-point function of comoving curvature perturbations at the end of inflation at next-to-leading order, is
obtained from the correlation function of δφ by keeping the first correction arising from (3.27). We get
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〈0|R̂~k1R̂~k2 |0〉 =
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−a
z
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)3
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(2π)3
〈0|δ̂φ~p δ̂φ~k1−~p δ̂φ~q δ̂φ~k2−~q|0〉

+ · · · (6.1)

The power spectrum computed in previous sections was obtained by considering only the first line of this equation
and, additionally, by ignoring corrections from the interaction Hamiltonian when computing it. Now, we go to the
next order in perturbations.

For the two-point function in the first line of (6.1), we have

〈0|δ̂φ~k1 δ̂φ~k2 |0〉 = 〈0|δ̂φ~k1 δ̂φ~k2 |0〉 − i/~
∫ η

η0

dη′ 〈0|
[
δ̂φ

I
~k1 δ̂φ

I
~k2 , ĤI

int(η
′)
]
|0〉+ O(H2

int) . (6.2)

The first term in the right hand side was the one computed in equation (3.21). The second term in the right hand
side vanishes, since it involves expectation values of an odd number of fields in the interaction picture, which are
Gaussian. Therefore, there is no correction linear in the third order Hamiltonian to this term. Hence, the leading
order correction to the two-point function comes from the second and third line of (6.1).

The three-point function in the second line contributes with terms linear in the third order Hamiltonian. In contrast,
the leading order term in the four-point function is independent of the interaction Hamiltonian. By using (3.33) and
the definition of the bispectrum of δφ given in (3.30), we obtain the first perturbative correction to the power spectrum:

〈0|R̂~k1R̂~k2 |0〉 = (2π)3δ(3)(~k1 + ~k2)
2π2

k3
1

~ [PR(k1) + ∆PR(k1)] , (6.3)

where
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(2π)3
|ϕp|2 |ϕ|~k1−~p||

2

]
, (6.4)

where all quantities are evaluated at the end of inflation. Note from this expression that the next-to-leading order
correction to the power spectrum for a wave-number k1, gets contributions from other wave numbers, as a result of
the correlations arising from the three-point function.

An order of magnitude estimate of (6.4) can be obtained as follows. In the first line, the background function
between square brackets is of order ε (ε symbolizes here any of the slow-roll parameters). The bispectrum Bδφ, is of
order fNL P2

R and, therefore, the term in the first line of (6.4) is of order ε fNL P2
R (ε symbolizes a slow-roll parameter).

Similarly, the second line of (6.4) is of order ε2 P2
R. Since fNL . 104, and ε ∼ 10−2, the first line of (6.4) is much

larger than the second one. Then, we expect ∆PR/PR ∼ ε fNL PR . 10−4.
We have numerically evaluated expression (6.4), and the results appear in figure 14. The figure shows that ∆PR/PR

is smaller than 10−4, confirming that the next to leading order corrections to the power spectrum are indeed negligible.
Therefore, we find that although fNL experiences an enhancement of several orders of magnitude, the perturbative
expansion remains valid. The reason is found in the smallness of the leading order power spectrum PR(k) . 10−7.
From the expressions above, we see that the leading order correction contains, in addition to f

NL
, an additional power

of PR(k). The smallness of PR compensated for the enhancement of f
NL

. Higher order corrections contain even
higher powers of PR(k). In this sense, one can intuitively think about PR(k) as the small ‘parameter’ in terms of
which the perturbative expansion is defined.

VII. DISCUSSION AND CONCLUSIONS

The goal of this section is to provide a summary of the main results of this paper, contrast them with observational
data, and discuss the main consequences. The main take-home messages from our analysis are the following:
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FIG. 14. Plot of the relative size of the first order correction to the power spectrum, |∆PR/PR|. The plot shows the numerically
computed value as a function of the wave-numbers k. The result shows that, indeed, |∆PR/PR| � 1, confirming that we are
well inside the perturbative regime. This plot is obtained by using the same values for the free parameters as in section IV B,
and the conclusions remain unchanged for other choices.

