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Phenomenological functions Σ and µ, also known as Glight/G and Gmatter/G, are commonly used
to parameterize modifications of the growth of large-scale structure in alternative theories of gravity.
We study the values these functions can take in Horndeski theories, i.e. the class of scalar-tensor
theories with second order equations of motion. We restrict our attention to models that are in a
broad agreement with tests of gravity and the observed cosmic expansion history. In particular, we
require the speed of gravity to be equal to the speed of light today, as required by the recent detection
of gravitational waves and electromagnetic emission from a binary neutron star merger. We examine
the correlations between the values of Σ and µ analytically within the quasi-static approximation,
and numerically, by sampling the space of allowed solutions. We confirm that the conjecture made
in [1], that (Σ − 1)(µ − 1) ≥ 0 in viable Horndeski theories, holds very well. Along with that, we
check the validity of the quasi-static approximation within different corners of Horndeski theory.
Our results show that, even with the tight bound on the present day speed of gravitational waves,
there is room within Horndeski theories for non-trivial signatures of modified gravity at the level of
linear perturbations.

I. INTRODUCTION

A common approach to testing gravity on cosmological
scales is to constrain modifications of the Einstein’s equa-
tions relating the matter density contrast to the lensing
and the Newtonian potentials [2–13]. The modifications,
quantified in terms of functions Σ and µ, or Glight/G
and Gmatter/G, will be well constrained by future sur-
veys of large scale structure [14–16], such as Euclid [17]
and LSST [18]. Given these prospects, it is pertinent to
ask if measuring certain values of these functions could
rule out broad classes of modified gravity (MG) theories.
Moreover, in any specific MG theory, Σ and µ would
depend on the parameters of the same Lagrangian and,
thus, will not be independent of each other. But are there
correlations between them that hold within broad classes
of theories, beyond the confines of a specific Lagrangian?
We ask this question in the context of the Horndeski the-
ories [19–21], namely, all single field scalar-tensor theories
with second order equations of motion.

In [1], it was argued that one should expect to have
(Σ−1)(µ−1) ≥ 0 in Horndeski theories that are in agree-
ment with the existing observational and experimental
constraints. In principle, mathematically, there is suf-
ficient freedom within the Horndeski class to construct
theories that would violate the conjecture. However, ac-
cording to [1], it would require a specially fine-tuned ar-
rangement of separate sectors of the theory. In this pa-
per, we set to test the conjecture made in [1] by numeri-
cally sampling the space of viable Horndeski models. In
addition, we would like to better understand properties
of the models that happen to violate the conjecture.

To sample the space of solutions of Horndeski theories,
we use the so-called EFT approach [22–26] to modeling
scalar field dark energy. In the EFT approach, solving

for the background evolution and linear perturbations in
Horndeski theories requires specifying five functions of
time. Two of these functions affect both the background
and the perturbations, while the other three concern only
the perturbations. An ensemble of viable Horndeski mod-
els can be obtained by randomly generating the five EFT
functions and keeping those that lead to theoretically
consistent and observationally allowed solutions.

A similar numerical test was performed in [27], which,
however, was based on an alternative way of formulating
the EFT [28, 29]. There, the expansion history was pro-
vided independently from the four functions that deter-
mine the evolution of linear perturbations. This amounts
to the assumption that the modification of the evolution
of perturbations is uncorrelated with the changes to the
background expansion. However, in any theory, the ex-
pansion history and the perturbations are derived from
the same Lagrangian and thus they must be partially cor-
related. In our approach, where two of the five indepen-
dent functions control both the background and pertur-
bations, requiring the expansion history to be in a broad
agreement with observations makes it more challenging
to fine-tune an arrangement where (Σ− 1)(µ− 1) < 0.

