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Gravitational wave astronomy has set in motion a scientific revolution. To further enhance the
science reach of this emergent field of research, there is a pressing need to increase the depth
and speed of the algorithms used to enable these groundbreaking discoveries. We introduce Deep
Filtering—a new scalable machine learning method for end-to-end time-series signal processing.
Deep Filtering is based on deep learning with two deep convolutional neural networks, which are
designed for classification and regression, to detect gravitational wave signals in highly noisy time-
series data streams and also estimate the parameters of their sources in real-time. Acknowledging
that some of the most sensitive algorithms for the detection of gravitational waves are based on im-
plementations of matched-filtering, and that a matched-filter is the optimal linear filter in Gaussian
noise, the application of Deep Filtering using whitened signals in Gaussian noise is investigated
in this foundational article. The results indicate that Deep Filtering outperforms conventional
machine learning techniques, achieves similar performance compared to matched-filtering, while be-
ing several orders of magnitude faster, allowing real-time signal processing with minimal resources.
Furthermore, we demonstrate that Deep Filtering can detect and characterize waveform signals
emitted from new classes of eccentric or spin-precessing binary black holes, even when trained with
datasets of only quasi-circular binary black hole waveforms. The results presented in this article,
and the recent use of deep neural networks for the identification of optical transients in telescope
data, suggests that deep learning can facilitate real-time searches of gravitational wave sources and
their electromagnetic and astro-particle counterparts. In the subsequent article, the framework in-
troduced herein is directly applied to identify and characterize gravitational wave events in real
LIGO data.

I. INTRODUCTION

Gravitational wave (GW) astrophysics is a well estab-
lished field of research. To date, the advanced Laser
Interferometer Gravitational wave Observatory (aLIGO)
detectors [1, 2] have detected five GW events from bi-
nary black hole (BBH) mergers that are consistent with
Einstein’s general relativity predictions [3–7].

By the end of aLIGO’s second discovery campaign
(O2), the European advanced Virgo (aVirgo) detec-
tor [8] joined aLIGO, establishing the first, three-detector
search for GW sources in the advanced detector era. This
international network was critical for the detection of the
fifth BBH merger with improved sky localization, and
also provided the means to carry out new phenomeno-
logical tests of gravity [7].

The international aLIGO-aVirgo detector network was
used for the first detection of GWs from two collid-
ing neutron stars (NSs), GW170817 [9–11], which was
followed up with broadband electromagnetic observa-
tions after several hours [12]. These multimessenger
observations led to the first direct confirmation that
NS mergers are the progenitors of gamma rays bursts,
GRB170817A [13–19], and the cosmic factories where
about half of all elements heavier than iron are pro-
duced [12]. These major scientific breakthroughs, worthy
of the 2017 Nobel Prize in Physics, have initiated a new
era in contemporary astrophysics.

Ongoing improvements in the sensitivity of aLIGO and
aVirgo, will enable future multimessenger observations
with astronomical facilities [20–25], increasing the num-

ber and types of GW sources, and providing new and
detailed information about the astrophysical origin, and
cosmic evolution of compact objects.

Multimessenger astrophysics is an interdisciplinary
program that brings together experimental and theoreti-
cal physics, cosmology, fundamental physics, high perfor-
mance computing (HPC) and high throughout comput-
ing (HTC). For instance, at the interface of HPC and the-
oretical physics, numerical relativity (NR) simulations of
Einstein’s field equations are extensively used to validate
the astrophysical nature of GW sources [26, 27]. Further-
more, NR simulations of NS mergers, neutron star-black
hole (NSBH) mergers, core collapse supernovae and other
massive, relativistic systems provide key physical insights
into the physics of GW sources that are expected to gen-
erate electromagnetic (EM) and astro-particle counter-
parts [18, 28–32].

On the other hand, large scale GW data analysis has
traditionally relied on HTC resources. Flagship GW
searches have been very successful at exploiting these re-
sources to identify and characterize GW sources [33–36].
Within the next few years GW discovery campaigns will
bring together an international network of GW interfer-
ometers, that will gather data for extended periods of
time. As the sensitivity of this detector network reaches
design sensitivity, the detection rate will continue to in-
crease in successive detection campaigns. Furthermore,
existing low latency (online) matched-filtering based al-
gorithms currently target a 4-dimensional (4D) param-
eter space, which describes spin-aligned compact binary
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Accelerating the o✏ine Bayesian parameter estimation

algorithms, which typically last from several hours to a
few days, is no trivial task since they have to sample a
15D parameter space [37–40]. In light of these challenges,
there are ongoing e↵orts to reduce the size of template
banks used for matched-filtering based GW searches [41].
Based on these considerations, and realizing that to max-
imize the science one can extract from GW observations,
it is essential to rapidly cover a deeper parameter space
of astrophysically motivated sources, the GW community
has been exploiting state-of-the-art HPC facilities to in-
crease the pool of computational resources to carry out
for large scale GW data analysis [42, 43].

To further contribute to fully realize the multimessen-
ger astrophysics program, this article introduces a new
machine (deep) learning algorithm, Deep Filtering,
which is based on deep neural networks (DNNs) [44] to
directly process highly noisy time-series data for both
classification and regression in real-time. In particular,
this algorithm consists of two deep convolutional neural
networks [45] that take time-series inputs, and are capa-
ble of detecting and estimating parameters of GW signals
whose peak power is weaker than that of the background
noise.

The main objective in developing Deep Filtering
is to complement and enhance the existing, low la-
tency GW detection algorithms, such as PyCBC [33] and
gstLAL [46], to enable deeper and faster GW searches.
Deep Filtering may be applied to identify and rapidly
constrain the astrophysical parameters of GW tran-
sients. This real-time analysis would then be followed
up by existing o✏ine Bayesian parameter estimation
pipelines [37, 38]. A targeted search of this nature can
significantly reduce the size of multi-dimensional tem-
plate banks, enabling the use of established matched-
filtering searches at a fraction of their computational cost
to quantify the significance of new GW detections. This
approach would combine the best of two approaches: the
scalable nature of DNNs with the sophistication of LIGO-
Virgo detection pipelines.

In this foundational article, we describe the key fea-
tures of Deep Filtering and carry out a systematic
study of DNNs trained using a dataset of inspiral-merger-
ringdown (IMR) BBH waveforms [47, 48] to cover the
BBH parameter-space where ground-based GW detec-
tors are expected to have the highest detection rate [49].
This analysis is carried out using GW signals whitened
with aLIGO’s design sensitivity [50] injected into Gaus-
sian noise. This simplified scenario is studied in this first
article to illustrate the key ideas and new deep learning
methods in a transparent manner, and also to compare
these results to a matched-filter, the optimal linear filter

1 Astrophysically motivated sources describe a 9D parameter
space: two component masses, eccentricity, and two 3D vectors
describing the spin of each binary component.

in Gaussian noise, which is at the core of some of the
most sensitive GW detection pipelines [33, 34]. In the
subsequent article, the methods presented here are suc-
cessfully applied for the detection and characterization
of GW signals in real LIGO data [51].
The results in this article suggest that DNNs may be

ideal tools for enhancing GW analysis. In particular,
DNNs are able to interpolate between waveform tem-
plates, in a similar manner to Gaussian Process Regres-
sion (GPR) 2, and to generalize to some new classes of
signals beyond the templates used for training. An im-
portant advantage of Deep Filtering is its scalability,
i.e., all the intensive computation is diverted to the one-
time training stage, after which the datasets can be dis-
carded, i.e., the size of the template banks presents no
limitation when using deep learning. With existing com-
putational resources on supercomputers, such as Blue
Waters, it will be feasible to train DNNs that target a 9D
parameter space within a few weeks. Furthermore, once
trained these DNNs can be evaluated in real-time with a
single CPU, and more intensive searches over longer time
periods covering a broader range of signals can be carried
out with a dedicated GPU.
The analysis presented here, contextualized with re-

cent work to understand and characterize aLIGO non-
Gaussian noise transients [55, 56], and new deep learning
applications for transient identification in large sky sur-
veys [57] suggests that it is feasible to create an e�cient
deep learning pipeline to perform all tasks—identifying
the presence or absence of GW signals, classifying noise
transients, reconstructing the astrophysical properties of
detected GW sources, and identification of EM counter-
parts of GW events, thus paving a natural path to realiz-
ing real-time multimessenger astrophysics with a unified
framework.
This article is organized as follows: Section II provides

a comprehensive overview of artificial neural networks
and deep learning, particularly focusing on convolutional
neural networks in the context of time-series signal pro-
cessing. Section III describes the assumptions, datasets,
and procedure to construct the DNN-based GW analysis
pipeline. The results are reported in Section IV. In Sec-
tion V, the immediate implications for GW astrophysics
missions are discussed. We summarize the findings and
outline its broader applications in Section VI.

II. NEURAL NETWORKS AND DEEP
LEARNING

This section presents a brief overview of the main con-
cepts of deep learning, including machine learning, artifi-

2 GPR [52–54] is a statistical tool that can serve as a proba-
bilistic interpolation algorithm providing information about the
training set of NR simulations needed to accurately describe
a given parameter-space and generates interpolated waveforms
that match NR counterparts above any given level of accuracy.
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cial neural networks, and convolutional neural networks
in the context of time-series signal processing.

The vast majority of algorithms are designed with a
specific task in mind. They require extensive modifi-
cations before they can be re-used for any other task.
The term machine learning refers to a special class of
algorithms that can learn from examples to solve new
problems without being explicitly re-programmed. This
enables cross-domain applications of the same algorithm
by training it with di↵erent data [58]. More impor-
tantly, some of these algorithms are able to tackle prob-
lems which humans can solve intuitively but find di�cult
to explain using well-defined rules, hence they are often
called “artificial intelligence” [58].

The two main categories of machine learning are super-
vised and unsupervised learning. In supervised learning,
the algorithm learns from some data that is correctly
labeled, while unsupervised learning algorithms have to
make sense of unstructured and unlabeled data [59]. This
work focuses on an application of supervised learning,
where labeled data obtained from physics simulations is
used to train an algorithm to detect signals embedded in
noise and also estimate multiple parameters of the source.

