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Is gravity parity violating? Given the recent observations of gravitational waves from coalescing
compact binaries, we develop a strategy to find an answer with current and future detectors. We
identify the key signatures of parity violation in gravitational waves: amplitude birefringence in
their propagation and a modified chirping rate in their generation. We then determine the optimal
binaries to test the existence of parity violation in gravity, and prioritize the research in modeling
that will be required to carry out such tests before detectors reach their design sensitivity.

Introduction. Einstein’s theory of General Relativity
(GR) has made striking predictions in the weak field of
the Solar System [1], and in the strong field of binary
pulsars [2]. The groundbreaking detections of gravita-
tional waves (GWs) by the LIGO-Virgo scientific collab-
oration [3] have now led to the first confirmations of Ein-
stein’s theory [4–6] in extreme gravity [7], where gravity
is strong and dynamical. GW probes of extreme grav-
ity go beyond confirmations of Einstein’s theory through
theoretical physics implications [8]. For example, we
have confirmed that the (real part of the) group velocity
of gravity is frequency independent [4, 8, 9], constrain-
ing quantum-gravity-inspired theories [4, 10, 11]. We
have also confirmed that GWs carry energy in a pre-
dominantly quadrupolar way, constraining theories that
predict dipole radiation [8, 12–14]. The recent observa-
tion of a neutron star (NS) merger confirmed that the
(frequency-independent part of the) speed of gravity is
equal to that of light [6, 15, 16], constraining dark en-
ergy models [17–21].
One important aspect that has not received much at-

tention yet is gravitational parity invariance in extreme
gravity [22–25]. Analyzing parity in GR is subtle because
of its inherent coordinate covariance, but we can think
of it as a symmetry of the Lagrangian under the parity
operator in a suitable 3 + 1 decomposition. GR is thus
a parity-invariant theory. In fact, the weak force is the
only interaction that maximally violates parity, which
explains the observed decay of nuclei and mesons [26]
(e.g. β-decay of cobalt-60 [27] and neutral kaon de-
cay [28]). Moreover, parity-violation in GR plays a key
role in cosmological baryogenesis and relates the baryon
asymmetry index to CMB observables [25, 29].
Given the possibility of gravitational parity violation

in nature, one is urged to search for observational signa-
tures in extreme gravity. This note studies the theory
of generic gravitational parity violation, showing that
it reduces to dynamical Chern-Simons gravity [25, 30]).
We then summarize the key signatures of generic parity
violation in GW observables, classifying them into gener-
ation and propagation effects. We use these signatures to
identify the best compact binaries to detect or constrain
parity violation with current and future GW interferom-
eters. The binaries identified allow us to discuss the re-

search in GW modeling that ought to be prioritized to
carry out such tests in the future.
Parity Violation in Extreme Gravity. Let us begin by

defining parity violations more precisely. Consider a spa-
tial hypersurface (a surface of constant time) on which

we define the parity operator P̂ as the spatial reflection
of the spatial triad eI i that defines the spatial coordi-
nate system, i.e. P̂

[

eI i
]

= −eIi, where Latin letters are
spatial indices [31]. The line element is parity invari-
ant because it denotes the differential length of a four-
dimensional interval. Performing a 3+1 decomposition
of the line element,

ds2 = −α2dt2 + hij

(

dxi + βidt
) (

dxj + βjdt
)

, (1)

where G = 1 = c [31], we see that its parity invariance
implies the lapse α and the spatial metric hij must both
be even, while the shift βi must be odd, and so the ex-
trinsic curvature Kij is even. The Ricci scalar

R = 3R+KijKij −K2 − 2∇α

(

nβ∇βn
α − nα∇βn

β
)

,
(2)

where Greek letters are spacetime indices [31], must then
be even because both the induced Ricci scalar 3R and the
normal vector nα are even.
How can one construct a parity violating interaction,

a pseudo-scalar, to add to the Lagrangian? Consider
first using only the curvature tensor [14]. Because of
the symmetries of the Riemann tensor and the Bianchi
identity Rµ[ναβ] = 0, there are no pseudo-scalars at linear
order in curvature. At second order, the only possibility
is the Pontryagin density

