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We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which
the pressure P is related to the total energy density ρ by P = κρ, with κ a constant. We generalize
earlier results for radiation fluids with κ = 1/3 to other values of κ, focussing on κ < 1/9. For
1/9 < κ . 0.49, the critical solution has only one unstable, growing mode, which is spherically
symmetric. For supercritical data it controls the black hole mass, while for subcritical data it
controls the maximum density. For κ < 1/9, an additional axial l = 1 mode becomes unstable.
This controls either the black hole angular momentum, or the maximum angular velocity. In theory,
the additional unstable l = 1 mode changes the nature of the black hole threshold completely: at
sufficiently large initial rotation rates Ω and sufficient fine-tuning of the initial data to the black
hole threshold we expect to observe nontrivial universal scaling functions (familiar from critical
phase transitions in thermodynamics) governing the black hole mass and angular momentum, and,
with further fine-tuning, eventually a finite black hole mass almost everywhere on the threshold. In
practice, however, the second unstable mode grows so slowly that we do not observe this breakdown
of scaling at the level of fine-tuning we can achieve, nor systematic deviations from the leading-order
power-law scalings of the black hole mass. We do see systematic effects in the black-hole angular
momentum, but it is not clear yet if these are due to the predicted non-trivial scaling functions, or
to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in
our theoretical model).

I. INTRODUCTION

Since the pioneering numerical work of Choptuik [1]
on the massless scalar field, Evans and Coleman [2] on
the perfect fluid, and Abrahams and Evans [3] on vac-
uum collapse, it has been know that interesting things
happen at the black hole threshold: the codimension-one
hypersurface in the space of regular initial data that sep-
arates supercritical data which eventually form a black
hole from subcritical data which do not.

What happens there can be summarized as universal-
ity, a self-similar contraction phase during the time evo-
lution, and power-law scaling of quantities such as the
black hole mass with distance to the black hole thresh-
old. An example of this is the famous formula for the
black hole mass M for supercritical data,

M(p) ∼ (p− p∗)γ , (1)

where p is the parameter of a generic two-parameter fam-
ily of initial data, p = p∗ is the critical parameter that
identifies the black hole threshold (we have assumed for
definiteness that a black hole forms for p > p∗), and γ
is the critical exponent. We refer the reader to [4] for a
review and further references to the literature.

In this paper we extend our numerical study of the
critical collapse of rotating perfect fluids with the linear,
ultrarelativistic equation of state P = κρ from the radi-
ation gas case κ = 1/3 (see, e.g., [2, 5, 6]) to other values
of κ, in particular to values 0 < κ < 1/9 (see also [7] for
a study of such fluids in spherical symmetry). We expect
this to be interesting as then the spherically symmetric
critical solution [8, 9] has not one but two growing modes

[10]: the familiar spherical one, plus an axial l = 1 mode
that can be thought of as a spin-up under self-similar
contraction. For κ & 0.49 an l = 2 mode is expected to
become unstable [10], but in this paper we focus on the
l = 1 modes for rotating fluids.

To understand the relevance of a second unstable
mode, first go back to initial data restricted to spheri-
cal symmetry. The critical solution then has only one
unstable mode and hence, assuming linearization stabil-
ity, it must have a finite-sized attracting manifold of
codimension 1. In our matter model, all initial data
either produce a black hole or disperse. Define the
black hole threshold in phase space as the hypersurface
(codimension-1 manifold) which separates the data that
collapse from those that disperse. As the critical solution
neither collapses nor disperses (it is self-similar and pro-
duces a naked singularity), its initial data must lie on the
black hole threshold, and hence the black hole threshold
and the attracting manifold of the critical solution coin-
cide at least near the critical solution. In fact, numerical
results in spherical symmetry indicate that the attracting
manifold of the critical solution is the entire black hole
threshold.

For generic spherically symmetric initial data suffi-
ciently near the black hole threshold, there are then three
phases of the time evolution. In Phase 1, the solution
moves a potentially long distance from its starting point
to near the critical solution. In Phase 2, the solution is
approximated by the critical solution Z∗ plus linear per-
turbations. It leaves this phase when the amplitude of
the single growing perturbation mode Z0 has grown suf-
ficiently large. We normalize Z0 so that this occurs at
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amplitude ±1. The moment when this happens sets an
overall length scale: as Z∗ is a self-similar contraction,
the later Z0 becomes nonlinear, the smaller the scale.
In Phase 3 the evolution is again non-linear, but as the
intermediate Cauchy data at the start of Phase 3 are
universal up to the overall scale, namely Z∗ ± Z0, this
third phase is also universal up to this overall scale and
the sign of Z0: Z∗ + Z0 evolves into a black hole, while
Z∗ − Z0 disperses.

If we now consider generic initial data that are near the
black hole threshold and slightly non-spherical, and if all
non-spherical modes are stable (i.e. for κ > 1/9 in our
matter model), then essentially the same picture holds:
Deviations from spherical symmetry in Phase 1 are small
and can be treated as linear perturbations simply because
they are small in the initial data. They decay further in
Phase 2. At the beginning of Phase 3 we now have data
Z∗ ± Z0 + δ Z1, where Z1 is the most slowly damped
axial l = 1 perturbation mode, and by assumption its
amplitude δ is small. In Phase 3, angular momentum
can then be treated as a linear perturbation of the non-
linear evolution of the spherical data Z∗ ± Z0, right up
to the formulation of a slowly rotating black hole (con-
sidered as a linear perturbation of Schwarzschild). We
normalize Z1 so that J/M2 of the black hole equals δ.
Because Z1 is a decaying mode, δ → 0 as the initial data
are fine-tuned to the black hole threshold, and so the per-
turbative treatment of angular momentum is consistent
in this limit. Our previous work on κ = 1/3 bore out
this theory [5, 6], but we also found that it made quan-
titatively correct predictions up to fairly large values of
J/M2 – an example of the “unreasonable effectiveness”
of perturbation theory.

Consider now the case where both Z0 and Z1 are grow-
ing modes (and there are no others – i.e. for κ < 1/9 in
our matter model). Consider again initial data whose
deviation from spherical symmetry is small enough to re-
main linear in Phase 1. However, the amplitude of Z1

now grows during Phase 2. Therefore, its amplitude at
the end of Phase 2 can become large as we fine-tune the
initial data to the black hole threshold. In [11] one of
us concluded that the final outcome of Phase 3 would
now depend not only the sign in front of Z0, but also
on the value of δ. In particular, we expect that a black
hole forms for |δ| < δ∗ (although the threshold value δ∗
may be infinite) and that J/M2 = FJ/M2(δ) for some
non-trivial “universal scaling function” FJ/M2 [11]. To
linear order we still expect FJ/M2(δ) ' δ, but when Z1

is a growing mode, δ can become large, in which case
higher-order terms in FJ/M2(δ) affect J/M2.

Moreover, if we fine-tune any one parameter in the ini-
tial data to the black hole threshold, we will not fine-
tune the initial amplitudes of both growing modes to
zero, reaching some minimum initial amplitude some-
where near the black-hole threshold. Hence we formally
expect to see a breakdown of scaling sufficiently close to
the black-hole threshold. However, we cannot at the mo-
ment exclude the possibility that the black hole mass and

spin go to zero at the black hole threshold anyway, since
this might still happen if the universal scaling functions
FM (δ) and FJ(δ) for the mass and spin vanish at the
black hole threshold given by δ = δ∗.

With two growing modes, in principle we need to fine-
tune two parameters in the initial data in order to make
the initial amplitudes of Z0 and Z1 small. However, any
initial data which have a reflection symmetry cannot have
angular momentum, and so Z1, which is associated with
angular momentum, cannot arise. Hence if we choose one
of our two parameters (call it q) such that the initial data
have a reflection symmetry for q = 0 but not for q 6= 0,
then we know a priori that setting q = 0 in the initial
data will set the amplitude of Z1 to zero, and we only
need to fine-tune the other parameter (call it p) to also
set the amplitude of Z0 to zero [11].1

II. THEORY

A. The critical solution

For the perfect fluids considered here, the critical solu-
tion is continuously self-similar. The only physical length
scale of this solution can then be expressed as t∗ − t,
where t is the proper time of an observer at the cen-
ter, and t∗ refers to the accumulation event, i.e. the
instant of proper time at which the solution has con-
tracted to zero radius. Any quantity of dimension Ln,
where L represents a length scale, must therefore scale
with (t∗ − t)n. Any non-dimensional quantity becomes
time-independent when expressed in terms of spatial co-
ordinates x that are dragged along with the self-similar
contraction. Symbolically, we may therefore write non-
dimensional quantities associated with the critical solu-
tion as Z∗(x). Since the only length scale t∗ − t depends
on time, the critical solution evidently does not display
any global length scale and is therefore completely scale-
invariant, or continuously self-similar. The length scale
that determines, for example, the mass of black holes
formed in supercritical evolutions is determined by the
time when the solution starts to deviate significantly from
the critical solution, and hence by the growing perturba-
tions of the critical solution.

B. Spherically symmetric one-parameter families
of initial data

We first focus on spherical symmetry and assume that
the (non-rotating) initial data are parameterized by a

1 Another matter model that admits a 2-mode-unstable critical
solution, even in spherical symmetry, is a harmonic map coupled
to gravity [12]. In this model, the amplitude of one of the two
growing modes can be set to zero a priori by maximizing charge
density over mass density in the initial data.
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single parameter p. In spherical symmetry, the critical
solution has exactly one growing mode, which we denote
by Z0(x). Singling out this growing mode, we may ap-
proximate the solution in Phase 2 (near self-similarity)
as

Z(t, x) = Z∗(x) + ζ0(t)Z0(x) + . . . (2)

Linear perturbations that grow on a constant time scale
increase exponentially in the time t. Here, however, the
time scale of growth is the scale of the self-similar solu-
tion, t∗ − t, so that the amplitude ζ0 of the perturbation
satisfies an equation of the form

dζ0
dt
∝ ζ0
t∗ − t

. (3)

Accordingly, the mode grows exponentially in the dimen-
sionless time coordinate

τ := − ln
t∗ − t
ctL0

, (4)

where L0 is an arbitrary fixed length scale, and ct a
dimensionless universal constant. (In the following, we
measure all dimensional quantities in units of L0.) We
may therefore write

ζ0 = P (p)eλ0τ , (5)

where the factor P (p) depends on the initial data, and
where λ0 is the Lyapunov exponent of the one unstable
spherical perturbation. Since P (p) must vanish for the
critical solution parametrized by p = p∗0, where we have
inserted a subscript 0 referring to zero rotation, we may
expand to leading order as

P (p) = C0(p− p∗0) + . . . (6)

The constant C0 depends on the particular one-
parameter family of initial data and its parameterization.
For definiteness, we assume that a black hole forms for
P > 0.

