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We consider the properties and dynamics of black holes within a family of alternative theories
of gravity, namely Einstein-Maxwell-dilaton (EMD) theory. We analyze the dynamical evolution of
individual black holes as well as the merger of binary black hole systems. We do this for a wide
range of parameter values for the family of EMD theories, investigating, in the process, the stability
of these black holes. We examine radiative degrees of freedom, explore the impact of the scalar
field on the dynamics of merger and compare with other scalar-tensor theories. We argue that the
dilaton can largely be discounted in understanding merging binary systems and that the endstates
essentially interpolate between charged and uncharged, rotating black holes. For the relatively
small charge values considered here, we conclude that these black hole systems will be difficult to
distinguish from their analogs within general relativity.

I. INTRODUCTION

One particularly exciting prospect arising from the re-
cent advent of gravitational wave astronomy is the pos-
sibility of testing General Relativity (GR) in the previ-
ously inaccessible strongly gravitating/highly dynamical
regime. Indeed, first steps in this direction have already
been enabled by the three available detections (so far),
GW150914 [1], GW151226 [2], and GW170104 [3]. Anal-
ysis of these signals reveals that they are consistent with
those produced by black hole mergers in GR [4, 5], with
independent and complementary tests coming from the
inspiral and post-merger periods.

Ongoing efforts with additional detections and studies
of predicted signals will allow for further scrutiny [6–8].
Accurate predictions of possible signals are not only im-
portant to aid in future detections but are also helpful in
realizing important tests of the theory. Such tests could
potentially indicate that nature deviates from GR. How-
ever, simply identifying possible deviations is unlikely to
provide sufficient guidance as to the alternative that na-
ture may have chosen. In contrast to the GR case, our
understanding of potential signals within alternative the-
ories of gravity is still rather limited.

To date, this approach of looking for such deviations
has been primarily restricted to the consideration of phe-
nomenological models (e.g. [9, 10]). Another avenue for
obtaining detailed predictions is to use fully nonlinear
treatments within specific alternative gravitational theo-
ries. Such an approach, however, requires theories which
possess well posed evolutionary problems in addition to
producing spacetime deviations in, for example, binary
black hole mergers. Such a requirement is fairly strin-
gent and limits the number of possible options. We do
note that there is a body of previous work which has
studied the possibility of deviations within the context
of binary neutron systems (see e.g. [11–14]). However,
currently available observations indicate that the major-
ity of events that we might expect in the near future
should correspond to binary black hole systems [15]. Re-

cent approaches to the nonlinear regime for such binary
mergers in GR alternatives are beginning to address con-
cerns with, for example, ill-posedness [16–18].

In the present work we study black hole systems (sin-
gle and binaries) in the Einstein-Maxwell-dilaton (EMD)
theory [19]. This theory, originating from a low en-
ergy limit of string theory, allows for black holes that
have mass, rotation, charge and scalar “hair” together
with scalar, vector and tensor radiative channels. Fur-
thermore, its mathematical structure allows for defining
a well posed initial value problem. It therefore offers
an interesting theoretical and computational playground
within which to explore possible deviations from the stan-
dard model (i.e. GR) prediction.

While we provide below some specifics regarding the
black holes we consider in this work, it is worth men-
tioning that our understanding of black hole systems in
EMD is admittedly rather limited. For example, ana-
lytic solutions are known primarily for non-rotating sys-
tems. A spherically symmetric family of solutions exists
parametrized by the scalar (dilaton) coupling, and these
solutions are known analytically across a range of cou-
pling values. However, analytic investigations of their
perturbations, stability, and rotating generalizations are
at best limited to a handful of specific values of the cou-
pling.

While our aim in the current work is not necessarily
to address all of these questions, we do study single and
binary black hole systems within EMD and draw some
general conclusions to help understand the dynamics of
coalescing binaries.

The subsequent presentation is divided up as follows.
Section II presents the equations of motion describing
the systems’ dynamics. Section III includes a brief de-
scription of known, non-spinning black holes, possible in-
stabilities, and a discussion of possible radiative effects.
Section IV presents results for both single and binary
black hole systems for the case of small charge. We con-
clude in Section V. We defer to an appendix a description
of EMD black hole solutions in isotropic coordinates and
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to a second appendix a calculation of the radiative prop-
erties in the Jordan frame.

II. EQUATIONS

The alternative theory of gravity that we consider has
origins in low energy string theory. A particular sector of
this theory includes a U(1) gauge field and a scalar field
that couples exponentially to the gauge field. For defi-
niteness, we consider the action for low energy, heterotic
string theory

S =

∫
d4x
√
−g̃ e−2φ

[
R+Λ +4

(
∇φ
)2−F 2 −H

2

12

]
(1)

where the matter content includes a scalar field serving as
the dilaton, φ, a U(1) gauge field, Fab, and a three-form
field, Habc, which is related to the axion and which, to-
gether with the cosmological constant Λ, we set to zero in
the following. This action is written with respect to the
string metric, g̃ab, which is the metric to which strings
couple. (It is also referred to as the Jordan metric or
frame.) In many treatments, including this work, a con-
formal transformation is performed to the Einstein met-
ric, or frame, via gab = e−2φg̃ab. On performing this
transformation at the level of the action, we arrive at the
expression

S =

∫
d4x
√
−g
[
R− 2

(
∇φ
)2 − 2V − e−2α0φF 2

]
(2)

where, as before, the scalar field, φ, is the dilaton and
Fab is the Maxwell tensor. Note that we have chosen to
generalize the theory a bit by including V (φ), a poten-
tial for the dilaton, together with including the real con-
stant α0 to parameterize among theories. In particular,
α0 = 0 is just Einstein-Maxwell minimally coupled to a
real scalar field, α0 = 1 is the sector of low energy string
theory referred to above, and α0 =

√
3 corresponds to

Kaluza-Klein theory [20, 21]. This action defines a class
of theories often referred to as Einstein-Maxwell-dilaton.
Our interest focuses on dynamical processes within this
theory and how they might compare with standard gen-
eral relativity.

