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E. Kidder,3 P. Kumar,3, 6 G. Lovelace,4 H. P. Pfeiffer,7, 6 M. A. Scheel,5 and S.A. Teukolsky3, 5

1Center for Computational Relativity and Gravitation,
School of Mathematical Sciences, Rochester Institute of Technology,

85 Lomb Memorial Drive, Rochester, New York 14623
2Center for Relativistic Astrophysics and School of Physics,
Georgia Institute of Technology, Atlanta, GA 30332, USA

3Center for Astrophysics and Planetary Science,
Cornell University, Ithaca, New York 14853, USA

4Gravitational Wave Physics and Astronomy Center,
California State University Fullerton, Fullerton, California 92834, USA

5Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA
6Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8, Canada
7Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam-Golm, Germany

In response to LIGO’s observation of GW170104, we performed a series of full numerical sim-
ulations of binary black holes, each designed to replicate likely realizations of its dynamics and
radiation. These simulations have been performed at multiple resolutions and with two indepen-
dent techniques to solve Einstein’s equations. For the nonprecessing and precessing simulations, we
demonstrate the two techniques agree mode by mode, at a precision substantially in excess of sta-
tistical uncertainties in current LIGO’s observations. Conversely, we demonstrate our full numerical
solutions contain information which is not accurately captured with the approximate phenomeno-
logical models commonly used to infer compact binary parameters. To quantify the impact of these
differences on parameter inference for GW170104 specifically, we compare the predictions of our
simulations and these approximate models to LIGO’s observations of GW170104.

I. INTRODUCTION

The LIGO-Virgo Collaboration (LVC) has already re-
ported the confident discovery of five binary black hole
(BBH) mergers via gravitational wave (GW) radiation:
GW150914[1] and GW151226[2] from the first observ-
ing run O1[3], and GW170104 [4], GW170608 [5], and
GW170814 [6] from the second observing run. The pa-
rameters of these detections were first inferred by the
use of non precessing (IMRPhenomD, SEOBNRv2, and
SEOBNRv4), and approximate precessing models: IMR-
PhenomPv2 [7–9] and SEOBNRv3[10–12].

A reanalysis of GW150914 (see [13] for the details of
the simulations in Fig. 1 of [1]) implementing full nu-
merical relativity (NR) simulations helped to better con-
strain the mass ratio of the system [14]. This is due to
the fact that NR waveforms include physics omitted by
current approximate models, notably higher order modes
and accurate precession effects. A full description of this
methodology, including detailed tests of systematic errors
and parameter estimation improvements, can be found in
[15].

This paper is organized as follows. In Section II, we
describe the two independent techniques we use to solve
Einstein’s equations numerically for the evolution of bi-
nary black hole spacetimes. In Section III, we describe
the binary’s parameters selected for detailed followup,
our simulations of these proposed initial conditions, and
detailed comparisons between our paired results, for both

nonprecessing and precessing simulations. We also con-
trast our simulations’ radiation with the corresponding
results derived from the approximate phenomenological
models used by LIGO for parameter inference. In Section
IV, we directly compare our simulations to GW170104.
These comparisons provide both a scalar measure of how
well each simulation agrees with the data (a marginalized
likelihood), as well as the best-fitting reconstructed wave-
form in each instrument [14, 15]. Using our reconstructed
waveforms, we graphically demonstrate that our simula-
tions agree with each other and the data, with simula-
tion differences far smaller than the residual noise in each
instrument. Using these real observations as a bench-
mark for model quality, we then quantify how effectively
our simulations reproduce the data, compared to the re-
sults of approximate and phenomenological models at the
same parameters. Since our simulations parameters were
selected using these approximate and phenomenological
models, we also have the opportunity to assess how ef-
fectively they identified the optimal binary parameters.
In Section V we discuss the prospects for future targeted
simulations in followup of LIGO observations.

II. FULL NUMERICAL EVOLUTIONS

The breakthroughs [16–18] in numerical relativity al-
lowed for detailed predictions for the gravitational waves
from the late inspiral, plunge, merger and ringdown of
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black hole binary systems. Catalogs of the simulated
waveforms are publicly available [19–21] for its use for
BBH parameter estimation [15], as well as for determin-
ing how the individual masses and spins of the orbiting
binary relate to the properties of the final remnant black
hole produced after merger. This relationship [22] can be
used as a consistency check for the observations of the in-
spiral and, independently, the merger-ringdown signals as
tests of general relativity [3, 23, 24]. And finally, those
full numerically generated waveforms and remnant pa-
rameters are used in the fittings of the phenomenological
approximate models cited above.

A. Simulations using finite-difference,
moving-puncture methods

In order to make systematic studies and build a data
bank of full numerical simulations, e.g., [21], it is cru-
cial to develop efficient numerical algorithms, since large
computational resources are required. The Rochester In-
stitute of Technology (RIT) group evolved the BBH data
sets described below using the LazEv [25] implementa-
tion of the moving puncture approach [17, 18] with the
conformal function W =

√
χ = exp(−2φ) suggested by

Ref. [26]. For those runs, they used centered, sixth-order
finite differencing in space [27] and a fourth-order Runge
Kutta time integrator (the code does not upwind the ad-
vection terms) and a 5th-order Kreiss-Oliger dissipation
operator.

The LazEv code uses the EinsteinToolkit [28, 29] /
Cactus [30] / Carpet [31] infrastructure. The Carpet
mesh refinement driver provides a “moving boxes” style
of mesh refinement. In this approach, refined grids of
fixed size are arranged about the coordinate centers of
both holes. The Carpet code then moves these fine
grids about the computational domain by following the
trajectories of the two BHs.

To compute the initial low eccentricity orbital param-
eters RIT used the post-Newtonian techniques described
in [32] and then generated the initial data based on these
parameters using approach [33] along with the TwoP-
unctures [34] code implementation.

The LazEv code uses AHFinderDirect [35] to lo-
cate apparent horizons, and compute the magnitude and
components of the horizon spin using the isolated hori-
zon (IH) algorithm detailed in Ref. [36] and as imple-
mented in Ref. [37]. The horizon mass is calculated via

the Christodoulou formula mH =
√
m2

irr + S2
H/(4m

2
irr) ,

where mirr =
√
A/(16π), A is the surface area of the

horizon, and SH is the spin angular momentum of the
BH (in units of M2).

The radiated energy, linear momentum, and angu-
lar momentum, were measured in terms of the radia-
tive Weyl Scalar ψ4, using the formulas provided in
Refs. [38, 39], Eqs. (22)-(24) and (27) respectively. How-
ever, rather than using the full ψ4, it was decomposed it
into spin weighted -2 spherical harmonic including all `

and m modes up to ` = 6. The formulas in Refs. [38, 39]
are valid at r = ∞. To obtain the waveform and radia-
tion quantities at infinity, the perturbative extrapolation
described in Ref. [40] was used.

For the RIT simulations, different resolutions are de-
noted by NXXX where XXX is either 100, 118, or 140
for low, medium, and high resolutions, respectively. This
number is directly related to the wavezone resolution in
the simulation. For instance, N100 has a resolution of
M/1.0 in the wavezone (where observer extraction takes
place, preliminary to perturbative extrapolation to infin-
ity via [40]), and N140 has M/1.4. In each case UID#1-5,
there are 10 levels of refinement in all and the grids fol-
lowed a pattern close to those described in [41].

Other groups using the moving punctures [17, 18] for-
malism with finite difference methods are Georgia Insti-
tute of Technology (GT) [20] and those based on BAM
[42]. The GT [20] simulations were obtained with the
Maya code [43–50], which is also based on the BSSN
formulation with moving punctures. The grid structure
for each run consisted of 10 levels of refinement provided
by Carpet [31], a mesh refinement package for Cac-
tus [30]. Each successive level’s resolution decreased by
a factor of 2. Sixth-order spatial finite differencing was
used with the BSSN equations implemented with Kranc
[51].

B. Simulations using pseudospectral, excision
methods

Simulations labeled SXS are carried out using the
Spectral Einstein Code (SpEC) [52] used by the Simu-
lating eXtreme Spacetimes Collaboration (SXS). Given
initial BBH parameters, a corresponding weighted su-
perposition of two boosted, spinning Kerr-Schild black
holes [53] is constructed, and then the constraints are
solved [54–56] by a pseudospectral method to yield quasi-
equilibrium [53, 57] initial data. Small adjustments in the
initial orbital trajectory are made iteratively to produce
initial data with low eccentricity [58–60].