The scale of dimensional quantities formed in near-
critical collapse is determined by the time at which per-
turbations become nonlinear, i.e. when the evolution
transitions from Phase 2 to Phase 3. We normalize the
linear perturbation mode Z0(x) so that the growing mode
becomes nonlinear when ζ0 = ±1. This occurs at a time2

τ] := − ln |P (p)|
λ0

. (7)

The corresponding length scale is

e−τ] =
t∗ − t]
ct

= |P (p)| 1
λ0 . (8)

2 We note that τ] was called τ∗ in our previous papers.
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FIG. 1. Perturbative values of the Lyapunov exponents λ0

and λ1 for perfect fluids with the equation of state (11). The
values for λ0 are taken from [9], while the values for λ1 are
given by (17). The exponent λ1 changes sign at κ = 1/9,
reflecting the fact that the Z1 mode becomes unstable for
κ < 1/9. The values of λ0 are much greater than those of λ1

in this regime, which explains why the effects of Z1 becoming
unstable are difficult to observe in numerical simulations.

In supercritical evolutions, the mass of the black hole that
then forms must be proportional to this length scale, or
more precisely

M ' cM (C0(p− p∗0))
1
λ0 , (9)

where we have inserted the expansion (6), and where cM
is a dimensionless universal constant. Hence the critical
exponent γM for the black hole mass in (1) is the inverse
of the growth rate λ0,

γM =
1

λ0
. (10)

By shifting the origin of τ , we set cM = 1 in the following.
(This leaves ct as a dimensionless universal constant that
we cannot set to one.)

In this paper we focus on perfect fluid matter with the
linear, ultrarelativistic equation of state

P = κρ, (11)

where P is the pressure, ρ the total energy density, and κ
a constant. A radiation fluid, in particular, is described
by κ = 1/3. For such fluids, and for a given value of κ, the
Lyapunov exponent λ0 can be computed by perturbing
the critical solution (see, e.g., [9], as well as Fig. 1.)

It was first observed in [13] that critical scaling occurs
in sub- as well as supercritical evolutions. In our matter
model, by dimensional analysis, the maximum density
attained in subcritical evolutions must scale with the in-
verse square of the length scale (8), so that for subcritical
evolutions we may write.

ρmax ' cρ (C0(p∗0 − p))γρ (12)
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with

γρ = − 2

λ0
, (13)

and cρ another dimensionless universal constant.

C. Two-parameter families of rotating initial data

We now consider rotating initial data, and assume that
these data are analytic and parametrized by two param-
eters p and q. We further assume that, if these data
evolve to form a black hole, the black hole mass M and
angular momentum J obey the symmetries

M(p,−q) = M(p,q), (14a)

J(p,−q) = −J(p,q). (14b)

A sufficient condition for these two assumptions to hold
is that q→ −q corresponds to a spatial reflection of the
initial data. The assumption (14b) implies that initial
data with q = 0 form a non-spinning black hole, but not
that they are necessarily spherically symmetric. In the
following, for simplicity of notation, we restrict to ax-
isymmetry, so that the vectors q and J reduce to their
components along the symmetry axis, which we call sim-
ply q and J .

Generalizing the approximation (2) for rotating data
we now write the evolution in Phase 2 as

Z(x, τ) ' Z∗(x) + ζ0(p, q, τ)Z0(x) + ζ1(p, q, τ)Z1(x)

+(other) decaying modes, (15)

where Z0 is the single growing spherical mode, and Z1 is
either the single growing l = 1 axial mode or the least
damped such mode. In complete analogy to our treat-
ment in Section II B the amplitudes of the modes are
given by

ζ0 = P (p, q)eλ0τ , ζ1 = Q(p, q)eλ1τ , (16)

where τ is again given by (4).
The Lyapunov exponent λ1 can again be determined

from perturbations of the critical solution [10]. Remark-
ably, for a perfect fluid with the equation of state (11),
the result can be expressed in closed form as a function
of κ,

λ1 =
1− 9κ

3 + 3κ
(17)

(see Fig. 1). λ1 changes sign at κ = 1/9, marking the
transition from Z1 being stable and damped for κ > 1/9
to unstable and growing for κ < 1/9.

From (14) we see that the coefficients P and Q must
be even and odd in q, respectively. Hence the equivalent
of (6) must, to leading order, be

Q = C1q + . . . (18)

for some family-dependent constant C1. The black hole
threshold within such a two-parameter family is a curve
in the (p, q)-plane that is symmetric under q → −q, pa-
rameterized by

|q| = q∗(p) ⇔ p = p∗(|q|). (19)

We can fine-tune the initial data to the black hole thresh-
old along any smooth one-parameter family of initial data
that crosses the threshold, in practice by bisection. As
explained above, we can also fine-tune to the attracting
manifold of the critical solution by setting q = 0 and
fine-tuning p to the black hole threshold.

We define the “reduced parameters”

p̄ := C0(p− p∗0) (20a)

q̄ := C1q (20b)

as shorthands. Expanding about p̄ = q̄ = 0, we approxi-
mate

P (p̄, q̄) = p̄−Kq̄2 + . . . , (21a)

Q(p̄, q̄) = q̄ + . . . , (21b)

where K is another family-dependent dimensionless con-
stant. We found in [5, 6] that including the q̄2 term is
essential. Assuming p̄ and q̄2 to be of the same order
of smallness, (21) is a consistent truncation to leading
order.

The parameters p and q stand for any generic parame-
ters of the initial data that obey (14). In our calculations
they will be represented by η, which parametrizes the
overall fluid density, and Ω, which controls the rotation
rate.

D. Evolution near the critical solution

Assume now that P and Q have been chosen small
enough so that, after an initial transition period
(Phase 1), ζ0Z0 and ζ1Z1 can be treated as linear pertur-
bations of Z∗ over some range τ2 . τ . τ] (Phase 2), be-
fore either perturbation has grown too much and the evo-
lution becomes again non-perturbative (Phase 3). The
starting value τ2 of τ depends only weakly on the ini-
tial data (through the length scale of the initial data,
rather than the degree of fine-tuning), and its value does
not matter at this point. (τ = 0 itself has no particular
physical significance, as we have chosen the origin of τ to
make cM = 1.)

From (16), the combination

δ := ζ1|ζ0|−ε, (22)

where

ε :=
λ1
λ0
, (23)
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is independent of τ in Phase 2. It is therefore a suitable
measure of the relative amplitude of the two modes. In
particular, δ is given in terms of the initial data (p, q) by

δ = Q|P |−ε. (24)

Any function of δ would of course also be independent of
τ . The definition (22) is singled out by being odd in q and
to leading order proportional to it. Hence any quantity
that does/does not change sign under a spatial reflec-
tion (such as angular momentum and mass, respectively)
must be odd/even in δ.

Many of the qualitative differences between having one
or two unstable modes are a consequence of ε in (23)
becoming positive when λ1 becomes positive, so that δ
in (24) diverges rather than going to zero as |P | → 0.
For a perfect fluid, however, ε is very small for the entire
range 0 ≤ κ ≤ 1/9, as can be seen from Fig. 1, so that
these effects will be difficult to observe numerically.

E. Scaling laws for two unstable modes and
universal scaling functions

We now derive the scaling laws that follow from the
existence of a Phase 2 given by (15). In contrast to [6]
we allow both λ0 and λ1 to be positive, and in contrast
to [11] we explicitly treat the two unstable modes on an
equal footing. As τ increases, one or both of Z0 and
Z1 will become nonlinear at some τ = τ]. One possible
criterion for this is

ζ20 (τ])

b20
+
ζ21 (τ])

b21
= 1, (25)

where b0 and b1 are two universal dimensionless con-
stants. We extend our convention from the non-rotating
case to normalize the mode Z0(x) so that b0 = 1, that is,
nonlinearity is given by

ζ20 (τ]) +
ζ21 (τ])

b21
= 1, (26)

but we retain a nontrivial value of b1 > 0 in the following.
Adopting this criterion and using (16), τ](p, q) is given
implicitly by

P 2e2λ0τ] +
Q2e2λ1τ]

b21
= 1. (27)

The evolution of the two perturbation modes in the
ζ1ζ0-plane during Phase 2 is represented in Fig. 2 for the
case κ = 0.08. The thin lines show evolution trajectories
in this plane, i.e. lines of constant δ as defined in (22).
As we have λ1 > 0, both modes grow with τ .

Phase 2 ends when the perturbations have grown suf-
ficiently to reach a point on the nonlinearity ellipse (26),
marked by a thick line. The location on the nonlinearity
ellipse can be parametrized by an angle. We can intro-
duce such an angle by identifying ζ0 in (26) with cosα

0.2 0.4 0.6 0.8
Ζ1

-1.0

- 0.5

0.5

1.0

Ζ0

FIG. 2. The ζ1ζ0-plane of linear perturbations of the critical
solution in Phase 2, for κ = 0.08. Only ζ1 > 0 is shown. The
thin colored lines are lines of constant δ = 0.2, 0.4, 0.6, 0.8,
and mark trajectories of the perturbation amplitudes ζ0 and
ζ1 during Phase 2. These trajectories are realistic because
they depend only on the known parameter ε ' 0.0150. The
thick curve is a schematic representation of the nonlinearity
ellipse (26). As we do not know the true values of the pa-
rameters b1 and (s∗, δ∗), we have arbitrarily assumed b1 = 0.9
and (s∗, δ∗) = (+1, 0.8). Data on the red segment of the non-
linearity ellipse form a black hole in Phase 3, while data on
the green segment disperse. Any initial data that go through
a Phase 2, and hence show critical scaling, must have initial
values for (ζ1, ζ0) inside the nonlinearity ellipse. Hence evolu-
tions that start Phase 2 in the red shaded region form a black
hole in Phase 3, while evolutions that start Phase 2 in the
green shaded region disperse in Phase 3.

and ζ1/b1 with sinα. In Fig. 2, we also schematically
show the nonlinearity ellipse in ζ1ζ0-plane. The shape of
the nonlinearity ellipse is only schematic as we do not
currently know the true value of b1. Therefore we have
simply assumed a value that makes for a clear plot and is
not in conflict with our numerical results. (By contrast,
we do have a theoretical for the value of ε, which alone
determines the shape of the trajectories.)