The equations of motion that follow from this action
are the Einstein-Maxwell equations coupled nonlinearly
to a propagating scalar field (the dilaton), namely

Rab = 2

(
Tab −

1

2
gabT

)
(3)

∇a∇aφ =
1

2

∂V

∂φ
− α0

2
e−2α0φ F 2 (4)

∇aFab = −Ib . (5)

Notice that the exponential coupling of the dilaton in
its equation of motion is again present in both the four-

current, Ib, and the stress-energy tensor

Ib = −2α0∇aφFab (6)

Tab = Tφab + e−2α0φTEM
ab (7)

Tφab = ∇aφ∇bφ−
1

2
gab [∇cφ∇cφ+ V (φ)] (8)

TEM
ab = FacFb

c − 1

4
gabF

2. (9)

These equations are supplemented by the identity
∇[aFbc] = 0. Because of the presence of this and related
constraint equations in the above evolution system, we,
in fact, use an extended Maxwell system which aids in
damping dynamically these constraints. To the above
Maxwell equations, we add extra scalar fields, Ψ and Φ,
in such a way that the Maxwell constraints are allowed to
propagate at the speed of light. These equations become

∇a
(
Fab + gabΨ

)
= κ1nbΨ− Ib (10)

∇a
(
(∗F )ab + gabΦ

)
= κ2nbΦ (11)

where the κs are real constants used to adjust the con-
straint damping and (∗F )ab = 1

2εabcdF
cd is the dual of

Fab.
We use the usual Cauchy, or 3+1, decomposition in

which the spacetime is foliated into spacelike hypersur-
faces, Σt, labeled by a coordinate time, t. The timelike
normal is na with orientation such that na = −α δta and
the metric on the hypersurfaces is γij . The lapse and vec-
tor shift of the coordinates are given by α and βi. The
line element of the spacetime is then

ds2 = −α2dt2 + γij
(
dxi + βidt

)(
dxj + βjdt

)
. (12)

Note that we define a derivative operator, Di, built from
the 3-metric γij which should be compared with the full
derivative operator, ∇a, built from gab. Likewise, we
define a 3-Levi-Civita antisymmetric tensor density as
εbcd = naεabcd.

With respect to these 3+1 variables, we can write the
above matter equations as(

∂t − Lβ
)
φ = −αΠ (13)(

∂t − Lβ
)
Π = −Di

(
αDiφ

)
+ αKΠ +

α

2

∂V

∂φ
−α0 αe

−2α0φ
[
BiB

i − EiEi
]

(14)(
∂t − Lβ

)
Ei = εijkDj

(
αBk

)
+ α

[
KEi −DiΨ

]
−2α0 α

[
εijkDjφBk + ΠEi

]
(15)(

∂t − Lβ
)
Ψ = α

[
2α0DjφE

j −DjE
j − κ1Ψ

]
(16)(

∂t − Lβ
)
Bi = −εijkDj

(
αEk

)
+ α

[
KBi +DiΦ

]
(17)(

∂t − Lβ
)
Φ = α

[
DjB

j − κ2Φ
]

(18)

where we define the electric, Ei ≡ γi
jFjcn

c, and mag-
netic, Bi ≡ 1

2εijkF
jk, fields relative to their projections

into the spacelike hypersurface, Σt. Note, too, that we
have defined Π ≡ −na∇aφ and invoked the Lie derivative
along the shift, Lβ .
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For the evolution of the gravitational field in the Ein-
stein frame, we use the BSSN formalism for which we
give here only the projections of the matter stress ten-
sor, namely

ρ = nanbTab = DiφD
iφ+ Π2 + V

+ e−2α0φ
(
BiB

i + EiE
i
)

(19)

ji = −naγibTab = −2ΠDiφ− 2e−2α0φεijkE
jBk (20)

Sij = γi
aγj

bTab = 2DiφDjφ+ 2e−2α0φ
(
BiBj − EiEj

)
− γij

[
DkφDkφ−Π2 + V

+e−2α0φ
(
BkB

k − EkEk
)]
. (21)

We implement the resulting equations using techniques
described previously [22–27], and demonstrate conver-
gence for a particular case as seen in Fig. 1. We note
that we adopt the “1+log” and Gamma drivers for the
lapse function and the shift vector. Finally, using stan-
dard BSSN notation, we set the quantities K0 and η to
0 and 2/M (1/M), respectively, for the single (binary)
black holes studied here [28],
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FIG. 1: Convergence for a magnetic black hole. Shown are
various fields at late time (t = 80M) for three different res-
olutions. Each run uses fixed mesh refinement (FMR), but
differs by a factor of 2x in resolution for the same grid struc-
ture. The top panel shows that all three resolutions approach
the same, static solution. The bottom two panels are mea-
sures of errors demonstrating that higher resolution runs have
lower errors. In particular, the middle frame shows the diver-
gence of the magnetic field which should be zero except at the
center (because of the monopole charge). The bottom frame
shows the residual of the Hamiltonian constraint.

III. PRELIMINARIES

Before discussing the dynamics as revealed by numer-
ical evolutions, we first discuss some properties of the
model.

A. Known black hole solutions

There exist a number of black hole solutions in EMD.
One such solution is a static, magnetically charged black
hole solution found in [19, 29]. In Schwarzschild-like co-
ordinates, this solution takes the form

ds2 = −
(

1− r+

r

)(
1− r−

r

)1−α1

dt2

+
(

1− r+

r

)−1(
1− r−

r

)α1−1

dr2

+r2
(

1− r−
r

)α1

dΩ2 (22)

Fθφ = Qm sin θ (23)

e−2α0φ = e−2α0φ0

(
1− r−

r

)α1

(24)

where α1 = 2α2
0/(1+α2

0) and φ0 is the asymptotic value of
the dilaton at spatial infinity. This solution has magnetic
charge Qm. The constants r± are given in terms of Qm,
φ0, and the ADM mass, M , of the spacetime:

2M = r+ +
(
1− α1

)
r− (25)

2Q2
m = e2α0φ0 r+r−

(
2− α1

)
. (26)

Properties of this black hole solution are given, for in-
stance, in [19, 30]. For our purposes, it suffices to note
that r+ corresponds to an event horizon and r− is the
location of a curvature singularity. Note, too, that the
dilaton, for r > r−, is larger than its asymptotic value
and monotonically decreases towards φ0.