Although traditional machine learning algorithms have
been successful in several applications, they are limited
in their ability to deal directly with raw data. Often the
data has to be simplified manually into a representation
suitable for each problem. Determining the right repre-
sentation is extremely di�cult and time-consuming, often
requiring decades of e↵ort even for domain experts, which
severely limits the applicability of these algorithms [58].
Representation learning is a field of machine learning
which aims to resolve this issue by creating algorithms
that can learn by themselves to find useful representa-
tions of the raw data and extract relevant features from
it automatically for each problem [60].

Deep Learning is one of the most rapidly growing sub-
fields of machine learning, which resolves this di�culty of
feature engineering with algorithms that can find useful
representations of the raw data by extracting multiple
levels of relevant features automatically for each prob-
lem. This is achieved by combining a computational ar-
chitecture containing long interconnected layers of “arti-
ficial neurons” with powerful learning (optimization) al-
gorithms [44, 58]. These deep artificial neural networks
(DNNs) are able to capture complex non-linear relation-
ships in the data by composing hierarchical internal rep-
resentations, all of which are learned automatically dur-
ing the training stage. The deepest layers are able to
learn highly abstract concepts, based on the simpler out-
puts of the previous layers, to solve problems that pre-
viously required human-level intelligence thus achieving
state-of-the-art performance for many tasks [59].

A. Artificial neural networks

Artificial neural networks (ANN), the building blocks
of DNNs, are biologically-inspired computational mod-
els that have the capability to learn from observational
data [61]. The fundamental units of neural networks
are artificial neurons (loosely modeled after real neu-
rons [62]), which are based on perceptrons introduced
by Rosenblatt in 1957 [63]. A perceptron takes a vector
of inputs (~x) and computes a weighted output with an
o↵set known as bias. This can be modeled by the equa-
tion f(~x) = ~w · ~x+ b, where the weights (~w) and bias (b)
are learned through training.
Minsky and Papert showed that a single percep-

tron has many limitations [64]. However, it was later
found that these limitations can be overcome by using
multiple layers of inter-connected perceptrons to create
ANNs [59]. The universality theorem [65] proves that
ANNs with just three layers (one hidden layer) can model
any function up to any desired level of accuracy.
Multilayer perceptrons are also known as feed-forward

neural networks because information is propagated for-
ward from the input layer to the output layer with-
out internal cycles (i.e no feedback loops) [58]. While
potentially more powerful cyclic architectures can be
constructed, such as Recurrent Neural Networks [58]
(RNNs), they are often more computationally expensive
to train. Therefore, only feed-forward neural networks
are considered in this article.
An ANN usually has an input layer, one or more hid-

den layers, and an output layer (shown in Figure 1). A
non-linear “activation” function is applied to the output
of each of the hidden layers. Without this non-linearity,
using multiple layers would become redundant, as the
network will only be able to express linear combinations
of the input. The most commonly used non-linear acti-
vation functions are the logistic sigmoid, hyperbolic tan,
and the rectified linear unit (also called ReLU or ramp).
It has been empirically observed that the ramp produces
the best results for most applications [66] . This function
is mathematically expressed as max(0, x).
The key ingredient that makes ANNs useful is the

learning algorithm. Almost all neural networks used to-
day are trained with variants of the back-propagation
algorithm in conjunction with the gradient descent meth-
ods [59]. The idea is to propagate errors backward from
the output layer to the input layer after each evaluation
of a neural network, in order to adjust the weights of each
neuron so that the overall error is reduced in a supervised
learning problem [68]. The weights of an ANN are usu-
ally initialized randomly to small values and then back-
propagation is performed over multiple rounds, known as
epochs, until the errors are minimized. Stochastic gra-
dient descent with mini-batches [69] has been the tradi-
tional method used for learning. This technique uses an
estimate of the gradient of the error over subsets of the
training data in each iteration to change the weights of
the ANN. The magnitude of these changes is determined
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FIG. 1. Diagram of a neural network. An Artificial Neu-
ral Network (ANN) or multilayer perceptron with one hidden
layer is depicted [67]. The circles represent neurons and ar-
rows represent connections (weights) between neurons. Note
that each neuron has only a single output, which branches
out to connect with neurons in the next layer.

by the “learning rate”. New methods with variable learn-
ing rates such as ADAM (Adaptive Momentum Estima-
tion) are becoming more popular and have been shown
empirically to achieve better results more quickly for a
wide range of problems [70].

B. Convolutional neural networks

A convolutional neural network [45] (CNN), whose
structure is inspired by studies of the visual cortex in
mammals [58], is a type of feed-forward neural network.
CNNs have been found to approach or even surpass
human-level accuracy 3 at a variety of image and video
processing tasks [44, 71].

The introduction of a “convolution layer”, containing a
set of neurons that share their weights, is the critical com-
ponent of these networks. Multiple convolution layers are
commonly found in DNNs, with each having a separate
set of shared weights that are learned during training.
The name comes from the fact that an output equivalent
to a convolution, or sometimes cross-correlation [58], op-
eration is computed with a kernel of fixed size. A con-
volutional layer can also be viewed as a layer of identical
neurons that each “look” at small overlapping sections of
the input, defined as the receptive field.

The main advantage of using these layers is the ability
to reduce computational costs by having shared weights
and small kernels, thus allowing deeper networks and
faster training and evaluation speeds. Because of the
shared weights, CNNs are also able to automatically deal
with spatially translated as well as (with a few modi-
fications [44]) rotated and scaled signals. In practice,

3 In the context of classification, accuracy is defined the ratio of
inputs whose labels were predicted correctly with respect to the
total number of inputs.

multiple modules each consisting of a sequence of con-
volution and pooling (sub-sampling) layers, followed by
a non-linearity, are used. The pooling layers further re-
duces computational costs by constraining the size of the
DNN, while also making the networks more resilient to
noise and translations, thus enhancing their ability to
handle new inputs [44]. Dilated convolutions [72] is a re-
cent development which enables rapid aggregation of in-
formation over larger regions by having gaps within each
of the receptive fields. In this study, we focus on CNNs
as they are the most e�cient DNNs on modern hardware,
allowing fast training and evaluation (inference).

C. Time-series analysis with convolutional neural
networks

Conventional methods for digital signal processing
such as matched-filtering (cross-correlation or convolu-
tion against a set of templates) [73] in time-domain or
frequency-space are limited in their ability to scale to a
large parameter-space of signal templates, as discussed
in [39, 41], while being too computationally intensive for
real-time parameter estimation analyses [37]. Signal pro-
cessing using machine learning in the context of GW as-
trophysics is an emerging field of research [55, 56, 74–79].
These traditional machine learning techniques, including
shallow ANNs, require “handcrafted” features extracted
from the data as inputs rather than the raw noisy data it-
self. DNNs, on the other hand, are capable of extracting
these features automatically.
Deep learning has been previously applied for the clas-

sification of glitches with spectrogram images as inputs
to CNNs [56, 78, 80] and unsupervised clustering of tran-
sients [81], in the context of aLIGO. Using images as in-
puts is advantageous for two reasons: (i) there are well
established architectures of 2D CNNs which have been
shown to work (GoogLeNet [82], VGG [83], ResNet [84]);
and (ii) pre-trained weights are available for them, which
can speed up the training process via transfer learn-
ing while also providing higher accuracy even for small
datasets [56]. However, experiments showed that this ap-
proach would not be optimal for detection or parameter
estimation since many signals having low signal-to-noise
ratio (SNR 4) are not visible in spectrograms, as shown
in Fig. 2.
Theoretically, all the information about the signal is en-
coded within the time-series, whereas spectrograms are
lossy non-invertible representations of the original data.
Although 2D CNNs are commonly used, especially for
image-related tasks, by directly feeding the time-series

4 Note that the standard definition of optimal matched-filtering
SNR is used in this article, as described in [85]. This SNR is on
average proportional to 12.9±1.4 times the ratio of the amplitude
of the signal to the standard deviation of the noise for the test
set.
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FIG. 2. Sample of input data. The red time-series is an example of the input to the deep neural network algorithm. It
contains a binary black hole gravitational waveform signal (blue), which was whitened with aLIGO’s design sensitivity and
superimposed in noisy data with SNR = 7.5 (peak power of this signal is 0.36 times the power of background noise). The
component masses of the merging black holes are 57M� and 33M�, respectively. The corresponding spectrogram on the right
shows that the gravitational wave signal on the left is not visible, and thus cannot be detected by an algorithm trained for
image recognition. Nevertheless, the deep neural network detects the presence of this signal directly from the (red) time-series
input with over 99% sensitivity, and reconstructs the source’s parameters with a mean relative error of about 10%.

data as inputs to 1D CNNs, one can obtain higher sensi-
tivities of detection (defined as the fraction of signals de-
tected with respect to the total number of signals present
in the inputs) at low SNR, lower error 5 rates in param-
eter estimation, and faster analysis speeds. This auto-
mated feature learning allows the algorithm to develop
more optimal strategies of signal processing than when
given hand-extracted information such as spectrograms.
There has been a few attempts at signal processing us-
ing CNNs with raw noisy time-series data in other do-
mains which considered estimation of a single parame-
ter [86, 87].

This article demonstrates that DNNs can be used for
both signal detection and multiple-parameter estimation
directly from highly noisy time-series data, once trained
with templates of the expected signals, and that deep
CNNs outperform many traditional machine learning al-
gorithms shown in Fig. 14, and reach accuracies com-
parable to matched-filtering methods. The results show
that deep learning is more computationally e�cient than
matched-filtering for GW analysis. Instead of repeatedly
performing overlap computations against all templates
of known signals, the CNN builds a deep non-linear hi-
erarchical structure of nested convolutions, with small
kernels, that determines the parameters in a single eval-
uation. Moreover, the DNNs act as an e�cient compres-
sion mechanism by learning patterns and encoding all
the relevant information in their weights, analogous to a

5 The error on the test set is defined as the mean of the magni-
tudes (absolute values) of the relative error in estimating each
parameter averaged over all inputs in the test set and over each
parameter.

reduced-order model [88], which is significantly smaller
than the size of the training templates. Therefore, the
DNNs automatically perform an internal optimization of
the search algorithm and can also interpolate, or even
extrapolate, to new signals not included in the template
bank (unlike matched-filtering).
Note that matched-filtering performs the convolution

of the input data against a set of templates, therefore, it
is equivalent to a single convolution layer in a neural net-
work, with very long kernels corresponding to each sig-
nals in the template bank. Therefore, Deep Filtering
can be viewed as a more e�cient extension of matched-
filtering, which performs template matching against a
small set of short duration templates, which are learned
automatically, and aggregates this information in the
deeper layers to e↵ectively model the full range of long-
duration signals.