The detection of gravitational waves (GW170817) and
the associated gamma-ray bursts (GRB170817A) from a
neutron star merger [30–32] has put stringent constraints
on the difference between the speed of light and grav-
itational waves. This has a significant implication for
modified gravity models, in particular scalar tensor the-
ories [33–48]. As we will show in this paper, there is
still ample room for modified gravity models to predict
Σ − 1 6= 0 and µ − 1 6= 0 on large scale structure scales.
Requiring the present value of the speed of gravitational
waves to be equal to the speed of light further restricts the
space of opportunities for violating the (Σ−1)(µ−1) ≥ 0
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conjecture.
The conjecture in [1] was based on explicit expressions

for Σ and µ derived under the Quasi Static Approxima-
tion (QSA). Since our numerical procedure allows us to
compute these functions exactly, we verify the validity
of the QSA at several representative scales and redshifts.
We find that the QSA breaks down at k . 0.001 h/Mpc
even though the modes are still well-within the scalar
field sound horizon, indicating that the time derivatives
of the metric and the scalar field perturbations can no
longer be neglected on those scales. Nevertheless, we
find that the (Σ − 1)(µ − 1) ≥ 0 conjecture holds very
well on scales probed by large scale structure surveys.

Our work demonstrates the complementarity of the
purely phenomenological Σ and µ parameterization and
the EFT approach to testing scalar-tensor theories. The
latter can be used to derive theoretical priors on Σ and
µ, which are more directly constrained by observations.

In what follows, we review the phenomenological de-
scription of cosmological perturbations in Horndeski the-
ories in Section II and analytically examine the condi-
tions for violating (Σ− 1)(µ− 1) ≥ 0 in Section III. We
describe the procedure and present the results of the nu-
merical sampling of Σ and µ in three representative sub-
classes of Horndeski theories in Section IV and conclude
with a discussion in Section V.

II. Σ AND µ IN HORNDESKI THEORIES

In the Newtonian gauge, scalar perturbations to the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
are the gravitational potentials Ψ and Φ, defined via

ds2 = −(1 + 2Ψ)dt2 + a2(1− 2Φ)dx2 , (1)

where a is the scale factor. As discussed in [2, 49], non-
relativistic particles respond to gradients of Ψ, while rel-
ativistic particles “feel” the gradients of the Weyl poten-
tial, (Φ + Ψ)/2. In LCDM, at epochs when the radiation
density can be neglected, one has (Φ + Ψ)/2 = Φ = Ψ.
However, in alternative models, in which additional de-
grees of freedom can mediate gravitational interactions,
the potentials need not be equal. It will be possible to
test this by combining the weak lensing shear and galaxy
redshift data from surveys like Euclid [17] and LSST [18].
A common practical way of conducting such tests [8] in-
volves introducing phenomenological functions µ and Σ,
defined as

k2Ψ = −4πGµ(a, k)a2ρ∆ , (2)

k2(Φ + Ψ) = −8πGΣ(a, k) a2ρ∆ , (3)

where ρ is the background matter density and ∆ is the
comoving density contrast 1. Alternatively, one could use

1 ∆ = δ + 3aHv/k, where δ is the overdensity in the Newtonian
conformal gauge, v is the irrotational component of the peculiar
velocity and H is the Hubble function.

any one of the above functions along with the “gravita-
tional slip” [2–6] γ(a, k) defined via Φ = γ(a, k)Ψ. As
shown in [15, 16], Σ will be well-constrained by the com-
bination of weak lensing and photometric galaxy counts
from surveys like Euclid and LSST. Spectroscopic galaxy
redshifts will add measurements of redshift space distor-
tions, which probe the Newtonian potential, and will help
to measure µ [11, 16, 50]. The parameter γ is not directly
probed by cosmological observables but can be derived
from the measurement of the other two.

Given a parameterization of Σ and µ, one can solve
for the evolution of cosmological perturbations [8] using,
e.g., the publicly available code MGCAMB [7, 10], and
constrain the parameters by fitting them to data. The
question one should then ask is if the measured values of
the parameters rule out certain classes of modified gravity
models.

Obtaining a closed functional form of Σ and µ in a
given gravity theory is only possible under the quasi-
static (QS) approximation (QSA). The QSA has been
shown to hold well in certain representative classes of
scalar-tensor theories [51–55].