There is a discrete electromagnetic duality in this the-
ory that exchanges magnetic and electric solutions. The
explicit duality leaves the metric unchanged, but sends
Fab → e−2α0φ(∗F )ab and φ → −φ. Because of the pres-
ence of the dilaton, the electrically charged solution is, in
fact, a different solution. While the metric takes the same
form as above, the Maxwell field and dilaton become

Ftr =
Qe
r2

(27)

e2α0φ = e2α0φ0

(
1− r−

r

)α1

, (28)

and for which the constants r± satisfy

2M = r+ +
(
1− α1

)
r− (29)

2Q2
e = e−2α0φ0 r+r−

(
2− α1

)
. (30)

In this case, the solution has electric charge Qe, ADM
mass M , asymptotic dilaton value, φ0, an event horizon
at r = r+, a curvature singularity at r−, and, for r > r−,
a dilaton monotonically increasing towards φ0.

We know of linearized perturbations of these black
holes only for the case α0 = 1 [31]. There, the quasi-
normal mode spectra has been computed, and it was
shown that the presence of the dilaton induces a differ-
ence in the spectra of axial and polar perturbations. This
difference breaks isospectrality, a property known to ap-
ply to both Schwarzschild and Reissner-Nordström black
holes.
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Note that in the limit α0 → 0 the solution corresponds
to that of a charged RN black hole. As α0 → ∞, the
solution is simply an uncharged Schwarzschild black hole
for which the Maxwell field is zero and the dilaton is
a constant. By extension we expect (and show below)
that for the rotating solutions α0 interpolates between
the charged Kerr-Newman black hole and the uncharged
Kerr solution, the latter unadorned by scalar or vector
fields. One way of understanding the α0 → ∞ limit
is that the gravitational sector decouples from the mat-
ter sector (see, for example, [32]). In this limit, regard-
less of the behavior of the dilaton and Maxwell field,
the gravitational solutions are just those of GR, such as
Schwarzschild and Kerr black holes.

Moving away from spherical symmetry, there are rotat-
ing black hole solutions in EMD, but to our knowledge,
an analytic solution is only known for the case α0 =

√
3

which corresponds to Kaluza-Klein. Rotating, electri-
cally charged solutions were constructed in [20] with dy-
onic generalizations described in [33, 34]. Rotating solu-
tions in EMD for other coupling values have been con-
structed numerically [35–37]. Further, the behavior of
perturbations and questions related to stability would ap-
pear to be largely unexplored. An important exception
to this is [31] which considers the quasi-normal modes
of the spherically symmetric solutions for α0 = 1. Re-
cently, time dependent, spherically symmetric solutions
sourced by a charged null dust flow have been presented
in EMD [38]. Interestingly, it is only for the coupling
α0 = 1 that the solution describes a time-dependent
dilaton (in addition to time-dependent metric and gauge
fields). Although it includes an axion which we do not
consider in this work, we note that quasi-normal modes
for the charged, rotating Kerr-Sen black hole have been
considered in [39, 40].

In what follows we study both single and binary black
hole scenarios and derive general statements about the
dynamical behavior induced by EMD. As a prelude, we
first present a simple-minded picture which can capture
a possible transition in the behavior of the scalar field.

B. Scalar field instabilities

Here we argue two types of instabilities could trigger
non-trivial behavior of the scalar field. The analysis fol-
lows closely the arguments presented in [41].

Consider the linearized equation of motion for the dila-
ton, Eq. (4), which becomes

�φ = −α0

2
(1− 2α0φ)F 2 (31)

with � defined with respect to a background metric. We
can rewrite the above equation as

(�− µ2)φ = −α0

2
F 2 (32)

by introducing µ2 ≡ α2
0F

2. Following the discussion in
Appendix §A, notice that µ2 can have either sign, de-

pending on whether the magnetic or electric field domi-
nates. Assuming the charge Q (either magnetic or elec-
tric case) is small, the metric is that of Schwarzschild to
O(Q2). Expanding the dilaton in spherical harmonics as
φ = Σlme

−iωtYlm(θ, ϕ)Φlm(r)/r yields

f2Φ
′′

lm + f ′fΦ
′

lm +
[
ω2 − fV̄ (r)

]
Φlm = −f α0

2
F 2 reiωt

(33)
with V̄ (r) = l(l+1)/r2+2M/r3+µ2 and f(r) = 1−2M/r.
This equation is similar to that obtained in [41] except
for the presence of a source term on the right hand side
which is independent of Φlm. Integrating the equation
over a period does away with the source, and in this cycle-
averaged sense we will ignore it in the following. A suffi-
cient condition for an instability is that

∫∞
rBH

V̄ (r)dr < 0

which translates into∫ ∞
rBH

[
l(l + 1)

r2
+

2M

r3

]
dr < −α2

0

∫ ∞
rBH

F 2dr, (34)

and thus the instability condition becomes

2l(l + 1) + 1

4M
< −α2

0

∫ ∞
rBH

F 2dr. (35)

Condition Eq. (35) implies that the electrically dom-
inated case is subject to this instability while the mag-
netically dominated case is not. Indeed, such an instabil-
ity resembles the standard negative mass instability, and
that will be our primary focus here. However, we note
that the magnetically dominated case may be subject to
a superradiant type instability associated with rotating
black holes as the effective mass µ could introduce a po-
tential barrier that would provide feedback for such a
process.

For now, consider equation (35) and evaluate it in a
simple case such as the solution provided in Appendix §A
concentrating on the electrically dominated case and for
small charge. Evaluation of Eq. (35) gives

2l(l + 1) + 1

4M
< α2

0

Q2
e

12M3
. (36)

for which the smallest bound on α0 is achieved with l = 0.
Clearly the coupling and charge must satisfy

3 < α2
0

(
Qe
M

)2

. (37)

On rearranging, this condition, α0 >
√

3(M/Qe), in-
dicates an instability at a large value of α0 for small
charges. This analysis suggests that one needs “large pa-
rameters to get large effects.” For concreteness, a charge
ofQe/M = 10−3 predicts an instability for α0 & 1.7×103.