III. METHOD

As a proof of concept in this first article, we focus on
GWs from BBH mergers, which are expected to dom-
inate the number of GW detections with ground-based
GW detectors [49, 89, 90]. Note that this method can
be extended to GW signals produced by other types of
events by adding more neurons in the final layer corre-
sponding to the number of classes/parameters, changing
the size of the input layer depending on the length of
the templates, and training with template banks of these
GW signals injected into simulated or real noise.
We have divided the problem into two separate parts,

each assigned to a di↵erent DNN, so that they may be
used independently. The first network, henceforth known
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as the “classifier”, will detect the presence of a signal in
the input, and will provide a confidence level for the de-
tection. The classes chosen for now are “True” or “False”
depending on whether or not a signal from a BBH merger
is present in the input. The second network, referred to
as the “predictor”, will estimate the parameters of the
source of the signal (in this case, the component masses
of the BBH). The predictor is triggered when the classi-
fier identifies a signal with a high probability.

The system is partitioned in this manner so that, in
the future, more classes of GW transients [28, 29, 91],
may be added to the classifier, and separate specialized
predictors can be made for each type of signal. Moreover,
categories for various types of anomalous sources of noise,
like glitches and blips [36, 80], can also be incorporated
in the classifier [56].

A. Assumptions

For this initial study, the signals are assumed to be op-
timally oriented with respect to the detectors, and that
the individual spins and orbital eccentricities are zero.
This reduces the parameter space to two dimensions,
namely, the individual masses of the BBH systems, which
is restricted to lie between 5M� and 75M�. Further-
more, the inputs were constrained to have a duration of
1 second, and a sampling rate of 8192Hz throughout this
analysis, which was an arbitrary choice made initially,
which was found to perform well for the type of events
that are considered here. Note that the classifier will be
applied to the continuous data stream by using a sliding
window of width 1 second. However, it is straightforward
to use inputs of any duration by changing a hyperparam-
eter corresponding to the input size of the CNNs, which
will result in the computational cost scaling linearly with
the length of the input.

Throughout this analysis, the signals were whitened
using aLIGO’s Power Spectral Density (PSD) at the
“Zero-detuned High Power” design sensitivity [50], shown
in Figure 3, to approximate the sensitivity of LIGO at
di↵erent frequencies. Consideration of transient sources
of detector noise are deferred to the subsequent article.
This is in line with previous studies, which have first
showcased a machine learning algorithm for LIGO data
analysis using simulated noise [38, 77, 92], and then fol-
lowed up by an independent study where the algorithm
is tested using real aLIGO noise [76]. In this article, we
follow a similar approach by describing the key concepts
and methods for the construction of DNNs for GW data
analysis in the context of Gaussian noise, and then show
in the following article how this Deep Filtering algo-
rithm can be directly applied to detect and characterize
GW events in real LIGO data, which has non-Gaussian
and non-stationary noise including glitches [51].
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FIG. 3. Sensitivity curve of aLIGO. Throughout this
analysis, the Zero Detuned High Power sensitivity configura-
tion for aLIGO [50] was used to simulate the colored noise
in the detectors by whitening the GW signals. The Ampli-
tude Spectral Density (ASD) of the noise vs frequency for this
configuration is shown in the figure.

B. Obtaining data

Supervised deep learning algorithms are more e↵ective
when trained with large datasets [58]. Obtaining high
quality training data has been a di�cult and cumber-
some task in most applications of DNNs, such as object
recognition in images, speech and text processing, etc.
Fortunately, this issue is not faced here since one can
take advantage of scientific simulations to produce the
necessary data for training.
Over the last decade, sophisticated techniques have

been developed to perform accurate 3D NR simula-
tions of merging BHs [91, 93]. For the analysis at
hand, E↵ective-One-Body (EOB) [47, 48] waveforms that
describe GWs emitted by quasi-circular, non-spinning
BBHs are used. The final 1 second window of each tem-
plate was extracted for this analysis.
Following the standard practice in machine learning,

the data is split into separate sets for training and testing.
For the training dataset, the BBHs component masses
are in the range 5M� to 75M� in steps of 1M�. The
testing dataset has intermediate component masses, i.e.,
masses separated from values in the training dataset by
0.5M�. By not having overlapping values in the training
and testing sets, one can ensure that the network is not
overfitting, i.e., memorizing only the inputs shown to it
without learning to generalize to new inputs. The dis-
tribution of component masses, and a template from the
training and testing sets, is shown in Fig. 4.
Subsequently, the location of the peak of each signal was
shifted randomly within an interval of 0.2 seconds in both
the training and testing sets to make the DNNs more ro-
bust with respect to time translations. Next, di↵erent
realizations of Gaussian white noise were superimposed
on top of the signals over multiple iterations, thus ampli-
fying the size of the datasets. The power of the noise was
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FIG. 4. Distribution of data. The figure shows the dis-
tribution of component masses of BBHs for the training and
testing datasets. The mass-ratios were confined between 1
and 10, which accounts for the missing points in the lower
right corner. This mass-ratio range was chosen because the
state-of-the-art EOB model used to create the datasets has
only been validated for these mass-ratio values. Each point
represents a quasi-circular, non-spinning GW signal of 1 sec-
ond duration, sampled at 8192 Hz, which is whitened with
aLIGO’s expected noise spectrum at design sensitivity. These
waveforms were normalized and translated randomly in time.
Thereafter, multiple batches of noise at each SNR were added
to produce training and testing datasets.

adjusted according to the desired SNR for each training
session. As usual, the inputs were standardized to have
zero mean and unit variance to make the training process
easier [94].

The final training sets at each SNR were produced from
⇠ 2500 templates of GWs from BBH mergers by adding
multiple batches of noise and shifting in time. It is also a
standard practice to use a validation set to monitor the
performance on unseen data during training in order to
prevent overfitting. The validation and testing sets at
each SNR were generated from a di↵erent set of ⇠ 2500
templates by superimposing di↵erent noise realizations.

C. Designing neural networks

Similar DNN architectures were used for both the clas-
sifier and predictor, which demonstrates the versatility of
this method. The only di↵erence was the addition of a
softmax layer to the classifier to obtain probability esti-
mates as the outputs. The strategy was to first train the

Input vector (size: 8192)
1 Reshape matrix (size: 1×8192)
2 Convolution matrix (size: 16×8177)
3 Pooling matrix (size: 16×2044)
4 ReLU matrix (size: 16×2044)
5 Convolution matrix (size: 32×2016)
6 Pooling matrix (size: 32×504)
7 ReLU matrix (size: 32×504)
8 Convolution matrix (size: 64×476)
9 Pooling matrix (size: 64×119)
10 ReLU matrix (size: 64×119)
11 Flatten vector (size: 7616)
12 Linear Layer vector (size: 64)
13 ReLU vector (size: 64)
14 Linear Layer vector (size: 2)

Output vector (size: 2)

FIG. 5. Architecture of deep neural network. This is
the deep dilated 1D CNN, modified to take time-series in-
puts, designed for prediction, which outputs two real-valued
numbers for the two component masses of the BBH system.
For classification, a softmax layer was added after the 14th
layer to obtain the probabilities for two classes, i.e., “True” or
“False”. The input is the time-series sampled at 8192Hz and
the output is either the probability of each class or the value
of each parameter. Note that the number of neurons in layer
14 can be increased to add more categories for classification
or more parameters for prediction. The size of this CNN is
about 2MB.

predictor on the datasets labeled with the BBH masses,
and then transfer the weights of this pre-trained network
to initialize the classifier and then train it on datasets
in which half of the inputs contained an injected signal.
This transfer learning process reduced the training time
required for the classifier, while also slightly improving
its accuracy at low SNR.
Overall, we designed and tested around 80 configura-

tions of DNNs ranging from 1 to 4 convolutional lay-
ers and 1 to 3 fully connected layers (also called linear
layers) similar to [95], but modified for time-series in-
puts. Among these, a design for the classifier with 3
convolutional layers followed by 2 fully connected lay-
ers yielded good results with fastest inference speed. We
tried adding a few recent developments such as batch nor-
malization [96] and dropout [97] layers. However, they
were not used in the final design as they did not provide
improvements for the simple problem that is considered
here. Note that the addition of noise to the signals dur-
ing the training process serves as a form of regularization
in itself. Many of the layers have parameters, commonly
known as hyperparameters, which were tuned manually
via a randomized trial-and-error procedure.
Depth is a hyperparameter which determines the num-
ber of filters in each convolutional layer. The choices
for depth in the consecutive layers were 16, 32, and 64
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Input vector (size: 8192)
1 Reshape matrix (size: 1×8192)
2 Convolution matrix (size: 64×8177)
3 Pooling matrix (size: 64×2044)
4 ReLU matrix (size: 64×2044)
5 Convolution matrix (size: 128×2014)
6 Pooling matrix (size: 128×503)
7 ReLU matrix (size: 128×503)
8 Convolution matrix (size: 256×473)
9 Pooling matrix (size: 256×118)
10 ReLU matrix (size: 256×118)
11 Convolution matrix (size: 512×56)
12 Pooling matrix (size: 512×14)
13 ReLU matrix (size: 512×14)
14 Flatten vector (size: 7168)
15 Linear Layer vector (size: 128)
16 ReLU vector (size: 128)
17 Linear Layer vector (size: 64)
18 ReLU vector (size: 64)
19 Linear Layer vector (size: 2)

Output vector (size: 2)

FIG. 6. Architecture of deeper neural network. This is
the deeper version of the CNN, modified to take time-series
inputs, designed for parameter estimation. The input is the
time-series sampled at 8192Hz and the output is the predicted
value of each parameter. This can be converted to a classifier
by adding a softmax layer after layer 19 to obtain the prob-
ability for a detection. Note that the number of neurons in
layer 19 can be increased to add more categories for classifi-
cation or more parameters for prediction. The 2 neurons in
the final layer outputs the 2 parameters corresponding to the
individual masses of BBHs. The size of this CNN is approxi-
mately 23MB.

respectively. Kernel sizes of 16, 8, and 8 were used for
the convolutional layers and 4 for all the (max) pooling
layers. Stride, which specifies the shift between the re-
ceptive fields of adjacent neurons, was chosen to be 1 for
all the convolution layers and 4 for all the pooling lay-
ers. Dilation determines the overall size of each receptive
field, which could be larger than the kernel size by having
gaps in between. Here, it is a measure of the temporal
extend of the convolutions. Using dilation of 4 in the
final two convolution layers improved the performance.
The final layout of the classifier DNN is shown in Fig. 5.

