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As an attempt to solve the black hole information loss paradox, recently there has been the
suggestion that, due to semi-classical effects, a pre-Hawking radiation must exist during the grav-
itational collapse of matter, which in turn prevents the apparent horizon from forming. Assuming
the pre-Hawking radiation does exist, here we argue the opposite. First we note that the stress
energy tensor near the horizon for the pre-Hawking radiation is far too small to do anything to the
motion of a collapsing shell. Thus the shell will always cross the apparent horizon within a finite
proper time. Moreovall, the amount of energy that can be radiated must be less than half of the
total initial energy (if the particle starts at rest at infinity) before the shell becomes a null shell
and cannot radiate any more without becoming tachyonic. We conclude that for any gravitational
collapsing process within Einstein gravity and semi-classical quantum field theory, the formation of
the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to the
information paradox.

I. INTRODUCTION

The origin of the particles and in particular the ori-
gin of the energy, in black hole evaporation has been
a longstanding issue, which is still not entirely set-
tled. However in the 70’s already, calculations of the
regularized energy-momentum tensor gave a clear pic-
ture of the energy flow due to the quantum particle
creation by the black hole [1]. In this picture, the
conformal anomaly played a crucial role [2]. The 1+1
dimensional black hole gives the clearest picture. For
a massless scalar field in 1+1 dimensions, the classi-
cal energy momentum tensor has a zero trace. Go-
ing to null coordinates (u, v), the components of the
energy momentum tensor Tuu and Tvv are indepen-
dently conserved so that Tvv,u = 0 and Tuu,v = 0,
which implies that the former is constant along the
v = const surfaces, while the latter is also constant
along the u = const surfaces. The flux of radiation,
written, for example, as µlµlν , where lµ is a null vec-
tor, is given by T uu and T vv, which are related to the
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conserved components by T uu = Tvv/g
2
uv and simi-

larly for T vv. For the Schwartzschild metric where
guv = (1/2)(1− 2m/r), the flux diverges as one nears
the horizon.

However, the conformal anomaly, which makes the
trace of the regularized energy momentum tensor non-
zero, upsets this picture, leading to the picture that
for large r, the Hawking radiation is a positive energy
flux directed along the u = const rays, while near the
horizon the energy flux is negative and directed along
the v = const rays into the horizon, with no flux along
the u = const rays near the horizon. Calculations in
3+1 dimensions also support this picture [3].

Despite this long standing picture, numerous au-
thors regularly believe that the flux of Hawking radi-
ation is not originated from the conformal anomaly,
but from the matter which collapses to form the black
hole. Since the null rays that reach infinity intersect
the infalling matter exponentially, the closer it is to
the horizon, the later those rays reach infinity. One
therefore has an exponentially increasing density of
radiation near the horizon. If this were the picture,
then that density of energy could well drastically al-
ter the picture of the horizon and might well result in
non-formation of the horizon.

Recently, Barcelo et al. discussed what is called
pre-Hawking radiation [4]. It is not at all clear to us
what this means, but from the calculations it seems to
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mean that matter falling into the black hole decays,
emitting a positive energy flux toward infinity, a flux
which near infinity looks a lot like the Hawking flux.

While the standard picture given above is the best
approximation we have to the actual evaporation of
a black hole, based as it is on the semiclassical ef-
fect of quantum matter of the gravitational field, it
is an interesting question to ask– what would happen
if we allowed the infalling matter which is eventually
supposed to form a black hole, were to emit outgoing
photons to carry away at least a part of the energy
of the infalling matter. Could one arrange things so
that this outgoing flux would completely deplete the
energy of the infalling matter so that no horizon ever
formed? Two types of researchers answered this by
yes [5,6]. Papers in [5] used the null shell formalism
while that in [6] invoked a radiating time-like shell.
Note that the authors in [5] claimed that the thin-shell
approximation is somehow incomplete (which is incor-
rect) and that one must use a thick shell. However,
the only way to hold up such shell is having a huge
tangential pressure far larger than its energy density
to stop the shell. This paper, on the other hand, will
answer no. The outgoing null radiation cannot carry
away all of the energy of the infalling matter. Some
will always remain to form a black hole.

