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Extreme black holes have been argued to be unstable, in the sense that under linearized gravita-
tional perturbations of the extreme Kerr spacetime the Weyl scalar ψ4 blows up along their event
horizons at very late advanced times. We show numerically, by solving the Teukolsky equation in
2+1D, that all algebraically-independent curvature scalar polynomials approach limits that exist
when advanced time along the event horizon approaches infinity. Therefore, the horizons of extreme
black holes are stable against linearized gravitational perturbations. We argue that the divergence
of ψ4 is a consequence of the choice of a fixed tetrad, and that in a suitable dynamical tetrad all Weyl
scalars, including ψ4, approach their background extreme Kerr values. We make similar conclusions
also for the case of scalar field perturbations of extreme Kerr.

Black hole (BH) stability has been an important
question in the understanding of their physical real-
ity. Rigorous analyses have proved linear stability for
Schwarzschild BHs for regular initial data [1]. For the
rotating Kerr BH, linear stability has been proved rigor-
ously only for massless scalar field perturbations for the
non-extremal case [2], although mode stability has been
demonstrated also for gravitational perturbations [3].
An interesting class of BHs is that of extreme ones:

BHs which have vanishing surface gravity. In classical
general relativity extreme BHs (maximally charged or
maximally spinning BHs) behave differently, both phys-
ically and mathematically, from non-extremal ones, in a
way that draws much attention to them and to nearly-
extreme BHs [4]. Extreme BHs also play an important
role in supersymmetric and string theories, where it is
easier to describe them quantum mechanically because
of their vanishing surface gravity and consequently van-
ishing temperature for Hawking radiation [5].
Recently, it was argued that extreme BHs are unstable:

Fields (massless scalar fields or gravitational perturba-
tions) or their transverse derivatives grow unboundedly
along their event horizons (EHs). Specifically, Aretakis
argued that extreme Reissner-Nordström BHs are lin-
early unstable under scalar fields perturbations [6]: Cer-
tain transverse derivatives of the time evolution of regular
initial data grow unboundedly with advanced time.
Lucietti and Real expanded Aretakis’s result also for

linearized vacuum gravitational perturbations of extreme
Kerr BHs (EK) [7], and showed that for axisymmetric
perturbations certain second transverse derivatives of the
Weyl scalar ψ4 and certain sixth transverse derivatives of
the Weyl scalar ψ0 blow up in the Hartle-Hawking (HH)
tetrad along the EH with advanced time. The HH tetrad
is a null tetrad in which the Kinnersley null-tetrad basis
vectors l,n are rescaled with the horizon function, so that
they are regular on the EH, and specifically, for any finite
value of advanced time the Weyl scalars on the EH are
finite. For non-axisymmetric gravitational perturbations
Casals et al showed that the HH Weyl scalar ψ4 itself
blows up along the EH, and that each additional trans-
verse derivative increases the blow-up rate [8, 9], and con-
cluded that spacetime curvature diverged. (Note that it

was not claimed in [8] that curvature scalar invariants
blow up. See also [9].) Ref. [7] also suggested that when
full nonlinearity is considered, spacetime would evolve
such that either a null singularity would evolve instead
of an EH, or spacetime would evolve to a non-extreme
BH. (See also [10].) The suggestion that EK are linearly
unstable, and that spacetime may evolve a null singular-
ity instead of a regular EH for EK is highly troubling in
view of the importance of extreme BHs in both general
relativity and string theory.
Our numerical experiment is to set a perturbation in

the so-called Beetle-Burko scalar ξ [11], which in our case
measures the deviation of curvature invariants from their
background values. Horizon instability would imply that
the perturbation ξ would not tend to a limit along the
EH. The advantage of our approach is that we make an
invariant statement on which all observers would agree.
In practice, we solve the Teukolsky equation [12] for the
Weyl scalars ψ4 and ψ0 (from which we construct ξ) in
the HH tetrad for EK, using compactified hyperbolical
coordinated similar to those used, say, in Ref. [13].
The major technological innovation in this study is

boundary conditions (BC) that allow us to track the evo-
lution of the fields on the EH accurately: The fields are
actually “evolved” on the boundary (which is the EH in
our computational setup) as opposed to computed us-
ing the BC in conjunction with data from the “bulk”.
The more common approach is to evolve the fields in the
bulk, i.e. compute the source term in the bulk and up-
date the values of the field via time-stepping. And then
use this evolved data in the bulk along with the imposed
BC (or a simple extrapolation) to compute the fields on
the boundary. This approach has the advantage that it is
computationally cheaper and fairly simple to implement.
However, it inherently relies on a high degree of smooth-
ness in the solution, thus resulting in some inaccuracy in
cases wherein a sharp physical feature is present. Given
that that is precisely what is expected here, we took the
alternate approach of evolving the fields everywhere, in-
cluding at the boundary itself. To do this, the right-hand-
side is computed at the boundary and the field values are
updated at every time-step. Now, computing the right-
hand-side involves computing derivatives at the bound-
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ary, and that is done using a high-order, one-sided, finite-
difference stencil. This approach generated results that
were consistent with several of the test cases we used to
validate our computational framework. Detailed results
from these tests appear below.