Deeper networks are expected to provide further im-
provements in accuracy although at the cost of slower
evaluation speed. To show this, we also designed a deeper
net, shown in Fig. 6, with 4 convolution layers and 3 fully
connected layers that had improved sensitivity for detec-
tion and significantly better performance for parameter
estimation. Although this design performed slightly bet-
ter, it was a factor of 5 slower on a GPU for evaluation.
This CNN had convolution layers having kernel sizes were
16, 16, 16, and 32 with dilations 1, 2, 2, and 2 respec-

FIG. 7. Visualization of training. This is a snapshot of
one of the training sessions for parameter estimation. The
mean squared error on the training set is plotted in orange
and the blue curve measures the error on the validation set.

tively. The pooling layers all had kernel size 4 and stride
4.
A loss function (cost function) is required to compute

the error after each iteration by measuring how close the
outputs are with respect to the target values. A new loss
function, i.e., the mean absolute relative error loss, was
applied for training the predictor. For classification, the
standard cross-entropy loss function [58] was used.

D. Training strategy

Hyperparameter optimization was performed by trial
and error to design architectures of the CNNs that
achieved the best performance in terms of speed and
accuracy. First, we used Gaussian white noise with-
out whitening the signals i.e., a flat PSD, to determine
the optimal architectures of the DNNs. This design was
also found to be optimal for signals whitened with the
Zero-Detuned PSD of aLIGO. This indicates that the
same architecture will perform well on wide variety of
PSDs. Once the best performing DNNs were chosen, they
were trained for a total of approximately 10 hours. The
DNNs were designed and trained using the neural net-
work functionality in the Wolfram Language, Mathemat-
ica, based internally on the open-source MXNet frame-
work [98], which utilizes the CUDA deep learning li-
brary (cuDNN) [99] for acceleration using GPUs. The
ADAM [70] method as the learning algorithm. A snap-
shot of the training process is shown in Figure 7.
A new strategy was devised to reduce the training time
of DNNs, while also ensuring an optimal performance, by
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starting o↵ training the predictor on inputs having high
SNR (� 100) and then gradually increasing the noise in
each subsequent training session until a final SNR distri-
bution randomly sampled in the range 5  SNR  15.
This process ensured that the performance can be quickly
maximized for low SNR, while remaining accurate for sig-
nals with high SNR. For instance, 11% error (defined as
the mean of the absolute values of the relative error aver-
aged over all the test set elements and over each param-
eter) was obtained when trained using this scheme, with
gradually decreasing SNR, and only about 21% mean er-
ror at parameter estimation was obtained on the test set
when directly trained on the same range of SNRs without
this scheme.

Furthermore, the classifier performed better (with an
increase from 96% to 99% accuracy on the test set) when
its initial weights were transferred from the fully trained
predictor, i.e., the classifier was created by simply adding
a softmax layer to the trained predictor and then trained
on the dataset of signals and noise. These techniques
were also useful when applying Deep Filtering for GW
detection and characterization in real LIGO data [51].
Therefore, they may also be useful for training neural
networks, in general, with noisy time-series data.

IV. RESULTS

A. Detection

Defining sensitivity as the ratio of the number of cor-
rect detections made to the total number of inputs con-
taining signals, at a fixed false alarm rate, the classi-
fier achieved 100% sensitivity throughout the parameter
space for signals with SNR � 10, and a single detector
false alarm rate less than 0.6%. The false alarm rate
of Deep Filtering can be further decreased by combin-
ing the classifications on multiple detector inputs and by
computing the overlap of the template predicted by Deep
Filtering with the input data to confirm each detection.

The left panel of Fig. 8 presents the sensitivity of de-
tection using the shallower DNN architecture shown in
Fig. 5. After training over the entire range of SNRs,
and tuning the single detector false alarm rate to 0.6%,
we found that the sensitivity of detection saturates at
100% for SNR � 10, i.e., GWs with SNRs in this range
are always detected. Under the same set of assumptions,
i.e., training strategy and single detector false alarm rate,
but now using the deeper DNN in Fig. 6, the right panel
of Fig. 8 indicates that the sensitivity of detection sat-
urates at 100% for SNR � 9, and performing similarly
to matched-filtering throughout the SNR range used for
comparison. These results indicate that Deep Filtering
can extract GW signals weaker than the background
noise.
Note that Fig. 8 showed results averaged over the BBH
parameter space under consideration. To further investi-
gate the performance at di↵erent regions of the param-

eter space, Fig. 9 presents the sensitivity of detection,
using the deeper DNN shown in Fig. 6, for each tem-
plate in the test set assuming a fixed SNR = 6. It is
worth pointing out that the sensitivity of detection for
each template in the test set is 100% for SNR � 10 at
each region of parameter space. For very low mass BBH
systems, at the limit of sensitivity of independent im-
plementations of matched-filtering, i.e., SNR ⇠ 6 [33],
the sensitivity of the classifier is relatively lower. This is
because for low mass BBH GWs, the last second of the
signal is contained in the high frequency regime of the
aLIGO band (⇠ 4.4kHz/M) beyond aLIGO’s range of
optimal sensitivity. Therefore, to attain better sensitiv-
ity of detection for low mass systems, the DNNs can be
trained using datasets with longer waveform templates,
which may be explored in a subsequent article. On the
other hand, the DNNs are capable of correctly identify-
ing high mass BBH events. This is a promising result,
because high mass BBH templates are short lived and
they are di�cult to accurately extract and characterize
in LIGO data, as shown in [100]. In summary, Deep
Filtering performs well throughout the BBH parame-
ter space for GW events with SNR � 10, excelling in the
detection of high mass systems even at lower SNR.
To provide a baseline for comparing the classification

results, we trained standard implementations of all com-
monly used machine learning classifiers—Random Forest,
Support Vector Machine, k-Nearest Neighbors, Hidden
Markov Model, Shallow Neural Networks, Naive Bayes,
and Logistic Regression—along with the DNNs on a sim-
pler training set of 8000 elements for fixed total mass
and peak signal amplitude. It can be seen that unlike
DNNs, none of these algorithms were able to directly
handle raw noisy data even for this simple problem as
shown in Fig. 10.

B. Parameter estimation

Fig. 11 shows the variation in relative error against
SNR for predicting the component masses of BBH GWs
signals from the test set, embedded in Gaussian noise, for
each architecture of the DNNs shown in Figs. 5 and 5.
This indicates that the predictor can measure the compo-
nent masses with an error of the same order as the spac-
ing between templates for SNR � 13. These results show
that the deeper predictor shown in Fig. 6 consistently
outperformed matched-filtering at each SNR, as shown
in the right panel of Fig. 11. For SNR � 50 both pre-
dictors could be trained to have relative error less than
5%, whereas the error with matched-filtering using the
same templates was always greater than 11% with the
given template bank. This means that, unlike matched-
filtering, the deep learning algorithm is able to automati-
cally perform interpolation between the known templates
to predict intermediate values. Furthermore, the largest
relative errors were concentrated at lower masses, be-
cause a small variation in predicted masses leads to larger
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FIG. 8. Left panel: Sensitivity of detection with smaller CNN. This is the sensitivity of the shallower classifier, shown
in Fig. 5, as a function of SNR on the test set at a fixed false alarm rate. Note that the sensitivity was measured with the
same classifier after training once over the entire range of SNR, i.e., without specifically re-training it for each SNR. This curve
saturates at sensitivity of 100% for SNR � 10, i.e, signals with SNR � 10 are always detected. The single detector false alarm
rate was tuned to be about 0.5% for this classifier. Note that the optimal matched-filter SNR is on average proportional to
12.9± 1.4 times the ratio of the amplitude of the signal to the standard deviation of the noise for the test set. Right panel:
Sensitivity of detection with deeper CNN. As left panel, but now using the deeper classifier, shown in Fig. 6. This deeper
DNN now leads to a slightly increased sensitivity of detection, which saturates at 100% for SNR � 9, i.e, signals with SNR � 9
are always detected. These results imply that Deep Filtering is capable of detecting signals weaker than the background noise.

FIG. 9. Sensitivity at SNR = 6. The color indicates
the sensitivity (%) of detection at each region of parameter
space in the test set at a fixed SNR = 6 using the deeper
CNN shown in Fig. 6. This indicates that for low BBH total
mass, 1s templates may not be su�ciently long. Note that for
SNR � 10, however, the classifier achieved 100% sensitivity
throughout the parameter space.

relative errors in this region.

The distribution of errors and uncertainties were es-
timated empirically at each region of the parameter-
space, and it was observed that the errors closely follow

Shallow Neural Network

Logistic Regression

Naive Bayes

Random Forest

Support Vector Machine

Markov Model

Nearest Neighbors

Deep Convolutional Neural Network

0 20 40 60 80 100

Accuracy of Classifier (%)

FIG. 10. Comparison with machine learning methods
for detection. The figure compares the accuracy of di↵erent
machine learning methods for detection after training each
with roughly 8000 elements, half of which contained noisy
whitened signals with a fixed peak power, less than the back-
ground noise, and constant total mass, with the other half
being pure Gaussian noise with unit standard deviation—see
Section VIIC for a detailed description of this comparison.
An accuracy of 50% can be obtained by randomly guessing.