We emphasize that our performing this calculation
does not imply that we believe that this scenario rep-
resents in any way the effects of quantum mechanics
on the formation of a black hole. The regularized
quantum energy, even in the very early stages of col-
lapse, does not give any support to the idea that the
energy of the outgoing radiation comes from the in-
falling matter [7]. The infalling matter has an energy-
momentum tensor that is conserved independently of
the quantum radiation which rides on top of the clas-
sical spacetime. The conservation of the quantum en-
ergy comes from things like the radiation of both pos-
itive and negative fluxes by the conformal anomaly.

This paper is organized as follows. In Sec. II, we
analyze the radiation from a plane in a flat spacetime
to demonstrate some fundamental properties that a
radiating body must hold even without gravity. In
Sec. III, we repeat the analysis for the case of a grav-
itational collapsing shell and confirm that the radia-
tion must again be turned off at some point during
the process. In Sec. IV, we investigate the maximum
amount of radiation from the shell, if we impose the
condition that the shell should always be timelike or
null. Finally, in Sec. V, we briefly comment its im-
plication on the black hole information loss paradox.
Throughout this paper, we follow the convention of
c = G = ~ = 1.

II. NULL RADIATION FROM A PLANE

SHELL IN FLAT SPACETIME

To investigate the backreaction to a radiating body,
let us first consider a radiating plane in flat spacetime.
We consider a sheet of pressureless matter with den-
sity σ(u) moving along the path x = X(u) in a flat
plane-symmetric spacetime with the metric

ds2 = du2 + 2dudx. (1)

We further assume that this sheet of matter emits
radiation of massless particles in the positive x direc-
tion with a positive intensity λ(u). Then the energy-
momentum tensor is described by

T uu = σδ (x−X) , (2)

T ux = T xu = σẊδ (x−X) , (3)

T xx = σẊ2 + λ(u)Θ (x−X) , (4)

where δ(z) is the Dirac delta-function and Θ(z) the
Heaviside step-function defined as Θ(z) = 1 for z ≥ 0
and Θ(z) = 0 for z < 0.
Applying the local energy-momentum conservation

law to the system, i.e., T µν
,ν = 0, we obtain

T uu
,u + T ux

,x = 0 → σ̇ = 0, (5)

T xu
,u + T xx

,x = 0 → Ẍ = −
λ

σ
. (6)

If λ(u) is positive even when Ẋ = −1/2, then Ẋ will
become less than −1/2, and the length-squared of the
tangent vector to the shell will go negative. The shell
will become tachyonic. We believe tachyonic matter
is unphysical.
It is interesting to note that by using the coordi-

nate u to define the trajectory of the shell, one can
describe shells that are always timelike, null or tachy-
onic. Had one used the proper length along the shell,
the description would have become singular as the
shell became null, making the analysis more difficult.

III. NULL RADIATION FROM A

GRAVITATIONAL COLLAPSING SHELL

Now we consider a collapsing timelike shell that ra-
diates energy in the out-going direction. After show-
ing several simple calculations, we argue that it can-
not continue to radiate indefinitely without becoming
spacelike, i.e., tachyonic, which is unphysical.
The spacetime inside the shell is described by the

flat Minkowski space in the Eddington-Finkelstein-
type coordinates:

ds2− = −du2 − 2dudr + r2dΩ2, (7)

while the spacetime outside the shell is described by
the outgoing Vaidya metric [8]

ds2+ = −

(

1−
2m(U)

r

)

dU2
− 2dUdr + r2dΩ2, (8)
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where u and U are outgoing null directions for inside
and outside the shell, respectively, m(U) is the mass
function for outside the shell as a function of U , and
r is the areal radius for inside and outside the shell.
These two metrics should be continuous at the shell.

Hence, one can express ds2+ in terms of the time vari-
able u after introducing a suitable redshift factor. The
metric outside the shell becomes

ds2+ = −

(

1−
2m(u)

r

)(

dU

du

)2

du2

−2

(

dU

du

)

drdu + r2dΩ2. (9)

Note that the u coordinate is finite and regular even
across the horizon, which is not true of the coordinate
U . Using u as our coordinate will thus allow us to de-
scribe the behavior of the shell (and of the spacetime)
even at the horizon.
The shell itself is defined by its path r = R(u). Be-

cause of continuity of the angular part of the induced
metric on the shell, this same equation must apply to

both outside and inside the shell. Note that if the shell
is a null ingoing shell, we must have dR/du = −1/2.

