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The relaxation of a distorted black hole to its final state provides important tests of general
relativity within the reach of current and upcoming gravitational wave facilities. In black hole
perturbation theory, this phase consists of a simple linear superposition of exponentially damped
sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are
necessary to describe waveforms with a prescribed precision? What error do we incur by only
including quasinormal modes, and not tails? What other systematic effects are present in current
state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics
with distorted black holes, have hardly been addressed in the literature. We use numerical relativity
waveforms and accurate evolutions within black hole perturbation theory to provide some answers.
We show that (i) a determination of the fundamental l = m = 2 quasinormal frequencies and
damping times to within 1% or better requires the inclusion of at least the first overtone, and
preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin
with precision better than 1% requires the inclusion of at least two quasinormal modes for any given
angular harmonic mode (`, m). We also improve on previous estimates and fits for the ringdown
energy radiated in the various multipoles. These results are important to quantify theoretical (as
opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity
allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.

I. INTRODUCTION

The historic LIGO gravitational wave (GW) detections
of binary black hole (BH) mergers [1–4] ushered in a
new era in astronomy. The growing network of Earth-
based interferometers and the future space-based detec-
tor LISA will probe the nature of compact objects and
test general relativity (GR) in unprecedented ways [5–
9]. One of the most interesting prospects is the possibil-
ity to use GW observations to measure the quasinormal
mode (QNM) oscillation frequencies of binary BH merger
remnants. In GR, these oscillation frequencies depend
only on the remnant BH mass and spin, so these mea-
surements can identify Kerr BHs just like atomic spectra
identify atomic elements. This idea is often referred to
as “BH spectroscopy” [10–13]). In the context of mod-
ified theories of gravity, QNM frequencies would inform
us on possible corrections to GR and allow to constrain
specific theories [14, 15]. In other words, the payoff of
BH spectroscopy is significant not only as a tool to test
GR [16, 17], but also as a tool to quantify the presence of
event horizons in the spacetime (by looking, for instance,
for “echoes” in the relaxation stage [18–21]).

In practice, there are two main obstacles to measuring
multiple QNM frequencies (i.e., to identifying multiple
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spectral lines). The first is of a technological nature, and
relates to the fact that rather large signal-to-noise ratios
(SNRs) are required [22]. Recent estimates suggest that
most individual binary BH mergers detected by LISA
could be used to do BH spectroscopy, but significant tech-
nological improvements are necessary for Earth-based de-
tectors to achieve the necessary SNR [23, 24]. However
the sensitivity of upcoming detectors is constantly im-
proving, and there are good reasons to believe that this
issue will eventually be resolved. The second challenge
concerns systematic effects which might be unaccounted
for in our current theoretical or numerical understand-
ing of the waveforms. For example, it is well known that
(even at the level of linearized perturbation theory) the
late-time decay of BH fluctuations is not exponential but
polynomial [13, 25]. Thus, one must question the validity
of exponentially damped sinusoids as a description of the
late-time GW signal (see e.g. recent work by Thrane et
al., who claimed that spectroscopy will not be possible
even in the infinite SNR limit [26]). When does the ex-
ponential (QNM) falloff give way to the polynomial tail?
Are nonlinearities important, and how do they affect the
simple linearized predictions?

There are very few studies of the accuracy achievable
in extracting QNM frequencies from numerical simula-
tions. Some of these studies pointed out that the accu-
racy of numerical waveforms may be limited by gauge
choices or wave extraction techniques [27, 28]. There-
fore we ask: what is the systematic deviation between
BH perturbation theory predictions and the QNM fre-
quencies extracted from numerical simulations? In other
words, what is the size of systematic errors in the extrac-
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tion of QNM frequencies from current state-of-the-art nu-
merical simulations? These questions are of paramount
importance for any claims about independent BH mass
and spin extraction using ringdown waveforms, and for
any ringdown-based tests of GR.

We address these questions using public catalogs of nu-
merical relativity simulations (focusing on the Simulat-
ing eXtreme Spacetimes (SXS) Gravitational Waveform
Database [29]), as well as extreme mass-ratio waveforms
produced using the Kerr time-domain perturbative code
written by one of us [30, 31].