In [1], the QS expressions for Σ and µ in the Horndeski
class of scalar-tensor theories were derived and closely ex-
amined. It was observed that there must be correlations
between their values. In particular, one should generally
expect to have Σ− 1 and µ− 1 to be of the same sign in
theoretically consistent models that do not grossly con-
tradict observations. We revisit this conjecture in Sec-
tion III after briefly reviewing the EFT description of
the Horndeski theories and the QS forms of Σ and µ in
the remainder of this section.

A. Horndeski theories and their EFT description

The action of the most general scalar-tensor theory
with second order equations of motion, also known as
the Hordneski class of theories [19–21], can be written as

S =

∫
d4x
√
−g

[
5∑
i=2

Li + LM (gµν , χm)

]
, (4)

with

L2 = K(φ,X),

L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R+G4X [(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)] ,

L5 = G5(φ,X)Gµν (∇µ∇νφ)

− 1

6
G5X [(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇νφ)

+ 2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] , (5)

where K and Gi (i = 3, 4, 5) are functions of the scalar
field φ and its kinetic energy X = −∂µφ∂µφ/2, R is the
Ricci scalar, Gµν is the Einstein tensor, GiX and Giφ
denote the partial derivatives of Gi with respect to X
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and φ, respectively, and LM (gµν , χm) is the Lagrangian
for matter fields, collectively denoted with χm, minimally
coupled to the metric gµν .

A general way to model the background evolution and
linear perturbations in a wide class of scalar field models
was proposed in [22, 23] and further developed in [24–26].
For the class of Horndeski theories, the EFT action is

S =

∫
d4x
√
−g
{
m2

0

2
Ω(t)R+ Λ(t)− c(t) a2δg00

+
M4

2 (t)

2

(
a2δg00

)2 − M̄3
1 (t)

2
a2δg00 δKµ

µ

+
M̄2

2 (t)

2

[(
δKµ

µ

)2 − δKµ
ν δK

ν
µ −

a2

2
δg00 δR

]
+ . . .

}
+Sm[gµν , χm], (6)

where m−20 = 8πG, and δg00, δKµ
ν , δK and δR(3) are, re-

spectively, the perturbations of the time-time component
of the metric, the extrinsic curvature and its trace, and
the three dimensional spatial Ricci scalar of the constant-
time hypersurfaces. The action (6) is written in the uni-
tary gauge, in which the time coordinate is associated
with hypersurfaces of a uniform scalar field. The EFT
functions Ω, Λ, c, M̄3

1 , M4
2 , M̄2

2 appearing in (6) can
be expressed in terms of the functions appearing in the
Horndeski Lagrangian (5) [25]. The first three functions,
Ω, Λ and c, affect both the background and the pertur-
bations, with only two of them being independent (one
function can be solved for by using the two Friedmann
equations). The remaining three functions, M̄3

1 , M4
2 and

M̄2
2 , concern only the perturbations.
An equivalent alternative way of parameterizing the

EFT action for linear perturbations around a given
FLRW background in Horndeski models is based on the
following action for linear perturbations [28, 29, 56, 57]:

S(2) =

∫
dtdx3 a3

M2
∗

2

{
δKi

jδK
j
i − δK

2 +RδN

+ (1 + αT )δ2

(√
hR/a3

)
+ αKH

2δN2

+ 4αBHδKδN

}
+ S(2)

m [gµν , χm] , (7)

where N is the lapse function and S
(2)
m is the action for

matter perturbations in the Jordan frame. This action is
parameterized by five functions of time: the Hubble rate
H, the generalized Planck mass M∗, the gravity wave
speed excess αT , the “kineticity” αK , and the “braiding”
αB [28]. One also defines a derived function, αM , which
quantifies the running of the Planck mass. The relations
between the functions in the two EFT approaches are
provided in the Appendix.

We emphasize a key difference between the two EFT
descriptions. In the first, the expansion history is de-
rived, given the EFT functions. In the second approach,
H(a) is treated as one of the independent functions that
needs to be provided. This distinction is important when
it comes to sampling the viable solutions of Horndeski
theories, as it amounts to a different choice of priors.