The initial data are evolved using a first-order repre-
sentation [61] of a generalized harmonic formulation [62–
64] of Einstein’s equations, and using damped harmonic
gauge [65–67]. The equations are solved pseudospectrally
on an adaptively-refined [68, 69] spatial grid that ex-
tends from pure-outflow excision boundaries just inside
apparent horizons [67, 70–73] to an artificial outer bound-
ary. Adaptive time-stepping automatically achieves time
steps of approximately the Courant limit.

On the Cal State Fullerton cluster, ORCA, the simula-
tion achieved a typical evolution speed of O(100M)/day
for the highest resolution (here we measure simulation
time in units of M , the total mass of the binary). After
the holes merge, all variables are automatically interpo-
lated onto a new grid with a single excision boundary
inside the common apparent horizon [70, 71], and the
evolution is continued. Constraint-preserving boundary
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conditions [61, 74, 75] are imposed on the outer bound-
ary, and no boundary conditions are required or imposed
on the excision boundaries.

We use a pseudospectral fast-flow algorithm [76] to find
apparent horizons, and we compute spins on these appar-
ent horizons using the approximate Killing vector formal-
ism of Cook, Whiting, and Owen [77, 78].

Gravitational wave extraction is done by three in-
dependent methods: direct extraction of the Newman-
Penrose quantity Ψ4 at finite radius [58, 70, 79], ex-
traction of the strain h by matching to solutions of
the Regge-Wheeler-Zerilli-Moncrief equations at finite ra-
dius [80, 81], and Cauchy-Characteristic Extraction [82–
86]. The latter method directly provides gravitational
waveforms at future null infinity, while for the former two
methods the waveforms are computed at a series of finite
radii and then extrapolated to infinity [87]. Differences
between the different methods, and differences in extrap-
olation algorithms, can be used to as error estimates on
waveform extraction. These waveform extraction errors
are important for the overall error budget of the simula-
tions, and are typically on the order of, or slightly larger
than, the numerical truncation error [88, 89]. In this
paper, the waveforms we compare use Regge-Wheeler-
Zerilli-Moncrief extraction and extrapolation to infinity.
We have verified that our choice of extrapolation order
does not significantly affect our results. We have also
checked that corrections to the wave modes [90] to ac-
count for a small drift in the coordinates of the center
of mass have a negligible effect on our results, hence we
present here the uncorrected results.

III. SIMULATIONS OF GW170104

We extracted the maximum a posteriori (MaP) param-
eters from (preliminary) Bayesian posterior inferences
performed by the LIGO Scientific Collaboration and the
Virgo Collaboration, using different waveform models
[91, 92]. As described in Appendix B, this point parame-
ter estimate is one of a few well-motivated and somewhat
different choices for followup parameters; however, as de-
scribed in that appendix, we estimate that the specific
choice we adopt will not significantly change our prin-
cipal results. Table I shows parameters simulated with
numerical relativity. The first two simulations have been
started at a reference frequency of 24Hz (at the quoted
total masses) in order to provide a fast response non-
precessing and precessing simulation to be ready to pre-
liminarily compare with observations within 2 weeks (for
the low resolution runs). The following three simulations
have started from 20Hz to cover the complete nominal
low frequency sensitivity band of LIGO.

Spin Conventions: (χx
1 , χ

y
1, χ

z
1) are specified in a frame

where (i) L̂ = (0, 0, 1), i.e. the Newtonian orbital angular
momentum is along the z-axis. (ii) the vector n̂ point-
ing from m2 to m1 is the x-axis, (1,0,0). Note that the
orientation of n̂ is essentially undetermined by parame-

ter estimation (PE) methods, so the choice (ii) is meant
to break this degeneracy to arrive at concrete parame-
ters. In other words, the spin-components given below
are those consistent with Eqs. (43) of Ref. [93].

The label, UID#1-5, of the simulation identifies which
parameters we are using in following up as given by the
initial data from Table I. All simulation initial data are
chosen such that, when evolved, the simulation is con-
sistent with the parameters of this table at a reference
frequency fref , which denotes the frequency of the (2,2)
gravitational wave mode, or equivalently twice the orbital
frequency. For aligned spin runs, where spin-vectors are
preserved, the initial orbital frequency may be smaller
than fref/2. For precessing runs, because we target a
certain spin configuration at fref , we begin our simula-
tions very close to this reference frequency. D/M is the
initial orbital separation of the NR run in geometric units

and the mass ratio and intrinsic spins (~χi = ~Si/m
2
i ) are

denoted by (q, χx
1 , χ

y
1, ..., ). Due to the way NR simula-

tions are set-up the initial parameters can change due to
the presence of junk radiation and/or imperfections in
setting up initial data, therefore these quantities should
be reported as after-junk masses/spins, at fr, the re-
laxed frequency, ideally extracted at the given reference
frequency, rref . For precessing runs, in particular, the
spin-components should be specified at the reference fre-
quency, following the convention χx

i = ~χi · n̂, χz
i = ~χi · L̂,

with n̂ and L̂ computed at the reference frequency, too.
We also provide e, the orbital eccentricity. For instance,
the actual initial data as measured for the RIT’s followup
simulations are described in Table II using the method
of Ref. [94] where Me = r2r̈.

For followup #1, the initial spurious burst contains a
non-negligible kick which causes a center of mass drift of
approximately 0.65M over the 4000M of evolution. Be-
cause of this, information from the dominant ` = 2,m =
±2 modes leak into the other modes, particularly the
m =odd modes. To reduce this effect, we can recalculate
the modes by finding the average rest frame of the binary.
We calculate the average velocity of the center of mass of
the binary (from ψ4) over the inspiral and then boost the
waveform in the opposite direction. This is done using
Eqs. (4-5) in [95] and Eqs. (7-8) in [96]. Note that this
does not change the physical waveforms, only how they
are spread over modes.

For the RIT simulations, the initial data parameters in
Table II for the nonprecessing systems 1, 4, and 5 were
determined by choosing the starting frequency just be-
low the reference frequency. This gives the gauge time
to settle, and since the spins do not change, this gives us
a cleaner waveform once we hit the reference frequency.
For the precessing simulations 2 and 3, since the spins
will now evolve, we determine the initial data parame-
ters by choosing the initial spins at the specified refer-
ence frequency. The initial data used by SXS, being not
conformally flat have less spurious radiation content than
the Bowen-York data and hence produce a different set
of masses and spins after settling down. See Table III
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TABLE I. Numerical simulations follow-up Parameter Table (as estimated by the quoted approximant). The two runs started
at 24Hz provided a fast response set of simulations while the following ones, starting at 20Hz, cover the low frequency sensitivity
band. We also report the gravitational wave cycles from those frequencies to merger in the simulations.

Run Mtotal/M� fref [Hz] q = m1/m2 χ1 χ2 GWCycles Approximant

#1 58.49 24 0.8514 ( 0, 0, 0.7343) ( 0, 0, -0.8278) 31.1 SEOBNRv4

#2 58.72 24 0.5246 ( 0.1607, -0.1023, -0.0529 ) ( -0.3623, 0.5679, -0.3474 ) 17.1 SEOBNRv3

#3 62.13 20 0.4850 ( 0.0835, -0.4013, -0.3036 ) ( -0.3813, 0.7479, -0.1021 ) 24.9 IMRPhenomPv2

#4 53.46 20 0.7147 ( 0, 0, 0.2205) ( 0, 0, -0.7110) 28.2 SEOBNRv4

#5 59.11 20 0.4300 ( 0, 0, -0.3634) ( 0, 0, -0.1256) 27.3 IMRPhenomD

TABLE II. Initial data parameters for the quasi-circular configurations with a smaller mass black hole (labeled 1), and a
larger mass spinning black hole (labeled 2). The punctures are located at ~r1 = (x1, 0, 0) and ~r2 = (x2, 0, 0), with momenta P =
±(Pr, Pt, 0), puncture mass parameters mp/M , horizon (Christodoulou) masses mH/M , total ADM mass MADM, dimensionless
spins a/mH = S/m2

H , and eccentricity, e.

Run x1/M x2/M Pr/M Pt/M mp
1/M mp

2/M mH
1 /M mH

2 /M MADM/M a1/m
H
1 a2/m

H
2 e

#1 -7.9168 6.7407 -2.829e-4 0.07467 0.3196 0.3056 0.4599 0.5401 0.9928 0.7343 -0.8267 6e-4

#2 -7.8211 4.1029 -4.837e-4 0.07837 0.3277 0.4400 0.3441 0.6559 0.9922 0.1977 0.7580 1e-3

#3 -8.7720 4.2543 -3.316e-4 0.07160 0.2796 0.3584 0.3266 0.6734 0.9930 0.5101 0.8445 1e-3

#4 -8.4742 6.0567 -2.918e-4 0.07421 0.3991 0.4219 0.4168 0.5832 0.9928 0.2205 -0.7110 2e-4

#5 -9.4395 4.0593 -2.718e-4 0.06698 0.2753 0.6865 0.3007 0.6993 0.9933 -0.3634 -0.1256 5e-4

for the specific values of each simulation by the two kind
of initial data families. This process can be iterated to
get closer initial parameters for each approach, although
it requires some extra evolution time and coordination
to reach a fractional agreement below 10−3. This pro-
cess has been followed for UID#1, but not for the other
cases, in particular the two precessing ones #2 and #3,
and hence the differences, for instance, displayed in Fig. 1
for the precessing case #3. Notwithstanding we observe
a fairly better agreement between the two full numerical
approaches than with the SEOBNRv3 model.