The condition that the induced metric on the shell
be the same from either side of the shell requires

1 + 2
dR

du
= U ′2

(

1−
2m

R

)

+ 2U ′dR

du
, (10)

(where U ′ = dU/du) or equivalently

dR

du
=

1− U ′2 (1− 2m/R)

2 (U ′ − 1)
. (11)

In order to make the full metric continuous across
the shell, we replace the radial coordinate r by a new
coordinate z, such that the shell is located at z = 0:

r =

{

R+ z
U ′

(z > 0),

R+ z (z ≤ 0).
(12)

The metric of the spacetime thus becomes

ds2 = −

[((

1−
2m

R+ z/U ′

)

U ′2 + 2U ′R′
−

2zU ′′

U ′

)

Θ(z) + (1 + 2R′) (1−Θ(z))

]

du2

−2dudz +
(

R+
z

U ′
Θ(z) + z (1−Θ(z))

)2

dΩ2, (13)

for which all components of the shell are continuous
across the shell.

By assuming that the shell is composed of dust,
we can solve the Einstein equations for the motion
of the shell. Since the Einstein tensor involves sec-
ond derivatives of the metric, and since the metric is
continuous across the shell, one expects

Gµν = Gµν
bulk

+Gµν
shell

δ(z). (14)

Only the uu, θθ, and φφ coordinates of Gµν
shell can be

non-zero due to spherical symmetry. The dust condi-
tions imply that the angular components of the Ein-
stein tensor must be zero. Calculating the Einstein
tensor from the metric, we have

Guu
shell =

2 (U ′ − 1)

RU ′
, (15)

Gθθ
shell =

U ′2m+ U ′′R2 −RU ′2 +RU ′

R4U ′
. (16)

Zero tangential stress implies that

U ′′ = −
U ′ (U ′m−RU ′ +R)

R2
. (17)

Thus Eq.(17) and Eq.(10) give two first order equa-
tions for the variables U ′ and R. We can also write

them in terms of a second order equation for R in-
stead. R′′ can be obtained by differentiating both
sides of Eq.(11). One can simplify R′ and U ′′ by using
Eqs.(11) and (17). Eventually this relation simplifies
to

R′′ =
U ′

2R(U ′ − 1)

{

2m′U ′ −

[

1−

(

1−
2m

R

)

U ′

]2
}

.

(18)
where U ′ can be obtained in terms of R and its deriva-
tive from eq 10. This implies that if m′ < 0, then R′′

is always negative.

Now we define

ρ ≡ R′(u) +
1

2
= −

U ′

2(1− U ′)

[

1− U ′

(

1−
2m

R

)]

.

(19)
This new variable is useful especially if the shell ap-
proaches the null direction; as R′ approaches −1/2,
ρ goes to zero. By using this new variable, one can
rephrase R′′ as follows:

ρ′ = R′′ =
m′U ′2

R(U ′ − 1)
−

2(U ′ − 1)

RU ′
ρ2. (20)

As the shell approaches a null shell, Eq. (11) implies
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that U ′ approaches (1 − 2m/R)−1. Hence, we obtain

ρ′ =
m′

2m− 4m2/R
−

4m

R2
ρ2 (21)

Therefore, if ρ goes to zero while the shell continues to
radiate (m′ < 0), then ρ will become negative, which
implies that R′ < −1/2 and the shell is tachyonic.
It is therefore reasonable to conclude that a physical
shell cannot emit unrestricted amount of energy; its
radiation must be turned off at certain stage of the
emission process (i.e., m′ should approach zero).
Numerical evaluations for the coupled system of R,

U , and m as functions of u are presented in Figs. 1
and 2. One can solve Eqs.(18) and (17) for R and U ,
respectively. In order to solve those equations we re-
quire a definite form for the function m(u). We follow
the BMT model [6] and assume that m(u) satisfies,

dm

du
= −U ′ α

m2
, (22)

where α is a numerical constant that depends on the
number of fields that contribute to the Hawking ra-
diation (we choose α = 1 for numerical calculations).
For initial conditions, we choose arbitrary constants
for R(0), m(0), and U(0), though R(0) > 2m(0) so as
to satisfy the condition that the shell is initially out-
side the apparent horizon. R′(0) that represents the
initial velocity of the shell is also arbitrary as long as
R′(0) > −1/2. Once a set of these initial conditions
is chosen, U ′(0) is determined by Eq.(11), where the
positive solution is taken.
In our solution we do not assume that the shell re-