(1) The evolution of scalar perturbations across the LQC bounce, starting from an adiabatic vacuum state before
the bounce when all the Fourier modes of interest have wavelengths much smaller than the (spacetime) curvature
radius, produces a state that at the onset of inflation is both excited and non-Gaussian, relative to the Bunch-Davies
vacuum. In other words, both the two- and three-point correlation functions of scalar perturbations deviate signifi-
cantly from their Bunch-Davies counterparts at the onset of inflation. Consequently, the predictions for the primordial
power spectrum and non-Gaussianity are modified as a result of the pre-inflationary evolution. (See section III and IV.)

(2) The bounce of LQC produces a strong enhancement of the non-Gaussianity as compared to that generated by
inflation alone, producing values for the function f

NL
(k1, k2, k3) as large as 104 for some wave-numbers and for some

choices of the free parameters of the model. Recall that inflation alone produces f
NL

of order of 10−2. (See section IV.)

(3) The large enhancement of non-Gaussianty raises concerns about the validity of perturbation theory. We have
computed higher order contributions to correlation functions and found that they are small compared to the leading
order result. Hence, perturbation theory remains a valid tool to compute the primordial power spectrum and bispec-
trum of cosmological perturbations in LQC. (See section VI.)

(4) The non-Gaussianity produced by the LQC bounce is strongly scale dependent. The bounce introduces a
new scale, determined by the Ricci spacetime curvature scalar at the bounce, RB. For perturbations, this new
scale can be written as kLQC ≡ aB

√
RB/6—or, equivalently, in terms of the energy density at the bounce, ρB, as

kLQC ≡ aB
√
κ ρB. Fourier modes with comoving wave-numbers k � kLQC are not affected by the bounce, and their

primordial non-Gaussianity originate entirely from the inflationary phase and are small. On the contrary, for Fourier
modes that are infra-red enough to “feel” the bounce, i.e., k . kLQC, the bounce contributes significantly to their
non-Gaussianty. We have provided an analytical argument to understand the enhancement observed in our numerical
computations, and concluded that it is given by |f

NL
(k1, k2, k3)| ∝ e−α (k1+k2+k3)/kLQC , with α ≈ 0.65. (See section V.)

(5) The non-Gaussianty generated by the LQC bounce has a very particular “shape”, discussed in section IV B,
that can be used to differentiate the results for LQC from other models of the early universe. Namely, in addition to
the scale-dependence mentioned above, f

NL
(k1, k2, k3) peaks in the flattened-squeezed configurations. ( See section

IV B).
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(6) The function f
NL

(k1, k2, k3) is highly oscillatory with respect to the wave numbers k1, k2, k3.

(7) Non-Gaussianity is more sensitive to the bounce than the power spectrum. For both the power spectrum and
non-Gaussianity, the relative size of the modifications that the bounce introduces decreases for large wave-numbers
k, and becomes negligible for k � kLQC. However, the effects on the power spectrum disappear ‘faster’ than on f

NL
,

when we move towards larger k. As a consequence, there is an interval of wave-numbers, given approximately by
k ∈ (2 kLQC, 10 kLQC) for which the modifications in the power spectrum are already negligible, but they are still
important in non-Gaussianity.

(8) Impact of different choices of the free parameters in the model.

• A change in the value of the scalar field at the bounce φB increases the number of e-folds of expansion between
the bounce and the beginning of inflation, and this produces a shift of the function fNL(k1, k2, k3) relative
to the interval of wave-numbers that we can directly observe in the CMB. Increasing φB produces a shift of
fNL(k1, k2, k3) towards infra-red scales with respect to the observable window. This effect was known to happen
for the power spectrum (see, e.g., [42]), and we have shown that it also occurs for non-Gaussianty. (See section
IV C.)

• A change in the value of the energy density of the scalar field at the bounce, ρB, produces also a shift on the
function f

NL
(k1, k2, k3), together with a change in its amplitude. For the power spectrum, the effects of changing

φB and ρB compensate each other (except for extreme infra-red scales), and therefore their consequences cannot
be individually distinguished. This degeneracy is broken for the bispectrum. (See section IV D.)

• The contribution from the bounce to f
NL

(k1, k2, k3) is largely insensitive to the choice of the scalar field’s
potential. We have checked this by comparing the result for f

NL
(k1, k2, k3) obtained with two commonly used

potentials: the quadratic and the Starobinsky potential. (See section IV E.)