The numerical scheme we used is presented in de-
tail in Ref. [14] along with several stability, convergence
and other tests. To summarize the approach: (i) The
Teukolsky equation, written in hyperboloidal coordinates
(based on the ingoing Kerr coordinate system) is first cast
into a (2+1)D form by separating out the axisymmetric
ϕ dependence; (ii) The resulting equation is rewritten
in first-order hyperbolic form; and (iii) A time-explicit,
two-step Richtmeyer-Lax-Wendroff, second-order finite-
difference evolution scheme is implemented. We also de-
veloped a new fifth-order WENO finite-difference scheme
[15] with third-order Shu-Osher explicit time-stepping
[16]. This method was used to cross check results ob-
tained with the second-order code, and to obtain results
that were inaccurate with the second-order code. The
initial data for the evolved fields is specified as a “trun-
cated” (in order for it to be compactly supported) Gaus-
sian pulse placed in the strong field, with or without sup-
port on the EH: In the code’s compactified hyperboloidal
coordinates (ρ, τ) [13], the Gaussian pulse is centered at
ρ = 1.0M or 5.0M , respectively, and is of width 0.1M
with a truncation window of 4.0M width.

We next find numerically the behavior of the Weyl
scalars ψ0 and ψ4 and their ∂ρ gradients along the EH as
functions of advanced time v (“Eddington coordinate”).
The gradient ∂ρ ∝ ∂r, r being the ingoing Kerr radial
coordinate. We note that ρ is regular on the EH, so that
these gradients are effectively gradients with respect to a
Kruskal-like coordinate. We further note that as v → ∞

the ∂ρ gradients of ψ4, ψ0 and also of a scalar field φ be-
come transverse (i.e., ∂ρ becomes proportional to ∂u, u
being retarded time), with the relative error at finite late
advanced times decaying like v−2. For simplicity of dis-
cussion, we refer to ∂ρ as a transverse gradient hereafter.

Figure 1 shows the local power indices (LPIs) [17] for
the axisymmetric (m = 0) case. For the field ζ(v) we

define the LPI q as q := −vζ,vζ
−1. We denote by ψ

(n)
i the

nth transverse derivative of ψi. We find for m = 0 that
for n = 0, 1, 2, 3 the corresponding q values are 2, 0, 0,−1
for ψ4 and 6, 5, 4, 1 for ψ0. The instability in the field
ψ4 is manifest in its third derivative, in accordance with
the conclusions of [7]: q < 0 implies unbounded growth
with advanced time along the EH. (We comment that
the results here have initial data that are unsupported
on the EH. For initial data that are supported on the EH
we find results in agreement with [7].)

In Fig. 2 we show the fields ψ4 and ψ0 for the non-
axisymmetric case (m = 2). Our results for ψ4 are in
agreement with the results of [8, 18] for n = 0, 1, 2, 3,

that is, the late time behavior is found to be ψ
(n)
4 (v ≫

M) ∼ v3/2+n and ψ
(n)
0 (v ≫M) ∼ v−5/2+n.

The gravitational case is Ricci flat, and therefore all
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FIG. 1: The LPIs for the real parts of ψ4 (upper panel -
(a)) and ψ0 (lower panel - (b)) and for their first three ∂ρ
derivatives along the EH as functions of advanced time, v,
for axisymmetric (m = 0) perturbations of EK. The inset in
(b) shows ∂2

ρψ0 as a function of v. The imaginary parts of
the fields behave qualitatively similarly at late times. Initial
data have no support on the EH. Data here and in the figures
below are extracted on the surface θ = π/4.

scalars made with R or Rµν or their derivatives van-
ish identically. Curvature therefore depends only on the
Weyl tensor. A general spacetime in 4D has fourteen
algebraically-independent scalars that determine the cur-
vature [19]. In vacuum there are only four non-vanishing
such scalars, because any curvature invariant can be ex-
pressed as a function of a set of the six fundamental (real)
invariant eigenvalues of the Weyl tensor. Since the traces
of both the Weyl tensor and its dual vanish, there are four
independent scalars left [11]. These scalars may be taken
to be the real and imaginary parts of the invariants I, J ,
where I := C̃µνρσ C̃

µνρσ and J := C̃µνρσ C̃
ρσ
αβ C̃

αβµν ,

C̃µνρσ being the self-dual of the Weyl tensor. Our space-
time is even more restricted, because the HH tetrad is
a transverse frame (ψ1 = 0 = ψ3). Since the back-
ground is a known EK spacetime, specifically the Weyl
scalar ψ2 is known and is constant along the EH, only
two algebraically-independent curvature scalars remain.
These scalars can be taken to be the real and imaginary
parts of ξ := ψ0ψ4 [11].