mains timelike or null and allow it to become tachy-
onic.
Figs. 1 and 2 show the typical behavior of R and

m. As the shell approaches the apparent horizon, U ′

increases rapidly and hence the radiation of the shell
increases correspondingly. At first look, in Fig. 1 we
see that a horizon never forms. The radius of the
shell R(u) always remains larger than 2m(u). How-
ever it is also clear from Fig. 1 that R′(u) becomes
much smaller than−1/2, i.e., the shell becomes tachy-
onic. If we set m(u)′ = 0 for u larger than the point
where R′ = −1/2 (i.e., m(u) thereafter remains con-
stant), then R′(u) remains equal to −1/2 and R(u)
will rapidly equal 2m(u) and continues to R(u) = 0,
as shown by the dashed lines in the graphs. .

IV. MAXIMUM RADIATION BY A

PARTICLE

One can get a feeling for the results of this section
by looking at a massive particle decaying to two oppo-
sitely directed photons. If the initial massive particle
is at rest, the two photons will each carry away half of
the rest-mass energy. If the massive particle is travel-
ing in one direction, then the photon emitted in that
direction will have more than half of the energy, and

0 10 20 30 40
u

5

10

15

20

25

30
RHuL

0 10 20 30 40
u

2

4

6

8

10

12
RHuL-2mHuL

FIG. 1: Numerical evaluations for the coupled system of
R, U , andm, where the initial condition is given by R(0) =
30, R′(0) = −0.1, m(0) = 10, U(0) = 10 is an arbitrary
constant, and U ′(0) is given by Eq. (11), where we choose
the positive definite solution for U ′ since both u and U

are future directed coordinates. The dashed lines are plots
wherem′(u) is set to zero when the curve becomes lightlike
so that the shell cannot go tachyonic. Upper: R(u) (black)
and 2m(u) (red, apparent horizon). Lower: The solid
lines shows that R(u)− 2m(u) is always positive and the
shell does not cross the apparent horizon. The dashed
curve does cross. From the upper curve the mass when
the apparent horizon forms differs little from the initial
mass.

if the massive particle’s velocity approaches that of
light, then the energy in the photon moving in the
opposite direction will approach zero. We will show
that the same happens for the gravitating shell.
Let us define the quantity

S ≡ 4
U ′ − 1

U ′
R2

[

1− U ′

(

1−
2m

R

)]

. (23)

This is the square of the energy density in the shell
for timelike matter and would be expected to be con-
served if m′ = 0. It is however also defined and con-
served in the absense of radiation for null and space-
like radiation as well.
Using the equations for R′ and U ′, we find

S′ = 8m′(U ′
− 1)R, (24)

which means S is conserved if the radiationm′ is zero.
If the shell is null, S = 0, and it is negative for tachy-
onic matter.
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FIG. 2: As the shell collapses, U ′(u) rapidly increases
(upper). For the tachyonic case, ρ(u) (lower) also goes
large and negative, indicating a strongly tachyonic shell.
For the dotted case, ρ(u) is zero (lightlike shell) near the
apparent horizon. Note that the dotted curve for ρ(u)
coincides with the 0 axis.

We now evaluate S under various situations. Let
us first consider the situation where a shell located
at R0 is at rest when it begins to collapse. Since the
shell satisfies R′ = 0 at the starting point, from the
equation for R′ we have

0 = 1− U ′
0

2

(

1−
2m0

R0

)

, (25)

or

U ′
0 =

1
√

1− 2m0/R0

, (26)

where the subscript 0 denotes the initial condition of
the shell. Then we obtain

S0 = 4R2
0

(

U ′
0 − 1

U ′
0

)2

=
16m2

0
(

1 +
√

1− 2m0/R0

)2
.