B. Σ and µ in Horndeski theories

The theoretical expressions for µ and Σ can be de-
rived under the QSA, where one considers the scales be-
low the scalar field sound horizon and ignores the time-
derivatives of the scalar field perturbations and the grav-
itational potentials. In Horndeski theories, they have the
form of a ratio of quadratic polynomials in k [1, 12, 58]:

µ =
m2

0

M2
∗

1 +M2 a2/k2

f3/2f1M2
∗ +M2(1 + αT )−1a2/k2

, (8)

Σ =
m2

0

2M2
∗

1 + f5/f1 +M2[1 + (1 + αT )−1]a2/k2

f3/2f1M2
∗ +M2(1 + αT )−1a2/k2

, (9)

where we defined M2 ≡ Cπ/f1 and with the functions
Cπ, f1, f3 and f5 defined in Appendix A. The mass
parameter M sets the scale below which the scalar field
fluctuations contribute a fifth force, i.e., the Compton
wavelength λC ∼M−1.

III. THE (Σ − 1)(µ− 1) ≥ 0 CONJECTURE

In [1], it was conjectured that viable Horndeski models
should have

(Σ− 1)(µ− 1) ≥ 0 . (10)

Mathematically, there is sufficient freedom in Horndeski
theories to violate (10). The conjecture is such that viola-
tions are unlikely, because they require balancing the evo-
lution of the background gravitational coupling, i.e. the
m2

0/M
2
∗ pre-factor in Eqs. (8)-(17), with the change in

the speed of gravity waves (αT ) and the fifth force con-
tribution, quantified by βB and βξ, in a rather special
way. A statement about the likeliness of something oc-
curring necessarily depends on the choice of the priors.
In this instance, the key assumption is that the dynam-
ics of both the background and the perturbations are
derived from the same Lagrangian, which can be of any
form consistent with (5). For instance, one could imag-
ing constructing an ensemble of Horndeski theories by
randomly sampling all functions of φ and X appearing
in (5), along with all possible initial conditions. Since an
evolving gravitational coupling affects both the expan-
sion rate and the fifth force contribution, restricting to
the subset of solutions with an acceptable H(a) reduces
the probability of achieving the fine-tuning necessary to
violate (10).

In practice, sampling the action (5) directly would be
prohibitively costly without making significant simplify-
ing assumptions (e.g. see [41]). Another option, given
that we are only interested in the background and lin-
ear perturbations, is to work with (6) and sample the
EFT functions, treating them as being a priori indepen-
dent. Since functions Ω and Λ (and c, which can be de-
rived from them) in (6) affect the background evolution,
a posteriori restrictions on H(a) will constrain variations
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in Ω(a), which is the EFT function controlling the evo-
lution of the gravitational coupling, making it harder to
violate the conjecture (10). This effect would be absent
had we assumed that H(a) was known a priori, which is
the case if one samples the action (7) instead, where H(a)
is assumed to be known independently from M2

∗ (a), αB ,
αK and αT . The probability of seeing exceptions to (10)
is further lowered by constraints on the variation of the
gravitational coupling from the big bang nucleosynthesis
(BBN), CMB and various fifth force bounds [59], and the
strict bound on the speed of gravitational waves imposed
by GW170817 and GRB170817A [30–32].

In the remainder of this section, we analytically ex-
amine the conditions under which (10) can be violated,
separately considering the limiting cases of the super- and
sub-Compton scales. It is reasonable to expect the cos-
mological observational window to fall into one of these
limits, since the Compton wavelength is either very large
(λC ∼ H−1) in models of self-accelerating type [51], or
very small (λC < 1 Mpc) in models of chameleon type
[60–68]. The exact solutions can be studied numerically
and are presented in Section IV.

A. The super-Compton limit

In the k/a � M limit, corresponding to scales above
the Compton wavelength, (8) and (9) reduce to

µ0 =
m2

0

M2
∗

(1 + αT ), (11)

Σ0 =
m2

0

M2
∗

(
1 +

αT
2

)
. (12)

This implies that the gravitational slip on super-
Compton scales is determined solely by the speed of grav-
itational waves [1], i.e.