We show next that along the EH of EK both the real
and the imaginary parts of ξ vanish at late advanced
times, so that I → 3ψ 2

2 and J → −ψ 3
2 . As ψ2 is that

of the background EK, i.e., finite along the EH, both I
and J have limits that exist as v → ∞. As I, J exhaust
all the algebraically-independent curvature invariants, all
scalars made from polynomials in the Weyl tensor have
limits that exist as v → ∞. We therefore show that the
EH of EK does not evolve an instability in ξ.

Specifically, Fig. 3 shows the real and imaginary parts
of ξ for both the axisymmetric and non-axisymmetric
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FIG. 2: The (real parts of the) fields ψ4 (upper panel - (a))
and ψ0 (lower pane; - (b)) and their first three transverse
derivatives along the EH as functions of advanced time for
non-axisymmetric (m = 2) perturbations of EK, for initial
data that have support on the EH. In panel (a) we show four

reference lines, corresponding to v3/2+n, and in panel (b) we

show the reference lines for v−5/2+n. The imaginary parts
behave qualitatively similarly at late times.
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FIG. 3: The real and imaginary parts of ξ for the axisymmet-
ric (m = 0) and non-axisymmetric (m = 2) cases as functions
of advanced time along the EH of EK. The m = 2 results are
obtained for initial data having support on the EH, and the
m = 0 initial data do not have support on the EH.

cases along the EH of EK as functions of advanced time.
We find that in the axisymmetric case ℜ(ξ),ℑ(ξ) ∼ v−8

for v ≫ M . In the non-axisymmetric case ℜ(ξ),ℑ(ξ) ∼
v−1 for v ≫M , so that in either case spacetime curvature
along the EH decays to that of the EK background at
late advanced times. As argued above, this demonstrates
that the EH of the EK spacetime is indeed stable against
linearized gravitational perturbations [20].

One may ask, how come the blowing up of the Weyl
scalar ψ4 does not signify instability, as claimed by [7, 8].
After all, ψ4 is a scalar under coordinate transformations,
and therefore all observers would presumably agree on its
blowing up. The resolution of this conundrum is that the
Weyl scalars are not invariant under transformations of
the tetrad vectors. Indeed, under type-III rotations the
null tetrad basis vectors l → A−1

l, n → An, m → eiϑm,
and m → eiϑm, where the two real parameters A, ϑ
describe rescaling and rotation, correspondingly, of the
tetrad vectors [21]. We can choose ϑ in a way that makes,
say, ℜ(ψ4) = 0, or if we choose another value of ϑ we
can make ℑ(ψ4) = 0. More importantly, we can choose
the rescaling function A = M/v, i.e., as our null ob-
server moves along the EH she continuously rescales her
tetrad vector l linearly in advanced time, and her tetrad
vector n inversely in advanced time. Correspondingly,
ψ4 → ψ′

4 ∼ v−2ψ4, and ψ0 → ψ′

0 ∼ v2ψ0. Therefore,
ψ′

4 ∼ v−1/2 and ψ′

0 ∼ v−1/2 as v ≫ M . We therefore re-
fer to this dynamical HH tetrad as the symmetric tetrad.
We conclude that the blow up of ψ4 in the HH tetrad is a
consequence of a problem with the tetrad: If one general-
izes the tetrad to a dynamical HH tetrad (“the symmet-
ric tetrad”) in which the basis vectors are continuously
rescaled as discussed above, both Weyl scalars ψ′

4 and
ψ′

0 decay to zero. The Beetle-Burko scalar ξ is, however,
invariant also under tetrad vector transformations, and
therefore is unchanged by this rescaling. Both curvature
invariants I, J approach their EK values at late advanced
times along the EH. EK are stable because there exist
observers for whom initially small ψ′

4, ψ
′

0 remain small
along the EH and decay to zero. Notice, that a family of
observers, separated by time translations, who fall into
EK and make measurements in the symmetric tetrad are
non-parallel-propagated observers. In this family of ob-
servers, asymptotically-late daughters see no instability.