We may now express the Cauchy data at the start of
Phase 3 of the evolution in two pieces, a scale-invariant
part parameterized by α,

Z = Z∗ + cosαZ0 + b1 sinαZ1, (28)

together with an overall length scale given by e−τ] . From
(22) we see that the angle α is related to δ by

δ = b1 sinα |cosα|−ε . (29)

The range −∞ < δ < ∞ corresponds to the range
−π/2 < α < π/2 for P > 0, and separately to the range
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FIG. 3. The Ωη-plane of initial data for κ = 0.08. The
coloured dots and triangles represent super and subcritical
data points, respectively, in our one-parameter families of
initial data, color-coded as in Table III. The thin coloured
curves represent δ = 0.2, 0.4, 0.6, with the same color-coding
as in Fig. 2. The black parabola is the curve δ = ∞. As
discussed in the text, these curves are approximately realis-
tic. We also schematically show which initial data would go
through a Phase 2 and form a black hole (red shading), or go
through a Phase 2 and disperse (green shading), for the arbi-
trarily assumed values b1 = 0.9, δ∗ = 0.8 (as in Fig. 2), and
τ2 = 1.9. As discussed in the text, the fact that the black-
hole threshold is approximately a parabola out to Ω = 0.3,
shows that δ∗ must be at least as large as assumed here, that
is δ∗ > 0.8, and the fact that we still see scaling near the
black-hole at Ω = 0.3 shows that the combination eλ1τ2/b1
cannot be much smaller than assumed here.

π/2 < α < 3π/2 for P < 0. There is, however, a one-
to-one correspondence between values of the angle α and
values of the pair (s, δ), where s = ±1 is the sign of P ,
or equivalently the sign of ζ0.

Dimensional analysis now shows that any dimension-
less quantity related to Phase 3 can only depend on the
dimensionless angle α, but not on the length scale e−τ] .
In particular, and most importantly, whether Phase 3
forms a black hole or disperses can depend only on α.
In the special case of spherical symmetry, we have that
α = 0 results in a black hole, while α = π results in dis-
persion. We also know that perturbing spherically sym-
metric data with a sufficiently small amount of angular
momentum does not change the final outcome (collapse
or dispersion). Hence there must be a universal constant
0 < α∗ < π (depending on the equation of state parame-
ter κ) such that Phase 3 forms a black hole precisely for
−α∗ < α < α∗ (the red part of the nonlinearity ellipse
in Fig. 2), and disperses otherwise (the green part of the
nonlinearity ellipse.) This in turn means that for initial
data sufficiently close to both the black hole threshold
and q = 0 for the evolution to have a Phase 2, the final

outcome (collapse or dispersion) in Phase 3 depends only
on α(p, q) given by (29) with (24).

Furthermore, the dimensionless quantities J/M2 (for
supercritical data) and ωmax/

√
ρmax (for subcritical

data) can only depend on α; that is, there must exist
universal scaling functions Fω/√ρ and FJ/M2 such that

J

M2
' FJ/M2(α), −α∗ < α < α∗, (30a)

ωmax√
ρmax

' Fω/√ρ(α), otherwise. (30b)

Here ρmax is the maximum over the entire spacetime of
the central density ρc, and ωmax is the maximum of the
central angular velocity ωc defined below in Sec. III C.

Finally, any dimensional quantity characterizing
Phase 3 must be given by a suitable power of the length
scale e−τ] , times a universal scaling function of α. For
supercritical evolutions these quantities include the black
hole massM and angular momentum J , while for subcrit-
ical evolutions they include the maximum values taken
by the central fluid density ρc and the central angular
velocity ωc. Hence we must have

M ' e−τ]FM (α), (30c)

J ' e−2τ]FJ(α), (30d)

ρmax ' e2τ]Fρ(α), (30e)

ωmax ' eτ]Fω(α), (30f)

where obviously FM and FJ are defined only for −α∗ <
α < α∗ and Fρ and Fω for the complementary range of

α, and where FJ/M2 = FM/F
2
J and Fω/√ρ = Fω/

√
Fρ.

We could express α∗ in terms of the pair (s∗, δ∗). Simi-
larly, we could replace the angle α as the argument of the
universal scaling functions F by the pair (s, δ), but this
would then require a pair of scaling functions F±(δ). An-
other disadvantage of using (s, δ) is that, at P = 0, δ is
not a smooth parameter. By contrast, α can be smoothly

continued across P = 0, with α ± π/2 ' b
−1/ε
1 P , and

across Q = 0, with α ' b1Q and π − α ' b1Q.
FM and Fρ must be even functions of α (or δ), while

Fω, FJ , Fω/√ρ and FJ/M2 are odd. Hence at α ' 0

(δ ' 0 with P > 0), and using our previous conventions,
to leading order we must have

FM ' 1, (31a)

FJ ' δ ' b1α, (31b)

FJ/M2 ' δ ' b1α, (31c)

while at α ' π (δ ' 0 with P < 0), we must have

Fρ ' cρ, (31d)

Fω ' cωδ ' cωb1(π − α), (31e)

Fω/√ρ '
cω√
cρ
δ ' cω√

cρ
b1(π − α), (31f)

where we have defined the shorthands cρ := Fρ(δ = 0)
and cω := dFω/dδ(δ = 0). (In contrast to Fig. 2, these
curves are not trajectories, as the time evolution of our
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initial data does not stay within our family of initial
data.) Fig. 3 shows theoretical curves of constant δ in
the Ωη-plane of initial data for the two-parameter fam-
ily of initial data described below, for κ = 0.08. Note
that, in contrast to the ζ1ζ0-plane in Fig. 2, these curves
are not trajectories, as the time evolution of the initial
data does not remain within our two-parameter family of
initial data. To compute δ, we have used the definition
(24) of δ in terms of P and Q, together, with the leading-
order approximations (21) of P and Q in terms of Ω and
η, the known values of λ0 and λ1, and the numerically
fitted values of the family-dependent parameters η∗0, C0,
C1 and K. Hence theses curves of constant δ are realis-
tic approximations. In the same figure, we also show the
one-parameter (sub)families of initial data by which we
have explored our two-parameter family. This juxtaposi-
tion gives rise to constraints on δ∗ and b1 as follows.

First, the observed black-hole threshold in the Ωη-
plane is to good approximation a parabola out to Ω = 0.3.
This means it is indistinguishable from what our pre-
diction for the black-hole threshold would be for δ∗ =
∞. To make this more quantitative, we have plotted
what the predicted black-hole threshold would be for
(s∗, δ∗) = (+1, 0.8) (the same arbitrary assumption we al-
ready made in Fig. 2). This hypothetical threshold turns
up sharply just beyond Ω = 0.3, and so is marginally
compatible with our numerical observations, giving a
hard constraint of δ∗ ≥ 0.8 on δ∗. However, the spe-
cific value δ∗ = 0.8 we have chosen Figs. 2 and 3 is for
schematic illustration only.

Second, the region in the Ωη-plane in which scaling is
observed provides a (much less clear-cut) constraint on
b1. As before, we let τ2 be the value of τ at the beginning
of Phase 2. This value depends on the family of initial
data, and within the family should depend smoothly on
the initial data, and in particular varying little over data
near the black-hole threshold. Then the condition that
the evolution at τ2 is still within the nonlinearity ellipse
is that

P 2e2λ0τ2 +
Q2e2λ1τ2

b21
< 1. (32)

Hence data with (P,Q) that obey this condition will ad-
mit a Phase 2 and hence will be in the critical scaling
regime. For given values of τ2 and b1, this defines an
ellipse in the QP -plane, and hence a deformed ellipse in
the Ωη-plane.

In Fig. 3 we have chosen arbitrary values τ2 = 1.9 and
b1 = 0.9 (the latter the same as in Fig. 2) that show the
shape of this region clearly, while still being compatible
with our observations of scaling at Ω = 0.3. From this
figure we see that the combination eλ1τ2/b1 of τ2 and b1
cannot be much smaller than we have assumed here in
order to make the shaded region extend all the way to
Ω = 0.3.

We stress again that the values of (s∗, δ∗), b1 and τ2
in Figs. 2 and 3, while compatible with our numerical
observations, have been chosen primarily to give clear

0.1 0.2 0.3 0.4 0.5 0.6
Ζ1

-1.0

- 0.5

0.5

1.0

Ζ0

FIG. 4. The ζ1ζ0-plane of linear perturbations of the critical
solution in Phase 2, for κ = 1/3. The thin colored lines are
lines of constant δ = 0.1, 0.2, . . . , 0.6, and mark trajectories
of the perturbation amplitudes ζ0 and ζ1 during Phase 2. We
have used the known value ε ' −0.178, and hence these curves
are realistic. The thick curve is a schematic representation
of the nonlinearity ellipse (26). As we do not know the true
value of b1, we have arbitrarily assumed that b1 = 0.51, giving
δmax ' 0.4. Data on the red segment of the nonlinearity
ellipse form a black hole in Phase 3, while data on the green
segment disperse. Trajectories enter the nonlinearity ellipse
across the blue segment. To show critical scaling, a time
evolution must go through a Phase 2, that is, there must be
an interval where it can be represented by a trajectory inside
the nonlinearity ellipse. Hence evolutions that start in the
red shaded region show scaling during Phase 2 and form a
black hole in Phase 3, while evolutions that start in the green
shaded region show scaling during Phase 2 and disperse in
Phase 3. Note that the trajectories, and hence the boundary
of the shaded regions, are only schematic outside the ellipse,
as the evolution is non-perturbative there.

schematic plots of the shaded regions.

F. Review of the case of one unstable mode

At this point, it may be instructive to revisit the case
ε < 0 of a single unstable mode in the light of our nota-
tion for ε > 0. There are several important qualitative
differences.

First, Eq. (27) shows that for λ1 < 0, τ] → ∞ as
P → 0 for any value of Q. This means that we can
achieve arbitrarily small length scales e−τ] with sufficient
fine-tuning of P alone.

Second, (24) with ε < 0 implies that δ → 0 as the black
hole threshold is approached and the approximations (31)
become increasingly accurate.

Third, as illustrated by Fig. 4 for the case κ = 1/3,
there is a trajectory in each quadrant of the ζ1ζ0-plane
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W
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Η

FIG. 5. The Ωη-plane of initial data for κ = 1/3. We show
the curves δ = 0.1, 0.2, . . . , 0.6, with the same color-coding as
in Fig. 4. We also show the one-parameter families of initial
data used in [6], color-coded as in Fig. 2 of [6]. (All these
data are supercritical, and hence represented by dots.) The
black hole threshold is at P = 0, that is at δ = 0 (thick
black line). As discussed in the text, these curves are approx-
imately realistic. We also schematically show the region of
initial data space in which we would expect to see scaling un-
der the arbitrary assumptions that b1 = 0.1 (as in Fig. 4) and
τ2 = 1.8. Any smaller value of b1 would give a smaller δmax

and would therefore be ruled out by the observation that we
observe values of δ ' J/M2 up to 0.4 in the scaling regime.

that just touches the nonlinearity ellipse ζ20 + (ζ1/b1)2 =
1. A simple calculation shows that in the upper right
quadrant the touching point is at α = αmax given by

αmax := arccot
√
−ε, (33)

and similarly in the other three quadrants. (For given
b1, αmax defines an equivalent δmax.) Hence in the range
αmax < |α| < π − αmax trajectories enter the nonlinear-
ity ellipse, rather than leaving it. Therefore, α∗ is not
defined for ε < 0. Rather, black holes form if and only
if ζ0 > 0, that is P > 0, as illustrated in Fig. 4. The
nonlinearity ellipse in this figure is only schematic, as we
do not know the true value of b1. For plotting, we have
made the arbitrary assumption b1 = 0.51, which, from
(33) and (29), yields δmax ' 0.4. As we observed values
of J/M2 up to 0.4 in the scaling regime, and we approx-
imate J/M2 ' δ in the case of a single unstable mode,
our assumed value of b1 is just compatible with our ob-
servations, and we must have the constraint b1 ≥ 0.51.