γ0 =
1

1 + αT
= c−2T . (13)

The condition to have µ0 > 1 and Σ0 < 1 can be written
as

(1 + αT )(1 +
1

2
αT ) < Ω < (1 + αT )2, (14)

where we have used Eqs. (A8) and (A10) to express M2
∗

in (12) in terms of Ω and αT . A necessary condition for
(14) to hold is αT > 0, which implies Ω > 1. Similarly,
to have µ0 < 1 and Σ0 > 1, we must have

(1 + αT )2 < Ω < (1 + αT )(1 +
1

2
αT ), (15)

which requires αT < 0 and, hence, Ω < 1. The conditions
(14) and (15) imply that, to have an observable violation
of (10), there has to be a significant αT 6= 0 and a corre-
sponding Ω 6= 1, both of which are constrained to be close
to their GR values today [69–71]. While GW170817 and

GRB170817A [30–32] require αT to vanish at z < 0.01,
in principle, there are no observational bounds on αT at
high redshifts. On the other hand, Ω is constrained to
be within 10% of its today’s value during the BBN epoch
and at the last scattering [59]. Also, Ω̇ 6= 0 implies a
new interaction between massive particles mediated by
the scalar field, which is constrained by probes of struc-
ture formation. Thus, it would be challenging to arrange
for (10) to be violated on super-Compton scales, and be
observable.

B. The sub-Compton limit

On scales below the Compton wavelength, i.e. in the
limit k/a�M , the expressions for µ and Σ become

µ∞ =
m2

0

M2
∗

(1 + αT + β2
ξ ), (16)

Σ∞ =
m2

0

M2
∗

(
1 +

αT
2

+
β2
ξ + βBβξ

2

)
. (17)

where, following [56]2, we defined

βB = −

√
2

c2sα

αB
2

(18)

βξ =

√
2

c2sα

[
−αB

2
(1 + αT ) + αT − αM

]
(19)

α = αK +
3

2
α2
B , (20)

with the expression for the speed of sound of the scalar
field perturbations, c2s, given by Eq. (A19) in Appendix
A. Stability of linear perturbations requires α > 0 and
c2s > 0 [28, 72].

The condition to have µ > 1 and Σ < 1 is

1 +
1

2
(αT + β2

ξ + βξβB) <
Ω

1 + αT
< 1 + αT + β2

ξ , (21)

while, to have µ < 1 and Σ > 1, we must have

1 + αT + β2
ξ <

Ω

1 + αT
< 1 +

1

2
(αT + β2

ξ + βξβB) . (22)

The argument made in [1] was that it would take signifi-
cant fine-tuning to arrange for the background (Ω, αT )
contributions to µ and Σ to balance the fifth force
(βξ, βB) contributions in a precise way to satisfy con-
ditions (21) or (22).

To gain insight into the degree of fine-tuning involved
in satisfying conditions (21) or (22), we next examine
the subclass of theories with αT = 0. Such theories are
simpler to analyze and are favored by the recent bounds
from GW170817 and GRB170817A [30–32].

2 The definition of αB in [56] differs from that in [28] by a factor
of −2. We use the original definition of [28].
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C. Theories with unmodified speed of gravitational
waves

We will refer to the sub-class of Horndeski theories with
the speed of gravity equal to the speed of light as HS .
The change in the gravity speed is given by αT , related
to EFT functions via

αT = −M̄2
2 /M

2
∗ . (23)

Setting M̄2
2 = 0 within the EFT framework ensures αT =

0. In terms of the functions in the Horndeski Lagrangian,
αT is given by [28]

αT = 2X[2G4X − 2G5φ − (φ̈−Hφ̇)G5X ]M−2∗ . (24)

Thus, requiring αT = 0 implies G4X = G5X = G5φ = 0
as discussed in [1] and more recently in [37, 39]. An
example of models with non trivial kinetic term that sat-
isfy such condition is the Kinetic Gravity Brading grav-
ity [73].