∗RR := ∗RαβδγRαβδγ , (3)

where ∗Rαβδγ is the dual Riemann tensor. This quantity,
however, is a topological invariant, so it can locally be
written as the divergence of a four-current [25, 30], which
does not contribute to the field equations. The simplest
way for this term to contribute is to multiply it by a
function of a field.
The simplest effective action that incorporates gravita-

tional parity violation (to second-order in the curvature
and with a single scalar field) is one that adds to the
Einstein-Hilbert Lagrangian a dynamical and anomalous
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current Jµ
5 sourced by the Pontryagin density. The field

equations for this simplest gravitational parity-violating
effective theory are

Gµν +
α

κg
Cµν =

1

2κ

(

Tmat

µν + T (J5)
µν

)

, (4)

∇µJ
µ
5 = −α ∗RR , (5)

where Gµν is the Einstein tensor, Tmat

µν is the matter
stress-energy tensor, α is a coupling constant (with units
of length squared), κg = (16πG)−1, Cµν is an interac-
tion term that depends on Jµ

5 and its derivative as well

as on the Ricci and Riemann tensors, and T
(J5)
µν is the

stress-energy tensor for the anomalous current [25]. The
equation of motion for the anomalous current, Eq. (5), is
identical to an anomaly-cancelling term in chiral gauge
theories. Therefore, this theory is a good toy model for
phenomenological studies of gravitational parity viola-
tion. The above theory reduces to dynamical Chern-
Simons gravity [25, 30] when one identifies ∇µϑ → Jµ

5 for
a dynamical pseudo-scalar field ϑ. To make contact with
previous results, we will here choose the ϑ parametriza-
tion of the parity-violating effect, but in spite of its simi-
larities with dynamical Chern-Simons theory, one should
remember that the effects we consider here are generic.
Parity-Violating Propagation Effects. The main prop-

agation effect is polarization mixing, i.e. the initial po-
larization state is not conserved under propagation.
The field-theoretic way to understand such an effect is
through a modification of the propagator [24], but a
more familiar approach is to modify the dispersion rela-
tion. The latter is obtained by linearizing the field equa-
tions about a background, like the Friedmann-Robertson-
Walker (FRW) spacetime, with a wave-like perturbation

hµν = Aµνe
−i[φ(t)−kix

i] , (6)

where φ(t) and ki are the wave’s time-dependent phase
and wave vector, and Aµν is the polarization-dependent
amplitude. Gravitational parity violation leads to a
purely-imaginary, polarization-dependent modification
to the dispersion relation

iφ̈+ 3iHφ̇+ φ̇2 − kik
i = iλR,L φ̇ g(ϑ̇, ϑ̈) , (7)

where H is the Hubble parameter, g(·) encodes parity
violation and λR,L = ±1 for right/left polarizations.
We can compare this dispersion relation to dark energy

emulators in modified gravity [17]

iφ̈+ (3 + αM )iHφ̇+ φ̇2 − (1 + αT ) kik
i = 0 , (8)

where αT determines the speed of tensor modes, c2g =
1 + αT , and αM is related to the running of the Plank
mass. Comparing these equations, αT = 0 and

αM = λR,L H−1 g(ϑ̇, ϑ̈) . (9)

Since the recent coincident observation of gamma rays
and GWs emitted in a NS merger [6] only constrains αT ,
it places no bounds on gravitational parity violation.