Trajectories with |δ| > δmax miss the nonlinearity el-
lipse altogether, meaning that there is no Phase 2 and
hence no critical scaling. However, if we extrapolate the
linear perturbation picture beyond its assumed region of
validity to the entire ζ1ζ0-plane, then evolutions with ar-
bitrarily large |ζ1| will eventually enter the nonlinearity
ellipse and go through a Phase 2, provided that |ζ0| is

sufficiently small, namely that |δ| < δmax. It is natural
to assume that the linear perturbation picture is still a
qualitatively correct description of the full nonlinear dy-
namics. This is assumed in Figs. 4 and 5 in extending
the shaded regions beyond the original ellipses.

If the attracting manifold of the critical solution were
identical with the entire black hole threshold in the space
of initial data, we would see critical scaling in the time
evolution of all data that are sufficiently close to the black
hole threshold, even though very far from initial data for
the critical solution.

There is good numerical evidence that in spherical
symmetry, for various types of matter, the attracting
manifold of the critical solution is indeed the entire black-
hole threshold, including initial data which are very far
from the critical solution. Beyond spherical symmetry,
this assumption can be true only in some local sense. To
construct an obvious counterexample, a two-parameter
family of axisymmetric initial data could consist of two
blobs of fluids (rotating for q 6= 0) well separated along
the symmetry axis, each of which might show critical
phenomena, but separately at different threshold values
of p. However, in a (potentially large) neighborhood of
spherically symmetric initial data we expect the pertur-
bative phase space picture to be a qualitatively correct
model of the full phase space picture, that is, as far as
the attracting manifold of the critical solution extends
as a smooth submanifold of the space of initial data, its
codimension must be given by the number of its unsta-
ble perturbation modes of the critical solution. Further
away, it could end or change dimension in an unsmooth
manner, for example in a caustic.

For the non-rotating scalar field this was shown in [27]
(although their results also seem to indicate a second,
non-spherical, unstable mode) and for the non-rotating
radiation fluid in [21]. We leave to future work the
question how far the attracting manifold of the spher-
ical critical solution extends into the space of initial data
also for rotating perfect fluids (for the equations of state
1/9 < κ . 0.49 where the critical solution has a single
unstable mode).

G. Breakdown of scaling at sufficient fine-tuning

Returning now to the case of two unstable modes, by
contrast, we have λ1 > 0. Now, from Eq. (27), τ] → ∞
requires that P and Q are both fine-tuned to zero. This
is consistent with the observation that, in the presence
of two unstable modes, the attracting manifold of the
critical solution has codimension two. Conversely, for any
Q > 0, the length scale will remain finite even when P is
fine-tuned to zero. Eq. (27) gives τ](P,Q) only in implicit
form, but we can obtain a rough explicit approximation
by assuming that one of the two terms on the left-hand
side of (27) always dominates, giving(

e−τ]
)
' max

(
|P | 1

λ0 , |Q/b1|
1
λ1

)
. (34)
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In practice, we cross the black hole threshold on one-
parameter families of initial data on which Q remains
finite but on which P changes sign. For such families we
then have (

e−τ]
)
min
' |Q/b1|

1
λ1 . (35)

Equivalently, along such families we expect a breakdown
of scaling when P is small enough such that the second
term on the left-hand side of (27) dominates, that is ap-
proximately for

|P | < |Q/b1|
1
ε . (36)

Note, however, that the existence of a minimum of
the overall length scale e−τ] does not necessarily imply
that M , J , ρmax and ωmax are finite on the black hole
threshold. Our theoretical model does not tell us the
behaviour of the scaling functions F (α) at α∗. Any or all
of them could vanish there, or be finite. If they all vanish,
this may mask the formal existence of the minimum of the
overall length scale e−τ] given by (35), although scaling
would still break down, unless the scaling functions also
approached zero as a power of |α| − α∗.

H. Leading-order power laws at the black hole
threshold

Returning to our discussion of the case of two unsta-
ble modes, it is possible that the black hole threshold
occurs at P = 0, i.e. δ∗ = ∞ and α∗ = π/2. This is
not a given, however, and in this section we will discuss
the form of leading-order power laws at the black hole
threshold without making this assumption, in contrast
to [11].

For α∗ 6= π/2, or equivalently δ∗ 6= ∞, a generic one-
parameter family of initial data crosses the black hole
threshold at nonzero Q and P (giving a finite δ = δ∗).
However, because ε is so small, this will happen at a very
small value of P , and it will be difficult to distinguish the
point on a one-parameter family of initial data where it
crosses the black hole-threshold at |P | = |Q/δ∗|1/ε from
the point where P = 0 occurs. A different way of saying
this is that near the black hole threshold α changes very
quickly along any generic one-parameter family of initial
data, so that α∗ [or equivalently (s∗, δ∗)] is difficult to
determine from the location of the black hole threshold,
see Fig. 3.

In principle it would be possible to determine the uni-
versal constants α∗ and b1 and the universal scaling func-
tions F (α) directly by evolving the one-parameter family
of initial data (28) at the beginning of Phase 3. This,
however, requires knowledge of the functions Z∗, Z0 and
Z1 in a gauge adapted to our code, which we currently
do not have. We instead evolve fine-tuned generic ini-
tial data, which, we assume, ultimately evolve into (28).
This means that in testing our theoretical model against
numerical data such as M(p, q), we have to fit α∗, b1 and

the F (α), as well as (necessarily) the family-dependent
functions P (p, q) and Q(p, q).

As a way around our ignorance of α∗, we slightly recast
the theory in a way that relates more directly to observa-
tion, and in particular uses the fact that, in contrast to
P and Q, the black hole threshold p = p∗(|q|) is directly
observable. We note that the scaling laws (30) do not
change their form if we replace τ] as a measure of overall
scale with

τ[ := τ] + y(α). (37)

In particular, we choose y(α) to be defined implicitly by

e−λ0τ[ := P̃ := P − s∗
( |Q|
δ∗

) 1
ε

= P

[
1− ss∗

( |δ|
δ∗

) 1
ε

]
.

(38)
As defined before, s is the sign of P and (s∗, δ∗) is an
alternative parameterisation of α∗, so that s∗ = 1 for
0 < α∗ < π/2 and s∗ = −1 for π/2 < α∗ < π. At the
same time, instead of either α or δ we use

δ̃ := Q|P̃ |−ε (39)

as the argument of our scaling functions. This guaran-
tees that P̃ = 0 and δ̃ = ∞ at the black-hole threshold
(s, δ) = (s∗, δ∗). In the limit δ∗ = ∞ (or α∗ = π/2) we

recover P̃ = P and δ̃ = δ. It is easy to derive an explicit
expression for δ̃(δ, s∗, δ∗) and an algebraic equation giv-
ing y(α) implicitly, but their exact forms do not matter
here.

We may therefore write our scaling formulas as

M ' e−τ[ F̃M (δ̃), (40a)

J ' e−2τ[ F̃J(δ̃), (40b)

ρmax ' e2τ[ F̃ρ(δ̃), (40c)

ωmax ' eτ[ F̃ω(δ̃). (40d)

For |δ| � δ∗, Eq. (38) gives P̃ ' P , and hence τ] ' τ[
and δ̃ ' δ. The leading-order expressions for the F̃ (δ̃) at

small δ̃ are therefore the same as for the original scaling
functions at small δ, Eqs. (31).

Given a two-parameter family of initial data, the values
of the family-dependent constants C0 and C1 are then
fixed by imposing the conventions F̃M = 1 and dF̃J/dδ̃ =

1 at δ̃ = 0. The sign of C0 is fixed by the convention that
at q = 0 black holes form for P > 0.

For any one-parameter family of initial data that
crosses the black hole threshold at P̃ = 0 but Q 6= 0,
at the point (p∗, q∗), we have, from Eqs. (20) and (21),

P̃ ' C0(p− p∗) +KC2
1 (q2∗ − q2)

' C0(p− p∗) + 2KC2
1q∗(q∗ − q), (41)

that is, to leading (linear) order P̃ is simply the distance
to the black hole threshold, a directly observed quantity.

In theory, we pay a price for this convenient re-
parameterization. For example, if M is actually finite
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at the black hole threshold, F̃M must diverge there to
compensate the fact that e−τ[ vanishes there. However,
we do not see any indication of a breakdown of scaling
in any of M , J , ρmax or ωmax at the level of numerical
fine-tuning we can achieve, and so the parameterization
of our initial data in terms of P̃ and δ̃ has no downside
in our applications.

We note that the expressions (40) do not form power-
law scaling laws yet. However, for Q not too large and
P̃ not too small, we will have small δ̃ (or δ), and so we
can use (31) to obtain the leading-order power laws

M ' P̃ γM , (42a)

J

Q
' P̃ γJ , (42b)

ρmax ' cρ(−P̃ )γρ , (42c)
ωmax

Q
' cω(−P̃ )γω , (42d)

where we have identified the critical exponents

γM =
1

λ0
, (43a)

γJ =
2− λ1
λ0

, (43b)

γρ = − 2

λ0
, (43c)

γω = −1 + λ1
λ0

. (43d)

(We assume again the convention that a black hole forms

for P̃ > 0.) Eqs. (42) generalize the scaling law (1) to
rotating configurations. We also see that, in this limit,
the dimensionless quantities become

J

M2
' QP̃−ε, (44a)

ωmax√
ρmax

' cω√
cρ
Q(−P̃ )−ε. (44b)

III. NUMERICS

A. Numerical Code

We employ a numerical code that solves Einstein’s
equations, expressed in the BSSN formalism [14–16], in
spherical polar coordinates (details of our implementa-
tion can be found in [17, 18]). The code makes no sym-
metry assumptions, and handles the coordinate singular-
ities using a reference-metric formalism [19, 20] together
with a proper rescaling of all tensorial quantities.

