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Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable
candidate field theories, a screening mechanism is implemented to be consistent with all existing
tests of general relativity. The screening effect in the chameleon theory manifests its influence limited
only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker
than that of the gravitational force of the bulk. For point-like particles such as atoms, the depth of
screening is larger than the size of the particle, such that the screening mechanism is ineffective and
the chameleon force is fully expressed on the atomic test particles. Extra force measurements using
atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed
have placed the most stringent constraints on the parameters characterizing chameleon field. In this
paper, we present a conceptual measurement approach for chameleon force detection using atom
interferometry in microgravity, in which multi-loop atom interferometers exploit specially designed
periodic modulation of chameleon fields. We show that major systematics of the dark energy force
measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all
hypothetical chameleon signals in the parameter space of interest.

I. INTRODUCTION

The Universe is believed to be mostly composed of dark
energy which is responsible for the observed accelerating
expansion rate of the Universe [1]. While no one knows
the exact nature of dark energy, it is assumed in the form
of either cosmological constant or scalar fields. In the lat-
ter case, its interaction with normal matter should be of
the strength of gravitational force. The lack of direct
detection of the dark enery interaction, in the form of
extra forces on test objects apart from the four known
forces, leads to the necessity that any dark energy scalar
field must be environmentally dependent and thus the
influence of dark energy may be greatly suppressed near
dense material, often referred to as the screening mech-
anism [2]. Parameters in such scalar field theories are in
turn bounded by precise experiments on, e.g., the inverse-
square law of gravity, parameters in the parameterized
post Newtonian (PPN) metric, and the equivalence prin-
ciple, as summarized in Ref. [3]. Emerging from quan-
tum field theories, chameleon theories satisfy the above
requirements using only few parameters [4, 5]. Unique to
chameleon theories is that small test particles do not suf-
fer from the screening effect, rendering the approach of
atom interferometric detection very attractive in theory
validation [5]. While experimental efforts of atomic vali-
dation reported to date indeed have already constrained
the chameleon parameters beyond classical means by or-
ders of magnitude [6–8], the validity of the chameleon
theory is still an open question.

In this paper, we present a measurement concept of
direct detection of chameleon forces using atom interfer-
ometers in microgravity, with a sensitivity sufficient to
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detect any predicted chameleon force or rule out the the-
ory completely. In this concept, gravitational forces are
engineered to balance out such that tailored atom inter-
ferometers with a slowly and linear motion of atoms in
microgravity can measure the chameleon force without
precise knowledge of gravity, in contrast to experiments
such as Refs. [6–8] where the accuracy of Newtonian
force measurements sets the ultimate sensitivity limit on
chameleon force detections. The detection is thus a di-
rect measurement of forces resulting from the governing
equation of motion of the chameleon field, independent
of the gravitational constant G or its variations.

The paper is organized as follows. Section II briefly in-
troduces the chameleon fields, targeted parameter space
to tackle, and foreseen detection obstacles. Section III
describes a numerical approach for calculating chameleon
fields for different configurations, providing first order
estimates of anticipated chameleon forces. Section IV
reviews the path integral approach for the atom inter-
ferometer phase calculation, which serves as the basis of
sensitivity estimates for different chameleon forces. Sec-
tions V and VI discuss in detail on two special categories
of chameleon field measurement configurations: spheri-
cal and periodic. In both cases, realistic numbers are
provided using currently available cold atom experiment
capabilities. Finally, our findings are summarized in Sec-
tion VII.

II. DETECTION OF THE CHAMELEON
SCALAR FIELD

We follow the method of describing chameleon fields
as outlined in Ref. [4, 5]. Chameleon theories include
a self-interacting potential V (φ) of a scalar field φ, and
an interaction potential Vint(φ, ρ) with matter density ρ.
We consider, in this paper, the effective potential in the
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simplest and the lowest order inverse power-law form [4,
5]

Veff(φ) ≡ V (φ) + Vint(φ, ρ)

= Λ4

(
1 +

Λn

φn

)
+

φ

M
ρ, (1)

where Λ sets the strength of the self-interaction, n is a
positive integer, and M describes the interaction with
normal matter. The equation of motion, in the static
case where ρ and φ are stationary, is

∇2φ =
∂Veff

∂φ

= −nΛn+4

φn+1
+ β

ρ

MPl
, (2)

where β = MPl/M and MPl is the reduced Planck mass.
The acceleration on a test particle due to an established
field profile φ can be obtained from the spatial derivative
of Vint [4, 5]:

~a = − β

MPl

~∇φ. (3)

Far away from boundaries, φ approaches an equilibrium
value φeq that minimizes Veff

∂Veff

∂φ
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φeq

= 0,
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(
β

nΛn+4

ρ

MPl

)− 1
n+1

. (4)

The distance for φ to reach φeq is short for typical mat-
ter densities, such that the interior of a bulk experiences
zero acceleration from the chameleon field (Eq. (3)). The
bulk, as a whole, experiences negligible chameleon accel-
eration, which is known as screening [5]. The screen-
ing does not happen to gaseous atoms, due to the mi-
croscopic size and dilute density, which makes atoms a
much more sensitive tool for chameleon detection. The
concept of using atomic test particles for chameleon force
detections has been proposed [5] and experimentally im-
plemented [6–8], where acceleration of atoms is precisely
measured in a quantum interferometric way (see Sec-
tion IV).