Why does such a modification encode parity viola-
tion? The modification has different signs depending
on whether the wave is right- or left-polarized, forcing
a different evolution equation for the different polariza-
tion states. Solving the dispersion relation by linearizing
about the GR solution φ̄, i.e. φ = φ̄+λR,Lδφ with δφ ≪ φ̄
small, we find

δφ =
1

2
i

∫

g(ϑ̇, ϑ̈)dt , (10)

where we assume δφ̈ ≪ ˙̄φ δφ̇. Reinserting this solution
into Eq. (6), we find

hR,L = hGR

R,L
e−iλR,Lδφ ∼ hGR

R,L

[

1 +
1

2
λR,L

∫

g(ϑ̇, ϑ̈)dt

]

,

(11)
where we projected the metric perturbation into a
left/right basis.
The effect of gravitational parity violation is an en-

hancement/suppression of the right/left-polarized con-
tent of a GW, an amplitude birefringence. We can see this
more clearly by mapping from the left-/right-polarization

basis to a linear (+,×) basis, using h+ = (hR + hL)/
√
2

and h× = i(hR − hL)/
√
2. Doing so, we find [32]

h+ = h̄+ − δφ h̄× , h× = h̄× + δφ h̄+ . (12)

where as before h̄± are the (+,×) polarizations in GR.
Observe a mixing of the (+,×) polarization that is en-
hanced upon propagation.
For concreteness, specialize these generic considera-

tions to the dynamical Chern-Simons case. This cal-
culation was first done in [22–24], who found that the
dispersion relation takes the form of Eq. (6) with [33]

g(ϑ̇, ϑ̈) = −4(α/κg) k
(

ϑ̈−Hϑ̇
)

, (13)

where k = |kiki|, and the phase correction is

δφ = −2i(α/κg)

∫

k(t)
(

ϑ̈−Hϑ̇
)

dt , (14)

which is imaginary and proportional to the wave fre-
quency and distance traveled.
The dephasing can be further specified by solving for

the evolution of the scalar field. In dynamical Chern-
Simons gravity, this evolution is controlled by Eq. (5),
whose solution has a homogeneous and an inhomoge-
neous piece. In a FRW background, the former implies
ϑ̈ = −3Hϑ̇, and thus [24]

δφhomog = −8(α/κg)i

∫

k(t)H(t) ϑ̇ dt . (15)

= −8(α/κg)i ω0ϑ̇0 z , (16)

expanding in small redshift z ≪ 1 and assuming a
monochromatic wave with angular frequency ω(t) = ω0.
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One might worry that this effect is vanishingly small
today, if ϑ were produced in the early Universe and then
Hubble diluted upon evolution. The ϑ field does obey
ϑ̈ = −3Hϑ̇, forcing it to exponentially decay with time.
Any value for ϑ̇ set by cosmological boundary conditions,
at the beginning of radiation domination, is exponentially
suppressed today. The ϑ field, however, is constantly
being regenerated by ∗RR sources due to the dynamics of
compact binary mergers, most of which occur at redshifts
z < 5 [34]. If these mergers regenerate ϑ̇ at z < 0.1,

there is not enough evolution to force ϑ̇ to decay to zero
by today.
The inhomogeneous solution is more difficult to cal-

culate, but we can show its effects are subdominant.
The solution to Eq. (5) in the small-coupling, weak-field
approximation was found in [12]. Using this solution
non-perturbatively in Eq. (14), neglecting the Hubble-
dependent term and integrating over the wave’s travel
time, while assuming the orbital frequency is approxi-
mately constant [35], we find δφ ∼ (mω)13/3 = v13, with
m the total mass of the binary, ω its angular frequency
and v its orbital velocity. This effect is of very high post-
Newtonian (PN) order [36] and subdominant relative to
the the homogeneous solution.
Parity-Violating Generation Effects. The main gener-

ation effect is a modified energy loss, inspiral rate and
chirping rate. The field-theoretic way to understand
this is to realize that parity-violation requires a parity-
violating current that satisfies an anomalous conservation
equation. When the right-hand side of Eq. (5) is eval-
uated for inspiraling binaries, the scalar field becomes
wave-like, carrying energy-momentum away as it prop-
agates, draining the orbital binding energy and forcing
the system to decay faster, as first found in [12]. This
acceleration in the rate of decay affects the chirping rate,
i.e. the rate at which the orbital and the GW frequency
increases with time, which is encoded in the GW observ-
able.
Let us now specialize these generic considerations to

dynamical Chern-Simons gravity. This calculation was
first done in [24], who found that the rate at which ϑ
carries energy away from a binary is