For the simulations presented in this paper we adopt
axisymmetry, simply by setting all derivatives with re-
spect to the azimuthal angular variable ϕ to zero, and
by using the smallest possible number of grid points in
the ϕ-direction. We also impose equatorial symmetry be-
tween the two hemispheres, and resolve one hemisphere

with a very modest number of Nθ = 12 angular grid
points. Since all functions depend on angle much more
weakly than on radius, we expect that the resulting nu-
merical error is still relatively small (see Fig. 7 in [21] for
a demonstration). We use Nr = 312 radial grid points,
which are allocated logarithmically (see Appendix A in
[21]), so that the ratio between the size of the innermost
and the outermost grid cells is about 0.0021. During the
evolution we compute a typical length-scale of the so-
lution at the origin from l = (ρ/∂2rρ)1/2, and compare
this length-scale with the size ∆r of the innermost radial
grid-cell. When ∆r/l exceeds a certain tolerance (typi-
cally set to 0.05) we re-grid, meaning that we move the
outer boundary to a smaller location, and interpolate all
grid-functions to a new grid with the same grid number
and logarithmic cell distribution. We re-grid up to 10
times, moving the outer boundary from 72 (in our code
units) to a minimum value of 12 in equal fractions. This
ensures that the center of the simulations remains out-
side of the domain of dependence of the outer boundary
for sufficiently long for a black hole to settle down (see
Fig. 6 below).

As in [5, 6] we carry out our simulations with a 1+log
slicing condition for the lapse α [22] as well as the version
of the Gamma-driver condition [23] presented in [24] for
the shift vector βi.

B. Initial Data

We adopt the same two-parameter family of initial data
as in [5, 6], except that we now allow for a general κ
in the equation of state (11). Specifically, we set up a
momentarily static spherically symmetric fluid ball with
a Gaussian density distribution, centered on the origin,
and parametrized by the central density η (see Eq. (6)
in [5]). We then endow this fluid with an angular veloc-
ity parametrized by Ω (see Eq. (7) in [5]) and solve the
Hamiltonian and momentum constraints iteratively until
the solution has converged to a desired tolerance. The
parameters η and Ω are our specific instantiations of the
parameters p and q used in Section II. Accordingly the
amplitude of Z1 must vanish for Ω = 0.

We also set the shift to zero initially, and choose a
“pre-collapsed” lapse α = ψ−2, where ψ is the conformal
factor.

C. Diagnostics

We monitor a number of different quantities during our
evolutions.

For supercritical evolutions we locate apparent hori-
zons [25] and measure their irreducible mass Mirr and
angular momentum J (see [26]). After a horizon is first
formed, it grows for some time, as the newly formed black
hole accretes more mass, but ultimately settles down to
an equilibrium. From these equilibrium values of Mirr
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FIG. 6. The horizon mass M and angular momentum J ,
divided by their maximum values, as a function of coordinate
time, which agrees with the proper time t∞ as measured by
a static observer at infinity. We denote with tAH the time
at which a horizon is first detected. We show examples for
κ = 1/3 and κ = 0.08, both for Ω = 0.3, and both for cases
in which M is approximately 0.024 in our code units (namely
η = 1.0507 for κ = 1/3 and η = 0.596693 for η = 0.08). For
larger values of κ, the horizon mass and angular momentum
change less after they are first formed, and settle down faster
than for smaller values of κ.

and J we determine the Kerr mass

M = Mirr

(
1 +

1

4

(
J

Mirr

)2
)1/2

. (45)

For radiation fluids with κ = 1/3 we found that the
black hole masses increase by perhaps 10% or so af-
ter they are first formed, and that they settle down to
equilibrium values rather quickly. For smaller values of
κ, however, the black holes increase significantly more,
and it also takes them significantly longer (measured in
proper time at infinity), to settle down. In Fig. 6 we show
examples for κ = 1/3 and κ = 0.08, both for Ω = 0.3 and
both for cases in which the horizon mass settles down to
approximately 0.024 (in our code units). This behavior
makes it considerably more challenging to analyze super-
critical simulations for softer equations of state. Fig. 6
also shows that the black hole mass and angular mo-
mentum appear to decrease slightly after having passed
through a maximum. This is a numerical artifact that
is related to the finite numerical resolution of the black
holes. The effect is more noticeable for smaller black
holes, and contributes to the error in determining the
black hole parameters in particular close to the black
hole threshold. In practice, we adopt the maximum val-
ues of the black hole mass and angular momentum as our
best approximations.

The scaling of the black hole angular momentum is

mirrored by a characteristic of subcritical evolutions,
namely the maximum angular velocity. In the axisym-
metric spacetimes considered here, a gauge-invariant
measure of angular velocity is

ω :=
ξaua
ξaξa

=
uϕ
gϕϕ

, (46)

where ξ = ∂/∂ϕ is the rotational Killing vector, and ua is
the fluid four-velocity. We evaluate ω for the fluid world-
line at the center, r = 0. For the initial data at t = 0, ω
defined above agrees with the parameter Ω of the initial
data.

IV. NUMERICAL RESULTS

From our two-parameter family of initial data with
density parameter η and angular velocity parameter ω,
we consider both “vertical” sequences for constant Ω,
along which we vary η, and “horizontal” sequences for
constant η, along which we vary Ω. These families appear
as vertical and horizontal lines in Figs. 3 and 5, which il-
lustrate the regions of parameter space that we explore
for κ = 0.08 and κ = 1/3, respectively. Along each one
of these sequences we locate the black hole threshold,
and record M and J for supercritical data, as well as
ρmax and ωmax for subcritical data. Most of our horizon-
tal sequences are at constant η > η∗0, but we also take
one horizontal sequence with constant η < η∗0, which
does not cross the black-hole threshold. The black hole
threshold itself is approximately given by the parabola

C0η∗ ' K(C1Ω∗)
2 (47)

(compare [5, 6]) for the ranges of η and Ω that we have
examined, even though small deviations can be seen in
Figs. 3 and 5 for large values of Ω.

A. Overview of different κ

1. Non-rotating data

For non-rotating data with Ω = 0 we have Q = 0
and hence, from (24), δ = 0, independently of κ. For
this special vertical sequence we may therefore adopt the
power-law scalings (42) with

P ' C0(η − η∗0) (48)

from Eqs. (20a) and (21a) for any κ. The power law (42a)
therefore becomes

M(η, 0) ' (C0(η − η∗0))
γM (49)

while (42c) becomes

ρmax(η, 0) ' cρ (C0(η∗0 − η))
γρ . (50)
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Fitting our numerical data to these scalings determines
the coefficients C0, cρ as well as the critical exponents
γM and γρ, which we tabulate in Table I.3 We find that
our values agree to within a few percent with both an-
alytical [9] and previous numerical results [7], and that
γρ = −2γM within our estimated error, as expected from
(43).

Several factors contribute to the error in our data. In
addition to the finite-difference error in our numerical
simulations, including the uncertainties in determining
the black hole mass and angular momentum (see the dis-
cussion above), there is also some ambiguity in what data
to include in the fits to the power laws (42). Data too far
away from the black hole threshold will no longer obey
the power laws, while data too close will be affected more
strongly by the finite-difference error for the very small
structures formed during the collapse. This ambiguity
alone leads to changes in the critical exponents of about
a few percent, which we therefore adopt as an estimate
of the error in our numerically determined critical expo-
nents.

We next analyze both vertical and horizontal sequences
for rotating data.

2. Rotating data

For κ > 1/9, we expect that, in the vicinity of the
black hole threshold, all characteristic variables can be
described by the power-law scalings (42). We approxi-
mate

P̃ ' C0(η − η∗) (51)

on our vertical sequences,

P̃ ' KC2
1 (Ω2 − Ω2

∗)' 2KC2
1Ω∗(Ω− Ω∗) (52)

on horizontal sequences with η > η∗0,

P̃ ' C0(η − η∗0)−K(C1Ω)2 (53)

on horizontal sequences with η < η∗0, and on all of these

Q ' C1Ω. (54)

Inserting these expressions into (42) we can make fits
to our data to obtain the critical exponents (43) together
with the threshold parameters η = η∗(Ω) and Ω = Ω∗(η).
We list our results in Table I. As expected, the threshold
data lie approximately on the parabola (47).

From eqs. (43) we see that we can also compute
“heuristic” values of λ0 and λ1 from the numerically de-
termined critical exponents. For supercritical data we

3 For these particular fits we fitted ρ
−1/2
max and ω−1

max to find expo-
nents −γρ/2 and −γω , which are listed in Table I. The former
in particular can then be compared directly with γM .

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ω

−0.8

−0.6

−0.4

−0.2

0.0

0.2

λ
1

κ = 0.08

κ = 0.1

κ = 0.2

κ = 1/3

κ = 0.5

FIG. 7. Theoretical and heuristic values of λ1. The crosses,
plotted at Ω = 0, represent the theoretical values given by
(17). Filled circles (triangles) represent the results from
power-law fits for the supercritical (subcritical) data tabu-
lated in Table I. Open triangles represent dynamically deter-
mined values, obtained from fits to (57) and (58) for near-
critical evolutions. The subcritical and dynamical heuristic
values agree well with the theoretical values for small Ω (and
often cannot be distinguished in the figure). The supercritical
heuristic values appear to overestimate λ1, but, as discussed
in the text, are also affected by a larger error. The heuristic
values for λ1 appear to be smaller than the theoretical ones
for larger Ω, in particular for soft equations of state with small
κ. As discussed in the text, several sources of error contribute
to the uncertainty in these numbers, which therefore should
be taken as estimates only.

find

λ0 = 1/γM (55a)

λ1 = 2− γJ/γM . (55b)

while for subcritical data we find

λ0 = −2/γρ (56a)

λ1 = 2γω/γρ − 1, (56b)

The resulting heuristic values for λ0 and λ1 are also in-
cluded in Table I.

We have found qualitatively similar effects for all κ >
1/9, but, for concreteness, will focus on κ = 0.2 here.