Despite the success of more strigent constraints on
the chameleon theory parameters (n,Λ, β) by atom in-
terferometer measurements [8], major systematic effects
need to be addressed before a complete conclusion for the
chameleon theory can be reached. Being an extra force,
chameleon forces can at best be detected at the precision
of known forces. This is evident in Ref. [8], where the
statistical uncertainty and the uncertainty of the gravita-
tional force from the test object are comparable. Further
improvement on constraining chameleon parameters will
require better knowledge of the test object mass distribu-
tion. Eventually a more precise value of G is necessary.
At present G is known at ∼ 10−5 [9], which limits the
overall measurement precession at a similar level.

FIG. 1. Exclusion plots of chameleon parameters. (a) (β,Λ)
exclusion plot for n = 1. Region near the upper left corner
(yellow) is excluded by the torsion balance experiment [10].
Region bounded by the blue curve is excluded by the atom in-
terferometer experiment in Ref. [8]. The blue diamond marks
the parameter set of (n,Λ, β) = (1, 0.1 meV, 103), and the
blue dashed line across it labels parameters that would pro-
duce the same chameleon force. Failure of detecting accelera-
tions calculated in this work based on this parameter set will
exclude the shaded region above the dashed line. Λ = Λ0 is
of cosmological relevance, and is shown as the horizontal line.
(b) (n, β) exclusion plot for Λ = Λ0. Regions excluded by the
corresponding experiments are labelled. The red diamond
marks the embracive parameter set of (n,Λ, β) = (10,Λ0, 1),
and the red dashed curve across it labels parameters that
would produce the same chameleon force. Failure of detecting
accelerations calculated in this work based on this parameter
set will exclude the shaded region above the dashed curve.



3

In order to estimate limitations and explore possibil-
ities, we developed a numerical approach for calculat-
ing φ and thus ~a for various configurations, which facil-
itates the investigation for a class of practical measure-
ment schemes that is immune to major systematics of
chameleon force detection. Two parameter sets will be
extensively discussed: (n,Λ, β) = (1, 0.1 meV, 103) and
(10,Λ0 ' 2.4 meV, 1). The former is in line with Ref. [7],
which will exclude n = 1 chameleon theory completely if
a null detection is concluded. Choosing the same pa-
rameters also allows direct comparison of results. The
latter, referred to as the embracive parameter set, is the
extreme point in the chameleon parameter space under
the constraint of cosmological observation Λ = Λ0. The
exclusion of the embracive parameter set will invalidate
the chameleon theory all together [8], which is the goal
of the proposed experiment. Figure 1 summarizes cur-
rent constraints on (n,Λ, β) and expected improvements
if predicted accelerations calculated with the above pa-
rameter sets are not detected.

Note that due to the screening effect, the profile of
the chameleon field inside an enclosed container is not
affected by the external field distribution, while the same
equation of motion of Eq. (2) applies everywhere. This
feature grants the possibility of performing chameleon
theory tests inside a vacuum chamber without worrying
about mass distributions outside the vacuum chamber
far away from the test masses under consideration [5–8].
They do introduce systematics due to gravity gradients.

III. NUMERICAL METHOD

Since atoms will be the test particles for chameleon
force measurements under an ultra high vacuum (UHV)
environment, we are interested in φ in a UHV region en-
closed by a metal container. Due to the screening effect
that φ approaches equilibrium φeq in short distances in-
side dense material, a metal container effectively separate
φ inside the enclosed volume from the rest of the world.
The task of solving φ for a certain vacuum chamber ge-
ometry is then reduced to solving the nonlinear partial
differential equation (PDE) of Eq. (2) for given (n,Λ, β)
and a position dependent density function ρ = ρvacuum

or ρwall. rhovacuum = 6.6 × 10−17 g/cm3 is the density
in UHV, corresponding to a commonly available resid-
ual pressure of 6× 10−10 Torr in a cold atom apparatus.
ρwall = 7 g/cm3 is the nominal density of steel that vac-
uum chambers are typically made of. The boundaries of
the numerical calculation are located inside the walls of
the vacuum chamber with boundary conditions for the
PDE set as φ = φeq(ρwall).

We use a commercial numerical package with a par-
tial differential equation toolbox on a laptop for solving
Eq. (2), instead of resorting to customized implementa-
tion of numerical schemes or algorithms [7]. Solving a
nonlinear PDE often requires a good initial guess solu-
tion for iterative refinements. In addition, the huge dif-

ference of ρwall and ρvacuum across material surfaces could
make the solution highly unstable, and thus special cares
might be needed. We find that it is not necessary to
separate φ in different regions of ρ and then match φ
at the interfaces. Equation (2) is solved on the whole
domain with the PDE solver by first setting the initial
guess to a constant value of φeq(ρwall), and iteratively
feeding the solution as the initial guess for the next run,.
A satisfactory solution can be obtained after several iter-
ations, and the iteration is stopped when the fractional
change between successive solutions is smaller than a des-
ignated value. The capability to solve the whole system
in one PDE setting allows arbitrarily shaped vacuum con-
finements, which will be greatly exploited in Section VI.
Note that a satisfactory solution here refers to a solution
that agrees with that obtained by other means, which
will be clarified in the following sections.