C. Extra degrees of freedom and black hole
binaries

Although EMD is interesting in its own right, the re-
markable direct detections of the mergers of black hole
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binaries by LIGO provides arguably the first opportunity
to truly test gravity in strong field/highly dynamical set-
tings. As such, we can regard EMD as an alternative to
GR, one that includes additional degrees of freedom in
the form of a scalar and vector field. In that respect,
EMD has a scalar degree of freedom in common with
scalar tensor theories where several new phenomena have
been well established.

In such theories one can characterize the scalar field by
its scalar monopole charge. This scalar charge (one gener-
ally drops the “monopole”) can be evaluated by comput-
ing the divergence of the field over some large Gaussian
surface. In particular, at large radius one considers the
behavior of the scalar as φ(r) ≈ φ0 + φ1/r, so that φ1

is the scalar charge and φ0 the asymptotic value of the
scalar field.

In some scalar tensor gravity theories it has been found
that the scalar field can grow significantly around com-
pact neutron stars [42, 43]. This process, known as
spontaneous scalarization, induces a scalar charge around
each NS that determines the extent to which the theory’s
predictions differ from those of GR [42, 44]. In particular,
such effects, originating in the scalar field, allow for an
enhancement of the gravitational force and for additional
channels of radiation (such as dipole scalar radiation).
As a result, one generally expects such binaries to merge
earlier than their GR counterparts (e.g. [11, 14, 43, 45]).
Black holes in such theories are identical to those of GR
and the gravitational waves observed in their merger pro-
vide no new features and therefore offer no distinguish-
ing test of the theory (unless the asymptotic value of the
scalar field is time-dependent [46]).

In contrast, the EMD gravity theory that we study
here allows for a scalar charge even without the presence
of matter as long as the gauge field (and thus the gauge
charge of the black hole) is non-zero. There are two ways
to interpret the U(1) gauge field. Astrophysically, one
expects the black hole gauge charge to be very small if
the gauge field corresponds to the Standard Model (SM)
electromagnetic field. On the contrary, one can consider
this gauge field not as the usual electromagnetic field of
the SM, but instead an additional field that is simply a
component of gravity. In that case, there exist no con-
straints in principle for the black hole charge, but it is
natural to expect it should also be small. Regardless
of these considerations, one can consider black holes in
EMD theory as natural proxies to consider general fields
describing gravity; the spin 0 scalar, the spin 1 gauge
field, and the spin 2 metric field.

IV. RESULTS

In what follows we discuss results obtained for single
and binary black hole systems, which have been stud-
ied via numerical simulations. Our implementation of
Eqs. (13)-(18), along with the BSSN equations coupled
to the sources in Eqs. (19)-(21), adopt finite difference

techniques satisfying summation by parts on a regular
Cartesian grid [47, 48]. All fields are discretized using
a fourth order accurate scheme. The time evolution of
the resulting equations is performed by using a third or-
der accurate Runge-Kutta scheme [22, 25]. We employ
adaptive mesh refinement (AMR) via the HAD computa-
tional infrastructure. This provides distributed, Berger-
Oliger style AMR [24, 27] with full sub-cycling in time,
with the inclusion of an improved treatment of artificial
boundaries [49]. In addition, for cases with large values
of α0, and for which the field becomes fairly non-smooth
in the central area of each black hole, we adopt a more
aggressive form of dissipation (essentially a high-pass fil-
ter) on the dilaton localized to those regions which lie well
within the apparent horizon. This aggressive form of dis-
sipation utilizes a second order form (in addition to the
usual fourth order) of Kreiss-Oliger dissipation which ef-
fectively provides for a smaller transition frequency when
considering the dissipation as a low-pass filter.

In our single black hole runs we adopt a mass M = 1
and employ a Cartesian grid with extent [−64, 64]3 with a
base resolution of 81 equispaced points in each direction.
There are 6 levels of concentric, fixed, finer meshes cov-
ering half the extent of each parent, such that the finest
resolution is h = 0.05. For these runs, we employ the
standard gauge driver with η = 2/M where η is the stan-
dard gauge parameter of the Gamma driver coordinate
choice.

In our binary black hole runs, we adopt m1 = m2 =
1/2 for the equal mass case or for the unequal case m1 =
0.5788,m2 = 0.3852. Our coarsest computational grid is
defined over [−204.8, 204.8]3 and each direction is covered
with 81 uniformly spaced points. We additionally employ
eight levels of refinement (with a 2 : 1 refinement ratio).
The first two are fixed in [−102.4, 102.4]3 and [−34, 34]3

while the remaining six adapt dynamically through the
shadow hierarchy, giving a finest resolution of h = 0.02.
For these runs, we use the standard gauge driver but find
that resolving the rapid dynamics of the merger required
choosing η = 1/(m1 +m2).

A. Single black holes

We present first the behavior of the dilaton scalar field
in spacetimes with a weakly charged single black hole.
As a simple way to choose initial data and to explore
the stability of the black hole, we choose for our ini-
tial data a black hole solution in GR to which we add
a monopole electric (or magnetic) field (whose asymp-
totic charge value is kept fixed). The dilaton is set to
a constant equal to its asymptotic value, φ0. This data
does not correspond to a stationary solution but it is
consistent with the constraints to O(Q2).

This initial data is evolved and, after some transient
behavior, the system generally settles into a stationary
solution. This behavior can be appreciated in Fig. 2
which plots the central value of φ as a function of time
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for a number of different configurations. In particular, for
small values of α0, as the charge q ≡ Q/M is increased,
the magnitude of the dilaton increases quadratically (the
figure rescales some of the curves to fit in the figure); sim-
ilar behavior is observed when increasing the value of α0,
which induces a linear increase in the dilaton. This be-
havior is in agreement with the known solution described
in Appendix §A.

Also shown in the figure are the results of choosing a
Gaussian profile for the dilaton at the initial time instead
of a constant value. In particular, adopting a Gaussian
centered at the origin results in essentially the same sta-
tionary solution, despite differences at early times. This
agreement suggests that a unique, static hairy black hole,
insensitive to the initial configuration of the dilaton, is
an attractor.

Also included is one example of a spinning black hole
with a/M = 0.6. Similar to the static case, our evolu-
tions suggest a unique, stationary, rotating, stable hairy
black hole. The effect of increasing α0 and the spin are
discussed below.