In HS , the non-trivial EFT functions are Ω, Λ, c, M4
2

and M̄3
1 . Using the relations (A8)- (A12), we can write

M2
∗ = m2

0Ω (25)

αM =
Ω̇

HΩ
(26)

αB = − Ω̇

HΩ
− M̄3

1

Hm2
0Ω

= −αM − g3, (27)

where we have introduced

g3 ≡
M̄3

1

Hm2
0Ω

. (28)

Then,

βB =

√
2

c2sα

αM + g3
2

(29)

βξ =

√
2

c2sα

[
g3 − αM

2

]
. (30)

Substituting these expressions into Eqs. (16) and (17),
we get

µ∞ =
1

Ω

[
1 + ν(αM − g3)2

]
, (31)

and

Σ∞ =
1

Ω

[
1 + ν(αM − g3)2 + ν(αMg3 − α2

M )
]

= µ∞ +
ν

Ω
(αMg3 − α2

M ) , (32)

where we have defined ν ≡ (2c2sα)−1. Conditions (21)
and (22) become

1 + ν(g23 − αMg3) < Ω < 1 + ν(αM − g3)2 (33)

and

1 + ν(αM − g3)2 < Ω < 1 + ν(g23 − αMg3). (34)

In addition, stability conditions require c2sα ≥ 0, hence ν
cannot be negative.

At this point, we can make two observations:

1. Neither (33) nor (34) can be satisfied if αM ∝ Ω̇ =
0. Thus, violating the conjecture generally requires
a notable variation of the background gravitational
coupling, which is observationally constrained [59];

2. Condition (34) cannot be satisfied if g3 = 0, im-
plying that µ < 1 and Σ > 1 cannot happen in
models with a canonical form of the scalar field ki-
netic energy term, i. e. models of the generalized
Brans-Dicke (GBD) type.

To gain further insight, let us consider conditions (33)
and (34) separately.

1. Conditions for having µ > 1 and Σ < 1

Since ν is non-negative, a necessary condition for (33)
to hold is (αM − g3)2 > (g23 − αMg3), or

α2
M > αMg3, (35)

which is automatically satisfied if αM and g3 have op-
posite signs. In principle, there is nothing prohibiting
this from happening. However, observational constraints
on Ω and αM ∝ Ω̇, as well as constraints on H(a) which
also limit variations of Ω(a), will generally suppress large
departures from GR with µ > 1 and Σ < 1. This is, in
fact, what we see in our simulations, comparing the re-
sults before and after the observational constraints are
applied.

2. Conditions for having µ < 1 and Σ > 1

Requiring stability of perturbations plays an important
role in eliminating solutions with µ < 1 and Σ > 1.
Stability ensures that the force mediated by the scalar
field fluctuations is attractive, thus increasing the value of
the effective Newton’s constant. The only way to arrange
for µ < 1 is by making Ω > 1. But Ω is constrained to be
close to unity today [52, 74, 75], which means it would
be very difficult to detect µ < 1 at low redshifts. Having
Ω > 1 would also tend to make Σ < 1, unless the fifth
force contribution to Σ is large enough to make Σ > 1,
while still being small enough to keep µ < 1, which is
hard to arrange.

Mathematically, a necessary condition for (34) to hold
is (αM − g3)2 < (g23 − αMg3), or

α2
M < αMg3 . (36)
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This is satisfied only if αM and g3 are of the same sign and
α2
M < g23 . On the other hand, stability of perturbations

requires c2sα > 0, which, for HS , can be written as

c2sα = (α2
M − g23) + 2(αM − g3)− 2Ḣ

H2
(2 + αM + g3)

− 1

H
(α̇M + ġ3)− ρm + Pm

M2
∗H

2
> 0. (37)

Note that α2
M < g23 makes the first term on the right hand

side of (37) strictly negative, while the other terms could
still be of either sign. Now, imagine sampling αM and
g3 from a distribution centered around 0. The strictly
negative first term would skew c2sα towards negative val-
ues, reducing the probability of simultaneously satisfy-
ing (36) and (37). In the next Section, we numerically
confirm that imposing the stability condition practically
eliminates the solutions with µ < 1 and Σ > 1.