IV. ATOM INTERFEROMETER COUPLING TO
CHAMELEON FIELDS

Light pulse atom interferometry utilizes the wave na-
ture of atoms for sensitive measurements, where the mat-
ter wave of each atom is split, reflected, and recombined
to interfere by laser pulses [11–14]. The phase difference
between wave packet paths, due to atomic motion, grav-
ity, magnetic fields, etc., is measured against the phase
of the laser pulses. The sensitivity of an atom interfer-
ometer (AI) increases as the pulse separation time T , the
interrogation time of the AI. For experiments demanding
high sensitivities, long T AIs are proposed [14, 15] and
constructed [16–18] in both terrestrial and microgravity
environments.

To distinguish systematics from desired signals, de-
tailed analyses on AI phases are crucial for sensitive mea-
surements [14, 15, 19, 20]. In this paper, we elect to cal-
culate the AI phases in the nonrelativistic perturbative
method summarized as follows. The phase ψ of an AI can
be decomposed into three parts: the propagation phase
ψprop, the laser phase ψlaser, and the separation phase
ψseparate [14]. Consider an AI that each atom can take
either trajectory 1 or trajectory 2 to move from the first
beamsplitter to the last beamsplitter. The propagation
phase of the AI is

ψprop =
1

~

[∫
1

(m
2
v2 − V

)
dt−

∫
2

(m
2
v2 − V

)
dt

]
,(5)

where m is the mass of atom, ~ is the reduced Planck
constant, and v and V are respectively the velocity and
the potential along each trajectory of 1 and 2 [21, 22].
Instead of calculating exact trajectories under V and
photon-recoil kicks from laser pulses, we consider trajec-
tories of free particles subject only to photon-recoil kicks
but not forces due to V . This is justified by the following
two reasons: First, gravity is largely absent in a freely
falling frame (a microgravity environment), the motion
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of atoms in UHV is like a free particle to the leading or-
der. Second, the chameleon potential under investigation
is small, so that its influence on trajectories can be ig-
nored for the first order calculation. With the choice of
using free-particle trajectories, two AI paths will overlap
at the beginning and at the end, thus ψseparate = 0. Simi-
larly, the kinetic energy terms in Eq. (5) in two paths are
identical and do not contribute to ψprop. Finally, ψlaser

is under operators’ control and will cancel between AIs
if a differential measurement scheme is adapted [23, 24],
and will be omitted hereafter.

As a result, ψ is simplified to

ψ = ψprop =
1

~

(∫
2

V dt−
∫

1

V dt

)
(6)

in our first order AI phase calculation. The AI phase due
to a chameleon field profile φ in the freely falling frame is
then obtained by plugging in the chameleon interaction
potential Vint for a point particle of mass m,

ψ =
m

~
β

MPl

(∫
2

φ dt−
∫

1

φ dt

)
' 51β

(∫
2

φ dt−
∫

1

φ dt

)
mrad, (7)

where m is evaluated for 87Rb, and φ is in units of eV.
In the following sections, we will discuss systematics

versus chameleon signals in realistic settings based on
Eqs. (6) and (7), respectively. The experimental sce-
narios are assumed in microgravity for all the following
discussions, as it is necessary for the concept. It will be-
come clear that only a microgravity environment can sup-
port long AI interrogation time for needed high accelera-
tion sensitivity, confined AI trajectories for short-ranged
chameleon forces, and feasible systematics control.

V. CONFIGURATION I: SPHERICAL SHELLS

We first consider the case of a spherical shell as it is one
of the obvious choices for isolating the chameleon force
from the gravitational force. The gravitational force from
a uniform shell is zero inside the spherical void while the
chameleon force does not vanish, thus ideally no precise
knowledge of the shell mass or geometry is needed for a
chameleon force measurement. It is also a simple geome-
try that can be solved by different numerical approaches,
and thus allowing comparison of calculation results and
validation of scripts for further investigations.

A. The chameleon field

We solve for φ in both 1D and 2D settings by utilizing
the spherical and the cylindrical symmetry of a spherical
shell, respectively. On the one hand, 1D calculation is
sufficient for the investigation of using spherical shells,
and is faster than higher dimensional calculations. On

the other hand, 2D and even 3D solvers are needed when
considering realistic vacuum chambers or general mate-
rial boundaries. Therefore, we develop a stable 1D solver,
and compare the result with that published in Ref. [7] to
validate the code. 2D and 3D solvers are then developed
and checked against the 1D solver for spherical shells.