Finally, there is one case where a monopole magnetic
field has been added to the black hole, showing that the
dilaton is basically the same as in the electric case but
with the opposite sign.
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FIG. 2: Central value of dilaton scalar field as a function of
time for various configurations of a single black hole. Note
that the system generally settles to an apparently stationary
configuration for some non-trivial profile of the dilaton field.
Here, the asymptotic value of the scalar field for the electric
cases is φ0 = −10−10 and for the magnetic case φ0 = +10−10.
For those not denoted otherwise, α0 = 1. The last two cases
are rescaled as indicated to fit the scales of the plot. Note
that the first case and the last two cases overlap one another.

To analyze the solution in more detail, we focus on
the case of a non-spinning, electrically charged black
hole with qe ≡ Qe/M = 10−3 and obtain the asymp-
totic dependence of the field which can be described by
φ(r) ≈ φ0 + φ1/r. We stress that, in contrast to the
behavior of the scalar field with neutron stars in ST the-
ories, the scalar charge φ1 does not sensitively depend on

the asymptotic value of the scalar field φ0. This insensi-
tivity implies that effects such as induced and dynamical
scalarization are less significant in EMD than in ST the-
ories [11, 14].

In relation to the discussion in Appendix §B, Fig. 3
shows the value of this scalar charge as a function of
dilaton coupling α0. Notice the linear behavior for small
values of α0 whereas a different trend is clear for larger
values. This behavior can be extracted analytically from
the solution presented in Appendix §A (neglecting, for
the moment, the asymptotic value of the dilaton) and
from which the scalar charge can be calculated as

φ1 =
α0Q

2
e

M

1

1 +
√

1 + (α2
0 − 1)Q2

e/M
2
. (38)

The behavior at small α0 extracted from Eq. (38) is
φ1 ≈ α0Q

2
e/(2M) while for large values φ1 → |Qe|. The

numerical solutions obtained for α0 . 5000 are in excel-
lent agreement with this expression while a lower than
expected scalar charge is obtained above this value of
α0. We note however that numerical simulations be-
come quite challenging at such large values. For this
reason, we will restrict to α0 ≤ 3000 when studying bi-
nary mergers[61].

We also monitor the central value of the scalar field and
display its behavior for the electric case in the bottom
panel of Fig. 3. Although the central field increases at
small coupling, the trend changes dramatically around
α0 = 2000, precisely the point at which the dilaton charge
saturates. This behavior is yet another indication of a
transition in the system as α0 is increased.

Additional insights can be gained by examining the ra-
dial profile of the stationary solution and its dependence
on the coupling α0. Fig. 4 shows the radial profile of the
dilaton in the case that φ0 = 10−10, qe = 10−3 and for
α0 = {1, 10, 102, 103, 3× 103}. For comparison purposes,
we rescale linearly the profiles with respect to the value
α0 = 1000. That the solution scales linearly for small
coupling is clearly apparent, in contrast to the solutions
for large α0.

Proceeding in a similar fashion for spinning black holes
(keeping for concreteness qe = 0.001, α0 = 1), we mea-
sured the scalar charge as we vary the spin parameter of
the black hole in the range [0, 0.6] (to ensure a small ini-
tial constraint violation). We find that the scalar charge
measured from the stationary state can be fit approxi-
mately as

φ1(a/M) = φ1(0)

(
1− 0.4

( a
M

)2
)

(39)

where φ1(a = 0) is the value of the scalar charge for the
non-rotating case. Notice, the charge decreases as the
spin increases.

We have also looked at the quasi-normal modes (QNM)
of oscillation of perturbed black holes. In particular, on
simulating the head-on collision of two black holes we
produce a strongly perturbed remnant black hole and
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FIG. 3: Dilaton behavior for a single, electrically charged,
non-spinning black hole with qe = 0.001, M = 1, and
φ0 = −10−10. These quantities have been extracted at late
times when the solution settled down to a roughly station-
ary solution. (Top) The dilaton scalar charge along with the
analytic value, expression (38), for qe = 0.001 and M = 1.
(Bottom) The central value of the scalar field at late times.
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FIG. 4: The profile of the scalar field for different values of
α0 (with qe = 0.001,M = 1 and φ0 = 10−10). The profiles
are rescaled assuming a linear increase with the coupling. For
α0 / 100 this linear scaling is apparent.

can extract the frequency of the strongest QNM in the
ringdown. Such QNM frequencies have been calculated
analytically for α0 = 1 in EMD [31]. We confirm that the
frequency from the numerical simulation agrees with the
analytic value to within 4(7)% for the real (imaginary)
part of the frequency

However, we note that for the small (EM) charges that
we consider here, the differences in these QNM frequen-
cies in comparison to the GR case is small not just for
the α0 = 1 case, but for a large range of α0 values as
well. In consequence, the difference in EMD and GR
ringdown dynamics will not be distinguishable above our
numerical error (of the order of 5% in the extracted fre-

quency/decay rate of the fundamental mode). Another
way of saying this is that the role of the dilaton is largely
inconsequential in terms of its effect on the dynamics
and the formation of the final black hole. This is consis-
tent with our earlier observation that EMD, for different
values of the coupling α0, has a phenomenology that in-
terpolates between charged and neutral black holes. In-
deed, we could well have inferred the comparable QNM
decay rates between EMD and GR from this observation
and the known QNM spectra for weakly charged black
holes [50–53].

B. Binary black holes

We now turn our attention to binary black hole systems
both with equal and unequal masses. From our single
black hole results, it is clear that observations made with
small values of the coupling α0 have a simple scaling until
α0 ≈ 103 for the cases where the charge is qe = 10−3.
We have studied the dynamics of binaries for a broad
set of α0 values and confirmed this expectation. In what
follows we thus concentrate on discussing the particular
cases α0 = {1, 103, 3 × 103}. Note that because of (i)
the limitations of our initial data, (ii) a desire to take
a conservative approach in this first study, and (iii) the
expectation that astrophysical black holes are likely close
to neutral –even if the gauge field is not the one that
couples to the Standard Model– we choose a small value
of q.