The SXS simulations used in this work have been
assigned SXS catalog numbers BBH:0626 (UID1),
BBH:0627 (UID2), BBH:0628 (UID3), BBH:0625
(UID4), and BBH:0631 (UID5).

Each simulation has an asymptotic frame relative to
which we extract rhlm(t). In all cases used here, this axis

corresponds to the ẑ (= L̂) axis of the simulation frame.
For all simulations, this axis also agrees with the orbital
angular momentum axis L̂ at the start of the evolution.

A. Outgoing radiation very similar for different
NR methods

Following previous (targeted to GW150914) studies
[13], we compare the outgoing radiation mode by mode,
using an observationally-driven measure: the overlap or
match. The black and grey lines in Figures 2 and 3 show
the match between the two simulations’ (RIT-SXS and
RIT-GT respectively) (2,2) modes, as a function of the
minimum frequency used in the match. In this calcu-

lation, we use a detector noise power spectrum appro-
priate to GW170104, and a total mass M� = as given
in Table I. By increasing the minimum frequency, we
increasingly omit the earliest times in the signal, first
eliminating transient startup effects associated due to fi-
nite duration and eventually comparing principally the
merger signals from the two black holes. For compari-
son, the red, blue, and yellow lines show the correspond-
ing matches between RIT, SXS, and GT simulations re-
spectively and effective one body models with identical
parameters (faithfulness study). In Figure 2, which il-
lustrates only nonprecessing simulations, these compar-
isons are made to the nonprecessing model SEOBNRv4
[97]. In Figure 3, which targets the two precessing UIDs,
we instead compare to SEOBNRv3, which approximates
some precession effects. For both nonprecessing and pre-
cessing simulations, these figures show that the different
NR groups’ simulations produce similar radiation, with
mismatches ≤ 10−3 even at the longest durations con-
sidered. By contrast, comparisons with SEOBNRv4 and
SEOBNRv3 show that these models do not replicate our
simulations’ results, particularly for precessing binaries.

To demonstrate good agreement beyond the (2,2)
mode for precessing simulations, for multiple resolutions,
Tables IV and V systematically compare all modes be-
tween RIT and SXS. The match calculations in this Table
are performed using a strain noise power spectral den-
sities (PSD) characterizing data near GW170104. Fol-
lowing [13], one phase- and time-shift is computed by
maximizing the overlap of the (2,2) mode; this phase-
and time-shift is then applied to all other modes without
any further maximization. Table IV shows a resolution
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# mr
1/M mr

2/M qr χr
1 χr

2 Mfr

UID1-N100 0.459757 0.539780 0.851718 (0,0,0.737493) (0,0,-0.829064) 0.002586

UID1-N118 0.459758 0.539801 0.851718 (0,0,0.737473) (0,0,-0.829040) 0.002587

UID1-N140 0.459758 0.539801 0.851718 (0,0,0.737464) (0,0,-0.829030) 0.002587

UID1-L2 0.459913 0.540183 0.851401 (0,0,0.734254) (0,0,-0.827442) 0.003135

UID1-L3 0.459902 0.540171 0.851400 (0,0,0.734138) (0,0,-0.827657) 0.003139

UID1-L4 0.459907 0.540176 0.851402 (0,0,0.734106) (0,0,-0.827690) 0.003139

UID2-N100 0.344090 0.655693 0.524773 ( 0.119494, 0.144676, -0.063539 ) ( -0.675724, 0.181910, -0.293427 ) 0.004010

UID2-N118 0.344091 0.655693 0.524774 ( 0.118992, 0.144981, -0.063537 ) ( -0.676089, 0.180798, -0.293141 ) 0.004010

UID2-N140 0.344091 0.655694 0.524774 ( 0.118754, 0.145124, -0.063541 ) ( -0.676262, 0.180273, -0.293005 ) 0.004010

UID2-L1 0.344082 0.655876 0.524614 ( 0.101171, 0.156396, -0.066135 ) ( -0.693687, 0.096203, -0.290389 ) 0.004001

UID2-L2 0.344069 0.655966 0.524523 ( 0.100390, 0.156863, -0.066508 ) ( -0.693803, 0.095200, -0.289578 ) 0.004013

UID2-L3 0.344072 0.655958 0.524534 ( 0.100596, 0.156736, -0.066591 ) ( -0.693727, 0.095442, -0.289439 ) 0.004010

UID3-N100 0.326605 0.672963 0.485325 ( 0.360515, -0.132028, -0.338700 ) ( -0.685165, 0.491281, -0.068777 ) 0.003308

UID3-N118 0.326606 0.672963 0.485326 ( 0.360458, -0.131982, -0.338637 ) ( -0.685154, 0.491237, -0.068765 ) 0.003308

UID3-N140 0.326607 0.672964 0.485326 ( 0.360429, -0.132025, -0.338591 ) ( -0.685106, 0.491276, -0.068763 ) 0.003308

UID3-L1 0.326576 0.673382 0.484978 ( 0.358221, -0.095241, -0.350438 ) ( -0.749729, 0.387741, -0.052141 ) 0.003330

UID3-L2 0.326598 0.673451 0.484962 ( 0.358434, -0.094398, -0.350478 ) ( -0.750204, 0.386567, -0.051977 ) 0.003339

UID3-L3 0.326583 0.673462 0.484931 ( 0.352293, -0.114550, -0.350800 ) ( -0.727233, 0.427282, -0.059549 ) 0.003308

UID4-N100 0.416817 0.583036 0.714908 (0,0,0.221608) (0,0,-0.712189) 0.002629

UID4-N118 0.416819 0.583037 0.714911 (0,0,0.221602) (0,0,-0.712184) 0.002630

UID4-N140 0.416820 0.583037 0.714912 (0,0,0.221600) (0,0,-0.712182) 0.002630

UID4-L1 0.416790 0.583195 0.714666 (0,0,0.220660) (0,0,-0.710930) 0.002635

UID4-L2 0.416809 0.583214 0.714675 (0,0,0.220453) (0,0,-0.710967) 0.002635

UID4-L3 0.416817 0.583203 0.714703 (0,0,0.220427) (0,0,-0.710930) 0.002619

UID5-N100 0.300721 0.699282 0.430043 (0,0,-0.366067) (0,0,-0.125360) 0.002932

UID5-N118 0.300722 0.699284 0.430043 (0,0,-0.366031) (0,0,-0.125352) 0.002932

UID5-N140 0.300723 0.699285 0.430043 (0,0,-0.366015) (0,0,-0.125348) 0.002932

UID5-L1 0.300697 0.699261 0.430021 (0,0,-0.363371) (0,0,-0.125641) 0.002900

UID5-L2 0.300708 0.699223 0.430061 (0,0,-0.363424) (0,0,-0.125550) 0.002864

UID5-L3 0.300722 0.699178 0.430107 (0,0,-0.363345) (0,0,-0.125616) 0.002855

TABLE III. Values of the individual masses, mass ratio, dimensionless spins, and frequency, given at a time after the gauge
settles. Quantities are labeled by the superscript “r” (for relaxed). For the nonprecessing cases (1, 4, and 5), this time is
tr/M = 200 for RIT and tr/M = 640 for SXS. For the precessing systems (2 and 3), the values are given such that the relaxed
frequency Mfr is the same between RIT and SXS.

test: the match between RIT and SXS simulations, as
a function of RIT simulation resolution. As the most
challenging precessing case, UID3 is shown by default
Except for the m = 0 modes, all the simulations show
good agreement mode-by-mode, for all resolutions.

Based on Figures 2, 3 and Table IV we anticipate
the lowest production-quality NR resolution (N100 for
RIT; L3 for SXS) will usually be sufficient to go well
beyond the accuracy of approximate and phenomeno-
logical models. To elaborate on this hypothesis, Table
V shows the mode-by-mode overlaps between these two
lowest NR resolutions. The ` = 2 modes agree without
exception. Good agreement also exists for the most sig-
nificant modes up to ` ≤ 4. On the other hand, the last
columns of Table IV shows that the rough agreement be-
tween NR and models for the modes (2,2) displayed in

Fig. 3, notably worsens when looking at other than the
leading modes.