For small Ω, we find good agreement of all exponents
γ with the respective analytical values. Conversely, the
heuristic values for λ0 and λ1 agree well with the theo-
retical ones. We note that the results for λ1 have a larger
relative error, when compared with the analytical values,
than the exponents γ. This can be understood from the
fact that λ1 is relatively small, but, in (55b) and (56b),
is computed from the difference of two numbers of or-
der unity. Assuming that each γ has a relative error of
5%, say, will result in an absolute error in λ1 of about
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Subcritical Data Supercritical Data

Fixed parameter Critical value −γρ/2 −γω λ0 λ1 γM γJ λ0 λ1

κ = 0.5 0.4774 0.1061 2.095 -0.778 0.4774 1.326 2.095 -0.778

Ω = 0 η = 1.09588 0.475 – 2.11 – 0.484 – 2.07 –

Ω = 0.01 η = 1.0959 0.476 0.103 2.05 -0.789 0.497 1.31 2.01 -0.636

Ω = 0.1 η = 1.0991 0.488 0.103 2.05 -0.789 0.486 1.28 2.01 -0.634

Ω = 0.3 η = 1.1248 0.482 0.109 2.07 -0.774 0.497 1.30 1.97 -0.616

κ = 1/3 0.3558 0.1779 2.811 -0.5 0.3558 0.8895 2.811 -0.5

Ω = 0 η = 1.01833 0.356 – 2.81 – 0.358 – 2.79 -0.415

Ω = 0.01 η = 1.01836 0.356 0.171 2.81 -0.519 0.357 0.862 2.80 -0.415

Ω = 0.1 η = 1.02198 0.358 0.173 2.79 -0.517 0.356 0.861 2.81 -0.419

Ω = 0.3 η = 1.05058 0.360 0.189 2.78 -0.475 0.361 0.898 2.77 -0.487

κ = 0.2 0.2614 0.203 3.825 -0.222 0.2614 0.581 3.825 -0.222

Ω = 0 η = 0.86926 0.264 – 3.79 – 0.265 – 3.78 –

Ω = 0.01 η = 0.86930 0.265 0.197 3.78 -0.257 0.264 0.561 3.79 -0.125

Ω = 0.1 η = 0.87381 0.264 0.187 3.79 -0.292 0.265 0.575 3.78 -0.170

Ω = 0.3 η = 0.90830 0.269 0.185 3.72 -0.312 0.271 0.628 3.69 -0.317

κ = 0.1 0.1875 0.1932 5.333 0.03 0.1875 0.3693 5.333 0.03

Ω = 0 η = 0.62203 0.192 – 5.21 – 0.190 – 5.26 –

Ω = 0.01 η = 0.62210 0.193 0.194 5.18 0.005 0.189 0.360 5.29 0.095

η = 0.6236 Ω = 0.049849 0.197 0.178 5.08 -0.01 0.190 0.377 5.26 0.016

Ω = 0.05 η = 0.62361 0.196 0.178 5.10 -0.09 0.190 0.381 5.26 -.005

Ω = 0.1 η = 0.62825 0.197 0.156 5.07 -0.21 0.192 0.409 5.21 -0.13

Ω = 0.3 η = 0.67234 0.198 N/A 5.05 N/A 0.192 0.430 5.21 -0.24

κ = 0.08 0.174 0.189 5.75 0.086 0.174 0.333 5.75 0.086

Ω = 0 η = 0.54302 0.176 – 5.68 – 0.174 – 5.75 —

η = 0.54309 Ω = 0.009809 0.179 0.186 5.59 0.039 0.172 0.319 5.81 0.145

Ω = 0.01 η = 0.54309 0.183 0.193 5.46 0.055 0.173 0.317 5.78 0.167

η = 0.5447 Ω = 0.04922 0.191 0.166 5.24 -0.13 0.174 0.337 5.75 0.063

Ω = 0.05 η = 0.54475 0.183 0.162 5.46 -0.11 0.174 0.341 5.78 0.040

Ω = 0.1 η = 0.54982 0.178 0.169 5.61 -0.05 0.178 0.353 5.61 0.017

Ω = 0.3 η = 0.59669 0.189 N/A 5.29 N/A 0.178 0.389 5.61 -0.18

TABLE I. For each value of κ we list, in bold face, the analytical values of λ0 (from [9]) and λ1 (Eq. (17)) in the same row.
For κ = 0.08, no analytical value for λ0 is available, but, from interpolation, we approximate this value to be about 5.75. Also
listed in these rows are the critical exponents γ as computed from (43) obtained from fits to the expressions (40). All other rows
contain our numerical data for the critical exponents γ for the corresponding values of κ. From these, we compute heuristic
values of λ0 and λ1 from Eqs. (56) for subcritical data or (55) for supercritical data. Entries N/A indicate that the fits were
too poor to provide an accurate estimate for the critical exponents (see, e.g., Fig. 12 below). We list three significant digits for
all numerically determined exponents, even though we estimate their relative errors to be on the order of a few percent.

0.15 when computed from supercritical data, and about
0.05 when computed from subcritical data. Our data are
within this range, at least for small Ω. Consistent with
these estimates we find that, for small Ω, our heuristic
values for λ1 agree quite well with the theoretical values
when computed from the subcritical data, but are some-
what larger than the theoretical values when computed
from the supercritical data. We also show these results in
Fig. 7, where supercritical (subcritical) data are shown
as filled circles (triangles), and the theoretical values as
crosses.

Interestingly, however, we find that the fitted critical

exponents change slightly when we increase Ω. For γρ
and γM these changes are quite small, and it is not clear
whether they can be distinguished from numerical er-
ror. For γω and γJ , however, the changes are somewhat
larger, and they appear to increase, for a given Ω, with
decreasing κ. For a radiation fluid, with κ = 1/3, we
also found a small increase in γJ with Ω (see Table I in
[5]), but all changes were well within the estimate of the
numerical error. For κ = 0.2, the changes become more
noticeable, with both γω and γJ increasing for larger Ω.
Correspondingly, we find that the heuristic values of λ1
also appear to change with Ω. For both subcritical and
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FIG. 8. The central density ρc (upper panel) and central
rotation rate ωc (lower panel) for subcritical evolution close
to the black hole threshold as a function of central proper time
t, for κ = 0.2. Time advances to the left, as t approaches the
time t∗ of the accumulation event. The solid and dashed lines
are numerical data, while the dotted lines are the fits (57)
and (58) for the evolution during Phase 2. For comparison,
we show the fit for Ω = 0.01 scaled up by a factor of 30 in Ω to
Ω = 0.3, using the same heuristic λ1 and dω (the dash-dotted
line). This shows that over the dynamical range of t∗− t that
we see here, the increase in Ω appears to affect an overall scale
in ω more than its scaling power.

supercritical data we found that the heuristic values of
λ1 decrease with increasing Ω, i.e. become more negative.
This trend can also be seen in Fig. 7.

We note that [27] also reported that, in non-spherical
deformations of critical collapse with a scalar field, the
critical exponent as well as the period of the discretely
self-similar critical solution depend on the size of the de-
formation (see their Table I).

To our surprise we found that, at least for modest val-
ues of Ω, the above scaling laws model data quite accu-
rately even for κ < 1/9. In the presence of two unsta-
ble modes, when λ1 > 0 and hence ε > 0, we can no
longer assume that δ → 0 at the black hole threshold
(see Eq. (24)). Accordingly, we are now probing the scal-
ing functions for potentially large δ, so that the leading-
order approximations (31) for the scaling functions may
no longer apply, meaning that we also can no longer
assume the power-law scalings (42) to hold. Neverthe-
less, we found surprisingly good agreement, especially if
heuristic values are adopted for λ1 which, as for κ > 1/9,
decrease with increasing Ω.

3. Determination of λ1 from time evolution

As an alternative approach to estimating an “effec-
tive” value of λ1 we also examined the time evolution
of the central density ρc and central angular velocity ωc
for near-critical initial data. Two examples, for κ = 0.2
with Ω = 0.01 and Ω = 0.3, are shown in Fig. 8. In the
upper panel we show the evolution of the central density.
We plot the data as a function of t∗ − t, where t∗ is the
proper time of the accumulation event, so that time ad-
vances from right to left in the figure. The three phases
of the evolution, which we described earlier, are clearly
visible. In Phase 1 the data approach the critical solu-
tion. During Phase 2, the evolution follows the critical
solution. On dimensional grounds, the density must be
approximated by

ρc(t) ' dρ (t∗ − t)−2 (57)

with dρ a universal constant during this part of the evo-
lution. Fits to this scaling are included as the dotted
line in the upper panel of Fig. 8. Phase 2 ends when per-
turbations of the critical solution become large; for the
subcritical evolutions shown in Fig. 8 the density drops
below that of the critical solution. This is clearly visible
in the left part of the figure.

The central rotation rate ωc, shown in the lower panel
of Fig. 8 would, from dimensional analysis alone, be ex-
pected to scale as (t∗− t)−1. In addition, however, it also
grows or decays with the mode Z1 as expλ1τ ∝ (t∗−t)λ1 .
It should therefore be approximated by

ωc ' Qdω (t∗ − t)−1+λ1 . (58)

with dω a universal constant. In practice, we can now
fit ρc during Phase 2 to the fit (57); this determines dρ
and t∗. We then adopt this value of t∗ in a fit of ωc to
(58). This allows us to determine λ1 from the dynami-
cal data. Admittedly these results for λ1 have a signif-
icant error. One significant source of error is the time
window over which the fits are performed, which should
be restricted, of course, to Phase 2. We can nevertheless
obtain estimates for λ1, and interestingly these estimates
are consistent with our observations based on the critical
exponents described above.

The examples shown in Fig. 8 are for κ = 0.2 with
(η,Ω) = (0.86930346, 0.01), and (0.9082978, 0.3). The
fit (57) for ρ captures properties of the unique critical
solution, and therefore takes the same shape for both
evolutions shown in the figure. For ω we can also iden-
tify an evolution well approximated by the fit (58) during
Phase 2; however, even in the figure we notice that the
two curves have a slightly different slope. For Ω = 0.01
our fits suggest λ1 = −0.23, while for Ω = 0.3, we ob-
tain λ1 = −0.33. These values are quite similar to those
obtained form the power-law fits to γρ and γω discussed
above, and listed in Table I.

Using similar fits we estimated effective dynamical val-
ues of λ1 for different values of κ and Ω; they are shown as
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parameter status

λ0 = 1/γM ' 5.78

cρ ' 0.0065 universal but fitted

cω ' 0.144

ε = λ1/λ0 ' 0.015

λ1 = 7/81 ' 0.0864198 exact value used

C0 ' 0.0004

C1 ' 2.15 family-dependent

K ' 0.00006

TABLE II. The parameters used in computing the theoretical
fits for κ = 0.08 in the following figures.

fixed parameter critical parameter color

η = 0.543 all subcritical orange

Ω = 0 η∗ ' 0.54302320 black

Ω = 0.01 η∗ ' 0.5430926 grey

η = 0.54309 Ω∗ ' 0.009809 purple

Ω = 0.05 η∗ ' 0.54475323 cyan

η = 0.5447 Ω∗ ' 0.049219789 red

Ω = 0.1 η∗ ' 0.54981506 blue

Ω = 0.3 η∗ ' 0.59669136 green

TABLE III. Overview of the one-parameter sequences of data
evolved for κ = 0.08. The grey and purple, and the cyan
and red, families respectively cross the black hole threshold
at almost the same points. The critical values are used to
evaluate ln |P̃ | on the horizontal axes of the following figures.
We will plot supercritical data as filled circles, and subcritical
data as filled triangles.

open triangles in Fig. 7. In general, the trends discussed
above appear to hold. The dynamical estimates for λ1
agree quite well with those obtained from subcritical fits
(filled triangles in Fig. 7). For small Ω, we also find
good agreement with the theoretical values (17), shown
as crosses in Fig. 7. For larger values of Ω however, the
effective values appear to be smaller than the theoretical
values. The changes are larger for smaller values of κ; in
particular, for κ = 1/3 and 0.5 any changes appear to be
well within the error of the data.