Ė(ϑ) =

∫

S∞

〈

ϑ̇2
〉

r2dΩ , (17)

where S∞ a 2-sphere at spatial infinity, and the angle-
brackets stand for averaging over several wavelengths.
This energy loss rate can be further specified by pre-

scribing the evolution of the scalar field. As in the propa-
gation case, ϑ has a homogeneous and an inhomogeneous
solution. Assuming a Minkowski background, compatible
with the spacetime of a compact binary in the far-zone,
the homogeneous solution is

ϑhomog =
√
α ϑ0

cosΩ(t− r)

r
+
√
α

ϑ̇0

Ω

sinΩ(t− r)

r
, (18)

where Ω is its angular frequency, and (ϑ0, ϑ̇0) are the
initial value and velocity of the dimensionless field [37].

The rate at which a homogeneous ϑ carries energy away
from a binary is

Ė
(ϑ)
homog =

Ω2

2
αϑ2

0 +
1

2
αϑ̇2

0 . (19)

Unlike in the propagation case, this modification is only
active during the generation process, which occurs on a
radiation-reaction time scale. The latter is much smaller
than the GW time of flight, roughly of O(H0) smaller,
making its impact on the evolution of the GW phase
negligible.
Consider now the contribution to the energy loss from

the inhomogeneous solution. This calculation was first
done in [24, 38] for binary black holes (BHs), who found
that

Ė
(ϑ)
inhomog =

5

48
ζ η2

(

∆i∆i

)

(mω)
14/3

, (20)

with η = m1m2/m
2 the symmetric mass ratio, ζ ≡

α2/(m2
1m

2
2κg) a dimensionless coupling constant [39],

and ∆i ≡ (m2/m)χ1Ŝ
i
1 − (m1/m)χ2Ŝ

i
2, with χA and Ŝi

A
the dimensionless spin parameter and the spin angular
momentum direction of the Ath object.
Such a modification to the decay rate translates into

a correction to the chirping rate. The correction to the
GW phase in the Fourier domain is of 2PN order [38]

δΨ(f) = − 30

128
(πMf)

−5/3
δC (πmf)

4/3
, (21)

where M ≡ η3/5m is the chirp mass, f is the GW fre-
quency, and δC is proportional to ζ and a function of the
component masses and the dimensionless spins [40]. The
above result seems specific to dynamical Chern-Simons
gravity, but in reality, it is not, since all it requires is for
there to exist a dynamical anomalous current, such as
that given by the gradient of a scalar field, whose con-
servation is parity-violating and anomalous in the sense
of Eq. (5).
Detection Prospects. Let us first consider gravitational

parity violation in GW propagation. The main modifica-
tion is in Eqs. (15) and (16), which grows with luminosity
distance and GW frequency. Naively, the best sources
are late-inspiral/merger events at high redshift, such as
supermassive BH mergers, but the correction must not
be degenerate with other parameters in the model. The
propagation effect is partially degenerate with the incli-
nation angle and the location of the source in the sky [41],
as first pointed out in [22]. These degeneracies can be
broken with a coincident short gamma-ray burst obser-
vation [6]. Therefore, the ideal source for constraints on
parity violation in the propagation of GWs are mixed
NS/BH mergers with a short gamma-ray burst counter-
part, since they enhance the GW propagation time and
break the inclination angle degeneracy.
Consider now constraints on the effect of gravitational

parity violation in GW generation. The main modifica-
tion is in Eq. (21), which depends on δC, and thus on the
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BH spins. There is a strong degeneracy between this par-
ity violation modification and the spins, which actually
prevented any constraints with the first LIGO observa-
tions [8, 42]. The degeneracy, however, can be broken if
both spin magnitudes are extracted, which requires either
the observation of a spin-precessing BH binary, or the
observation of a spinning BH/NS binary. In the former,
the amplitude modulations introduced by spin-precession
break the degeneracy, while in the latter only the BH spin
matters and can be extracted from the spin-orbit mod-
ification to the GW phase. NSs are expected to have
small dimensionless spins, thus suppressing gravitational
parity violation effects in the generation of GWs.
The effect of gravitational parity violation on GW gen-