(27)
If R0 ≫ 2m0, i.e., the shell falls in from a distance
that is far from the putative horizon associated with
2m0, then the initial condition reduces to

S0 = 4m2
0. (28)

If S becomes negative, the shell turns spacelike, then
it cannot represent physical matter. Thus if S ap-

proaches zero, then m′ should reduce to zero corre-
spondingly for the system to remain physical, as we
argued earlier.
By integrating Eq. (24), and assuming that the min-

imum value of S is 0, we find

−∆S ≤
16m2

0
(

1 +
√

1− 2m0/R0

)2
(29)

and

16m2
0

(

1 +
√

1− 2m0/R0

)2
≥ −8

∫

(U ′ − 1)R
dm

du
du,

(30)
where ∆S =

∫

S′du for a given integration domain
and m′ is assumed to be negative. Since

d(U ′ − 1)R

du
=

(U ′ − 1)2

2
≥ 0, (31)

the multiplier of m′ is increasing and reaches its min-
imum at R0. Therefore, −

∫

(U ′ − 1)Rdm ≥ −(U ′
0 −

1)R0

∫

dm and we have

−∆m ≤
m0

2

2
√

1− 2m0/R0

1 +
√

1− 2m0/R0

≤
m0

2
. (32)

Note that the closer the shell approaches the horizon,
the smaller the ∆m becomes. Also, from Eq. (30), the
closer to the horizon where the radiation is emitted,
the smaller the change in mass must be. Thus, the
maximum amount of mass that can be radiated must
be less than 1/2 of the total, and it must take place far
from the horizon (where quantum effects would pre-
dict a negligible amount of radiation). Evidently, the
shell cannot radiate away its entire gravitational mass
to prevent the formation of the apparent horizon.
Would a nonzero initial inward velocity at infinity

of the shell help to ameliorate the situation? The
answer is no. Using the equation for R′ again, we
have

R′
0 =

1− U ′
0

2
(1− 2m0/R0)

2(U ′
0 − 1)

. (33)

Assuming m0 ≪ R0, we expand U ′
0 as U ′

0 = 1 +
αm0/R0 +O(m0/R0)

2 and m0 ≪ R0, and find

α =
1

1 +R′
0

(34)

and

S0 = 4m2
0α(2− α) = 4m2

0

(

1 + 2R′
0

1 +R′
0

)

. (35)

Hence, we obtain the following inequality

− 8

∫

(U ′ − 1)Rm′du ≤ −

(

8m0

1 +R′
0

)

∆m. (36)
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Thus we have

−∆m ≤

(

1 + 2R′
0

2

)

m0 ≤
m0

2
, (37)

since −1/2 ≤ R′
0 ≤ 0. Again, the maximum amount

of radiation that can be radiated is half of the initial
Schwarzschild mass, which corresponds to the situa-
tion where R′

0 = 0 at infinity.
If the shell becomes null, it has no rest mass. Thus

the radiation can cause the rest mass of the shell to
go to zero. However, it is the energy of the shell, not
its rest mass, that determines its Schwarzschild mass,
and the gravitational mass of the shell cannot go to
zero without the shell going tachyonic.

V. CONCLUSION

In this paper, we critically examined the assertion
that a radiating and collapsing shell can never cross
the apparent horizon. Some authors refer to such a
radiation as pre-Hawing radiation. Our analysis has
resulted in two major conclusions. First, the col-
lapsing shell may emit radiation before the horizon
is formed, but it must be weak unless the shell be-
comes spacelike. Second, the maximum amount of
the radiated energy is bounded, where our estimation
shows that it cannot be larger than half of its initial
energy. Therefore either the radiation would stop or
the shell would become tachyonic. Since the latter is
unphysical, it is inevitable that the radiation stops at
some point during the collapse. Note that we do not
consider the possibility that there are internal pres-
sures in the shell because such pressures would have
to be huge to counteract the radiation pressure.
Although our analysis does not rely on the quan-

tum mechanical nature of the pre-Hawking radiation,
authors of the recent work [7] indeed show that quan-
tum stress-energy tensor cannot play an important

role during gravitational collapse, which is consistent
with our result. In a different setup, authors of [9]
calculate a 2-D model of the quantum radiation from
a massless scalar field for a collapsing shell that stops
(due to transverse stresses) just outside the horizon.
They show that the quantum emission is not suffi-
cient to stop the system from almost having a horizon
very near the expected value associated with the mass
that began the collapse. Their conclusion is consistent
with ours.

We conclude that the assertion that pre-Hawking
radiation can prevent the formation of the apparent
horizon is based on unphysical assumptions. Black
holes do form.
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