In Table VI, we also provide a comparison of the rem-
nant properties, ie. final mass, spin and recoil velocity of
the final, merged, black hole, as computed by the two NR
methods and for a set of three increasing resolutions. We
observe good agreement and convergence of their values.
In the case of the RIT runs, a nearly 4th order conver-
gence with resolution for the recoil velocity of the rem-
nant is displayed. The same convergence properties are
shown for the final mass and spin, despite these quantities
being over-resolved at these resolutions. Those remnant
quantities are also important to model fitting formulae
[98, 99] to be used to infer the final black hole properties
from the binary parameters and thus serve as a test of the
general theory of relativity, as in [23]. The phenomeno-
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FIG. 1. The small BH (top) and large BH (bottom) spins for
followup case #3. RIT’s simulation has solid lines; SXS’s has
dashed lines; and spin evolution as predicted by SEOBNRv3
is shown with a wide-dashed line. The spin components, x, y,
and z, are red, blue, and green respectively. A closer agree-
ment between the two full numerical approaches is observed.

logical approximate waveform models [97, 100, 101] also
benefit from information of the final remnant properties
as one of their inputs and can thus produce a more ac-
curate precessing and including higher modes model.

In conclusion we see that the typical production NR
simulations are well into the convergence regime and pro-
duce accurate enough waveforms for all practical applica-
tions of the current generation of gravitational wave ob-
servations. This includes different NR approaches, modes
and remnant properties. The distinction with the cur-
rent models is also clear and those still show signs of
systematic errors with respect to the most accurate NR
waveforms.

` m N100 N118 N140 Mv3 ON140

2 -2 0.9989 0.9990 0.9990 0.9347 244.54

2 -1 0.9965 0.9972 0.9968 0.6257 96.12

2 0 0.9972 0.9973 0.9966 0.3091 56.06

2 1 0.9982 0.9983 0.9983 0.5797 102.66

2 2 0.9986 0.9986 0.9986 0.9600 215.48

3 -3 0.9901 0.9902 0.9912 - 29.63

3 -2 0.9887 0.9913 0.9902 - 17.14

3 -1 0.9785 0.9811 0.9801 - 8.98

3 0 0.9803 0.9814 0.9834 - 5.57

3 1 0.9848 0.9845 0.9847 - 9.17

3 2 0.9867 0.9864 0.9862 - 17.01

3 3 0.9899 0.9896 0.9901 - 28.87

4 -4 0.9921 0.9927 0.9938 - 11.99

4 -3 0.9800 0.9798 0.9814 - 6.61

4 -2 0.9830 0.9851 0.9838 - 4.17

4 -1 0.9856 0.9871 0.9868 - 2.30

4 0 0.9317 0.9341 0.9377 - 1.55

4 1 0.9854 0.9862 0.9861 - 2.32

4 2 0.9825 0.9845 0.9836 - 4.26

4 3 0.9827 0.9825 0.9835 - 6.93

4 4 0.9906 0.9911 0.9919 - 10.13

5 -5 0.9703 0.9819 0.9848 - 3.19

5 -4 0.9646 0.9681 0.9735 - 1.72

5 -3 0.9641 0.9674 0.9708 - 1.09

5 -2 0.9575 0.9743 0.9765 - 0.66

5 -1 0.9657 0.9722 0.9734 - 0.36

5 0 0.8730 0.8897 0.9013 - 0.25

5 1 0.9636 0.9695 0.9710 - 0.37

5 2 0.9541 0.9728 0.9765 - 0.67

5 3 0.9688 0.9718 0.9738 - 1.13

5 4 0.9643 0.9692 0.9725 - 1.71

5 5 0.9657 0.9796 0.9825 - 2.73

TABLE IV. Match between individual spherical harmonic
modes (`,m) of the SXS and RIT UID3 waveforms, using
the H1 PSD characterizing data near GW170104. Follow-
ing [13], rather than maximize over time and phase for each
independently, our mode-by-mode comparisons fix the event
time and overall phase using one mode (here, the (2,2) mode).
The successively higher resolution simulations from RIT, la-
beled as N100, N118, N140 are compared to the L3 (highest)
resolution run from SXS. The minimal frequency is taken as
fmin = 30m Hz for m ≥ 2 and fmin = 30Hz for m = 0, 1 for
a fiducial total mass of M = 58.73M�. The column labeled
Mv3 shows the match between RIT N140 and the correspond-
ing SEOBNRv3 mode. Rows with a “-” are not modeled by
SEOBNRv3. The column labeled ON140 shows the overlap of
N140 with itself, with a minimum frequency of 30 Hz in all
cases, to indicate the significance of the mode.
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` m M1 O1 M2 O2 M3 O3 M4 O4 M5 O5

2 -2 0.9993 282.02 0.9940 220.13 0.9993 259.04 0.9991 241.44 0.9996 237.10

2 -1 0.9985 28.16 0.9933 127.06 0.9973 96.60 0.9859 24.19 0.9991 19.24

2 0 0.9294 5.81 0.9145 72.81 0.9975 54.88 0.9795 6.72 0.9816 5.14

2 1 0.9986 28.13 0.9946 130.33 0.9985 103.84 0.9859 24.19 0.9991 19.24

2 2 0.9993 282.02 0.9965 201.91 0.9990 226.98 0.9991 241.44 0.9996 237.10

3 -3 0.9463 6.49 0.9870 22.17 0.9904 31.88 0.9363 15.23 0.9978 37.33

3 -2 0.9993 7.80 0.9827 17.40 0.9915 17.89 0.9947 6.06 0.9986 6.15

3 -1 0.8844 1.17 0.9850 9.31 0.9788 9.30 0.7229 1.95 0.9099 0.73

3 0 0.7757 0.78 0.8437 5.46 0.9792 5.73 0.8199 0.69 0.8720 0.28

3 1 0.8879 1.21 0.9766 9.99 0.9838 9.51 0.7228 1.95 0.9099 0.73

3 2 0.9993 7.80 0.9930 18.29 0.9861 17.81 0.9947 6.06 0.9986 6.15

3 3 0.9463 6.49 0.9843 22.66 0.9898 30.67 0.9363 15.23 0.9978 37.33

4 -4 0.9922 12.17 0.9810 9.20 0.9926 12.97 0.9908 10.32 0.9956 13.75

4 -3 0.9930 2.24 0.9824 7.66 0.9794 7.11 0.9869 1.68 0.9967 1.94

4 -2 0.5968 0.69 0.9874 4.90 0.9841 4.37 0.9150 0.53 0.9068 0.49

4 -1 0.6361 0.14 0.9743 2.51 0.9857 2.39 0.7761 0.15 0.6647 0.10

4 0 0.3514 0.49 0.6951 1.45 0.9355 1.60 0.2246 0.52 0.2578 0.28

4 1 0.6533 0.13 0.9606 2.43 0.9848 2.45 0.7761 0.15 0.6647 0.10

4 2 0.5967 0.69 0.9887 4.89 0.9830 4.51 0.9150 0.53 0.9068 0.49

4 3 0.9930 2.24 0.9851 7.75 0.9830 7.37 0.9869 1.68 0.9967 1.94

4 4 0.9922 12.17 0.9814 8.28 0.9912 10.78 0.9908 10.32 0.9956 13.75

5 -5 0.8662 0.64 0.9614 1.85 0.9709 3.29 0.9028 1.38 0.9807 3.83

5 -4 0.9758 0.58 0.9666 1.81 0.9648 1.85 0.9615 0.44 0.9893 0.61

5 -3 0.7287 0.12 0.9775 1.26 0.9631 1.16 0.7838 0.13 0.8748 0.19

5 -2 0.4258 0.22 0.9592 0.74 0.9552 0.71 0.6812 0.12 0.7639 0.13

5 -1 0.1107 0.07 0.9494 0.37 0.9658 0.38 0.6209 0.03 0.4149 0.04

5 0 0.3735 0.10 0.5100 0.25 0.8761 0.27 0.3827 0.08 0.2603 0.06

5 1 0.0553 0.04 0.9128 0.34 0.9639 0.40 0.6208 0.03 0.4152 0.04

5 2 0.4258 0.22 0.9711 0.72 0.9509 0.74 0.6812 0.12 0.7639 0.13

5 3 0.7286 0.12 0.9804 1.30 0.9683 1.22 0.7838 0.13 0.8748 0.19

5 4 0.9758 0.58 0.9764 1.87 0.9661 1.86 0.9615 0.44 0.9893 0.61

5 5 0.8662 0.64 0.9650 1.77 0.9663 2.76 0.9028 1.38 0.9807 3.83

TABLE V. Matches (Mi) between individual spherical harmonic modes (`,m) of the SXS and RIT waveforms, using the H1
PSD characterizing data near GW170104. The lowest resolution simulations from RIT, labeled N100, are compared to the L3
resolution run from SXS. The minimal frequency is taken as fmin = 30m Hz for m ≥ 2 and fmin = 30Hz for m = 0, 1. The
columns labeled Oi show the overlap of N100 with itself,

〈
hN100
`m |hN100

`m

〉
, to indicate the significance of the mode.