Gaussian normal distributions for each input for SNR
(� 9), thus allowing easier characterization of uncertain-
ties. Fig. 12 presents a sample of the distribution of errors
incurred in predicting the component masses of a BBH
system with component masses (57M�, 33M�). The de-
pendence of the error with which the component masses
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FIG. 11. Left panel: Error in parameter estimation with smaller net. This shows the mean percentage error of
estimated masses on the test sets at each SNR using the predictor DNN with 3 convolution layers shown in Fig. 5. Note that
the DNN was trained only once over the range of SNR and was then tested at di↵erent SNR, without re-training. A mean
relative error less than 20% was obtained for SNR � 8. At high SNR, the mean error saturates at around 11%. Right panel:
Error in parameter estimation with deeper net. This shows the mean percentage error of estimated masses on the test
sets at each SNR using the deeper CNN with 4 convolution layers shown in Fig. 6. A mean relative error less than 15% was
obtained for SNR � 7 . At high SNR, the mean error saturates at around 7%. Note that we were able to optimize this predictor
to have less than 3% error for very high SNR (� 50), which demonstrates the ability of Deep Filtering to learn patterns
connecting the templates and e↵ectively interpolate to intermediate points in parameter space.
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FIG. 12. P-P plot of errors in parameter estimation
This is a P-P (probability) plot of the distribution of errors
in predicting m1 for test parameters m1 = 57M� and m2 =
33M�, superimposed with di↵erent realizations of noise at
SNR = 9. The best-fit is a Gaussian normal distribution with
mean = 1.5M� and standard deviation = 4.1M�. The errors
followed similar Gaussian distributions in other regions of the
parameter-space as well.

of each template of the test dataset are recovered in each
region of the parameter space is presented in Fig. 13 us-
ing the deeper CNN shown in Fig. 6 assuming a fixed
SNR = 10.

Finally, we tested the baseline performance of a variety
of common machine learning techniques including Linear
Regression, k-Nearest Neighbors, Shallow Neural Net-

FIG. 13. Error in parameter estimation at SNR = 10.
This figure shows the mean relative error (%) in predicting
the component masses for each template in the test set at a
fixed SNR = 10 using the deeper CNN shown in Fig. 6.

works, Gaussian Process Regression, and Random For-
est on the simpler problem of predicting mass-ratio after
fixing the total mass. The results shown in Fig. 14 in-
dicate that, unlike DNNs, they could not predict even
a single parameter accurately when trained directly on
time-series data.
Having quantified the performance of Deep Filtering

for GW signals emitted by non-spinning, quasi-circular
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FIG. 14. Comparison of machine learning methods for
parameter estimation. The figure shows the mean relative
error obtained by various machine learning algorithms for pre-
dicting a single parameter, i.e., mass-ratio, using a training
set containing about 8000 signals with fixed amplitude = 0.6
added to white noise with unit standard deviation. Note that
scaling the alternate methods to high-dimensional parameter
spaces to predict multiple parameters is often di�cult, unlike
deep learning, which is more scalable, where neurons can be
added to the final layer of neural networks to predict each
parameter.

BBH mergers, in the following section, the ability of
the DNN-based algorithm to automatically identify new
classes of signals beyond the parameter space employed
for the original training and testing procedure, without
retraining, is explored.

C. New classes of gravitational wave sources

In this section, we test the ability of Deep Filtering
to detect two distinct types of signals that were not con-
sidered during the training stage, namely: (i) moder-
ately eccentric NR simulations (approximate eccentricity
e0 ⇠< 0.2 when entering the aLIGO frequency band), that
we recently generated with the open-source, NR software,
the Einstein Toolkit [91] using the Blue Waters petas-
cale supercomputer; and (ii) NR waveforms from the SXS
catalog [101] that describe spin-precessing, quasi-circular
BBHs—each BH having spin � 0.5 oriented in random
directions [101]. Sample waveforms of these GW classes
as shown in Fig. 15. Since these NR simulations scale
trivially with mass, the data was enlarged by rescaling
the signals to have di↵erent total masses. Thereafter, the
templated were whitened and added to di↵erent realiza-
tions of noise, in the same manner as before, to produce
test sets.

The DNN classifiers detected all these signals with
nearly the same sensitivity as the original test set, with
100% sensitivity for SNR � 10. Remarkably, the pre-
dictor quantified the component masses of the eccentric

simulations for SNR � 12 with a mean relative error less
than 20% for mass-ratios q = {1, 2, 3, 4}, and less than
30% for q = 5.5 respectively. For the spin-precessing sys-
tems that were tested, with SNR � 12, the mean error in
predicting the masses was less than 20% for q = {1, 3},
respectively.
It is worth emphasizing that there exist GW algorithms

that search for a wide range of high-SNR, short-duration
(burst) GW signals with minimal assumptions [35], i.e.,
without resorting to the use of waveform templates to
identify GW events. Indeed, these “burst” pipelines
were used to carry out the first direct detection of
GWs [3, 35]. These searches do not, however, attain the
same sensitivity as template-based searches for low-SNR
and long-duration GW signals. Other recent advances in
GW data analysis have explored the detection of spin-
precessing BBH mergers using matched-filtering based
algorithms [33, 37, 39, 102].
In view of the aforementioned considerations, let us

discuss the importance of these findings. First of all,
previous studies have reported that no matched-filtering
algorithm has been developed to extract continuous GW
signals from compact binaries on orbits with low to mod-
erate values of eccentricity, and available algorithms to
detect binaries on quasi-circular orbits are sub-optimal
to recover these events [103]. Recent analyses have also
made evident that existing GW detection algorithms are
not capable of accurately detecting or reconstructing the
parameters of eccentric signals [104–107].
However, when we scale the GW waveform from the

NR simulation used on the left panel of Figure 15 to
describe BBH mergers with mass-ratio q = 5.5 and to-
tal mass M 2 [50M�, 90M�], and with initial eccentric-
ity e0 = 0.2 when they enter the aLIGO band, Deep
Filtering was able to identify these signals with 100%
sensitivity (for SNR � 10), and recover the masses of the
system with a mean relative error  30% for SNR � 12.
To put these results in context, the right panel of Fig-
ure 2 in [104], shows that a signal of this nature will be
poorly recovered with a matched-filtering quasi-circular
search.
If we now consider eccentric GW signals that are rela-

tivity weak, i.e., SNR � 10, this means that these events
do not fall into the category of loud, short-duration,
events that GW “burst” pipelines are able to recover
without the use of templates. For reference, these low-
latency GW pipelines, that use minimal assumptions,
recovered short-duration high-SNR GW events such as
GW150914, but missed long-duration low-SNR events,
such as GW151226, which was identified by the matched-
filtering based GW pipeline gstLAL [4]. If we now con-
sider that we have found similar results for a larger set
of eccentric BBH signals with mass-ratios q  5.5 and
e0  0.2 ten orbits before merger, then these results im-
ply that, in the context of stationary Gaussian noise,
Deep Filtering can detect and characterize eccentric
BBH mergers that are poorly recovered by matched-
filtering based quasi-circular searches, and whose SNRs
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Spin-Precessing BBH Signal: SXS-0163

FIG. 15. New types of signals. Left panel: This waveform was obtained from one of our NR simulations of eccentric BBH
merger that has mass-ratio 5.5, total mass about 90M�, and an initial eccentricity e0 = 0.2 when it enters the aLIGO band.
The Deep Filtering pipeline successfully detected this signal, even when the total mass was scaled between 50M� and 90M�,
with 100% sensitivity (for SNR � 10) and predicted the component masses with a mean relative error  30% for SNR � 12.
See also Fig. 18 for more types of eccentric waveforms that were used. Right panel: One of the spin-precessing waveforms
obtained from the NR simulations in the SXS catalog with component masses equal to 25M� each. The individual spins are
each 0.6 and oriented in un-aligned directions. The DNNs also successfully detected this signal, even when the total mass was
scaled between 40M� and 100M�, with 100% sensitivity for SNR � 10 and predicted the component masses with a mean
relative error  20% for SNR � 12. See also Fig. 19 for more examples of spin-precessing waveforms which were tested.

are low enough to not be optimally recovered by GW de-
tection pipelines with minimal assumptions. Results in
the subsequent article [51], show that this is also the case
when real LIGO noise is used.

This ability to generalize to new categories of signals,
without being shown any such examples, means that
DNN-based pipelines may be able to increase the depth
of existing GW detection algorithms without incurring
additional computational expense. These results provide
an incentive to develop DNNs that are also trained with
datasets of eccentric and spin-precessing GWs to further
improve the accuracy with which the Deep Filtering
algorithms can detect and characterize these events in
low latency.

D. Speed and computational cost

Furthermore, the simple classifier and predictor (in
Fig. 5) are only 2MB in size each, yet they achieve excel-
lent results. The average time taken for evaluating them
per input of 1 second duration is approximately 6.7 mil-
liseconds, and 106 microseconds using a single CPU and
GPU respectively. The deeper predictor CNN (in Fig. 6),
which is about 23MB, achieves slightly better accuracy
at parameter estimation but takes about 85 milliseconds
for evaluation on the CPU and 535 microseconds on the
GPU, which is still orders of magnitude faster than real-
time. Note that the current deep learning frameworks
are not well optimized for CPU evaluation. For com-
parison, we estimated an evaluation time of 1.1 seconds
for time-domain matched-filtering [46] on the same CPU
(using 2-cores) with the same template bank of clean sig-
nals used for training, the results are shown in Fig. 16.
This fast inference rate indicates that real-time analysis

can be carried out with a single CPU or GPU, even with
DNNs that are significantly larger and trained with tem-
plate banks of millions of signals 6. Note that CNNs can
be trained on millions of inputs in a few hours using dis-
tributed training on parallel GPUs [110]. Furthermore,
the input layer of the CNNs can be modified to consider
inputs/templates of any duration, which will result in the
computational cost scaling linearly with the input size.
Therefore, even with 1000s inputs the analysis can still
be carried out in real-time.