For the nondimensionalized electric charge of qe =
10−3, the binaries orbit for 4-5 cycles before merging into
a single spinning black hole. Figs. 5 and 6 summarize
our results for both equal and unequal mass (mass ratio
m1/m2 = 3/2) cases. In each figure, the top panel shows
the real part of the radiative Newman-Penrose scalar Ψ4

for different values of α0, and the middle panel displays
the differences of their magnitudes with respect to the
α0 = 1 case. Clearly, the differences as indicated in the
middle panels of Figs. 5 and 6 are small even for α0 � 1;
being, as they are on the order of a few percent in ampli-
tude (this has been confirmed through higher resolution
runs, though we note the difference in phase is signifi-
cantly larger up to values of ' π across the resolutions
employed in our tests).

The angular frequency of the dominant gravitational
wave mode is shown in the bottom panel. Again, the
differences with variations in α0 are small. However,
that the cases with larger coupling merge earlier (al-
beit very slightly) is consistent with the expectations
that larger coupling will result in increased energy loss
through scalar radiation.

Of course even these small differences are possibly de-
generate with other parameters. That is to say that the
signals we find, were they to be measured by LIGO,
would likely be mistaken for GR signals for a BH bi-
nary with parameters somewhat different than those we
adopt here. The binary mass in particular could prob-
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ably be adjusted to generate GR waveforms that would
be indistinguishable from these EMD waveforms. Recent
examples proposing that LIGO’s detections are perhaps
more exotic than simply binary black hole mergers within
GR include [54, 55].

The observations that differences are small can also
be inferred from multiple points of view, to wit:

• As noted in Appendix §A, static black holes in
EMD become neutral in the α0 →∞ limit. It is natural
then to expect a similar limit for black holes in binaries,
and this decreasing charge has implications for merger
time. As demonstrated in Ref. [56] which studied the
particular case of black hole binaries with the same sign
of charge with α0 =

√
3 (following [57]), the estimated

radius of the effective innermost stable circular or-
bit (ISCO) increases as the black hole charge increases.
Following our observation that larger couplings have
effectively smaller black hole charges, one expects that,
for fixed charges of equal sign, black holes will merge
sooner (i.e. at lower frequencies) for smaller coupling.

• It is interesting to consider the behavior of binary
neutron stars in scalar tensor theories. In particular, the
clearest differences in those simulations from those of GR
occurred for scalar charges of the order φ1 ≈ 10−1. How-
ever, here the charges are a couple orders of magnitude
smaller, only φ1 ≈ 10−3, and one expects dynamical dif-
ferences to scale with φ2

1. And so perhaps it is natural
that the differences we see for these parameter choices
are as small as we report. Scalarization levels compa-
rable to those neutron star mergers would require BH
charges α0q

2M ≈ 10−1 (qM ' 10−1) for small (very
large) values of α0.

Because EMD allows for scalar radiation, we can gain
additional understanding by extracting it in addition
to the gravitational wave signal. As discussed in Ap-
pendix §B, the computation of the Newman-Penrose
scalar Φ22 indicates that the scalar radiation is expected
to scale as Φ22 ≈ α0φ,tt (evaluated asymptotically). One
can thus estimate that this radiation in the early inspi-
ral phase scales as Φ22 ≈ α0φ1Ω2. This scaling is as-
sumed in Fig. 7 which shows Φ22 as a function of time
for both the equal and unequal mass cases. In particular,
because the orbital frequency differs only slightly with
changes to α0, the rescaling depends only on the cou-
pling and scalar charge. The coupling value is straight-
forward, but the black hole charge is chosen as the charge
of individual black holes in isolation. Thus the charges
for equal mass binaries are chosen as: φ1= {−4.8 ×
10−7,−4× 10−4,−6.9× 10−4} and for unequal mass bi-
naries (m1,m2): φ1= { (−3,−2) × 10−7, (−2.4,−1.6) ×
10−4, (−4.2,−2.7) × 10−4} for α0 = {1, 103, 3 × 103} re-
spectively (which are well approximated by the analytical
expression Eq. 38).

As shown in Fig. 7, reasonably good agreement with

the expected scaling is obtained during the inspiral phase,
but the scaling overestimates the magnitude of the radia-
tion during the merger. The failure of the scaling during
the merger indicates that the nonlinear behavior is less
radiative than otherwise expected from simple superpo-
sition arguments and is consistent with the observations
made in the isolated black hole cases where the scalar
charge shows a trend towards saturation at high coupling
values.

This saturation is evident in Fig. 8 which shows the
l = m = 1 and l = m = 2 modes for the scalar radiation
corresponding to the unequal mass binary for α0 = 1000
and 3000. In contrast with Fig. 7 however, both cases
here are scaled linearly by their respective value of α0,
ignoring the dilaton charge. Focusing only on the merger,
this simple scaling in α0 works quite well, supporting
our assertion that the scalar charges saturate at large
coupling.

An interesting aspect of gravitational radiation in
EMD is that it could contain a dipolar component in con-
trast to GR which disallows dipolar radiation. Although
one generally expects the dipolar component, when al-
lowed by the theory, to dominate over higher multipoles,
here the strength of the dipolar component depends on
the difference in the scalar charges of the black holes. As
a result, the equal mass case produces no dipolar radi-
ation. For the unequal mass binary with m1/m2 = 3/2
considered here, the scalar charges are different, but nev-
ertheless are sufficiently close to each other that the re-
sulting l = m = 1 mode is weaker than the l = m = 2
mode.

We comment on two further conclusions that can be
drawn from our studies as well as leave open a question
deserving of investigation. First, we find the ringdown
of the merger remnant appears largely insensitive to the
value of the coupling. As mentioned in the previous sec-
tion concerning the ringdown of the head-on remnant,
small values of the electric charge produce correspond-
ingly small differences in ringdown versus GR.

Second, we also studied the merger of black holes with
electric charges of opposite sign. For the small elec-
tric charges considered here, no significant effect was ob-
served on the black hole dynamics, indicating, as one
might expect, that electromagnetic forces are sub-leading
with respect to gravitational ones.