IV. COMPARING NR SIMULATIONS WITH
OBSERVATIONS OF GW170104

The comparisons above demonstrate that our sim-
ulations agree with one another, but differ from ap-
proximate and phenomenological models oft-used to de-
scribe precessing mergers. Fortunately, nature has pro-
vided us with a natural benchmark with which to as-
sess the efficacy of our calculations and the significance
of any discrepancies: observations of BH-BH mergers.
We use standard techniques [14, 15] to directly compare
GW170104 to our simulations. For context, we also com-
pare these observations to the corresponding predictions

of approximate and phenomenological models that pur-
port to describe the same event.

Figure 4 displays the direct comparison of the non-
precessing simulations by RIT and SXS complementary
approaches for the configurations UID#1, UID#4, and
UID#5, as given in Table II. They directly compare to
the signals as observed by LIGO H1 and L1 and with each
other. The lower panel shows the residuals of the signals
with respect to the RIT N118 simulation and compares it
with the direct difference of the two approaches and also
with the difference of the N118 and N100 resolutions, that
measure the finite difference error of the N118, given the
observed near 4th order convergence seen when included
the N140 run into the analysis. For all three cases we
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# mrem/M χz
rem V xy

rem(km/s)

UID1-N100 0.955294 0.619052 402.78

UID1-N118 0.955310 0.619079 404.40

UID1-N140 0.955311 0.619100 405.63

UID1-L2 0.955782 0.618905

UID1-L3 0.955813 0.618893

UID1-L4 0.955829 0.618899

UID2-N100 0.963445 0.581627 962.55

UID2-N118 0.963418 0.581480 996.49

UID2-N140 0.963405 0.581392 1016.06

UID2-L1 0.963768 0.579124

UID2-L2 0.964063 0.579988

UID2-L3 0.964063 0.579958

UID3-N100 0.961903 0.659634 614.70

UID3-N118 0.961920 0.659725 598.96

UID3-N140 0.961927 0.659781 587.63

UID3-L1 0.962123 0.658707

UID3-L2 0.962388 0.657731

UID3-L3 0.962401 0.657599

UID4-N100 0.962020 0.529128 312.81

UID4-N118 0.962028 0.529129 313.65

UID4-N140 0.962030 0.529130 314.05

UID4-L1 0.962114 0.528897

UID4-L2 0.962184 0.529023

UID4-L3 0.962174 0.529117

UID5-N100 0.968160 0.531761 171.57

UID5-N118 0.968171 0.531837 175.35

UID5-N140 0.968173 0.531873 177.81

UID5-L1 0.967872 0.531920

UID5-L2 0.968041 0.531934

UID5-L3 0.968051 0.531917

TABLE VI. Remnant results for spinning binaries. We show
the remnant mass mrem in units of the total initial mass M ≡
m1+m2, the remnant dimensionless spin χz

rem ≡ Jz
rem/m

2
rem,

and the remnant velocity in the x-y plane V xy
rem. We show re-

sults for different LazEv resolutions (N100, N118, and N140)
and different SpEC resolutions (L0, L2, L4, and L6).

note that the differences in any of the simulations is much
smaller than the residuals and hence typical noise of the
observations. This shows that the fast response runs per-
formed to simulate BBH (low-medium resolution) are in
an acceptable good agreement with the expected higher
resolution ones at the required level of errors.

Figure 5 displays the two precessing targeted simula-
tions for GW170104 studied in this paper. We compare
them with the L1 and H1 signals in grey and light grey
in the plots. Here we also perform a double test of the
accuracy of the simulations by considering the two main
approaches to solve BBHs by the RIT and SXS groups
and by considering the internal consistency of conver-
gence of the waveforms with increasing resolutions. The
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FIG. 2. For the three nonprecessing UIDs # 1,4,5 in Table II,
matches between SXS, RIT, and SEOBNRv4 (2,2) modes as
a function of fmin, using the H1 PSD characterizing data near
GW170104. We also compare with GT runs for UIDs # 4,5.
Compare to also to similar plots for GW150914 [13].

waveforms again show a good agreement among them-
selves and their differences, shown in the lower panels are
smaller than the residuals of the signals with respect to
the N118 simulations. They are larger than in the aligned
cases due to the choice of the initial spin configurations
at at slightly different reference orbital frequencies. Note
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FIG. 3. For the two precessing UIDs#2,3 in Table II, matches
between SXS, RIT, and SEOBNRv3 (2,2) modes as a function
of fmin as a function of fmin, using the H1 PSD characterizing
data near GW170104. In this comparison, the (2, 2) mode of
all three simulations and SEOBNRv3 are extracted relative
to the L̂ axis, identified from their common initial orbital
parameters. While these frame identifications are coordinate-
dependent for precessing binaries – implying our comparisons
here could include both intrinsic disagreement and systematic
error due to (say) overall misalignment – the good agreement
shown in Figure 1 for the equally coordinate-dependent spins
suggests that convention-dependent sources contribute little
to the mismatches illustrated here.

also that this comparisons do not align the peak of the
waveforms and hence if independently fit to data would
show much smaller differential residuals.

A. Residuals versus resolution

For each UID, direct comparison of our simulations to
the data selects a fiducial total mass which best fits the
observations, as measured by the marginalized likelihood
of the data assuming our simulations. Using the same
mass for all simulations performed for that UID (e.g., by
all groups and for all resolutions), we can for each simula-
tion select the binary extrinsic parameters like event time

UID lnL(RIT) lnL(SXS) lnL(GT) lnL(SEOB) Model

N100 N118 N140 L3 M120 (at NR)

#1 60.4 61.0 61.0 60.9 - 62.7 v4

#2 61.0 60.9 60.6 60.9 - 61.4 v3

#3 60.4 60.5 60.7 60.7 - 60.4 v3

#4 60.6 60.7 60.8 60.3 60.4 62.2 v4

#5 60.0 60.0 60.1 60.0 59.8 61.2 v4

TABLE VII. Marginalized likelihood of the data: This
table shows the results for the 5 simulations when directly
compared to the data. For these results, we use the same PSD
adopted in all other calculations, with fmin = 30Hz (i.e. low-
frequency cutoff). The first column is the UID. The second
column is the estimated peak log marginalized likelihood lnL,
maximized over binary total mass, for the NR followup sim-
ulation. The third column is the corresponding log marginal-
ized likelihood, using exactly the same intrinsic parameters
(e.g., masses and spins) as maximize the likelihood in the sec-
ond column, evaluated using a phenomenological approximate
model instead of numerical relativity. The fourth column is
the specific model used: either SEOBNRv3 (for precessing
simulations) or SEOBNRv4 (for nonprecessing simulations).
To see more on this parameter estimation method, see [14, 15].

and sky location which maximize the likelihood of the
data, given our simulation and mass. Then, using these
extrinsic parameters, we evaluate the expected detector
response in the LIGO Hanford (H1) and Livingston (L1)
instruments. This procedure has been used to recon-
struct the gravitational wave signal for GW150914 [14]
and GW170104 events.

Figure 6 shows an example of these reconstructions for
the highest Log-Likelihood NR waveform (top candidate
in Table VIII and UID#1. The top panel of this figure
shows the NR predicted response in Hanford (blue-red);
the Hanford data (grey); and the Livingston data (in dark
grey; shifted by -2.93ms and sign flipped). The bottom
panel shows the residuals, and the difference between the
two simulations in green. Note that the difference be-
tween waveforms is small compared to the residuals, but
enough to make the simulation in blue (top candidate in
Table VIII) have a slightly higher Likelihood (63.0 vs.
62.5) over UID#1 in red, to match the signals over the
whole range of frequencies considered. The same simula-
tion resolution have been considered in both cases.