One of the main results of our analysis, validating a
multitude of studies in the past decade or so, is that a
“pure ringdown” stage does not exist per se, detached
from the rest of the waveform. In other words, the full
glory and complexity of GR must be accounted for when
extracting physics. Nevertheless, the notion of ringdown
can be useful in the context of simple, independent checks
on the physics. We have in mind, for instance, ringdown-
based tests of the no-hair theorem or constraints on mod-
ified theories of gravity. Accurate models of the ampli-
tude and phase of each QNM are necessary to perform
such tests. In fact, these quantities are also crucial to al-
leviate the problem of low SNRs in individual events by
combining posterior probability densities from multiple
detections [32] or via coherent stacking [33]. At the mo-
ment, our ability to do coherent stacking is limited by the
theoretical understanding of ringdown: stacking requires
phase alignment between different angular components
of the radiation, which can only be achieved through a
better understanding of the excitation and starting times
of QNMs [34–38]. Most early studies of QNM excitation
relied on the evolution of simple initial data (e.g. Gaus-
sian wave packets) in the Kerr background [39, 40]. After
the 2005 numerical relativity breakthrough, some authors
investigated QNM excitation in the merger of nonspin-
ning BHs [41–44], but to this day there is little published
work on spinning mergers (with the notable exception of
Ref. [45]). In this work we use numerical relativity sim-
ulations to fit the energy of the modes for spin-aligned
binaries, thus alleviating some of the difficulties inherent
in stacking signals for BH spectroscopy.

II. SYSTEMATIC ERRORS IN EXTRACTING
QUASINORMAL MODE FREQUENCIES

In the ringdown phase the radiation is a superpo-
sition of damped sinusoids with complex frequencies
ω`mn parametrized by three integers: the spin-weighted
spheroidal harmonic indices (`, m) and an “overtone in-
dex” n, which sorts the frequencies by their decay time
(the fundamental mode n = 0 has the smallest imaginary
part and the longest decay time). The complex Penrose

scalar Ψ4 (and the strain h) can be expanded as

rΨ`m
4 = Θ(t−t`m0 )

N∑
n=1

B`mn exp
[
i(ω`mn(t− t`m0 ) + φ`mn)

]
.

(1)
where Θ(x) is the Heaviside function, ω`mn = ω`mnr +
iω`mni and t`m0 is the so-called “starting time” of ringdown
for the given (`, m). Early studies used least-squares
fits to extract QNM frequencies from nonspinning binary
BH merger simulations [41]. Other fitting procedures
were proposed, but yield very similar results [28, 42, 46].
Therefore, for simplicity, we will use a simple least-
squares fit. For illustration, we consider nonspinning SXS
waveforms with mass ratios q = 1 (SXS:BBH:0180) and
q = 3 (SXS:BBH:0183), as well as waveforms for point
particles falling into a nonrotating BH.

For point particle evolutions we fit the strain h. When
considering the SXS comparable-mass merger waveforms
we use the Penrose scalar, as it is known to yield slightly
better QNM fits [27, 41], but we checked that our main
conclusions would remain valid had we used the strain h
instead. For the multipolar components (`, m) = (2, 2),
(3, 3) and (2, 1), that usually dominate the radiation, we
use waveforms extrapolated to infinite extraction radius
using a second-order polynomial (as reported by the SXS
collaboration, higher-order polynomials could yield noisy
results close to the merger). For the (4, 4) and higher-
order multipoles we found that the ringdown part of the
waveform does not converge with extraction radius for
a large number of simulations. Furthermore, the largest
extraction radii listed in the SXS catalog are different
for different simulations, so they cannot be compared di-
rectly. We only used waveforms for which the higher-
order multipoles seem to converge, finding the EMOP
energy as a function of extraction radius, and then com-
paring all energies (whether computed by interpolation
or extrapolation) at an extraction radius of 500M .

The fits are performed in two different ways in order to
address different aspects of the systematic error analysis:
(i) How accurately can we determine the ringdown fre-
quencies themselves, without assuming any (no-hair the-
orem enforced) relation between the frequencies?