In the 1D case where only the radial coordinate is rel-
evant, Eq. (2) is in fact an ordinary differential equation
instead of a partial differential equation. To calculate
φ(r) in a spherical shell of radius R, ρ(r) is defined as a
step function

ρ(r < R) = ρvacuum, and

ρ(r ≥ R) = ρwall,

on an evenly spaced grid of ∼ 5000 points, and the
boundary conditions are

dφ

dr
(0) = 0, and

φ(R+ δR) = φeq(ρwall), (8)

where φeq is defined in Eq. (4) and δR ∼ 0.1R. As de-
scribed in Section III, an iterative calculation using the
constant initial guess φ = φeq(ρwall) gives a stable solu-
tion after few runs. We observe no difference in solution
for δR = 0.02R to R, a numerical demonstration of the
screening effect.

Our result is in good agreement with Ref. [7] for
(n,Λ, β) = (1, 0.1 meV, 103), R = 5 cm, and same vac-
uum and wall densities, where a completely different nu-
merical method was used. Figure 2 shows φ calculated
for two parameter sets at different R. Note that φ in-
creases with R but at a decreasing rate, which suggests
that there is a trade-off between the volume of apparatus
and the signal size. We choose R = 10 cm as a practi-
cally realizable geometry for further AI phase estimate
and systematics investigation.

B. Dual atom interferometers

In practical experiments, vibration control is a chal-
lenge that every sensitive AI measurement has to ad-
dress, with which the laser phase ψlaser is scrambled
by minute displacements of optics, resulting in smeared
AI fringes. Differential measurements between simulta-
neous AIs driven by the same laser pulses have shown
great common mode rejection to suppress the influence
of vibrations [23, 24]. In addition, differential measure-
ments also suppress some of other systematics including
the AC Stark shifts, Zeeman shifts, and wavefront curva-
tures [15]. Thus, we consider dual AI configurations for
the chameleon force detection as shown in Fig. 3.

Two AI configurations are illustrated in Fig. 3, one is
the Ramsey-Bordé configuration (bold) and the other is
the Mach-Zehnder configuration (dashed). From Eq. (7),
the AI phase of the chameleon field will be maximized
within a confined region if the two arms stay at different
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FIG. 2. Chameleon fields inside spherical shells of different
radii R as a function of distance to the center of the shell.
Upper figure: (n,Λ, β) = (1, 0.1 meV, 103) . Lower figure:
The embracive set (n,Λ, β) = (10, 2.4 meV, 1).

FIG. 3. Depiction of dual AIs in a spherical shell. Left: Two
AIs moving from the center towards the sides driven by the
same retroreflected laser pulses. Right: Space-time diagram
of two AIs. In the Ramsey-Bordé configuration (bold) four
π/2 pulses are applied with separation time T, T1, and T ,
while in the Mach-Zehnder configuration (dashed) a π/2-π-
π/2 pulse sequence is applied with T1 = 0.

potential values for as long as possible, which obviously
favors the Ramsey-Bordé configuration with a gain of at
most a factor of 2. Note that using large-momentum
transfer beamsplitters in the AIs [25] does not increase
ψ proportionally, which is generally true for AIs with
limited traverse distance. Nevertheless, following Eq. (7),

one can easily find that, ψ = 51β
(

∆φ
eV

)
(T + T1)mrad in

both configurations, where ∆φ is the potential difference
of φ at distance ∆z away from the center. Let the ∆z =
9 cm so that the atomic clouds are not too close to the
shell, then ∆φ ' 2 meV for (n,Λ, β) = (10, 2.4 meV, 1),
as shown on the R = 10 cm curve of the lower plot of
Fig. 2. The differential chameleon phase between AIs in
Fig. 3 is then 2ψ ' 0.2 mrad for T + T1 = 1 s, which is
comfortably accessible with current AI technology.

Equation (7) suggests that one arm of the AI should be
kept close to a surface for a long time to increase the sen-
sitivity to ∆φ, which can be best achieved in micrograv-
ity environments. Free-fall of atoms in terrestrial exper-
iments limits the time of close proximity to few ms, and
disallows the symmetric arrangement depicted in Fig. 3
for common mode rejections. On the other hand, it is
much more feasible to implement AIs of long interroga-
tion time T + T1 > 1 s at a fixed distance ' 1 cm to
surfaces in microgravity, such as in space or drop tower
facilities.

Even though there is no gravity force from an ideal
shell, the gravity gradients of Earth will contribute sig-
nificantly to this dual-AI configuration for all near Earth
environments including experiments on low Earth or-
bits such as the International Space Station (ISS), where
the Earth’s gravity gradient γ⊕ ' 2400/s2. The corre-
sponding differential AI phase, according to Eq. (6), is
2ψ = m