B. Example κ = 0.08

As a specific example of rotating collapse with κ < 1/9,
we focus on κ = 0.08 in the remainder of this Section.
Even though we do not have an analytical value for λ0
for this value of κ, it seems to be a good compromise be-
tween two competing effects: for smaller κ, the numerical
simulations become increasingly challenging (see Section
III C above), and for larger κ, closer to 1/9, ε becomes
smaller.

We start by determining the different family-
dependent parameters from the different power laws.

Specifically, we initially determine η∗0 and C0 from M(η)
at Ω = 0, C1 from J(η,Ω) at small Ω, and K from the
shape of the black hole threshold. We then fit to the
expressions (42). From these fits we determine the criti-
cal exponents as well as the threshold parameters η∗ and
Ω∗. The estimated values of the universal parameters
for κ = 0.08, and of the family-dependent parameters
of our two-parameter family of initial data are given in
Table II. Our one-parameter sequences of data, together
with their critical parameter values and color-codings are
given in Table III. In all of the following plots we will
denote supercritical data with filled dots and subcritical
data with filled triangles.

1. Limits on α∗

As mentioned above, we have hidden our ignorance of
α∗ [or (δ∗, s∗)] by using a degeneracy between the over-
all scale τ and the scaling functions F . This means that
we will not be able to obtain information about α∗ di-
rectly from the scaling laws. However, we do get a lower
bound on δ∗ from the fact that the black-hole threshold is
approximately a parabola in the entire region of the Ωη-
plane that we have surveyed, as follows. In Fig. 3 we have
plotted contours of δ, assuming that the leading-order ap-
proximations (21) are exact, and using our numerically
determined values of C0, C1 and K. We see that for any
value of |δ∗| < 0.8 the black hole threshold would look
qualitatively different, with the parabola either turning
up at a sharp corner into an essentially vertical line (for
0 < δ∗ < 0.8), or even turning sharply down into an es-
sentially vertical line (for −0.8 < δ∗ < 0). We do not
observe either behavior in the region of parameter space
we have explored, and so we know that δ∗ > 0.8, with
either sign of s∗ possible. (This lower limit on |δ∗| corre-
sponds to an upper limit on |α∗ − (π/2)|, but that limit
also depends on the unknown value of b1.)

2. Leading-order power laws

We test the expected leading-order scalings (40) in
Figs. 9 through 12. We plot data and predictions for
M , J/Ω, ρmax and ωmax/Ω against ln |P̃ |.

The first thing that stands out is how good the leading-
order power-law fits (with the exact λ1 and the leading-
order approximations to the scaling functions) are for
most of our data. We do see some clear deviations from
the power laws far from the black hole threshold (towards
the right), where we have numerical data only for the
Ω = 0 (black) and Ω = 0.3 (green) sequences. We are
content to dismiss these as the theory breaking down far
from the black hole threshold.

We do not see any clear systematic deviation close to
the black hole threshold (towards the left) that would
indicate nontrivial universal scaling functions for M or ρ.
We do, however, see that the numerical data for both J
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FIG. 9. Leading-order scaling of the black-hole mass M . The
colored dots show numerical results for lnM , plotted against
ln P̃ . P̃ (Ω, η) has been computed from (51) for vertical se-
quences and from (52) for horizontal sequences. The param-
eters and color codings are given in Tables II and III. The
solid black line is the theoretical prediction.
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FIG. 10. Leading-order power-law scaling of the black hole
angular momentum divided by the initial angular velocity,
J/Ω. The solid line black line shows the theoretical prediction
given by the theoretical value λ1 = 7/81 (see Table II), while
the dotted colored lines show theoretical predictions with ad-
hoc values of λ1 = 0.017 and −0.18 for the vertical sequences
Ω = 0.1 (blue) and Ω = 0.3 (green).

and ωmax at large initial angular momentum, namely for
Ω = 0.1 (blue) and Ω = 0.3 (green), are both lower and
steeper than the theoretical predictions. As discussed
above, in the context of Table I for different equation
of state parameters κ, both effects can be captured by
assuming, in a purely heuristic manner, that an effective
value of λ1 decreases with increasing Ω. We show this
in Figs. 10 and 12 in the dashed theoretical lines. For
the supercritical data we find good agreement assuming
heuristic values of λ1 = 0.017 for Ω = 0.1 and λ1 = −0.18
for Ω = 0.3; the same values as those listed in Table I.
(Note that we have not adjusted the value of C1.)

Finally, the data for Ω = 0.3 (green) do no longer ap-
pear to follow a power law. The departure from a power
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FIG. 11. Leading-order power-law scaling of the maximum
central density ρmax, now for the subcritical halves of the same
sequences of initial data, and hence plotted against ln(−P̃ ).
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FIG. 12. Leading-order power-law scaling of the maximum
central angular velocity, divived by the initial angular velocity,
ωmax/Ω. The dotted coloured lines use the same heuristic λ1

as in Fig. 10.

law is very clearly visible for ωmax, but is also present in
M , J and ρmax. We have no plausible theoretical inter-
pretation for this behavior. It is possible that these data
are sufficiently far away from the critical solution that
predictions based on linear perturbations of the critical
solutions fail, but we also cannot rule out that this behav-
ior represents a numerical artifact. Accordingly, we did
not list values for γω in Table I for Ω = 0.3 and κ < 1/9.

3. Breakdown of scaling?

We do not see any breakdown of scaling. To get a least
some idea whether we should expect one at our level of
fine-tuning, we replace the condition (36) for scaling to

break down by |P̃ | < |Q/b1|1/ε. We do not know the
value of b1, but Fig. 13 shows that this latter condition is
not met for any of our initial data as long as b1 > 1. (We
have used the exact value of λ1 in ε here. For a smaller
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FIG. 13. Our initial data in the QP̃ -plane. As |P̃ | becomes

very small near the black-hole threshold, we plot ln |P̃ | rather

than P̃ . Different one-parameter sequences of initial data are
colour-coded as in Table III, with dots denoting supercritical
data and triangles subcritical data. The solid curves are given
by |P̃ | = |Q/b1|1/ε, for b1 = 0.03, 0.1, 0.3 and 1 (from left to

right). Hence all our data obey |P̃ | > |Q/b1|1/ε for b1 ≥ 1.

but still positive heuristic λ1 even more fine-tuning would
be required, while for λ1 < 0 we do not expect scaling to
break down at all.)

4. Beyond leading order

As we discussed above, our numerical data can be fit
to power laws (42) quite well, at least for modest values
of Ω, but these fits require adopting heuristic and Ω-
dependent values of the Lyaponov exponent λ1. We now
ask whether, alternatively, the observed behavior of the
numerical data can be explained by higher-order terms in
the scaling functions F̃J(δ̃) and F̃ρ(δ̃). In the following we
will therefore adopt the theoretical value λ1 = 7/81 (see
Eq. (17)) and will examine deviations of the numerical
data from power laws.

To see the deviations from the leading-order power
laws more clearly, we plot the ratio of the observed quan-
tities over the predicted leading-order power law. For
example, plotting M/P̃ γM should give F̃M . This is illus-
trated in Figs. 14 through 17. In these figures we again
show ln |P̃ |, that is logarithmic distance from the black
hole threshold, on the horizontal axis. In contrast to the
previous plots, where we showed all our data points, we
now restrict to ln |P̃ | < −12 to discard the data furthest
from the black hole threshold.

Fig. 14 shows that the deviations of M from the
leading-order power law are at the level of a few per-
cent (after removing data which are far from the black
threshold), so that we would not be able to distinguish
these deviations from numerical error. The smallness of
the deviation is consistent with P̃ (η,Ω) being well ap-
proximated by C0(η− η∗) and KC2

1 (Ω2
∗−Ω2) on vertical

and horizontal sequences, respectively, and at the same
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FIG. 14. Black hole masses M with the expected leading-
order power law taken out, plotted against ln P̃ . We have cut
off data far from the black hole threshold, where the devia-
tions from the expected power law are large (compare Fig. 9).

è
è è è èèèè

è
è è èèèèè

è èèè

è
è èèèèè

è è èèèè è è èè
è

è è

è
è èèèèèè

è
è èè

è
è è èèèèè è è èèèèèèèèè è

è

è
è è èèè

è è è èèèèè

è
è

è

è

è

èèèèèèèèèèèèèèèè
èè

è
è

è

èèèèèèèèèèèèèèèèèèè
è

èèèèèèèè

- 26 - 24 - 22 - 20 -18 -16 -14

0.4

0.6

0.8

1.0

1.2

lnH P L�

HJ�
W

L�H
J�

W
L po

w
er

la
w

FIG. 15. Values of J/Ω with the expected leading-order power
law taken out.

time F̃M (δ̃) being well approximated by its leading-order
term, namely 1. It is of course possible that both approxi-
mations are violated with the violations largely cancelling
out, but this seems implausible.

For ρmax, the deviations are significantly larger
(Fig. 16), and larger again for J (Fig. 15) and ωmax

(Fig. 17). It is possible that these deviations are caused
by higher-order terms in the scaling functions. However,
for ρmax there seems to be no clear systematic effect, and
it may be that the deviations from unity can be explained
by numerical error at large fine-tuning (and small scales),
and by a breakdown of our theory at Ω = 0.3 far from
the black hole threshold.

For J/Ω and ωmax/Ω there does seem to be a system-
atic effect. We find that these quantities are systemati-
cally smaller than our leading-order power law prediction
with increasing Ω.

To investigate these possible systematic effects in the
black hole angular momentum (for supercritical data)
and maximal central angular velocity (for subcritical
data), we now focus on the related dimensionless quanti-
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FIG. 16. Maximum densities ρmax with the expected leading-
order power law taken out, plotted against ln(−P̃ ).
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FIG. 17. Values of ωmax/Ω with the expected leading-order
power law taken out.

ties J/M2 and ωmax/
√
ρmax. These quantities can be

measured directly, unlike the ratios between measure-
ment and leading-order prediction shown in Figs. 14
through 17. Moreover, J/M2 and ωmax/

√
ρmax should

depend on δ̃ only. The results are shown in Figs. 18 and
19 (colored dots and triangles). The horizontal axis is
again logarithmic distance to the black hole threshold.
Note that to leading order we expect J/M2 ' δ̃, and

ωmax/
√
ρmax ' (cω/

√
cρ) δ̃.

Our first observation is that both J/M2 and
ωmax/

√
ρmax depend strongly on the sequence of initial

data, but very little on distance to the black hole thresh-
old within each sequence. Consistently with that, we find
that the two pairs of one horizontal and one vertical se-
quence intersecting on the black hole threshold (grey and
purple, cyan and red) are very close to each other.