To answer this question we assume that
(ω`mnr , ω`mni , B`mn, φ`mn) in Eq. (1) are all un-
known, so we have a total of 4N fitting coefficients
for an N -mode fit. Then we look at the relative error
between the real and imaginary part of the fundamental
QNM (as derived from the fit) and the predictions
from BH perturbation theory [12, 13]. This fitting
procedure does not enforce the fact that, in GR, QNM
frequencies are uniquely determined by the BH mass
and spin [12, 13]. Systematic errors computed in this
way can be seen as lower bounds on how much any given
modified theory must modify ringdown frequencies to be
experimentally resolvable from GR.

The results are shown in Fig. 1. BHs are poor oscil-
lators, so ωr is always easier to determine than ωi, and
δωr/ωr is typically an order of magnitude smaller than
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FIG. 1. Fractional errors δωr/ωr (thick lines) and δωi/ωi (thin lines) between the fundamental ` = m = 2 QNM frequencies
computed from BH perturbation theory and those obtained by fitting N overtones to numerical waveforms according to method
(i) (see text). Left: SXS waveforms, q = 1; middle: SXS waveforms, q = 3; right: point-particle waveforms. Here t22peak is the

time at which the amplitude of the l = m = 2 mode is maximum, and time is measured in units of c3/(GM).
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FIG. 2. Error in the spin δaf (thick lines) and fractional error in the mass δMf/Mf (thin lines) estimated by fitting N QNMs
with ` = m = 2 according to method (ii) (see text). Left: SXS waveforms, q = 1; middle: SXS waveforms, q = 3; right:
point-particle waveforms. Here t22peak is the time at which the amplitude of the l = m = 2 mode is maximum, and time is

measured in units of c3/(GM).

δωi/ωi. Furthermore, Fig. 1 shows that adding overtones
generally reduces the systematic error in ωr and ωi for
all mass ratios. For SXS waveforms we found that in-
cluding the N = 4 mode would not further improve the
agreement, while for quasicircular inspirals of point par-
ticles into nonrotating BHs δωr/ωr and δωi/ωi decreases
to ∼ 10−4 and 10−3, respectively.

(ii) How accurately can we determine the remnant’s mass
and spin from ringdown frequencies, assuming that GR
is correct?

To answer this question we still consider (B
(j)
lm , φ

(j)
lm) as

free parameters, but now we enforce the condition that
the QNM frequencies ω`mnr, i must be functions of the rem-
nant BH mass Mf and dimensionless spin af , so we have
only 2N + 2 fitting coefficients. As shown in Fig. 2, the
accuracy in determining both mass and spin is compara-

ble to the accuracy in the poorest determined quantity
(i.e., ωi). The trend is the same as in Fig. 1, and errors
decrease as we include more overtones.

The results in Figs. 1 and 2 disprove the claim of [26]
that large-SNR detections cannot be used to perform BH
spectroscopy, but they also show that the relative error
between quantities computed in BH perturbation theory
and those extracted from numerical simulations currently
saturates at ∼ 10−3. This “saturation effect” is less prob-
lematic for the quasicircular inspiral of point particles
into Schwarzschild BHs, where relative errors can be re-
duced by approximately one order of magnitude (we get
worse agreement for point particles falling into rotating
BHs, where spherical-spheroidal mode mixing [41, 47–49]
must be taken into account).

This observation has an important implication: fur-
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perturbation theory. This plot used the simulations labeled
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SXS:BBH:0063 for q = 8.

ther numerical or theoretical work is required to reduce
systematic errors for comparable-mass binary BH merg-
ers in the LISA band, that may have SNRs ∼ 103 or
higher [50, 51].

The saturation discussed above may be related to an
undesired feature of SXS waveforms. It was already
noted in [28] that the ` = m = 2 component of Ψ4 in
the SXS simulations contains a spurious decaying mode
corresponding to the fundamental ` = m = 4 QNMs
for q = 1. We confirm their finding. Furthermore, as
we show in Fig. 3, a multi-mode fit of unequal-mass
waveforms shows the presence of a spurious frequency
that matches quite well the fundamental QNM with
` = m = 3.