We have also analyzed the finite differences errors pro-
duced by fast-response, low resolution (yet in the conver-
gence regime) simulations of BBH mergers. The low,
medium and high resolutions runs, N100, N118, and
N140 respectively, by the RIT group show a nearly 4th
order convergence (There are detailed studies of conver-
gence for similar simulations in Refs. [22, 41, 98]) that
allow to extrapolate to infinite resolution and evaluate
the magnitude of the errors in the waveforms as com-
pared to the residuals for this GW170104 event. We thus
can evaluate the error of the N118 simulation is given by
the (N100-N118) difference, while the error of the N100
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FIG. 4. Comparison of the GW170104 signal seen by LIGO detectors H1 and L1 (in grey and dark grey) with the computer
simulations of black hole mergers from SXS, RIT, and GT approaches for the nonprecessing cases labeled as #1, #4, and #5
in Table II.
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NR Label Sim. ID q = m1
m2

χ1 χ2 lnL lnL(SEOB) Model

Group (at NR)

RIT a d0_D10.52_q1.3333_a-0.25_n100 0.7500 ( 0, 0, 0 ) ( 0, 0, -0.25 ) 63.0 62.5 v4

GT b (0.0,1.15) 0.8696 ( 0, 0, 0 ) ( 0, 0, 0 ) 62.2 61.5 v4

RIT c q50_a0_a8_th_135_ph_30 0.5000 ( 0, 0, 0 ) ( 0.490, 0.283, -0.566 ) 62.5 60.7 v3

BAM d BAM150914:24 0.8912 ( -0.278, -0.605, -0.085 ) ( 0.151, 0.396, 0.017 ) 62.7 61.0 v3

SXS e SXS:BBH:0052 0.3333 ( 0.001, 0.008, -0.499 ) ( 0.494, 0.073, 0.001 ) 62.3 60.4 v3

TABLE VIII. Marginalized likelihood of the data: Selected other simulations: This table shows the results for
several other simulations that particularly match the data well and the SEOB model results at those parameter points. These
simulations are part of the top 15 simulations in lnL. When comparing the NR lnL values here to the ones in Table VII, one
can see these to be generally higher i.e. better match the data. When comparing the NR lnL values to the SEOB at the same
points, one sees a consistent lower SEOB lnL value This implies that these points were not picked for NR Followup due to the
lower SEOB lnL value.

FIG. 5. Comparison of the GW170104 signal seen by LIGO detectors H1 and L1 (in grey and dark grey) with the computer
simulations of black hole mergers from SXS and RIT approaches for the nonprecessing cases labeled as #2 and #3 in Table II.
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UID N100 N118 N140 Total

1 119 184 407 710

2 313 451 557 1321

3 145 217 476 838

4 130 178 565 873

5 67 118 306 491

Total 774 1148 2311 4233

TABLE IX. kSUs (1000 core-hours) for each RIT run and
resolution.

waveform is twice this difference and that of the N140
waveform is half that difference. This is displayed in the
lower half of each panel in Figs. 4 and 5 and provide an
alternative evaluation of the errors within a given NR
method.

The studies carried out in this paper involving 3-
resolutions for each set of parameters well in the conver-
gence regime of the simulations can be very costly from
the resources point of view, totaling over 4 million service
units (SUs) in computer clusters, as detailed in Table IX.

According to the variations in the Table VII that eval-
uates lnL for the different resolutions we may derive as
a rule of thumb that the N100 grid provides a good ap-
proximation for the nonprecessing binaries, while for the
precessing ones, N118 is more appropriate. This leads to
a reduction of the SUs needed for these 5 simulations,
totaling nearly 1 million SUs, two thirds of which are
due to the two precessing cases. The pseudospectral ap-
proach used by the SXS collaboration requires similar
total wallclock times than the above finite differences ap-
proach, but spends an order of magnitude less resources.
For instance, UID#1 (SXS:BBH:0626) required 11 kSUs
for Lev4, 7.4 kSUs for Lev3, and 4.7 kSUs hours for Lev2.

B. Likelihood of NR and models

For any proposed coalescing binary, characterized by
its outgoing radiation as a function of all directions, we
can compute a single quantity to assess its potential sim-
ilarity to GW170104, accounting for all possible ways of
orienting the source and placing it in the universe: the
marginalized likelihood (lnLmarg) [15, 102, 103]. To pro-
vide a sense of scale, the distribution of lnLmarg over the
posterior distribution including all intrinsic parameters
is roughly universal [103], approximately distributed as
lnLmarg,max − χ2/2 where χ2 has d degrees of freedom
(i.e., a mean value of lnLmarg,max − d/2, and its 90%
credible interval is lnLmarg ≥ lnL − x, where x = 3.89
and x = 6.68 for d = 4 and d = 8, respectively). For
each UID and for each proposed total mass M , direct
comparison of our simulations to the data allows us to
compute a single number measuring the quality of fit:
the marginalized likelihood Lmarg. The maximum value
of this function (here denoted by L) therefore measures

the overall quality of fit. Table VII shows lnL for the five
UIDs simulated here. For comparison, the last column
shows L calculated using an approximate model for the
radiation from a coalescing binary. Obviously, if these
approximate models and our simulations agree, then we
should find the same result for lnL at the same parame-
ters. Finally, for context, the peak value of lnL computed
using SEOBNRv3 with generic parameters is 63.3. If our
simulation parameters are well-chosen (and if both our
simulations and these models are close to true solutions
of Einstein’s equations), then this peak value should be
in good agreement with the lnL evaluated using our sim-
ulations.

First and foremost, up to Monte Carlo and fitting
error, the marginalized likelihoods calculated with NR
agree with each other comparing different resolutions and
different approaches to solve the BBH problem, as re-
quired given the high degree of similarity between the
underlying simulations. Second, the marginalized like-
lihoods computed at these proposed points are substan-
tially below the largest L found with approximate models
like SEOBNRv3, except for UID3. Similar to the ex-
planation described in Appendix B, the exception here
is due to the differences between the precessing mod-
els (lnL was calculated with SEOB but the parameters
were suggested with IMRPhenomPv2). Likewise, the bi-
nary parameters at which the peak value of L occurs for
SEOBNRv3 are substantially different from any of the
proposed parameters explored here. This discrepancy
suggests that the model-based procedure that we adopted
to target our followup simulations was not effective at
finding the most likely parameters, as measured with
lnL. The poor performance of our targeted followup can-
not simply reflect sampling error; even though the likeli-
hood surface is nearly flat near the peak, so small errors
are amplified in parameter space, this near-flatness also
insures that systematic offsets should produce a small
change in lnL, if the underlying waveform calculations
agree; see Appendix B for further discussion. Instead,
we suspect the biases in L arise because the models only
approximate the correct solution of Einstein’s equations.
Third, we confirm our hypothesis in Table VIII simply
by demonstrating that other simulations (not performed
in followup) fit the data substantially better than our
targeted parameters.

On the one hand, NR followup simulations guided by
the models (as displayed in Table VII) leads to lower
marginalized likelihoods (lnL). Conversely, other simu-
lations shown in Table VIII produce higher lnL, at points
in parameter space where the models predict lower lnL.
This discrepancy suggest the two processes (lnL evalu-
ated with NR and with the models) favor different regions
of parameter space. In particular, table VIII, which has
one of the largest values of lnL among all of the (roughly
two thousand) simulations available to us, shows that the
top precessing simulation is q50_a0_a8_th_135_ph_30.
This simulation has a mass ratio of 1:2, i.e. q=1/2,
where the smaller hole is nonspinning and the larger hole
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FIG. 6. Comparison of the GW170104 signal seen by LIGO detectors H1 and L1 (in grey and dark grey) with the computer
simulations of black hole mergers from RIT at low resolution for the nonprecessing case labeled as #1 in Table II and the
highest lnL value for an NR simulation given in Table VIII (d0 D10.52 q1.3333 a-0.25 n100).

is spinning with an intrinsic spin magnitude of 0.8 and
pointing initially in a direction downwards with respect
to the orbital angular momentum (θ=135 degrees) and
an angle of 30 degrees from the line joining the two black
holes (φ=30 degrees). This simulation belongs to a fam-
ily of 6 simulations performed in Ref. [104] labeled as
NQ50TH135PH[0,30,60,90,120,150]. Those runs, supple-
mented by two control runs with angles φ = 200, 310
we performed for this paper, are displayed in Fig. 7 ver-
sus the lnL for this GW170104 event. The lower panels
plots all those simulation with respect to their φ-angle at
merger as defined in Ref. [104] and given in table XXI in
that paper. The continuous curve provide a fit (detailed
in table X) for such values as reference and an estimate of
the maximum value located near the phi=30 simulation.