The reason for this is simply that ε' 0.015 is small, as
we see by also plotting δ̃, as computed from (39) with the
approximations (51) through (54) (solid colored lines).

While δ̃ increases towards the black hole threshold (to-
wards the left), it does so very slowly for the degree of
fine-tuning we can achieve.
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FIG. 18. Numerical values of J/M2 (dots), δ̃ as computed

from (39) with the theoretical value of λ1 (solid lines), δ̃ with
the heuristic values of λ1 for Ω = 0.1, 0.3 (dotted lines), and

the heuristic fit (59) for F̃J/M2(δ̃) (dashed lines), all plotted

against ln P̃ .
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FIG. 19. Numerical values of ωmax/
√
ρmax (triangles),

(cω/
√
cω) δ̃ with the theoretical value of λ1 (solid lines) and

the heuristic values of λ1 for Ω = 0.1, 0.3 (dotted lines), all

plotted against ln(−P̃ ). For clarity, we have restricted the
plotting range so that the solid green line (at δ ∼ 1.5) is
outside the frame).

As a consequence, modulo numerical error, each ver-
tical one-parameter sequence of initial data gives us es-
sentially only a single point when we plot our estimates
of F̃J/M2 and F̃ω/√ρ against δ̃ in Figs. 20 and 21. Given

that F̃J/M2 has to be an odd function in δ̃, a reasonable
attempt at such a fit is

F̃J/M2(δ̃) ' δ̃ − (0.1) δ̃3 − (0.6) δ̃5, (59)

shown as the dashed line in Fig. 20. We have compro-
mised between using the two fitting parameters to im-
prove the fit of the lower-angular momentum sequences
(gray, purple, cyan, red), and a very rough fit of the two
high-angular momentum sequences (blue, green). The re-
sulting theoretical predictions are also included as dashed
colored lines in Fig. 18.
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FIG. 20. Numerical values of J/M2 (dots), δ̃ (solid black line)

and the heuristic fit (59) for F̃J/M2(δ̃) (dashed black line), all

plotted against δ̃.
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FIG. 21. Numerical values of ωmax/
√
ρmax (triangles) and

(cω/
√
cρ)δ̃ (solid black line), all plotted against δ̃.

Plotting ωmax/
√
ρmax against δ̃ does not give a consis-

tent F̃ω/√ρ(δ̃) at all, see Fig. 21. The orange sequence

is well fitted by F̃ω/√ρ = δ̃, as are the gray/purple se-

quences (which effectively only contribute one point). By
contrast, the cyan/red, blue and green sequences (each
contributing effectively only one point) completely dis-
agree with this, even if we use the heuristic values of λ1
for Ω = 0.1, 0.3.

Besides “heuristic” values of λ1 and non-trivial scaling
functions, another possibility for making the theoretical
values for J and ωmax agree better with our simulations
is to go to the next order in Q(q, p), that is

Q(Ω, η) ' C1 Ω
[
1 + C2 (η − η∗0) + C3 Ω2

]
. (60)

Recall that we consider Ω2 and η − η∗0 as being of the
same order of smallness. We have now expanded Q to
O(Ω3) and, as before, P to O(Ω2). In particular, in a
first step we might hope to find a value of C3 that would
improve the agreement of J/M2 and ωmax/

√
ρmax for Ω =

0.1 and Ω = 0.3 with the predicted values. However,

the fit for these four data points cannot be improved
by a single consistent choice of C1, even roughly: the
relative deviations for Ω = 0.3 are not 9 times larger
than those for Ω = 0.1, and the relative deviations of
J/M2 and ωmax/

√
ρmax are not the same. Hence this

refinement of the theory on its own also does not appear
to be promising.

Of course, all attempts to improve the agreement be-
tween numerical results and the predicted scaling assume
that the evolution still goes through a phase II. In accor-
dance with our earlier discussion, it is possible that, for
κ < 1/9 and sufficiently large Ω, this is no longer the
case.

V. CONCLUSIONS

We have studied the critical collapse of a rotating per-
fect fluid for different values of the equation of state pa-
rameter κ, generalizing our earlier results for the radia-
tion fluid defined by κ = 1/3. Varying κ is interesting
because, for κ < 1/9, we expect the self-similar critical
solution to have two, rather than one, unstable modes.
Moreover, the second mode is controlled by angular mo-
mentum in the initial data, and in turn controls angular
momentum in the final outcome. We have generalized
the theory to accommodate this second unstable mode
in a manner that treats both growing modes on an equal
footing.

With two growing modes, we expect qualitatively dif-
ferent behavior near the black hole threshold. This is
because the attracting manifold of the critical solution,
which is codimension 2 in the space of initial data, is now
only a submanifold of the black hole threshold, which is
always codimension 1. Hence by fine-tuning a generic
one-parameter family of initial data to the black-hole
threshold, we cannot set both growing modes to zero.
In particular we have two key expectations:

1. A break-down of the well-known power-law scalings
at sufficient fine-tuning, at some minimum scale set by
the position along the black-hole threshold (distance from
the attracting manifold of the critical solution).

2. The modification of the leading-order power laws
by universal scaling functions.

We have also performed numerical simulations of the
collapse of rotating perfect fluids. For supercritical evo-
lutions we measure the black hole mass M and angular
momentum J , while for subcritical evolutions we intro-
duce the maximum central rotation rate ωmax as a diag-
nostic for critical collapse. The latter mirrors the scaling
of the black hole angular momentum J similar to how
the maximum central density ρmax mirrors the scaling of
the black hole mass M (see [13]).

We find that M and J as well as ρmax and ωmax are
well approximated by power-laws, for κ > 1/9 as well
as κ < 1/9, at least as long as the initial rotation rate
Ω is sufficiently small. In particular, we do not observe
the minimum scale discussed above. Unless b1 � 1 in the
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non-linearity ellipse (26), this is not in contradiction with
the theory, basically because the second unstable mode
grows much more slowly than the first one. Observing
the minimum scale would require significantly better fine-
tuning than we can currently afford.

We do observe some apparently systematic deviations
from power-law scaling for the black hole angular momen-
tum J (in supercritical evolutions) and maximal angular
rotation rate ωmax (in subcritical evolutions). However,
our numerical observations do not give us enough data
points to make quantitative predictions about hypothet-
ical scaling functions, and our subcritical data do not
seem to define a consistent scaling function for ωmax.

An alternative, but at the moment purely heuristic ap-
proach, is to assume that the Lyapunov exponent of the
second unstable mode takes heuristic values that decrease
with increasing initial rotation rate. This might be justi-
fied by nonlinear effects, but modeling these would go far
beyond our current theoretical model. We note that [27]
found similar changes in Lyapunov exponents in the as-
pherical collapse of massless scalar fields. However, while
[27] reported that large deformations render an aspheri-
cal l = 2 mode unstable, we find that larger Ω makes the
aspherical l = 1 more stable.

In summary, our numerical results are in agreement
with the theory, but so far we have been unable to make
quantitative predictions about key elements of the theory,
including the scaling functions. We believe that three
different approaches could improve this in future work.

First, the universality of the scaling functions we have
fitted could be tested by carrying out numerical evolu-
tions of one or more other two-parameter families of ini-
tial data. The same applies for the universality of the
conjectured heuristic values of λ1. It would be inter-
esting to examine two-parameter families of initial data
which, at q = 0, have zero angular momentum but are

not spherically symmetric, and we should test the hy-
pothesis that, for κ > 1/9, critical scaling is seen for any
initial data sufficiently close to the black-hole threshold,
including rapidly spinning data.

Second, the hypothesis of a minimum scale could be
tested by much better fine-tuning to the black hole
threshold. This requires higher numerical resolution,
which could be achieved either with more sophisticated
re-gridding schemes, or perhaps a gauge condition that
makes the coordinate system shrink approximately with
the critical solution, or adaptive mesh-refinement.

Third, the universal scaling functions could be deter-
mined directly by evolving a single one-parameter fam-
ily of initial data, consisting of the critical solution with
the two unstable perturbations in different ratios, at an
amplitude that is just about to become nonlinear, see
Eq. (28). This will require constructing initial data for
the critical solution and its perturbations. Success in this
approach would mean that we had fewer free parameters
to fit and so would make our theory more predictive.

A key theoretical prediction is that exactly at the black
hole threshold J/M2 and ωmax/

√
ρmax each take a uni-

versal limit, even if there is a minimum scale [11]. Evolv-
ing the initial data (28) with α = α∗ would directly tell us
these universal values. Moreover, in principle it is pos-
sible that the universal scaling functions FM → 0 and
Fω → 0 as α → α∗, which means that the space of ini-
tial data that form naked singularities could be the entire
black hole threshold (codimension one), rather than the
attracting manifold of the critical solution (codimension
two).

ACKNOWLEDGMENTS

This work was supported in part by NSF grants PHY-
1402780 and 1707526 to Bowdoin College.

[1] M. W. Choptuik, Phys. Rev. Lett. 70, 9 (1993).
[2] C. R. Evans and J. S. Coleman, Phys. Rev. Lett. 72,

1782 (1994).
[3] A. M. Abrahams, and C. R. Evans, Phys. Rev. Lett. 70,

2980 (1993).
[4] C. Gundlach, Living Rev. Relativity, 10, 5 (2007).
[5] T. W. Baumgarte and C. Gundlach, Phys. Rev. Lett.

116, 221103 (2016).
[6] C. Gundlach and T. W. Baumgarte, Phys. Rev. D 94,

084012 (2016).
[7] D. W. Neilsen and M. W. Choptuik, Class. Quantum

Grav. 17, 761 (2000).
[8] T. Koike, T. Hara and S. Adachi, Phys. Rev. Lett. 74,

5170 (1995).
[9] D. Maison, Phys. Lett. B 366, 82 (1996).

[10] C. Gundlach, Phys. Rev. D 65, 084021 (2002).
[11] C. Gundlach, Phys. Rev. D 65, 064019 (2002).
[12] S. L. Liebling, Phys. Rev. D 58, 084015 (1998).

[13] D. Garfinkle and G.C. Duncan, Phys. Rev. D 58, 064024
(1998).

[14] T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor.
Phys. Suppl. 90, 1 (1987).

[15] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(1995).

[16] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1998).

[17] T. W. Baumgarte, P. J. Montero, I. Cordero-Carrión and
E. Müller, Phys. Rev. D 87, 044026 (2013).

[18] T. W. Baumgarte, P. J. Montero and E. Müller, Phys.
Rev. D 91, 064035 (2015).

[19] J. D. Brown, Phys. Rev. D 79, 104029 (2009).
[20] E. Gourgoulhon, 3+1 formalism in general relativity

(Springer, New York, 2012).
[21] T. W. Baumgarte and P. J. Montero, Phys. Rev. D 92,

124065 (2015).
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