~ γ⊕∆z2(T + T1) ' 27 rad. Thus, a suppression

factor of > 105 is required to discern the chameleon sig-
nal. Although there exists an AI configuration that can
suppress gravity gradients [26], it unsurprisingly reduces
the sensitivity to the chameleon field. More significantly,
gravity gradients due to nearby masses will not be as
uniform as γ⊕, and sufficient knowledge of the mass dis-
tribution around the apparatus will again be required,
even with the AI technique of using a different photon
recoil in the π-pulse to cancel the gravity gradient effect
while maintaining the force sensitivity [27, 28]. The sen-
sitivity to ambient gravity gradients also precludes the
utilization of drop towers for an implementation of the
proposed scheme, in addition to the lack of needed av-
eraging time. A deep space mission, on the other hand,
may have a low self gravity gradient satellite operating in
a low gravity gradient region, and thus enables a decisive
measurement of chameleon theory using spherical shells.
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VI. CONFIGURATION II: PERIODIC
CHAMELEON FIELD

Despite the simplicity of the geometry and the ab-
sence of the gravity interference from the test mass to
the chameleon force detection, the spherical shell config-
uration discussed in the previous Section has practical
issues other than manufacturing imperfection that will
impact the measurement. In practice, the shell cannot
be perfectly spherical with windows and vacuum parts,
not to mention other nearby masses including the Earth
field gradient if the experiment is performed on or near
Earth as discussed before.

Recognizing the fact that the chameleon force field un-
der measurements results from the presence of nearby
walls, here we study a mass-wall configuration that cre-
ates a chameleon force field of known periodicity while
reducing the gravity force and force gradient signal be-
low the expected chameleon forces. In this Section, we
will describe 1) simulation of chameleon field with peri-
odic mass structure, 2) multi-loop AI for the periodic
signal detection, 3) refined mass wall structure to re-
duce the gravity force to a minimum, below all expected
chameleon force magnitude, and finally 4) a resonance
detection scheme with high systematic discrimination.

A. Periodic chameleon field

We consider the chameleon field inside a cylindrical
symmetric metal structure within a larger UHV cham-
ber. The structure is constituted of a tube with a number
of evenly distributed thin dividers across the symmetry
axis and a center bore through all dividers, depicted in
Fig. 4a as an example. The corresponding chameleon
field for (n,Λ, β) = (1, 0.1 meV, 103) is shown in Fig. 4b
by solving the 2D PDE as described in Section III, with
end caps on both ends of the tube. The field will be
probed by atoms traversing through the center bore, and
the expected chameleon acceleration is plotted in Fig. 4c
(according to Eq. (3)), if the chameleon theory is valid
and the parameters used in calculating φ correspond to
reality. Clearly there is periodic acceleration modula-
tion from the chameleon field. The magnitude of the
acceleration modulation ap is ∼ 1 nm/s2 for the param-
eters used. We notice that, for a given chameleon pa-
rameter set, ap does not depend strongly on the inner
radius of the tube or the spacing between dividers, and
is more sensitive to the bore diameter. This observa-
tion agrees with the physical picture that the chameleon
force is short-ranged so that boundary variations farther
away have much less impact than variations nearby. The
acceleration is much weaker for the embracive parame-
ters (n,Λ, β) = (10, 2.4 meV, 1), ∼ 5 pm/s2 as shown in
Fig. 5, where off-axis (2.5 mm) axial acceleration is also
plotted, showing that the lateral extent of the chameleon
force is large enough for a practical AI to probe.

As in all modulation measurement schemes, periodic

FIG. 4. A periodic structure and the corresponding
chameleon field. (a) Depiction of a tube with six dividers
and a center bore. (b) The profile of the chameleon field in-
side a structure with the following dimensions: tube length
of 20 cm, tube inner radius of 10 cm, center bore diameter of
1 cm, and divider thickness of 1 mm. The chameleon field is
for parameters (n,Λ, β) = (1, 0.1 meV, 103). Note that ad-
ditional end caps at the top and the bottom of the tube are
assumed in the calculation. (c) Chameleon acceleration on
the atoms along the symmetry axis.

FIG. 5. Axial acceleration for the embracive chameleon pa-
rameters (n,Λ, β) = (10, 2.4 meV, 1). Blue: axial acceleration
on the symmetry axis. Red: axial acceleration 2.5 mm away
from the symmetry axis.

signatures can be well separated from systematics of dif-
ferent periodicity, even if the systematics are orders of
magnitude larger than the signal size. Figures 4 and 5
show that chameleon fields can exert forces at specific
periodicity on test atoms, while gravitational forces from
the environment (including Earth) are slowly varying.
We anticipate that the gravity gradients of the Earth, the
most significant systematic as discussed in Section V B, in
differential AI chameleon force detections will be greatly
suppressed by using atom interferometers that are only
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sensitive to periodic forces.

B. Multi-loop atom interferometers

The periodic force field can be best detected by an
AI where the accrued AI phase (Eq. (6)) is modulated
in sync with the direction reversal of the force field. A
multi-loop AI with two arms crossing each other several
times by additional mirror pulses (as shown in Fig. 6)
will serve the purpose. Multi-loop AI configurations have
been proposed to suppress systematic effects, such as
gravity gradients and rotations [19, 26, 29]. Here we
use a multi-loop AI configuration to accumulate the dark
energy-induced periodic phase change while cancelling
other systematics. Again, the perturbative approach jus-
tified in Section IV will be adapted to illustrate the con-
cept.