The notable results displayed in Fig. 7, where lnL
seems to be sensitive to the orientation of the spin
of the larger hole on the orbital plane, are consistent
with broader trends that can be extracted using similar
simulations: here, the set of 24 simulations of the
family NQ50TH[30,60,90,135]PH[0,30,60,90,120,150]
given in Ref. [104] supplemented by the two aligned
runs NQ50TH[0,180]PH0 given in Ref. [98] and
two runs specifically performed for this paper,
NQ50TH135PH[200,310]. These simulations all have
q = 1/2, a nonspinning smaller BH, and a spinning BH
with fixed spin magnitude but changing orientation.
Figure 8 shows a color-map derived from the maximum
lnL obtained for each of these simulations, using stan-

φ φmerger lnL Mz/M�

0 0 62.3 54.9

30 19.5 62.5 55.2

60 34.8 62.2 54.1

90 56.5 62.5 54.4

120 98.5 61.6 54.1

150 146.5 60.6 54.5

210 194.7 59.3 55.1

310 294.0 60.4 54.6

A B C RMS

1.23± 0.21 −0.75± 0.15 61.1± 0.15 0.38

Amerger Bmerger Cmerger RMSmerger

1.08± 0.18 −0.47± 0.19 61.1± 0.15 0.37

TABLE X. The log-likelihood of the NQ50TH135 series [104].
Fittings of the form lnL = Asin(π/180φ + B) + C is also
given for both the initial φ and φmerger.

dard (MatLab) plotting tools. The last surface levels
indicates the regions of largest likelihood (60,61,62) and
a maximum, marked with an X, is located at TH=137,
PH=87 with lnL of 62.6. This results allow us to
perform followup simulations seeking for this maximum.
In the plot, the black points are the NR simulations and
the black curves are level sets of the color-map. Instead
of plotting in the angles theta and phi, we plot in the
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FIG. 7. The log-likelihood of the NQ50TH135 series [104]
assuming a period of 2π versus initial angle (top panel) and
merger angle (bottom panel.) Data (red) and fits (blue) are
given in Table X.
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FIG. 8. The log-likelihood of the NQ50THPHI series [104] as
a color map with red giving the highest lnL and blue the
lowest. The black dots (and grey diamonds, obtained by
symmetry) represent the NR simulations and we have used
Hammer-Aitoff coordinates XHA, YHA, to represent the map
and level curves with the top values of lnL = 60, 61, 62. The
maximum, marked with an X, is located at TH=137, PH=87
reaching lnL = 62.6.

−6

−4

−2

0

2

4

6

NR Model

0.50 0.52 0.54 0.56 0.58 0.60 0.62
Time from Wed Jan 04 10:11:58 GMT 2017 [s]

−6

−4

−2

0

2

4

6St
ra

in
[1

0−
22

]

LIGO Hanford

LIGO Livingston

FIG. 9. Comparison of the 90% confidence intervals of
GW170104 from the two precessing models with the com-
puter simulations of black hole mergers (in orange) from the
best-fitting NR simulations listed in Table VIII.

Hammer-Aitoff coordinates [105], which is a coordinate
system where the whole angular space can be viewed
as a 2d map. The points at the top left and bottom
left are the poles, θ = 0 at the top, and θ = π at the
bottom. The line connecting the two is the φ = 0 line.
As you move from left to right, φ increases from 0 to
150 degrees (the maximum value of φ available in these
simulations).

C. Reconstructed NR waveforms

The analysis above – a difference in lnL for models
that should represent the same physical binary which is
comparable to the expected range of lnLmarg over the
posterior – suggests modest tension can exist between our
NR simulations and the models used to draw inferences
about GW170104. To illustrate this tension, in Fig. 9
we display the 90% confidence intervals of the precess-
ing follow up cases (#2 and #3) computed by the two
approximate/phenomenological models comparing them
with the full numerical simulations (RIT’s with N100 res-
olutions, note that increasing the numerical resolutions
to N118 and N140 reinforces this point). For each simu-
lation, the waveform is generated by first fixing the total
mass – selected by maximizing L – and then choosing
extrinsic parameters which maximize the likelihood. At
merger, these reconstructed waveforms appear to be in
modest tension with the confidence interval reported for
h(t); for example, the peaks and troughs of the yellow
(NR) curves are consistently at the boundaries of what
the 90% credible intervals derived from waveforms allow.
This illustration, however, relies on a non representative
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FIG. 10. Distribution of the overall match between each NR
waveform (a,b,c,d,e) listed in Table VIII and the (distribution
of) waveforms produced by model-based parameter inference,
as reported in [91]. Matches are produced for the signal in
H1, L1, and overall. If an NR signal is perfectly consistent
with these models for some parameters, then the distribution
of matches will be well-approximated by a χ2 distribution
with d − 1 degrees of freedom. Many of the best-fitting NR
simulations have a distribution of matches that is significantly
offset relative to this expected distribution, reflecting the mild
tension shown in Figure 9.

metric to assess waveform similarity (i.e, differences in
the GW strain as a function of time, without reference
to detector sensitivity, assessed by eye).

To remedy this deficiency, Figure 10 uses the match
to compare our reconstructed NR waveforms with recon-
structed waveforms drawn from the posterior parameter
distribution of GW170104. The top panel uses a vio-
lin plot to illustrate the distribution of matches, with a
solid bar showing the median value. The bottom panel
shows a sample cumulative distribution. The median
and maximum of this distribution provides a measure
of how consistent the h(t) estimate via NR is with the
distribution provided by the model. Using the maximum
likelihood waveform from the model and posterior, these
distributions should be proportional to a (centrally) χ2

distributed quantity, with median mismatch N/2ρ2 for
N the number of model degrees of freedom and ρ the
signal to noise ratio (SNR), where the specific choice
for ρ depends on the signal and detector/network be-
ing studied (e.g., for GW170104, the network SNR was
' 13) . By contrast, in several of these overlap distribu-
tions, the peak and median values are manifestly offset
downward, supporting a significant systematic difference
between the radiation predicted from our approximate
models and our NR waveforms, each generated from tar-
geted NR followup simulations using parameters drawn
from these selfsame model parameter distributions.

D. Discussion

Using comparisons to data via lnL as our guide, we
found in Section IV B that model-based and NR-based
analyses seem to have maxima (in lnL) in different parts
of parameter space; see Appendix B for greater detail.
In the region identified as a good fit by model-based
analysis, corresponding NR simulations have a low lnL.
Conversely, several NR simulations with distinctly differ-
ent parameters had a larger lnL than the corresponding
targeted NR simulations and model-based comparisons
evaluated at the same parameters. The two functions
lnL, evaluated using models and NR on parameters de-
signed to be similar to and representative of plausible pa-
rameters for GW170104, do not agree, implying system-
atic differences between models and NR (i.e., a change
in lnL ' 2). While we have for simplicity adopted one
procedure which identifies candidate parameters to select
our followup simulations, we emphasize that the specific
procedure is largely arbitrary, as in this work we simply
demonstrate the two marginalized likelihoods (NR and
model-based) disagree somewhere. Changes in the exact
location and value of the marginalized likelihood are of
less interest changes in the full posterior distribution; the
latter subject is beyond the scope of this study.

The NR followup simulations and Bayesian inferences
used in this work were performed soon after the identi-
fication of GW170104, and as such did not benefit from
recent improvements in waveform modeling. Notably, by
calibrating to a large suite of numerical relativity simu-
lations, surrogate waveform models have been generated
that, in a suitable part of parameter space, are markedly
superior to any of the waveform models used for parame-
ter inference to date [106, 107]. Parameter inferences per-
formed with these models should be more reliable and (by
optimizing lnL) enable better targets for NR followup
simulations.

For simplicity and brevity, we have directly compared
our nonprecessing and precessing simulations to only one
of the two extant families of phenomenological wave-
form models (SEOBv3/v4). While the two models are
in good agreement for nonprecessing binaries (SEOB-
NRv4/IMRPhenomD), the other precessing model (IM-
RPhenomPv2) has technical complications that limit its
utility for our study. On the one hand, we cannot
generate a similar waveform with similar initial condi-
tions, preventing us from performing the straightforward
comparisons shown in Figure 3. [As a frequency do-
main model, it did not adopt the same time conven-
tions as NR and time-domain models for the precession
phase (see,e.g., Williamson et al 2017 [108]).] On the
other hand, the implementations available do not pro-
vide a spin-weighted spherical harmonic decomposition,
preventing us from performing the mode-by-mode mis-
match calculations in Table IV.

Previous investigations have demonstrated by exam-
ple that posterior inferences with approximate waveform
models can be biased, even for parameters consistent
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with observed binary black hole [108, 109]. For exam-
ple, a previous large study using simulations consistent
with GW150914 found that, despite the brevity and rela-
tive simplicity of its signal, the inferred parameters could
be biased for certain binary configurations relative to the
line of sight [109], and much less so for others (e.g., non-
precessing and comparable-mass binaries). The relevance
and frequency of these configurations is not yet deter-
mined and depends on the binary black hole population
which nature provides.