Finally, recall that the dilaton permits EMD black
holes to have electric or magnetic charge (or both) and,
as a result, these black holes have different properties.
It could be interesting to consider the interaction of a
binary black hole system comprised of one electrically
charged and one magnetically charged black hole and in-
vestigate the impact on the dynamics and radiation. In
particular, the black holes in such a binary would have
scalar charges of opposite sign which might maximize the
resulting dipole scalar radiation. However, a preliminary
investigation with the small charge used here did not re-
veal any dramatic effects.
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FIG. 5: The gravitational radiation of an equal mass binary
black hole with an electric charge qe = 0.001 for different
values of α0. Top: The real part of the l = m = 2 mode of the
Newman-Penrose scalar Ψ4. Middle: The percent difference
in magnitude of the l = m = 2 mode of Ψ4 relative to the
α1 case normalized by the maximum of the signal. Bottom:
The angular frequency of the gravitational wave mode.
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FIG. 6: The gravitational radiation of a unequal mass bi-
nary black hole with an electric charge qe = 0.001 for different
values of α0. Top: The real part of the l = m = 2 mode of the
Newman-Penrose scalar Ψ4. Middle: The percent difference
in magnitude of the l = m = 2 mode of Ψ4 relative to the
α1 case normalized by the maximum of the signal. Bottom:
The angular frequency of the gravitational wave mode.

V. FINAL DISCUSSION

We have examined the dynamics of black holes, both
in isolation and in binaries, within Einstein-Maxwell-
dilaton theory. We have focused on the differences be-
tween these dynamics and those in general relativity.

This theory is parametrized by a coupling constant, α0.
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FIG. 7: The (real part of the) l = m = 2 mode of the
scalar gravitational radiation Φ22 of a binary black hole with
an electric charge qe = 0.001 for different values of α0. Top:
The equal mass case. Bottom: The unequal mass case.
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FIG. 8: The (real part of the) l = m = 1 and l = m = 2
modes of the scalar gravitational radiation Φ22 of a binary
black hole with an electric charge qe = 0.001 for different
values of α0 corresponding to the unequal mass binary case.
Here we have scaled up the case α0 = 1000 by a factor of
3 in accordance with expected scaling if the dilaton charge
is ignored. Top: The l = m = 1 mode. Bottom: The
l = m = 2 mode.

For α0 = 0, the theory describes Einstein-Maxwell with
a free scalar field, and its black hole solutions include
Reissner-Nordstrom. The low energy limit of string the-
ory is described by α0 = 1 which includes hairy black
hole solutions. In the infinite coupling limit α0 → ∞,
the single, spherically symmetric, black hole solution is
simply the Schwarzschild solution of pure vacuum gen-
eral relativity and the electromagnetic field is essentially
“screened” out.
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Our results for binary mergers appear consistent with
these same limits for isolated black holes. Of course for
α0 = 0 our black holes merge producing a charged, hair-
less black hole. As α0 is increased, the remnant black
hole displays a scalar charge (in addition to its angular
momentum and Maxwell charge).

The dynamics of both the dilaton and the gauge field
are important and can impact the behavior of the dy-
namics of the binary. This influence is primarily gov-
erned by the strength of the scalar charge of the black
hole which scales, at small coupling, as α0Q

2. At large
coupling, however, the scaling is such that the dilaton
charge scales linearly with Q. For small values of Q, as
we have seen, the effects are minor while we expect large
effects for larger values of Q.

Interestingly, because the scalar charge in EMD does
not depend sensitively on the asymptotic value of the
dilaton or the nearby charge of a companion (as opposed
to the case in scalar tensor theory [11, 42]), its main role
in equal mass binaries can be approximated by charged
binary black hole mergers. Note that recent work ar-
gues that such black holes can undergo scalarization for
sufficiently large values of the asymptotic value of the
dilaton [58].

Considering again the case of large coupling, it is worth
pointing out that the α0 →∞ limit is essentially a decou-
pling limit such that the gravitational dynamics and the
matter (Maxwell and dilaton) dynamics have decreasing
effect on one another. For large α0, the matter fields are
increasingly radiated away while the scalar and electro-
magnetic contributions to the final black hole go to zero
in this limit.

As discussed, for black holes in EMD, little has been
known with regard to their stability properties, their per-
turbation spectra for arbitrary coupling values, rotating
solutions, etc. Our studies have shown that black holes
in EMD have stability properties similar to those in GR.
These results extend the analytical studies of [31] and
highlight the small and subtle differences involved in dis-
tinguishing BHs in EMD and GR theories.

Finally, an immediate conclusion of our work is that
for small charges, differences with respect to wave-
forms in GR and EMD are quite small. Larger
charges may well produce significant differences and their
main characteristics could be bracketed by analyzing
charged/uncharged collisions in GR [59, 60]. While one
does not expect significantly charged black holes in the
universe, it is important to stress that the gauge field in
EMD need not be the physical one coupled to the Stan-
dard Model.
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Appendix A: EMD Black hole solutions in isotropic
coordinates

Given our use of the BSSN formalism, isotropic coordi-
nates are particularly useful. We present the spherically
symmetric, static EMD black hole solutions here for ref-
erence. Defining a radial, isotropic coordinate, r̄, via

r =
1

r̄

[(
r̄ +

r+ + r−
4

)2

− r+r−
4

]
(A1)

for which

r+ = M

{
1 +

[
1−

(
1− α2

0

) Q2

M2

]1/2}
(A2)

r− =
Q2

M

(
1 + α2

0

){
1 +

[
1−

(
1− α2

0

) Q2

M2

]1/2}−1

(A3)

we can write the metric for both magnetic and electric
cases as

ds2 = −α2dt2 + χ−1
[
dr̄2 + r̄2 dΩ2

]
(A4)

= −
(
r̄ − r̄H

)2(
r̄ + r̄H

)2(1−α1)(
r̄ + r̄1

)2−α1
(
r̄ + r̄2

)2−α1
dt2

+
1

r̄4

(
r̄ + r̄1

)2−α1
(
r̄ + r̄2

)2−α1
(
r̄ + r̄H

)2α1

×
[
dr̄2 + r̄2 dΩ2

]
. (A5)

Here we have defined

r̄1 =
1

4

(√
r+ −

√
r−
)2

(A6)

r̄2 =
1

4

(√
r+ +

√
r−
)2

(A7)

r̄H =
1

4

(
r+ − r−

)
(A8)

with r̄H the radial location of the horizon in these co-
ordinates. If we consider the magnetic case, then Q2 =
Q2
me
−2α0φ0 while for the electric case, Q2 = Q2

ee
2α0φ0 .