An N -loop AI configuration hereafter is defined as fol-
lows. Consider an AI driven by two-photon beamsplitter
(π/2-) and mirror (π-) pulses with atoms initially at rest,
as depicted in Fig. 6. After initial π/2-pulse splitting at
t = 0, one arm moves away at two photon recoil velocity
2vr (red in Fig. 6) while the other arm remains at rest
(blue in Fig. 6). At t = T , a π-pulse is applied so that
two arms interchange velocity and approach each other.
At t = 2T , the two arms overlap and the first loop is
formed. Instead of applying a π/2-pulse at t = 2T , as
in the Mach-Zehnder configuration, no pulse is applied
and the two arms proceed across each other initiating
the second loop. At t = 3T , a π-pulse is applied to bring
the two arms closer as the beginning of the second half
of the second loop. The pattern continues in that a π-
pulse is applied at t = (2i − 1)T for i = 1, 2, · · · until
i = N , and a π/2-pulse is applied to close the interfer-
ometer at t = 2NT . To suppress vibrational noise and
other systematics (see Section IV), dual AIs of the same
periodicity with precisely controlled separation are de-
sired. This is easily achieved by adding a π/2-pulse at
time Td before the AI starts, as shown in Fig. 6. The
spatial separation of the AIs, δd, is determined solely by
the recoil velocity and timing, δd = 2vrTd. Note that
the dual N -loop AI scheme can be extended to AIs us-
ing large-momentum transfer beamsplitters with photon
recoil kick of 2nbvr per pulse [25] or using atom sources
with nonzero initial velocity v0.

The response of an N -loop AI to a periodic potential is
calculated as follows. Consider a 1D sinusoidal potential
V (x) of periodicity 1/K, V (x) = V0 cos(2πK(x+d)), the
corresponding acceleration a(x) on a test particle of mass
m is

a(x) =
V0

2πKm
sin(2πK(x+ d))

≡ ap sin(2πK(x+ d)). (9)

The AI phase can be calculated using Eq. (6), which is a
function of the number of loops N , the initial position of
the atom relative to the potential d, the periodicity 1/K,

FIG. 6. Space-time diagram of dual 10-loop AIs using two-
photon beamsplitters (nb = 1). Arrows on the plot indicate
AI pulses at various times, with longer and shorter arrows rep-
resenting π-pulses and π/2-pulses, respectively. Lower traces
(blue and red) form a 10-loop AI, while upper traces (green
and yellow) form another 10-loop AI. Two AIs are derived
from a single source by a π/2-pulse applied in advance of the
AI start time (t = 0).

the size of beamsplitter photon recoil nbvr, the pulse sep-
aration time T , the initial velocity of the atoms v0, and
the peak acceleration ap. For example, the phase of the
first AI loop is

ψ1(d) =
2nbk

(2πK)2v0(v0 + 2nbvr)
ap

×
[
− sin(2πKd) + sin(2πK(d+ v0T ))

+ sin(2πK(d+ (v0 + 2nbvr)T ))

− sin(2πK(d+ 2(v0 + nbvr)T ))
]
. (10)

The phase of the second loop is simply

ψ2 = −ψ1

(
d+ 2(v0 + nbvr)T

)
, (11)

due to the change of the starting position after the first
loop and the interchange of the trajectories. Thus, the
total phase of an N -loop AI is

ψ =

N∑
n=1

−(−1)nψ1

(
d+ 2(n− 1)(v0 + nbvr)T

)
. (12)

There is no concise general expression for ψ, even in our
perturbative approach where free particle trajectories are
used. However, it is anticipated that when the period-
icity of the potential is synchronized with the loops of
the AI, the phase difference of every loop between the
two arms will be the same such that the AI phase is
linearly proportional to N . In fact, two adjacent loops
have phases of opposite signs, due to the position inter-
change of the arms relative to the potential (Fig. 6). So
the periodicity of the AI is determined by the spatial ex-
tent of two loops, 4(v0 + nbvr)T . On the other hand, for
asynchronous potentials, the loop phase difference will
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FIG. 7. AI phases of 10-loop AIs. (a) Phase ψ of a 10-loop AI
as a function of T and d. (b) Differential phase δψ between
dual 10-loop AIs as a function of T and δd, assuming one
starts at d = 0.

be different for different loops and eventually cancels out
for large N . Note that the insensitivity of multi-loop AIs
to influences such as gravity, gravity gradients, and ro-
tations make the free-particle trajectory approximation
adapted in Section IV more accurate due to the cancel-
lation of their effects between loops.

As an example, Fig. 7a shows the phase of a 10-loop
AI with v0 = 2vr, nb = 2, 1/K = 0.2/7 m (same period-
icity as in Fig. 4), and ap = 10 pm/s2. The differential
phase δψ between two 10-loop AIs of separation δd can
be readily calculated, as shown in Fig. 7b, where one AI
starts at d = 0. Note that δψ ' 1 mrad is for ap about
twice of the peak acceleration for the embracive parame-
ters (shown in Fig. 5) with the total AI time 20T ' 10 s
at the resonance, which means that an AI with 50% con-
trast and 106 atoms can detect the signal in less than 100
shots!