V. CONCLUSIONS

After the detection of GW170104 [91], we performed
several simulations of binary black hole mergers, in-
tending to reproduce LIGO’s observations using simu-
lations with similar parameters. The parameters used
were selected based on LIGO’s reported inferences about
GW170104, generated by comparing two approximate
models for binary black hole merger to the GW170104
data. Comparing these targeted simulations of binary
black hole mergers, we find good agreement. We have
shown that the differences among typical numerical sim-
ulations, used as a measure of their error, is much smaller
(by over an order of magnitude) than the residuals of ob-
servation versus theory. On the other hand, we demon-
strate (expected) differences between our numerical so-
lutions to general relativity and the approximate mod-
els used to target our simulations. Because we used
these models to identify candidate parameters for fol-
lowup, our followup simulations were systematically bi-
ased away from the best-fitting parameters. These biases
are not surprising, as the models used do not fully incor-
porate all the physics of binary merger, including higher
modes and all features of precession, and are known to
modestly disagree both with one another and with NR
simulations. This does not mean that the models are not
recovering the full signal: both models and NR could find
similar likelihoods, but for different parameters. These
bias can be particularly large for small mass ratios and
highly spinning precessing binaries. We demonstrate that
other, pre-existing simulations with different parameters
fit the data substantially better than the configurations
targeted by model-based techniques.

We have shown here (and in previous studies [15, 110])
that the standard low resolution, fast-response, simula-
tions provide an accurate description of GW signals, and
can improve over the parameters determined by the mod-
els (See Table VIII and Fig. 7) for precessing and non-
precessing cases (note that while SEOBNRv4 improves
on the inaccurate [13] SEOBNRv2 [111], it is still not at
comparable accuracy to the NR simulations, See Figs. 2-
3, for instance). The tension between the models and the
full numerical simulations (notwithstanding [112]) may
be crucial in determining parameters such as individual
spin of the holes and tests of general relativity for the
large SNR signals, where the limitations of the models is

FIG. 11. This plot shows histograms of the # of simulations
in a given total mass bin of size 10M�, for starting at 20Hz
and for starting at 30Hz with the given total mass. This is
for all the runs in the public SXS+GT+RIT Catalogs [19–21].
The bottom histograms shows how many simulations in the
catalogs can be used from 20Hz or 30Hz from a minimal mass
on, i.e. the cumulative of the upper plot.

larger). Both this study, focused on GW170104, and the
investigation by [108], carried out on GW151226, point
to the limitations of existing models to accurately deter-
mine binary parameters in the case of precessing BBH.

Regarding prospects for future followups, Figure 11
shows the distributions of the minimal total mass of the
BBH systems in the NR catalogs [19–21] given a start-
ing gravitational wave frequency of 20 or 30 Hz in the
source frame and its cumulative. This provides a cov-
erage for the current events observed by LIGO (redshift
effects improve this coverage by a factor of (1+z), where
z is the redshift). Coverage of lower total masses would
require longer simulations or hybridization of the current
waveforms.

Finally, we demonstrated the power of using purely nu-
merical waveforms to determine parameters of a binary
black hole merger as the previous case of GW150914 [103]
and similarly in the case of the source GW170104. More
work is needed though to systematically and robustly in-
clude hybridization of waveforms and the case of generi-
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cally precessing binaries [15].
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B. Szilágyi, Class. Quantum Grav. 33, 165001 (2016),
arXiv:1512.06800 [gr-qc].

[90] M. Boyle, Phys. Rev. D 93, 084031 (2016).
[91] B. P. Abbott et al. (VIRGO, LIGO Scientific), Phys.

Rev. Lett. 118, 221101 (2017), arXiv:1706.01812 [gr-
qc].

[92] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff,
S. Vitale, B. Aylott, K. Blackburn, N. Christensen,
M. Coughlin, W. Del Pozzo, F. Feroz, J. Gair, C.-
J. Haster, V. Kalogera, T. Littenberg, I. Mandel,
R. O’Shaughnessy, M. Pitkin, C. Rodriguez, C. Röver,
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size collection of approximately independent, identically-
distributed samples from a posterior distribution [92]. In
this appendix we briefly quantify the (small) effects our
finite sample size has on our conclusions and compar-
isons. For simplicity, we will conservatively standardize
our calculations to N = 3000 posterior samples; in prac-
tice, usually many more were used.

The match and marginalized likelihood distributions
are well-described by a χ2 distribution with a suit-
able number of degrees of freedom, corresponding to
the model dimension of the intrinsic parameter space
(i.e., d = 4 for calculations which omit precession, and
d = 8 for calculations which include it). For exam-
ple if lnL∗ is the true maximum marginalized likeli-
hood, then the marginalized likelihood distribution over
the posterior is well-approximated by the distribution of
lnL = lnLmax−x/2 where x is χ2 distributed with d de-
grees of freedom. If we have N independent draws from
the χ2 distribution, the smallest value of x will be dis-
tributed according to P (> x|d)N = (1 − P (< x|d))N ,
where P (< x|d) is the cumulative distribution for the χ2

distribution. At 95% confidence, the maximum value of
x over the N samples is therefore P−1(0.051/N ). As a
result, if we estimate the maximum value of lnL with
the maximum over our posterior samples, we find am es-
timate which is smaller than the true maximum value
lnLmax by 0.5P−1(0.051/N ). Evaluating this expression
for d = 4 and d = 8 in the conservative limit of only
N = 3000 samples, we find a systematic sampling er-
ror of 0.045 (0.31) in d = 4 (d = 8), respectively, in
our estimate of the peak marginalized likelihood. This
systematic sampling error in our estimate of the peak
marginalized likelihood is smaller than the differences in
marginalized likelihoods discussed in the text and figures.

Likewise, given the number of samples, the targeted
parameters should be very close to the true maximum
a posteriori values. Qualitatively speaking, due to finite
sample size effects, our estimate of each parameter z has
an uncertainty of roughly σz/

√
N , or roughly 2% of the

width of the distribution using our fiducial sample size.

Appendix B: Mixed messages: Maximum likelihood,
lnL, and a posteriori

One goal of this work is to demonstrate, by a concrete
counterexample, that NR followup must be targeted and
assessed self-consistently.

One source of inconsistency in our original NR followup
strategy was the algorithm by which NR simulations were

selected from model-based inference. Our NR followup
simulations were selected by (approximately) maximiz-
ing the a posteriori probability, proportional to the (15-
dimensional) likelihood L; the (7-dimensional) prior p(θ)
for extrinsic parameters θ; and the (8-dimensional) prior
for intrinsic parameters p(λ). This maximum a poste-
riori (MaP) location does not generally correspond to
the parameters which maximize the likelihood (maxL).
The intrinsic parameters selected by both approaches
also do not cause the marginalized likelihood Lmarg(λ) =∫
dθp(θ)L(λ, θ) to take on its largest value. In principle,

to avoid introducing artificial inconsistencies simply due
to the choice of point estimate, we should have targeted
followup simulations using lnL. To assess how much our
choice of targeting impacted our estimate of lnL, we eval-
uated the marginalized likelihood at our estimates of all
three locations. Each location was approximated by our
(finite-size) set of posterior samples. For the posterior
distribution adopted to generate UID4 – a nonprecessing
production-quality analysis where SEOBNRv4 was both
used to generate the reference posterior used to find the
MaP and maxL parameters and to compute a model-
based lnL– we find that the model-based lnL values at
the MaP and maxL points to be effectively indistinguish-
able due to Monte Carlo error (61.4 and 61.2 respectively,
with an estimated Monte Carlo error of 0.1). This simi-
larity suggests that, when a fully self-consistent analysis
is performed, then even if the MaP and maxL param-
eters differ slightly, they will produce similar values of
lnL, with differences far smaller than the differences be-
tween NR and model-based analysis.

For the reasons described in Section IV D, we consis-
tently adopt SEOB-based models to evaluate our model-
based lnL. Because different phenomenological approx-
imants do not quite agree [108], the posterior distri-
butions used to identify the parameters for UID3 and
5 used an IMRPhenomPv2 (precessing) IMRPhenomD
(nonprecessing) approximant respectively to produce dif-
ferent MaP and maxL parameters. Conversely, to the
extent these models somewhat agree, they should esti-
mate model parameters corresponding to the same val-
ues of lnL. In fact, however, when we evaluate lnL with
SEOBNRv4 on the MaP and maxL parameters of the
posterior used to find UID5, we find both values disagree
with the values seen for UID4, being lower (60.8) and
higher (62) respectively. These differences in lnL clearly
indicate small differences between the two model-based
analyses, comparable to (but smaller than) the differ-
ences seen between model-based analyses and NR.
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