These spurious modes seem to be present only in the
SXS simulations. We did not find them in the public
catalog of waveforms from the Georgia Tech group [52],
nor in our own point-particle waveforms. Understanding
the origin of these modes is beyond the scope of this work.
We speculate that they may be gauge or wave extraction
artifacts, but they are unlikely to come from spherical-
spheroidal mode mixing, which only mixes components
with the same m and different `’s [41, 47–49]. Whatever
their origin, these spurious modes must be understood if
we want to control systematics at the level required to
do BH spectroscopy with LISA.
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FIG. 4. EMOP energies as a function of mass ratio for non-
spinning binaries in the SXS catalog. The anomalous behav-
ior of the (3, 2) mode is due to spherical-spheroidal mode
mixing [41, 47–49]: the contamination of the (2, 2) mode ob-
served in the (3, 2) mode is more prominent for comparable
mass ratios.

The sharp local minima in Figs. 1, 2 and 3 suggest
that the QNM frequencies (and consequently, the rem-
nant spin and mass) extracted from the ringdown oscil-
late about their “true” values. We suspect that this is
purely due to systematics, but we can not rule out non-
linear effects.

III. RINGDOWN ENERGIES AND STARTING
TIMES

An important prerequisite to perform BH spectroscopy
(whether via single detections or by stacking) is to quan-
tify the excitation of QNMs, and to provide a definition
of their starting times which is suitable for data analysis
purposes. Quite remarkably, we are aware of only one
paper that tried to quantify QNM excitation for spin-
ning binaries [43]. Here we improve on the results of [43]
by (i) using newer and more accurate simulations from
the SXS catalog, and (ii) implementing a better crite-
rion to determine simultaneously the energy (or relative
amplitude) of different ringdown modes, as well as their
starting times.

There is no unique, unambiguous way of defining such
a starting time, because ringdown is only an interme-
diate part of the full signal resulting from the merger
dynamics of the two-body system. Nevertheless, a phys-
ically sensible, detector-independent criterion is to de-
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TABLE I. Fitting coefficients for the EMOP energy, along with the corresponding errors. A superscript “0” corresponds to
the nonspinning contribution, while “s” denotes the spin-dependent contributions. Since poorly excited modes tend to be
dominated by numerical noise, we have only considered modes with EEMOP ≥ 10−4M . We also dropped the (4, 4) mode data
from some simulations where the EMOP energy did not converge as we increase the wave extraction radius.

Modes a0 b0 c0 as bs cs ds es Max. Error Mean Error

(2, 2) 0.303 0.571 0 −0.07 0.255 0.189 −0.013 0.084 3.63% 0.64%
(3, 3) 0.157 0.671 0 0.163 −0.187 0.021 0.073 0 11.24% 2.32%
(2, 1) 0.099 0.06 0 −0.067 0 0 0 0 9.54% 2.01%
(4, 4) 0.122 −0.188 −0.964 −0.207 0.034 −0.701 1.387 0.122 12.75% 1.93%

FIG. 5. EMOP energies E`m in different (`, m) modes for aligned-spin SXS simulations with q = 2 as a function of χ+ and
χ−, along with the fits given in Eq. (3).

compose the full waveform into components “parallel”
and “perpendicular” to the QNM. The ringdown starting
time is defined as the point where the energy “parallel to
the QNM” is maximized. Nollert, who introduced this
concept, called this the “energy maximized orthogonal
projection” (EMOP) [53]. Nollert’s EMOP criterion can
be interpreted in data analysis terms as answering the
following question: given a single-mode QNM template,
what starting time would maximize the ringdown energy
in the infinite-SNR limit? This question is clearly rel-
evant to GW data analysis, and it provides a “unique”
definition of the starting time that does not depend on
the detector’s sensitivity. Note that maximizing the en-
ergy in the fundamental mode is not the same as mini-
mizing the errors in (say) the remnant’s mass and spin.
A ringdown waveform starting at time t0 has the form

hQNM = h+
QNM + ih×QNM = Θ(t− t0) exp [i(ωt+ φ)] .

Given the complex strain h = h+ + ih× from numerical

relativity, the energy “parallel to the QNM” hQNM is

E‖ =
1

8π

|
∫
t0
ḣḣ∗QNMdt|2∫

t0
ḣQNMḣ∗QNMdt

=
ωi|
∫
t0
ḣḣ∗QNMdt|2

4π (ω2
i + ω2

r )
, (2)

where in the second equality we have explicitly evaluated
the integral in the denominator. The ringdown starting
time is defined as the lower limit of integration t0 such
that E‖ in Eq. (2) is maximum, and the EMOP energy
is EEMOP = maxt0(E‖).