IV. THE ENSEMBLE OF µ AND Σ IN
HORNDESKI THEORIES

0.0 0.5 1.0 1.5 2.0

50

100

150

200

250

z

H
(z
)
[K
m
s-
1
M
pc

-
1
]

FIG. 1. The peak values and the standard deviation of the
Gaussian prior imposed on the evolution of the Hubble pa-
rameter, H(z). The fiducial expansion history corresponds to
the Planck 2015 best fit ΛCDM model [76]. The standard
deviation is chosen to be wide enough to accommodate any
tensions that may exist between different datasets.

We have performed a numerical simulation to check if
there are notable correlations between values of Σ and
µ, and if they are consistent with the analytical argu-
ments presented in the previous section. To this end, we
have generated an ensemble of EFT functions and, for
each realization, evaluated Σ and µ at different k and a,
along with the corresponding background expansion his-
tory H(a). Then we checked if (Σ− 1)(µ− 1) ≥ 0 holds
for viable models from the ensemble.

Following [77], we parametrize the EFT functions using
Padé functions,

f(a) =

∑N
n=0 αn (a− a0)

n

1 +
∑M
m=1 βm (a− a0)

m
, (38)

where the truncation order is given by N and M . The
coefficients αn and βm are assumed to be uniformly dis-
tributed in the range [−1, 1]. We have tested that the
results are not sensitive to changing the prior range. We
also progressively raised the truncation order until the
results converged, and adopted N = M = 9. We con-
sider, with equal weight, expansions around a0 = 0 and
a0 = 1 to represent models that are close to LCDM in
the past or at present, respectively. We also tried other
parameterizations considered in [77], such as polynomials
in (a − a0), and found that the results are not sensitive
to the choice.

To compute Σ and µ and the expansion history, we
use the publicly available EFTCAMB and EFTCos-
moMC patches [78, 79] to CAMB [80] and CosmoMC [81]
(see [72] for the implementation details). Given a choice
of EFT functions, EFTCAMB first solves for the back-
ground evolution, then checks if conditions ensuring the
stability of linear perturbations are satisfied, and then
evolves such perturbations to evaluate the CMB spectra
and other observables. Given the exact solutions for ∆,
Φ and Ψ for a given model in the ensemble, we can cal-
culate the exact µ(a, k) and Σ(a, k) from Eqs. (2) and
(3) that define them. Alternatively, we can use EFT-
CAMB to perform the first two stages, i.e. to evolve the
background and perform the stability check, and then
evaluate Σ and µ using the quasi-static (QS) expressions
(8) and (9). For each sampling, we will present the re-
sults for the exact and the QS (µ,Σ). By doing it both
ways we can assess the validity of the QSA within Horn-
deski and also test the analytical arguments made in the
previous Section under the QSA.

In order for a model to be accepted by the sampler, it
has to pass several checks. First, the model has to pass
the stability conditions, as built in EFTCAMB. This fil-
ters out models with ghost and gradient instabilities in
the scalar and tensor sectors. Further, we require viable
models to fulfill weak observational and experimental pri-
ors on αT (a), Ω(a) and H(a). We emphasize that it is
not our aim to perform a fit to data to derive observa-
tional bounds on Σ and µ. Instead, we want to derive
theoretical priors on their values, but we want to exclude
models that are in a gross violation of known constraints.
The following priors simply require the realizations to be
broadly acceptable:

• αT (z = 0) = 0, to be consistent with the low red-
shift bounds on the speed of gravitational waves
from GW170817 and GRB170817A [30–32];

• |Ω(z = 0)− 1| < 0.1, to be broadly consistent with
the non-detection of the fifth force on Earth [52,
74, 75];

• |Ω(z = 1100) − 1| < 0.1, to comply with the BBN
and CMB bounds constraining the value of the
gravitational coupling to be within 10% of the New-
ton’s constant measured on Earth [59];
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Name Lagrangian functions in (5) “EFT” functions in (6) “Unified” functions in (7)

GBD K = X − V (φ), G4 = G4(φ) Ω, Λ H, αB = −αM , αK

HS K(X,φ), G3(X,φ), G4 = G4(φ) Ω, Λ, M̄3
1 , M4

2 H, αB , αM , αK

Horndeski K(X,φ), Gi(X,φ), i = 3, 4, 5 Ω, Λ, M̄3
1 , M4

2 , M̄2
2 (z = 0) = 0 H, αB , αM , αK , αT (z = 0) = 0

TABLE I. The three sub-classes of Horndeski theories considered in Section IV.