In the magnetic case, the EM and dilaton fields take
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the form

Fθφ = Qm sin θ (A9)

Br̄ =
Qm r̄

4(
r̄ + r̄H

)3α1

[(
r̄ + r̄1

)(
r̄ + r̄2

)]3(α1−2)/2

(A10)

e−2α0φ = e−2α0φ0

(
r̄ + r̄H

)2α1(
r̄ + r̄1

)α1
(
r̄ + r̄2

)α1
. (A11)

In the electric case, the EM and dilaton fields take the
form

Ftr̄ = Qe

(
r̄2 − r̄2

H

)(
r̄ + r̄1

)2(
r̄ + r̄2

)2 (A12)

E r̄ = − Qe r̄
4(

r̄ + r̄H
)α1

[(
r̄ + r̄1

)(
r̄ + r̄2

)](α1−6)/2

(A13)

e2α0φ = e2α0φ0

(
r̄ + r̄H

)2α1(
r̄ + r̄1

)α1
(
r̄ + r̄2

)α1
. (A14)

As an illustration of the properties of the solution and
a demonstration of the scaling with the coupling α0,
we plot the radial profile of φ versus radius for differ-
ent values of α0 = {1, 101, 102, 103, 3 × 103} with fixed
qe = 10−3, φ0 = 10−10. To simplify the comparison, we
scale all profiles linearly in α0. As shown in Fig. 9, that
the rescaled profiles for small α0 coincide demonstrates
that the solution does scale linearly in α0, but the de-
pendence of the solution on α0 is milder at larger values.
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FIG. 9: Radial profile for the scalar field obtained in
isotropic coordinates with different values of α0 (all with
qe = 10−3, φ0 = 10−10). The solutions have been rescaled
in the same way as the solutions in Fig. 4. This linear scaling
holds only up to roughly α0 ≈ 100.

The charge of these black holes is given by Eq. 38 and
is plotted in Fig. 3 along with the charge obtained in
our 3D evolutions (in different coordinates). The figure
makes clear that the charge saturates at large coupling.

Appendix B: Calculating radiative properties of the
solution

We recall that the physical frame is the Jordan one
(the one with respect to which particles travel along
geodesics). However, in our numerical studies we find
it convenient to compute the evolution in the Einstein
frame. It is thus important to compute the radiative
behavior in the Jordan frame which, in particular, facil-
itates the comparison across the different cases consid-
ered.

Let us then analyze what a Jordan-frame observer
would measure with respect to the Newman-Penrose ra-
diative scalars obtained in the Einstein frame. First,
recall our conformal transformation from the Jordan to
Einstein frame

gEab = gJabe
−2α0φ ≡ gJabΦ (B1)

where we introduce as a shorthand Φ ≡ e−2α0φ. Next,
given the standard null tetrad chosen in the Einstein
frame TEα (with α = 0..3 labeling the different null vec-
tors of the tetrad), the Jordan frame tetrad is trivially
related to the Einstein one by

TEα = T Jα
√
Φ. (B2)

Now to find the radiative (spin-2) scalar Ψ4 in the Jor-
dan frame computed from the Weyl tensor, we exploit the
fact that the Weyl tensor, Cdabc, is invariant with respect
to conformal transformations; therefore CEabcd = CJabcdΦ
and, since Ψ4 involves contractions with 4 tetrad mem-
bers, we have –schematically–

ΨE = CEabcdT
ETETETE

= CJabcdΦT
JT JT JT J(Φ)−2

= ΨJ(Φ)−1. (B3)

Thus, ΨJ = ΨEe−2α0φ.
We turn our attention now to the (spin-0) scalar ra-

diation which in the Newman-Penrose formalism is rep-
resented by the real scalar Φ22 and is obtained from the
Riemann tensor. Recall that this tensor transforms un-
der conformal transformations as

REab = RJab − 2∇a∇b lnΦ+ 2∇a lnΦ∇b lnΦ+ gabS (B4)

where S contains derivatives of Φ but will not contribute
since Φ22 ≡ Rabnanb/2 and na is a null vector (the same
appearing in the calculation of Ψ4). Proceeding as before,
we obtain

ΦE22 = REabT
ETE/2

= REabT
JT J/2(Φ)−1

= (ΦJ22 − naJnbJ∇a∇b lnΦ+ ...)(Φ)−1 (B5)

where we denote with ... terms proportional to (lnΦ)2

which will be subleading. Consequently, we have

ΦJ22 = e−2α0φ
(
ΦE22 − 2α0n

a
En

b
E∇a∇bφ

)
. (B6)
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To estimate ΦE22 we can make use of the trace-reversed
form of the Einstein equations in the Einstein frame (in
what follows we restrict to the Einstein frame and we do
not include a subindex) to obtain

ΦE22 = Rabn
anb/2 = nanb

(
∇aφ∇bφ+ 2e−2α0φFacF

c
b

)
(B7)

where we have dropped terms involving nanbgab. Fur-
thermore, nanbFacF

c
b ∝ r−2 as it can be written in terms

of the Newman-Penrose scalar φ2φ̄2. Therefore the con-
tribution of the Einstein-frame Φ22 is subleading with re-
spect to the second term in the righthandside of Eq. (B6).
To leading order then, the scalar radiation, measured in
the Jordan frame, scales as

ΦJ22 ' α0φ,tte
−2α0φ. (B8)

As we have seen, for small values of the coupling α0 the
magnitude of the scalar charge φ1 grows but such growth
saturates, and then reverses at α0 ' 3000.

As a last step, one should be mindful of whether the
asymptotic time measured in the different frames coin-
cide. In all our simulations we have chosen the asymp-
totic value of the scalar field to be (a small) constant
φ0. Upon transformation to the Jordan frame, this im-
plies asymptotic observers carry clocks ticking at differ-
ent rates given by κ ≡ eα0φ0 . Thus, we perform one
last transformation to a single, common time, defined by
t ≡

∫
κdt′ but, for the couplings considered and the value

of φ0 = 10−10 adopted here, the correction is negligible.
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