Our analysis does not show that any curvature scalar of
higher order (i.e., a curvature scalar that includes gradi-
ents of the Weyl scalars) blows up along the EH with
infinite advanced time. However, we cannot rule out
the possibility that curvature scalars of high enough or-
ders do. If that is the case, there might be a non-scalar
polynomial singularity (“whimper singularity”) evolving,
which would be asymptotically delayed [22]. Whimper
singularities have the feature that in a suitably rotated
tetrad the singular behavior disappears. That is, they
signify a problem with parallel transport, not a genuine
singularity of spacetime, in the sense that there could be
(null) observers who are not parallely-propagated, who
experience no singular behavior.

Consider next a scalar field. Figure 4 shows the LPIs
for the axisymemtric (m = 0) and non-axisymmetric
(m = 2) cases. In both cases we obtain asymptotic
LPI values that agree with [8]. Specifically, in the ax-
isymmetric case we find q = 2, 2, 0,−1 and in the non-
axisymmetric case q = 1/2,−1/2,−3/2,−5/2 for n =
0, 1, 2, 3, respectively. We find that the scalar field itself
decays to zero with advanced time, but transverse gradi-
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FIG. 4: The local power indices for a scalar field perturba-
tion for the axisymmetric (m = 0, upper panel (a)) and non-
axisymmetric (m = 2, lower panel (b)) cases as functions of
advanced time along the EH of EK. In the upper panel (a)
the inset shows ∂2

ρφ as a function of advanced time.

ents thereof blow up, consistent with previous results.
Consider for simplicity an EH null observer on the ro-

tation axis of EK. The gradient of the scalar field, ∂ρφ,
blows up for m = 2 with advanced time. However, ob-
servers who use different coordinates disagree on what
the gradient is. The only observer-independent way to
consider the gradient is to consider a scalar under coor-
dinate transformations. Specifically, (∇αφ ∇αφ)1/2 ∼

( ∂ρφ ∂vφ)
1/2 ∼ v−1/2 → 0 as v → ∞. Consider next

higher-order gradients, say, ∇α1,··· ,αn
φ. Also in this case,

the scalar (∇α1,··· ,αn
φ ∇α1,··· ,αnφ)1/2 ∼ v−1/2 vanishes

at infinite advanced time.

We cannot calculate the perturbations of the Riemann
tensor in the scalar field case, as we have a fixed Kerr
background. However, we can use the (linearized) Ein-
stein equations to find the Ricci tensor: We write the
Einstein equations as Rµν = 8π (Tµν − Tgµν/2). We
can then calculate the scalar field energy-momentum
tensor from the scalar field perturbation φ, T µν[φ] =
(gµαgνβ + gµβgνα − gµνgαβ) ∂αφ∂βφ. The Ricci scalar
R ∼ ( ∂ρφ ∂vφ) ∼ v−1 → 0 as v → ∞ for m = 2.
The curvature scalar RµνR

µν ∼ ( ∂ρφ ∂vφ)
2 ∼ v−2 in

the non-axisymmetric case. We conjecture that all other
curvature scalar polynomials made with R and Rµν are
also well behaved as v → ∞ along the EH. We cannot,
however, find a compete set of algebraically-independent
scalar polynomials as we did in the gravitational case.

We next examine scalars constructed from gradients of
R and Rµν . Consider ∇µR∇µR. Comparing with R2,
we now introduce one additional ∂ρ and one additional ∂v
derivatives. The effect of both tends to cancel each other,
and this scalar behaves like v−2 in the non-axisymmetric
case. Also scalars such as ∇σRµν ∇σRµν ∼ v−2 and
Rµν ∇µR∇νR ∼ v−3. We did not find a scalar made
with derivatives of the curvature that does not decay to 0.
We propose that in this case, neither a scalar polynomial
singularity nor a non-scalar polynomial one evolves.
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[14] A. Zenginoǧlu and G. Khanna, Phys. Rev. X 1, 021017

(2011).
[15] G-S. Jiang and C-W. Shu, J. Computational Phys. 126,

202-228 (1996).
[16] S. Gottlieb, C-W. Shu, and E.. Tadmor, SIAM Rev. 43,

89-112 (2001).
[17] L.M. Burko and A. Ori, Phys. Rev. D 56, 7820-7832

(1997).
[18] M. Richartz, C.A.R. Herdeiro, and E. Berti, Phys. Rev. D

96, 044034 (2017).
[19] A.Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969).
[20] The conclusion that observer-independent quantities ex-

hibit no instability was made independently and at the
same time for the case of Ricci curvature in S. Hadar
and H.S. Reall, arXiv:1709.09668. It was later shown in
greater generality also in [9].

[21] S. Chandrasekhar, The Mathematical Theory of Black

Holes (Oxford University Press, 1983).
[22] R.A. Sussman, J. Math. Physics 29, 945 (1988).