• The predictions for f
NL

(k1, k2, k3) are unchanged for several different choices of initial quantum vacuum states
for scalar perturbations, provided this initial state is specified at a time well before the bounce, when all modes of
interest are in the adiabatic regime (see section IV F). On the contrary, we find that the result for f

NL
(k1, k2, k3)

is sensitive to the choice of initial data for perturbations if they are specified at or close to the bounce. This
does not happen for the power spectrum and shows again that non-Gaussianity is more sensitive to the physics
of the bounce than the power spectrum. (See section IV F).

Finally, we discuss the observational perspective of our analysis in regard of the current and forthcoming constraints
on primordial non-Gaussianity.

The Planck Collaboration reported results on their search for non-Gaussianty in the CMB in [35]. They were
unable to confirm any primordial non-Gaussianity, and provided tight constraint on different models of the early
universe. These constraints are rather strong for models producing scale-invariant18 non-Gaussianity. They found
f local
NL

= 0.8 ± 5.0 for the local template, f equil
NL

= −16 ± 70 for the equilateral template, and fortho
NL

= −34 ± 33 for
the orthogonal one, at 68% confidence level [35]. These results provide little information about models with scale-
dependent non-Gaussianity, especially on large angular scales. In those cases the comparison with observational data
must be done individually for each model. Recall that due to the sampling variance observational error bars at low
multipole scale approximately as 1/

√
`, where ` is the angular multipole. Planck observational error bars are smaller

for large multipoles, attaining uncertainties ∆f
NL
≈ ±10 for ` & 1000. If f

NL
is assumed to be scale-invariant, then

the precision at large multipoles suffices to constrain f
NL

with great accuracy at all scales. The situation is different
for scale-dependent f

NL
, as the one we obtained. Nevertheless, we can still find estimates for the constraints that

Planck data implies for the parameters of our model. We found that f
NL

is of order 10−2 for large wave-numbers, and
then it increases for small wave-numbers, reaching values of order 103. In order to respect observational constraints,
the enhancement of f

NL
may only occur for the largest scales probed by the CMB data, for which error bars are large.

It is important to emphasize that, the non-Gaussianity generated by the bounce has a shape that allows having large
non-Gaussianty at low multipole, while being consistent with observational constraints at large multipoles of the CMB.

Taking a conservative viewpoint, we require that the non-Gaussianty generated by the bounce shall only appear for
multipoles ` . 50 (which corresponds to k . 2k∗, for k∗ = 0.002Mpc−1). Recall that the values of φB and ρB control

18 These are models for which fNL (k1, k2, k3) does not change when the three wave-numbers are simultaneously re-scaled.
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ρB φB(min) φB(max)

0.2M4
P` 8.05MP` 8.41MP`

0.5M4
P` 7.70MP` 8.08MP`

1M4
P` 7.46MP` 7.82MP`

2M4
P` 7.19MP` 7.58MP`

5M4
P` 6.88MP` 7.24MP`

TABLE I. In this table φB(min) represents the minimum value of φB for different values of ρB obtained from a conservative
application of observable constraints on non-Gaussianity. On the other hand, φB(max) is the maximum value of φB for
which the enhancement of non-Gaussianity produced by the bounce appears in observable scales. We emphasize that values
of φB larger than φB(max) are allowed, but for them the bounce does not produce any direct effect in the CMB, neither
in the power spectrum nor in non-Gaussianity, and hence the results agree with those obtained from standard inflation. The
numbers in this table are obtained by using the quadratic potential with the mass parameter fixed by the Planck normalization,
m = 6.4× 10−6MP`.

the scales at which the effects from the bounce would manifest themselves in the CMB. Therefore, observational
constraints on non-Gaussianity translate into a restriction for the permissible values of φB and ρB; see Table 1.

As mentioned earlier, the enhancement that the bounce produces in the power spectrum appears for smaller wave-
numbers than the enhancement in non-Gaussianty. This implies that if φB is chosen to be equal or larger than
φB(min), in such a way that the LQC-effects on non-Gaussianity appear only for ` . 50, then the LQC-effects in the
power spectrum would appear only for the first few multipoles ` . 5, and would be difficult to observe.