Moreover, we find that δψ = 0 for a constant gravity
gradient for even N .

FIG. 8. A periodic structure with 12 dividers and trim masses,
and the corresponding gravity and chameleon accelerations.
(a) Sketch of the structure. The dimensions are: Tube length
20 cm, radius 1 cm, thickness 1 mm, center bore diameter
1 cm, divider thickness 0.1 mm, trim ring thickness 0.962 mm
(1/16 of the divider spacing) radially extended by 8.8 mm
from the tube body. The material density is ρwall =2.7 g/cm3

(aluminium) rather than 7 g/cm3 (steel) in previous calcu-
lations. (b) The axial chameleon accelerations for the em-
bracive parameters. Shown in red are accelerations 2.5 mm
away from the symmetry axis. The calculation is performed
with end caps. (c) The axial gravitational acceleration. Addi-
tional trim blocks are added on both ends to null the gravity
gradient at the middle of the tube, for better visualization of
the acceleration modulation. Shown in red are accelerations
2.5 mm away from the symmetry axis. Note that the gravi-
tational acceleration is smaller in amplitude and has different
periodicity from the chameleon acceleration.

C. Self-gravity force suppression

Despite the insensitivity to constant gravity gradients
and ambient perturbations, the structure itself has grav-
itational force with exactly the same periodicity as the
chameleon force. For the structure considered in the
above example (Fig. 4), ap ' 1 nm/s2 from the self
gravity. Mass proximity modulation [6–8] cannot be
performed easily in this case, where one would want to
change the dimensions of the structure for differential ef-
fects between the gravity and the chameleon field, and
eventually would encounter the problem of mass mea-
surement accuracy.

We exploit the fact that chameleon forces are of much
shorter range than gravity forces, and develop a structure
with trim masses to change the periodicity of the grav-
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FIG. 9. Differential phase between dual 10-loop AIs as a func-
tion of T and δd, with one AI starting at d = 0. Both plots
assume ap = 10 pm/s2, v0 = 0, and nb = 2. (a) 1/K =
0.2/13 m, corresponding to the periodicity of the chameleon
acceleration shown in Fig. 8b. (b) 1/K = 0.2/26 m, corre-
sponding to the periodicity of the gravitational acceleration
shown in Fig. 8c.

ity forces, as depicted in Fig. 8a. There are 12 evenly
spaced dividers to support 10-loop AIs, and trim rings in
between dividers to suppress gravitational forces. Lighter
metal of density ρwall =2.7 g/cm3 (aluminium) is chosen
to reduce the overall self-gravity magnitude. Figure 8b
shows the resulting chameleon acceleration for the em-
bracive parameters (n,Λ, β) = (10, 2.4 meV, 1), with
a slightly reduced ap of about 2.6 pm/s2 compared to
Fig. 5. The resulting gravitational acceleration, Fig. 8c,
is suppressed below the chameleon acceleration and at
twice the spatial frequency. This period-doubled acceler-
ation can be discerned clearly with dual 10-loop AIs, as
shown in Fig. 9.

The cancellation of self-gravity forces discussed above
relies on the trim masses. We explore the sensitivity to
the accuracy of dimensions numerically. Note that the ac-
curacy of the periodicity is not critical, which would only
result in slight shift of resonance location in T (Fig. 9).

Since the structure is made of single material and the
measurement is sensitive to a specific spatial frequency,
imperfections such as density inaccuracy, impurity, and
inhomogeneity of the material are not of concern to the
first order. We evaluate the influence of non-periodic dis-
turbances by simulating the extreme case: one trim ring
is completely missing. Depending on the position of the
missing ring, the largest projection of the resulting accel-
eration on the specific spatial frequency has an amplitude
of ap = 2.5 pm/s2. This seemingly sizeable contribution,
however, does not exhibit the resonant feature shown in
Fig. 9 when T is varied, which allows a clean separa-
tion and rejection from the anticipated periodic signal.
Clearly, this ability is only possible in a microgravity en-
vironment where atomic motions are controlled slow and
linear moving states.

The residual periodic inhomogeneity is to be combined
with the trim mass dimension inaccuracy analysis as fol-
lows. We simulate individually the divider thickness er-
ror and three types of trim mass dimension error: the
radial extent, the thickness, and the offset from the cen-
ter of dividers. Plots similar to Fig. 8c are generated for
different dimensions, and the peak value of on-axis pe-
riodic gravitational acceleration ap of each simulation is
extracted. We find that ap < 2 pm/s2 for divider thick-
ness changes of ±10% from the design value of 0.1 mm,
for trim mass radial extent between 8.4 mm to 9.0 mm,
for trim mass thickness changes of ±10% from the design
value of 0.962 mm, or for trim mass offset of ±0.3 mm.
These dimension tolerances can be met easily. Varia-
tions among trim mass rings or dividers have less impact
than common errors considered in the analysis and are
ignored, since they will contribute less in magnitude and
at wrong periodicity.