Equation (2) is an improvement over the definition
used in [42], where we first computed the EMOP en-
ergy separately for the plus and cross polarizations, and
then averaged the starting time from the two polariza-
tions. Furthermore E‖ is independent of phase rotations

in either the numerical waveform (h → heiθ) or in the
QNM (hQNM → hQNMe

iφ). EMOP energies computed
from the SXS waveforms for nonspinning binary mergers
are shown in Fig. 4.

For binaries with aligned spins, a good fit to the EMOP
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energy in the first few dominant (`, m) modes is

E`m =

{
η2(A0

`m +Aspin
`m )2 , even m,

η2(
√

1− 4ηA0
`m +Aspin

`m )2 , odd m,
(3)

where the nonspinning contribution A0
`m is well fitted by

A0
`m = a0

`m + b0`mη , (`, m) = (2, 2), (3, 3), (2, 1) ,

A0
`m = a0

`m + b0`mη + c0`mη
2 , (`, m) = (3, 2), (4, 4), (5, 5) ,

and η = q/(1 + q)2 is the symmetric mass ratio. The

contribution from the spins Aspin
`m can be written in terms

of the symmetric and asymmetric effective spins

χ± ≡
m1χ1 ±m2χ2

M
, (4)

where χ1 and χ2 are the dimensionless spins of the two
BHs, and χ+ = χeff (the “effective spin” parameter
best measured by LIGO, which is conserved in post-
Newtonian evolutions at 2PN order [54–57]).

We use the post-Newtonian inspired fits [58, 59]

Aspin
22 =ηχ+

(
as

22 +
bs22

q
+ cs22q + ds

22q
2

)
+ es

22δχ− ,

Aspin
33 =ηχ−

(
as

33 +
bs33

q
+ cs33q

)
+ ds

33δχ+ ,

Aspin
21 =as

21χ− ,

Aspin
44 =ηχ+

(
as

44

q
+ bs44q

)
+ δηχ−

(
cs44 +

ds
44

q
+ es

44q

)
,

(5)

where δ =
√

1− 4η = (q − 1)/(q + 1). The fitting coef-
ficients, along with the mean and maximum percentage
errors of each fit, are listed in Table I. The dependence
of the EMOP energy on spins is illustrated in Fig. 5 for
simulations with mass ratio q = 2.

IV. CONCLUSIONS

The recent detection of gravitational waves by the
LIGO/Virgo collaboration makes the prospect of spec-
troscopic tests of general relativity realistic in the near
future. As detectors and data quality improve, a good
understanding of the ringdown stage will require an as-
sessment of systematic errors affecting the waveforms.
Previous studies bounded environmental and astrophys-
ical effects in BH ringdown waveforms [60]. In this work

we started addressing how numerical and/or theoretical
limitations affect our ability to perform BH spectroscopy.
It is known that the late-time behavior of any BH per-
turbation should be a power-law decay. Thus, a descrip-
tion using exponentially damped sinusoids must eventu-
ally break down.

We showed that no precise tests of GR nor any accurate
measurement of BH masses or spins are possible with
single-mode templates: two or three modes are necessary.

To facilitate spectroscopic tests (whether in single de-
tections or via stacking) we extended the EMOP cal-
culations of Ref. [42] using the SXS waveforms in the
case of (anti-)aligned spins. In this preliminary study
we neglected subtle issues such as mode mixing, which
is known to affect in particular the (3, 2) mode [41, 48,
49]. Further work is required to apply our results in
gravitational-wave data analysis [12, 32, 42, 61, 62] or to
understand how these systematics affect tests general rel-
ativity with ringdown, e.g. within the “post-Kerr” frame-
work proposed in [15].

Even after subtracting three or four quasinormal
modes, our analysis shows no evidence of power-law tails
in the numerical data. This probably means that tails
dominate the signal only at very late times, when nu-
merical error is already significant. Notwithstanding, and
due to their interesting origin – backscatter off spacetime
curvature – the identification of tails in numerical simu-
lations of comparable mass BH mergers is an interesting
challenge that should be addressed in future work.
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