For applying the Deep Filtering method to a multi-
detector scenario, one can directly apply the DNNs
pre-trained for single detector inference separately to
each detector and check for coincident detections with
similar parameter estimates. Enforcing coincident de-
tections would decrease the false alarm probability,
from about 0.59% to about 0.003%. Once the Deep
Filtering pipeline detects a signal then traditional
matched-filtering may be applied with a select few tem-
plates around the estimated parameters to cross-validate
the event and estimate confidence measure. Since only a
few templates need to be used with this strategy, exist-
ing challenges to extend matched-filtering for higher di-
mensional GW searches may thus be overcome, allowing
real-time analysis with minimal computational resources.

6 For example, a state-of-the-art CNN for image recognition [108,
109] has hundreds of layers (61MB in size) and is trained with
over millions of examples to recognize thousands of di↵erent cat-
egories of objects. This CNN can process very large inputs, each
having dimensions 224⇥224⇥3, using a single GPU with a mean
time of 6.5 milliseconds per input.
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FIG. 16. Speed-up of analysis. The DNN-based pipeline
is many orders of magnitude faster compared to matched-
filtering (cross-correlation or convolution) against the same
template bank of waveforms (tested on batches of inputs us-
ing both cores of an Intel Core i7-6500U CPU and an inex-
pensive NVIDIA GeForce GTX 1080 GPU for a fairer com-
parison). Note that the evaluation time of a DNN is con-
stant regardless of the size of training data, whereas the time
taken for matched-filtering is proportional to the number of
templates being considered, i.e., exponentially proportional to
the number of parameters. Therefore, the speed-up of Deep
Filtering would be higher in practice, especially when con-
sidering larger template banks over a higher dimensional pa-
rameter space.

V. DISCUSSION

It was found that the DNN architecture is resilient to
the nature of the detectors’ PSD. The best-performing
architecture was the same when using Gaussian noise
without whitening the signals i.e., a flat PSD, and when
using signals whitened with aLIGO’s design sensitivity.
By incorporating examples of transient detector noise in
the training set, the DNNs can also be taught to au-
tomatically ignore or classify glitches. While only sim-
ple DNNs are explored in this first study, our results
show that deeper DNNs improve the accuracy of inter-
polation between GW templates for prediction as well
as the sensitivity at low SNR, while retaining real-time
performance. Even though the analysis presented in this
article was carried out using Gaussian noise, the follow-
ing article [51] shows that the key features of this method
remain the same when using real LIGO data, and that
Deep Filtering is able to learn from and adapt to the
characteristics of LIGO noise, without changing the ar-
chitecture of the DNNs.

Deep learning is known to be highly scalable, overcom-
ing what is known as the curse of dimensionality [58, 111].
This intrinsic ability of DNNs to take advantage of large

datasets is a unique feature to enable simultaneous GW
searches over a higher dimensional parameter-space that
is beyond the reach of existing algorithms. Furthermore,
DNNs are excellent at generalizing or extrapolating to
new data. Initially, we had trained a DNN to predict
only the mass-ratios at a fixed total mass. Extending
this to predict two component masses only required the
addition of an extra neuron to the output layer. The
preliminary results in this article with simulated data
indicates that the DNNs may be able to detect and re-
construct the parameters of eccentric and spin-precessing
compact sources that may go unnoticed with existing
aLIGO detection algorithms [103, 105–107]. The extend-
ability of this approach to predict additional parameters
such as spins, eccentricities, etc., may also be explored.
Note that there are also emerging techniques to estimate
and quantify uncertainties in the parameter predictions
of DNNs [112], which may be applied to enhance this
method.

This DNN algorithm requires minimal pre-processing.
In principle, aLIGO’s colored noise can be superimposed
into the training set of GW templates, along with ob-
served glitches. It has been recently found that deep
CNNs are capable of automatically learning to per-
form band-pass filtering on raw time-series inputs [113],
and that they are excellent at suppressing highly non-
stationary colored noise [114] especially when incorpo-
rating real-time noise characteristics [115]. This sug-
gests that manually devised pre-processing and whitening
steps may be eliminated and raw aLIGO data can be fed
to DNNs. This would be particularly advantageous since
it is known that Fourier transforms are the bottlenecks
of aLIGO pipelines [33].

Once DNNs are trained with a given aLIGO PSD,
they can be more quickly re-trained, via transfer learn-
ing, during a detection campaign for recalibration in real-
time based on the latest characteristics of each detectors’
noise. Deep learning methods can also be immediately
applied through distributed computing via citizen science
campaigns such as Einstein@Home [116] as several open-
source deep learning libraries, including MXNet, allow
scalable distributed training and evaluation of neural net-
works simultaneously on heterogeneous devices, includ-
ing smartphones and tablets. Low-power devices such as
FPGAs and GPU chips dedicated for deep learning infer-
ence [117–119] may even be placed on the GW detectors
to reduce data transfer issues and latency in analysis.

DNNs automatically extract and compress informa-
tion by finding patterns within the training data, cre-
ating a dimensionally reduced model [120]. The fully
trained DNNs are each only 2MB (or 23MB for the deeper
model) in size yet encodes all the relevant information
from about 2500 GW templates (about 200MB, before
the addition of noise) used to generate the training data.
Once trained, analyzing a second of data takes only mil-
liseconds with a single CPU and microseconds with a
GPU. This means that real-time GW searches could be
carried out by anyone with an average laptop computer or
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even a smartphone, while big datasets can be processed
rapidly in bulk with inexpensive hardware and software
optimized for inference. The speed, power e�ciency, and
portability of DNNs could allow rapidly analyzing the
continuous stream of data from GW detectors [51] or
other astronomical facilities [57].

VI. CONCLUSION

The framework for signal processing presented in this
article may be applied to enhance existing low-latency
(online) GW data analysis techniques in terms of both
performance and scalability and could help in enabling
real-time multimessenger astrophysics observations in
the future. Deep CNNs were exposed to time-series
template banks of GWs, and allowed to develop their
own strategies to detect and predict source parameters
for a variety of GW signals embedded in highly noisy
simulated data. The DNN-based method introduced in
this article has been applied in [51] to build a Deep
Filtering pipeline, trained with real LIGO noise, in-
cluding glitches, which detected true GWs in real LIGO
data and accurately estimated their parameters. These
results, provide an incentive to further improve and ex-
tend Deep Filtering to target a larger class of GW
sources, incorporating glitch classification and cluster-
ing [81], and GW denoising [79] algorithms to accelerate
and broaden the scope of GW searches with aLIGO and
future GW missions.

It was found that even though the DNNs were trained
using a dataset of GWs that describe only quasi-circular,
non-spinning BBH mergers, Deep Filtering is capa-
ble of detecting and characterizing low-SNR GW signals
that describe non-spinning, eccentric BBH mergers, and
quasi-circular, spin-precessing BBH mergers. This pro-
vides motivation to enhance the Deep Filtering algo-
rithm introduced herein to predict more parameters by
including millions of spin-precessing and eccentric tem-
plates for training potentially using distributed comput-
ing methods in HPC facilities.

Employing DNNs for multimessenger astrophysics of-
fers opportunities to harness AI computing with rapidly

emerging hardware architectures and software optimized
for deep learning. In addition, the use of state-of-the-
art HPC facilities will continue to be used to numerically
model GW sources, getting insights into the physical pro-
cesses that lead to EM signatures, while also providing
the means to continue using distributed computing to
train DNNs.
This new approach may help in enabling real-time mul-

timessenger observations by providing immediate alerts
for follow-up after GW events. Since deep CNNs also
excel at image processing, they have been applied for
transient identification in large sky surveys and high ca-
dence surveys, respectively [57, 121]. These results, com-
bined with the analysis presented here and in [51] suggest
extensive scope for deep learning techniques to develop
a new framework to further the multimessenger astro-
physics program.
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J. Lippuner, J. Miller, C. D. Ott, M. A. Scheel, and
T. Vincent, Journal of Computational Physics 335, 84
(2017), arXiv:1609.00098 [astro-ph.HE].

[32] S. Nissanke, M. Kasliwal, and A. Georgieva, Astrophys.
J. 767, 124 (2013), arXiv:1210.6362 [astro-ph.HE].

[33] S. A. Usman, A. H. Nitz, I. W. Harry, C. M. Biwer,
D. A. Brown, M. Cabero, C. D. Capano, T. Dal Canton,
T. Dent, S. Fairhurst, M. S. Kehl, D. Keppel, B. Kr-
ishnan, A. Lenon, A. Lundgren, A. B. Nielsen, L. P.
Pekowsky, H. P. Pfei↵er, P. R. Saulson, M. West, and
J. L. Willis, Classical and Quantum Gravity 33, 215004
(2016), arXiv:1508.02357 [gr-qc].

[34] K. Cannon, R. Cariou, A. Chapman, M. Crispin-
Ortuzar, N. Fotopoulos, M. Frei, C. Hanna, E. Kara,
D. Keppel, L. Liao, S. Privitera, A. Searle, L. Singer,
and A. Weinstein, Astrophys. J. 748, 136 (2012),
arXiv:1107.2665 [astro-ph.IM].

[35] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Aber-
nathy, F. Acernese, K. Ackley, C. Adams, T. Adams,
P. Addesso, R. X. Adhikari, and et al., Phys. Rev.D 93,
122004 (2016), arXiv:1602.03843 [gr-qc].

[36] N. J. Cornish and T. B. Littenberg, Classical and Quan-
tum Gravity 32, 135012 (2015), arXiv:1410.3835 [gr-qc].

[37] R. Smith, S. E. Field, K. Blackburn, C.-J. Haster,
M. Pürrer, V. Raymond, and P. Schmidt, Phys. Rev.
D 94, 044031 (2016), arXiv:1604.08253 [gr-qc].