D. Resonant detection and systematic suppression

The main motivation of using the periodic structure is
to reduce the uncontrollable systematics while increasing
the intended signal. While the signal accumulates with
the multi-loop AI for the periodic field, the real power
lies in the ability to show the measurement sensitivity
to the periodicity with the experimentally controllable
parameters, here we call it resonance detection.

Figure 9a shows the anticipated differential AI phase
for the chameleon acceleration (Fig. 8b) as a function of T
and the separation δd between two 10-loop AIs. Similar
periodic feature can be obtained by varying the starting
location of the dual AIs (the d parameter in Fig. 7a). As
expected from a modulation detection scheme, the sig-
nal is strongest when the modulation is in sync with the
periodicity of the signal and is greatly suppressed other-
wise. The capability of scanning T and δd, e.g., around
T = 0.5, δd = 0.01 in Fig. 9a, allows an unambiguous
detection of the chameleon signal, even without precise
knowledge or tight tolerance of the mechanical structure.
For signals out of sync with the multi-loop AIs, such as
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the residual gravity forces shown in Fig. 8c, their contri-
bution in the region around T = 0.5, δd = 0.01 is small
with different signature. Likewise, the blackbody radia-
tion effect due to temperature gradients [30] is also non-
resonant with the structure and therefore suppressed. As
a result, the multi-loop AIs proposed in Section VI B not
only have sensitivity for the weakest chameleon forces,
but also segregate gravity forces from the wall, the mass
of nearby apparatus, and the Earth. This enables a com-
plete chameleon theory validation experiment in a near
Earth microgravity environment.

The insensitivity to gravity and gravity gradients also
provides an important technical advantage that strongly
enhances the feasibility of the multi-loop AIs. Gravity
gradients have been a major and difficult systematic ef-
fect for precision measurements [20]. Due to the initial
position sensitivity of AI in the Mach-Zehnder configura-
tion and the finite extent of atomic clouds, fringes in the
clouds are anticipated for long T interferometers, which
result in lost of contrast and require additional efforts to
recover the AI phase (as discussed in Ref. [15] for exam-
ple). On the contrary, each multi-loop AI discussed above
has zero sensitivity to gravity, and the sensitivity to grav-
ity gradient as γNT 3 rather than γ(NT )3, so that the AI
phase is significantly less sensitive to the initial position
and velocity in the presence of gravity and gravity gradi-
ents compared to that of a Mach-Zehnder AI of the same
duration. Thus, the contrast of a multi-loop AI does
not suffer greatly from gravity gradient induced smear-
ing. Similarly, rotation-induced fringes and contrast loss
are also suppressed in multi-loop AIs. A straightforward
implementation of multi-loop AIs should have high con-
trast even for long T without modification of the AI se-
quence or imaging of the clouds. It can be shown that
adapting the gravity gradient cancellation method de-
scribed in Refs. [27, 28] will further remove the residual
sensitive without reducing the chameleon signal size. In
contrast to the spherical shell configuration considered
in Section V, measurements in this periodic structure
configuration is insensitive to ambient gravity gradients,
which allows an implementation in drop tower facilities.

To put the numbers into perspective, the differential AI
phase δψ ' 0.12 mrad for the triangular acceleration pat-
tern of ap = 3 pm/s2 (inferred from Fig. 9a and Fig. 8b
respectively). The phase resolution of δψ is 4 mrad per
shot for dual AIs, each of which has 106 atoms, 50% fringe
contrast, and random common phase. Phase resolution of
0.12 mrad can thus be reached within 1200 shots, which is

less than 7 hours assuming a duty cycle of 20 s. Suppose
10 measurement sets are desired to explore the resonance
feature in T and δd (Fig. 9a), the chameleon theory can
be invalidated with high fidelity in 3 days of continuous
operation of such an experiment onboard the ISS. Even
with very conservative parameters of 105 atoms each and
10% contrast, a conclusive result will be obtained in 25
months of operation. The atom source and AI require-
ments are well within the capability of the Cold Atom
Laboratory (CAL) to be deployed on the ISS in 2018 [31],
while cold atom technologies have been demonstrated in
microgravity in projects such as Ref. [18]. In principle,
it is also feasible to conduct such experiment in a drop
tower such the Einstein Elevator [32] where sufficient av-
eraging time can be accumulated with high drop rate.

VII. CONCLUSIONS

The chameleon scalar field theory is a promising can-
didate of dark energy. Atom interferometers bypass its
screening effect that prevents laboratory detection us-
ing bulk materials. We present a numerical method to
efficiently calculate chameleon fields near material sur-
faces of nontrivial geometry, and develop measurement
schemes using atom interferometry that suppress major
systematic effects. Specifically, a multi-loop atom in-
terferometer configuration is designed to resonantly de-
tect the periodic chameleon forces and suppress gravi-
tational effects from self-mass and its environment. For
this scheme to work, the experiment can only be carried
out in a microgravity reference frame where atoms are
slow and linear. The simulations and analyses show that
such an experiment can be readily implemented in an ap-
paratus similar to CAL in the ISS platform and will help
provide answers to the mystery of dark energy.
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