However, one should keep in mind this analysis corresponds to the most conservative application of observational
constraints. It is likely that the oscillatory character of the non-Gaussianity found in this paper may partially
attenuate some of its effects in the CMB, and such attenuation would relax the restrictions on φB. For this reason,
the numbers given above, and the conclusions extracted from them, are meant to be taken as “worse-case scenario”,
rather than a strict constraint.

Regarding observational consequences of the non-Gaussianity generated by the bounce, we point out two possibili-
ties. On the one hand, although the CMB has been the main source of information about primordial perturbations,
the large scale structure will take this role in the near future [86]. The characteristic shape of the non-Gaussianity
produced by a bounce obtained in this paper could then be used as the smoking gun to contrast our findings with
future observations of the large scale structure.

On the other hand, even though error bars for non-Gaussianity in CMB observations are too large to directly
observe the predictions obtained in this paper, it was recently emphasized in [39, 87] that this non-Gaussianity can
modify the power spectrum at low multipoles, via higher order effects known as non-Gaussian modulation of the power
spectrum. A detailed analysis shows that these effects can be large enough to be observable for multipoles ` . 30
in the power spectrum, and that they are expected to produce effects very similar to the anomalous features that
the Planck and WMAP missions have observed at low angular multipoles in the CMB, and that remain unexplained
at the present time (see [88, 89] for a detailed account of the observational aspects of these anomalies, and their
statistical significance). The possibility that these features could originate from a bounce that takes place before
inflation, as the one predicted by LQC, is exciting, and the quantitative details are worth to be explored.
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APPENDIX A

In this appendix we write the explicit form of the scalar and vector constraints of general relativity, written in
equations (2.2), around a FLRW background, up to third order in perturbations. For simplicity, we only show terms
involving scalar perturbations, and after gauge fixing γ1 = γ2 = 0. These expressions have been used in section II to
derive the second and third order Hamiltonians for scalar perturbations.

S(0) = −κπ
2
a

12 a
+

p2
φ

2 a3
+ a3 V (φ) = 0 .

V(0)
i = 0 .

S(1)(~x) =
pφ
a3

δpφ(~x) − κ πa√
3 a2

π1(~x) + a3 Vφ δφ(~x) .

V(1)
i (~x) = pφ ∂iδφ(~x) − 2√

3
∂iπ1(~x) − 2

√
2

3
∂iπ2(~x) .

S(2)(~x) =
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2 a3
δp2
φ(~x) − κ

a3
π2

1(~x) − κ

a3
π2

2(~x) +
1

2
a3 ∂iδφ(~x) ∂iδφ(~x) +

+
3κ ∂i∂j∂

−2π2(~x) ∂i∂j∂−2π2(~x)

a3
+
a3 Vφφ

2
δφ2(~x) .

V(2)
i (~x) = δpφ(~x) ∂i δφ(~x) .

S(3)(~x) =
a3

6
Vφφφ δφ

3(~x) . (7.1)

In these expressions, the subscripts φ in the potential V (φ) indicate derivative with respect to φ. The third order vector

constraint V(3)
i (~x) appears in the Hamiltonian multiplied by δN i, which itself is linear in perturbations. Therefore,

V(3)
i (~x) does not contribute to the third order Hamiltonian in the spatially flat gauge.

APPENDIX B

Expressions of the functions f1(η), f2(η), and f3(η) appearing in expression (3.31), section III B 2:

f1(η) = a
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[45] Susanne Schander, Aurélien Barrau, Boris Bolliet, Linda Linsefors, Jakub Mielczarek, and Julien Grain, “Primordial

scalar power spectrum from the Euclidean Big Bounce,” Phys. Rev. D93, 023531 (2016), arXiv:1508.06786 [gr-qc].
[46] V. Sreenath, Rakesh Tibrewala, and L. Sriramkumar, “Numerical evaluation of the three-point scalar-tensor cross-

correlations and the tensor bi-spectrum,” JCAP 1312, 037 (2013), arXiv:1309.7169 [astro-ph.CO].
[47] V. Sreenath and L. Sriramkumar, “Examining the consistency relations describing the three-point functions involving

tensors,” Journal of Cosmology and Astroparticle Physics 2014, 021 (2014).
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