[38] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Gra↵,
S. Vitale, B. Aylott, K. Blackburn, N. Christensen,
M. Coughlin, W. Del Pozzo, F. Feroz, J. Gair, C.-

J. Haster, V. Kalogera, T. Littenberg, I. Mandel,
R. O’Shaughnessy, M. Pitkin, C. Rodriguez, C. Röver,
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VII. SUPPLEMENTARY MATERIALS

The Wolfram Language (Mathematica) [122] was used
for training and testing the Deep Neural Networks
(DNNs) and comparator methods as well as for data pro-
cessing and visualization. Detailed documentation for all
the functions mentioned in this section can be found at
https://reference.wolfram.com

A. Preparing training and testing data

We generated inspiral-merger-ringdown gravitational
wave (GW) templates that describe binary black hole
(BBHs) systems, with zero component-spins, on quasi-
circular orbits with the open source e↵ective-one-body
(EOB) model [47, 48], that is implemented in LIGO’s
Algorithm Library (LAL) [123], which is also used cur-
rently to generate template banks for aLIGO analysis
pipelines. For the training set, we chose component
masses from 5.75M� to 75M� in steps of 1M� such
that m1 > m2. The test set contained intermediate
masses, i.e., masses from 5.25M� to 75M� in steps of
1M�. The validation set contained intermediate masses,
i.e., masses from 5M� to 75M� in steps of 1M�. We
deleted points having mass-ratio greater than 10. Each
of these masses were rounded so that the mass-ratio was
a multiple of 0.1. This gave the distribution shown in
Fig. 4. The EOB waveforms were generated from an
initial GW frequency of 15Hz using a sampling rate of
8192Hz. For this study, we used the dominant wave-
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form mode (`, m) = (2, 2). The detectors’ strain is
given by [124]: h(t) = h+(t)F+ + h⇥(t)F⇥, where F+,⇥
represent the antenna pattern of the detectors. As we
had assumed optimally oriented systems, which satisfy
F+ = 1, F⇥ = 0, only the h+ component was extracted
from these templates.

We selected the final 1 second of data from each of
these waveforms and re-sampled them at 8192Hz. Next,
they were all whitened by dividing with aLIGO’s design
sensitivity amplitude spectral density of noise, in Fourier
space. We used the “Zero-detuned High Power” sensitiv-
ity of aLIGO, shown in Fig. 3, which can be downloaded
at [125].
Each template is a vector of 8192 real numbers labeled
with the component masses. Random examples in the
final training template bank is shown in Fig. 17. Before
every training session, each template was independently
translated to the left by up to 0.2 seconds randomly, and
padded with zeros on the right to keep the total length
invariant, to produce multiple time-series with the same
parameters so that the positions of the peaks are not al-
ways at a fixed location. The mean position of the signal
peak after translations was at 0.8s. Batches of di↵erent
realizations of Gaussian noise with standard deviation set
according to the desired SNR was added to each of these
templates, and the resulting time-series were scaled to
have zero mean and unit standard deviation, before each
session. Note that the addition of noise may instead be
incorporated into the training at run-time and changed
automatically in each round, to make the process more
e�cient.

B. Designing and training neural networks

For training both of our DNNs, the back-propagation
algorithm was performed over multiple rounds, known
as epochs, until the errors were minimized. Stochastic
gradient descent with mini-batches [69] has been the tra-
ditional method used for back-propagation. This tech-
nique uses an estimate of the gradient of the error over
subsets of the training data in each iteration to change
the weights of the DNN. The magnitude of these changes
is determined by the “learning rate”. Variations of this
with adaptive learning rates such as ADAM (Adaptive
Momentum Estimation) have been shown to achieve bet-
ter results more quickly [70], therefore we chose this
method as our learning algorithm.

We employed a random trial-and-error procedure for
optimizing the hyperparameters, in which di↵erent val-
ues of hyperparameters such as stride, depth, kernel size,
and dilation, were manually tuned for each layer and the
performance of each DNN was interactively monitored
during training as shown in Fig. 7. We did not use any
zero padding for the convolution and pooling layers, since
the sampling rate was high enough so that points near
the edges were irrelevant. We experimented with the
ramp (ReLU) and tanh functions for the nonlinear ac-

tivation layers and found that the ReLU performed the
best, which is typically the case for convolutional net-
works [71]. A reshape layer was added at the input in
order to convert vector inputs into a matrix with a sin-
gle row which can be processed by the convolution lay-
ers designed for image processing. These DNNs were
designed with the NetChain function and trained with
the NetTrain function in the Wolfram Language. This
neural network functionality was internally implemented
via the open-source MXNet deep learning library [98]
written in C++, which uses standard well-established
methods for training. The source code is available at
https://github.com/dmlc/mxnet

When training, the TargetDevice was set to “GPU”.
The initial learning rate was set to 0.001 and weights of
each neuron was automatically initialized randomly ac-
cording to the Xavier (Glorot) method [126] (and manu-
ally reset when needed with NetInitialize). The stan-
dard ADAM method was used, with the parameters �1 =
0.93 and �2 = 0.999 which are the exponential decay rates
for the first and second moment estimates respectively.
L2 regularization was set to zero. The size of the mini-
batches was chosen automatically depending on the spec-
ifications of the GPU and datasets. The loss functions
were selected to be the mean squared error for predic-
tion and cross-entropy loss for the detection/classification
task. The maximum number of overall batches was set to
100000, however, the training was often stopped earlier
manually when over-fitting was found to occur, i.e., er-
ror on the validation set stopped decreasing. Most of the
intensive training was done on an NVIDIA Tesla P100
GPUs with version 11 of the Wolfram Language, how-
ever, a few test sessions were performed with NVIDIA
Tesla K40, GTX 1080, and GT 940M GPU.

For all sessions, the SNR for each time-series was ran-
domly sampled from the range 5-10 and multiplied with
a constant factor. Initially this constant factor was set
to 20, which implies that the first session of training had
SNR � 100. Then this constant factor in subsequent
training rounds was lowered in decreasing step sizes until
it was 1, i.e., the final SNR range was uniformly sampled
between 5 and 15. For prediction, each time-series was
labeled with the component masses of the BBH system
that generated the original waveforms.

For classification, we initially added batches of noise
having half this size, and desired SNR, to the clean tem-
plates and appended pure noise to get the same number
of elements in total for each session. The labels were
changed to “True” or “False”, depending on whether a
signal is present, for training the classifier. The weights
of the trained predictor was extracted and used to ini-
tialize the same layers in the classifier. We initialized
this classifier with the pre-trained weights of the predic-
tor and added a softmax layer to produce probabilities of
di↵erent classes as output. The NetDecoder function was
used within the classifier to convert the numeric vectors
of probabilities to classes with labels “True” or False”.
Then we trained this network using the same procedure
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FIG. 17. Examples of training templates. This shows 28 randomly chosen examples of clean signal templates in our training
dataset, obtained with the EOB code, after whitening with the aLIGO PSD but prior to addition of noise. The original test sets
contained the same type of signals with di↵erent component masses. These signals are all produced by mergers of non-spinning,
non-eccentric BBHs.
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with SNR � 100 and and slowly decreased the SNR every
round until a final SNR distribution uniformly sampled
in the range 5 to 10. The fraction of noise in the training
set was tuned by trial and error to about 87.5% to lower
the false alarm rate to the desired value.

Considering that all the DNNs we tested are tiny by
modern standards and only a small space of hyperparam-
eters was explored by us, we expect that higher accuracies
over a wider range of parameters and types of signals can
be obtained by exploring more complex configurations
of DNNs, choosing more optimal hyperparameters, and
using a larger set of carefully-placed training templates
covering the full range of GW signals.

C. Comparisons with other methods

Comparisons with other machine learning methods
used built-in standard implementations of these com-
mon algorithms as documented in the Wolfram Lan-
guage [122]. Open-source versions of these methods are
also available in libraries such as scikit-learn. Optimal
parameters for each model were chosen automatically by
the Classify and Predict functions. The time-series of
1 second duration sampled at 8192Hz was directly used
as inputs to all methods. The mean of the absolute values
of relative error on the test set was measured for predic-
tion. For classification, the accuracy on the test set was
measured using the ClassifierMeasurements function.
The steps followed are described below. To provide a fair
comparison, each method was directly given the same raw
time-series as inputs. Note that it may be possible to im-
prove the performance of any machine learning method
by providing hand-extracted “expert” features instead or
a DNN may be used as a feature extractor for each of the
alternative methods.

For comparison with di↵erent methods for prediction
(parameter estimation), we used the same EOB wave-
forms as before but fixed the total mass to be 60M�
for training and testing, to predict only the mass-ratio.
Thus, we used 91 templates covering mass-ratios from
1 to 10 in steps of 0.1 for training and 15 templates
with intermediate mass-ratios for testing. The size of this
training data was enhanced by adding di↵erent realiza-
tions of gaussian noise, scaled by the same total mass of
60M� and labeled with the mass-ratio. Then 88 di↵erent
realizations of noise were added to each of the training
templates to produce a total of 8008 time-series for train-
ing and 264 di↵erent realizations of noise were added to
each of the testing templates to obtain 3960 time-series
for testing. A validation set of 2640 elements was also
produced by adding another 176 di↵erent realizations of
noise to each of the testing templates. The noise was
chosen to have a Gaussian distribution and a unit stan-
dard deviation. The amplitude of all the signals were set
to 0.6 and added to the noise to create the inputs for
training and testing. The inputs were then normalized
to have unit standard deviation and zero mean. Smaller

datasets were used because the other methods are not
implemented e�ciently on GPUs, unlike DNNs, therefore
the training procedure was done on a high-performance
CPU machine over several days. The predictor DNN was
initialized randomly and re-trained with this new dataset
for comparison. The mean relative errors we obtained
with the di↵erent methods, shown in Fig. 14, are as fol-
lows: DNN - 10.92%, Shallow Neural Networks - 49.93%,
Gaussian Process Regression - 67.43%, Linear Regression
- 67.50%, Random Forest - 67.59%, k-Nearest Neighbors
- 51.18%.