eration is further enhanced in eccentric binaries. Eccen-
tricity changes the GW phase in GR, making the leading-
order term in the Fourier phase a factor of v−19/3 larger
than in the quasi-circular case for small eccentricities [43].
Eccentricity-dependent corrections to Eq. (21) will enter
below −2 PN order instead of at +2 PN order. Such
“negative” PN order corrections lead to an enhancement
in our ability to detect or constrain them. Therefore,
the ultimate source for constraints on gravitational par-
ity violation effects in GW generation are mildly eccentric
compact binaries composed either of a NS and a spinning
BH or two spinning BHs, in both cases with large spins.
With these ideal systems identified, let us now pro-

vide a quantitative estimate of the accuracy to which
these parity-violating effects could be constrained with
future observations. Assuming degeneracies are bro-
ken, a single GW detection consistent GR up to sta-
tistical uncertainties would imply that (parameterized
post-Einsteinian [44]) deformations must be smaller than
approximately one over the signal-to-noise ratio at the
dominant GW frequency in detector’s sensitivity the
band [8, 45–47]. For a propagation effect, this leads to

α

κg
J0
5 <

1

8ρ
(2πF0z)

−1 ≈ 400 km , (22)

for a dominant orbital frequency F0 of 50 Hz, which is
where ground-based detectors have best sensitivity, and
z = 0.1 with a signal-to-noise ratio of ρ = 10. Simi-
larly, constraints on parity violation during GW genera-
tion should approximately be

√
α

κ
1/4
g

<
15

ρ1/4
(πmf)−1/3η7/10

(61969− 231808η)1/4
m

χ
1/2
s

≈ 33 km (23)

for a binary with spins co-aligned with the orbital angular

momentum. In the last equality, we evaluated the con-
straint for an equal-mass binary with m = 10M⊙, sym-
metric dimensionless spin χs = (χ1 + χ2)/2 = 0.5, domi-
nant GW frequency f = 100 Hz and ρ = 10. As expected
from a Fisher analysis, the constraints are inversely pro-
portional to ρ, becoming stronger with redshift in the
propagation case and with curvature scale (proportional
to 1/m2) in the generation case. These quantitative es-
timates are consistent with projected bounds studied in
the specific case of dynamical Chern-Simons gravity [22–
24, 38, 42].

How likely are we to observe the ideal sources discussed
above with future observing runs and detectors? Dur-
ing the third observing run, advanced LIGO and Virgo
should operate at higher sensitivities (hopefully better by
a factor of 2), thus increasing the range the instruments
can see by roughly that factor (and the volume by a fac-
tor of 8). Even if such events are not observed in the
third observing run, they are very likely to be observed
when the instruments reach their design sensitivity by
2020, or when improvements are implemented and third-
generation detectors are constructed in the next decade.
Recent studies suggest that our ability to test GR will
improve by somewhere between 5 and 10 orders of mag-
nitude with third-generation detectors, depending on the
specific test considered [48, 49].

The search for gravitational parity violation described
here requires accurate models for the GWs emitted in
parity-violating theories. In particular, given the ideal
sources discussed above, one needs models that describe
GWs emitted by eccentric and spin-precessing NS/BH
and BH/BH binaries. The development of analytic mod-
els for such GWs is in its infancy even within GR. Ana-
lytic models for the GWs emitted by spin-precessing sys-
tems [50, 51] and for eccentric models [43, 52–54] have
only recently become available in GR. Their generaliza-
tion to include gravitational parity violation requires the
re-calculation of the solution to the Kepler problem and
to the spin-precession equations in the inspiral phase,
which should be considered a priority.
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