For comparing the classifiers, we trained all the meth-
ods from scratch with the same set of templates, labeled
“True”, appended with 50% pure Gaussian noise labeled
“False”, comprising of 7662 time-series. The testing and
validation sets contained 3516 elements, each having 50%
noise. The ratio of the amplitude of the signals to the
standard deviation of the noise was fixed at 0.6. The clas-
sifier DNN was also initialized randomly and re-trained
with this dataset. Note that this implies that DNNs can
be successfully trained with much smaller datasets for the
detection task alone at fixed high SNR. Larger number of
templates were used in our analysis in order to perform
parameter estimation, which is a harder problem than
classification since the parameter-space is continuous as
opposed to a finite discrete set of classes, and to improve
the performance at low SNR. The accuracy of these meth-
ods obtained on the test set, shown in Fig. 14, are as fol-
lows: DNN - 99.81% , Shallow Neural Networks - 50.40,
Support Vector Machine - 51.45%, Logistic Regression -
50.55, Random Forest - 50.97%, k-Nearest Neighbors -
58.58%, Naive Bayes - 50.84%, Hidden Markov Model -
55.19%. For both classification and prediction, Shallow
Neural Networks refer to fully connected neural networks
with less than 3 hidden layers.

To measure the speed of evaluation (inference) of the
DNNs on new inputs, the AbsoluteTiming function was
used to measure the total time for the evaluation of
each method over batches of 1000 inputs and the aver-
age time per input was computed. The benchmarks were
all run with Mathematica 11, which uses the Intel MKL
library, on a Windows 10 64-bit machine with an Intel
Skylake Core i7-6500U CPU. A desktop-grade NVIDIA
GTX 1080 GPU was used for the measuring the speed-
up of analysis with DNNs, instead of the expensive high-
performance GPUs that were used for training, since this
has a price closer to a desktop CPU and thus provides a
fair comparison against the performance of the CPU at
similar costs. The measured times averaged over batches
of inputs were 6.67 milliseconds and 106 microseconds
per input (vector of length 8192) with the CPU and GPU
respectively.

We used a standard implementation of time-domain
matched-filtering (similar to [46]) with the same template
bank of clean signals by computing the cross-correlation
(which was same as convolution with time-reversed tem-
plates) of an input of 1 second duration from the test
set against the same templates in the training set us-
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ing the same sampling rate. The parameters were esti-
mated to be those of the best matching template. The
threshold of single-detector matched-filter SNR required
for detection was tuned to be about 5.3 to have a false
alarm rate similar to the classifier’s. Since the peak of
the signal was shifted within 0.2 seconds while training
the DNNs, we also assumed the same window for the
location of the peak for matched-filtering by truncating
the templates to have 0.8 second duration (removing the
part near the edges, which does not contain the signal).
The ListCorrelate function, which uses the Intel MKL
library, was used to perform this computation and the
mean time per input on the same CPU (optimized to use
both cores) over 1000 parallelized runs was measured to
be about 1.1 seconds.

For timing the larger DNN deployed for the Image
Identification Project [108], we used the NetModel func-
tion to obtained the pre-trained model in version 11 of
the Wolfram Language. This DNN is based on the Incep-
tion V2 model originally proposed in [109]. The timing
of inference was done using an NVIDIA Tesla P100 GPU
on a batch of 1000 inputs, each being an RGB image
having a resolution of 224⇥224 pixels. The average time
per input for batches of 1000 images was measured to
be 6.54 milliseconds. This DNN is publicly available for
download via [127].

D. Measuring accuracy and errors

For computing the sensitivity at each SNR, we applied
the DNN classifier to time-series inputs containing the
true signals, produced by adding 10 di↵erent realizations
of noise to each of the clean templates (about 2500) in
the test set and computed the ratio of detected signals
to the total number of inputs. The SNR was varied from
2 to 17 in steps of 0.5. Therefore, about 0.8 million sec-
onds of data, in total, sampled at 8192Hz was used for
constructing the sensitivity plots. The false alarm rate
was measure by applying the classifier to 100, 000 real-
izations of Gaussian noise with duration 1s and sampling
rate 8192Hz.

For measuring the mean relative errors in prediction at
each SNR, we applied the predictor on time-series inputs
produced by adding 10 di↵erent realizations of noise to
each of the clean templates in the test set and averaged
this at each SNR. The absolute value of the relative errors
in predicting each component mass was averaged. The
SNR was varied from 2 to 17 in steps of 0.5. Thus, about
0.8 million seconds of data in total, sampled at 8192Hz,
was also used for preparing each of these plots.

The distribution of errors for randomly chosen tem-
plates in the test set were measured after the addi-
tion of 1000 di↵erent realizations of noise to each of
them at fixed SNR. We verified that the errors closely
match Gaussian distributions using standard probability-
probability (P-P) plots at randomly chosen points in the
parameter-space for SNR � 9. For lower SNR, the distri-

bution was slightly skewed. The best fitting parameters
of the normal distribution was automatically chosen by
the ProbabilityPlot function and a random sample is
shown in Fig. 12.

Although this analysis was originally intended for
quasi-circular, non-spinning binaries, we tested the per-
formance of the DNNs on new classes of signals without
extra training. The eccentric NR signals used in this
study were generated using the open source software,
the Einstein Toolkit [128], on the Blue Waters supercom-
puter. For reproducibility purposes, we are including the
metadata information of the simulations we used as auxil-
iary supplementary material. A large catalog of eccentric
NR simulations will be presented in a subsequent publica-
tion. The waveforms extracted from the Einstein Toolkit
data are rendered in natural units of M , and describes
BBH systems with a total mass of 1M�. All 4 wave-
forms we used for this article are also attached and have
the identifiers E0001, E0009, E0017, E0025, and L0020
for mass-ratios 1, 2, 3, 4, and 5.5 respectively. The first
four simulations had an eccentricity of 0.1 and the last
had 0.2 when entering the LIGO band. The parameter
files that we used for our eccentric simulations were mod-
ified versions of the open-source parameter file [129]. We
had used resolutions of 32, 36, and 40 grid points across
each BH matching resolutions used in typical production
simulations. We verified that these exhibited strong con-
vergent behavior. Full simulation data will be provided
upon request.

As discussed before, since GW templates scale trivially
with mass, more templates were produced by scaling the
eccentric NR waveforms to have total masses between
85M� and a maximum mass depending on the mass-
ratio, to ensure that the simulations provided enough
data for about 1 second and the component masses lies
between 5M� and 75M�, which is the range of compo-
nent masses that the predictor was originally trained for.
The maximum mass for each mass-ratio was set so that
the largest component mass was 75M�. We again used
the real (+) component of the dominant (`, m) = (2, 2)
mode. A random template at each mass ratio is shown
in Fig. 18.

The mean relative errors were predicted on a test set
obtained after adding 10000 di↵erent realizations of noise
with SNR = 10 and 12 for every value of total mass
for each mass-ratio. The mean of the absolute values
of relative error was calculated. We separately analyzed
the prediction rates for each signal, since they di↵ered
by a large rate for di↵erent mass-ratios. A step size of
0.5M� was used to vary the total mass by stretching
E0001, E0009, E0017, E0025, and L0020. The range used
for total masses were di↵erent for di↵erent mass ratios
according to the constrain that individual masses should
lie between 5M� and 75M�. For measuring sensitivity
of detection, we used the combined dataset of all these
templates used for prediction, at fixed SNR of 10, each
added to 10000 realizations of noise to create a single test
set.
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FIG. 18. Examples of eccentric signals. These are the 5 simulations of eccentric BBH systems with di↵erent mass-ratios,
which we used to test the DNNs. Each of these signals were scaled to have di↵erent total masses by stretching in time to enlarge
the size of the test set. They were produced with the open-source Einstein Toolkit software on the Blue Waters supercomputer.
The initial conditions were chosen such that the eccentricity was 0.1 for the first 4 simulations and 0.2 for the final simulation
for each system as it enters the aLIGO band.

For testing with spin-precessing systems, we used
waveforms extracted from 4 NR simulations that de-
scribe quasi-circular, spin-precessing BBH systems ob-
tained from the publicly available catalog of simula-
tions performed by the SXS collaboration [101], hosted
at https://www.black-holes.org/waveforms/catalog.php.
Full data and parameters of each simulation can be found
at this website. The BBH configurations we selected,
labeled SXS:BBH:0050, SXS:BBH:0053, SXS:BBH:0161,
SXS:BBH:0163, represent compact binaries with the
largest values of spin (larger than 0.5 each) oriented in
arbitrary directions, so as to exacerbate the e↵ect of spin-
precession, and serves as strong tests of the robustness of
the detection and parameter reconstruction algorithms.
Their mass-ratios were 3, 3, 1, and 1 respectively.

The spin-precessing NR waveforms we selected corre-

spond to the highest quality waveforms for each simu-
lation. This was found in the highest resolution runs
(labeled with highest “Lev”). The second order extrapo-
lation to infinite radius (N2-Extrapolated file) within the
“rhOverM Asymptotic GeometricUnits.h5” files was se-
lected. Since we assumed optimally oriented systems for
this study, we chose + component of the dominant wave-
form mode, (`, m) = (2, 2), which captures the signa-
tures of spin-precession. The total mass was again scaled
in the same manner, with the constraints on the range
of component masses and that the signal should last 1
second. These NR simulations were longer than the ec-
centric ones, therefore, the lower limit of total mass was
set to 60M�. The upper limit was chosen such that, for
each mass-ratio, the largest component mass was 75M�.
A randomly chosen template for each system is shown in
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FIG. 19. Examples of spin-precessing signals. These are the 4 GW simulations of spin-precessing BBHs from the SXS
catalog, which we used to test the DNNs. Each of these signals were also scaled to have di↵erent total masses by stretching
in time to enlarge the size of the test set. The individual spins of each system was higher than 0.5, and the orientation
was in arbitrary directions, i.e., the spins were not aligned or anti-aligned. Full details of these simulations are available at
https://www.black-holes.org/waveforms/catalog.php

Fig. 19
The mean of the absolute value of relative errors in

predicting component masses was computed separately
for the di↵erent mass-ratios (1 and 3), in the same man-
ner, for spin-pressing systems. For each signal, 10000 sets

of di↵erent noise realizations were added at each value of
total mass, which was varied in steps of 0.5M�. The sen-
sitivity of detection was measured on the combined set
of signals obtained in the same manner as before.