• H(z) to be broadly consistent with existing cosmo-
logical distance measurements (see below for more
details).

To dismiss expansion histories that are in gross disagree-
ment with observations, we impose a weak Gaussian prior
on H(z) at several representative redshift values corre-
sponding to existing luminosity distance measurements
from supernovae and angular diameter distance measure-
ments using Baryon Acoustic Oscillations (BAO). We
take the prior to be peaked at H(z) derived from the
Planck 2015 best fit ΛCDM model [76], with the standard
deviation set at 30% of the peak value. The width of the
prior is deliberately chosen to be wide enough to accom-
modate any tension existing between different datasets
[82]. The peak values of the H(z) prior, along with the
standard deviation, are plotted in Fig. 1. We fix the spa-
tial curvature to be zero, take the sum of neutrino masses
to be 0.06 eV, and impose conservative priors on the rel-
evant cosmological parameters. Namely, the matter den-
sity fraction is allowed to change in the range Ωm ∈ [0, 1].
Similarly, the present day dark energy fraction, which is
not fixed by the flatness condition in non-minimally cou-
pled models, was allowed to span ΩDE ∈ [0, 1].

We then Monte Carlo sample the parameter space of
all these models. To ensure a good coverage, we enforce
a minimum number of 104 accepted Monte Carlo sam-
ples. Depending on the acceptance rate, this results in
∼ 106 − 108 of total samples. At each Monte Carlo step,
after solving the background equations, we evaluate the
stability of the corresponding model and, if this is found
stable we compute the Σ and µ, sampling the (a, k)-plane
at the following values:

a ∈ {0.25, 0.575, 0.9},
k ∈ {0.001, 0.05, 0.1},

where k has units of h/Mpc.
In order to study the effect of different EFT functions

on the distribution of Σ and µ, we sample models from
three different classes of theories. The first one is the
class of generalized Brans-Dicke (GBD) which, in the
EFT language, corresponds to having non-trivial func-
tions Λ, Ω and c, while setting the rest to zero. The sec-
ond is the HS class of models, with the unchanged speed
of gravitational waves, which corresponds to adding non-
trivial M4

2 and M̄3
1 to the GBD functions. Finally, we

consider the full class of Horndeski models, by adding
a varying M̄2

2 to HS , but we restrict M̄2
2 to be zero at

z = 0, to comply with the strict bound on the gravita-
tional wave speed today. The three classes of models are
summarized in Table I.

A. Results of the numerical sampling

FIG. 2. Distributions of Σ and µ in GBD models, i.e. the
scalar-tensor models with a canonical kinetic term, at rep-
resentative values of a and k. Shown are results obtained
by numerically solving exact equations for cosmological per-
turbations (orange dots) and by using the quasi-static (black
crosses) forms of Σ and µ given by Eqs. (8) and (9).

Figures 2, 3 and 4 show the numerically sampled dis-
tributions of Σ and µ at representative values of a and
k for GBD, HS and the full Horndeski model with the
speed of gravity constrained to be unmodified today. In
each figure, for the same ensemble of models, we show
both the “exact” values, (calculated by numerically solv-
ing the full set of equations governing cosmological per-
turbations), as well as the values obtained using the QS
expressions for Σ and µ given by Eqs. (8) and (9). We
find that for all three models the QSA holds extremely
well at k = 0.1 and 0.05 h/Mpc. Indeed, the clouds of
exact and QS points effectively coincide for GBD and
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FIG. 3. Same as in Fig. 2 but for the HS models, i.e. the
subset of Horndeski models in which the speed of gravitational
waves is the same as the speed of light at all redshifts.

FIG. 4. Same as in Figs. 2 and 3, but for the full class of Horn-
deski models with the restriction on variation of the speed of
gravitational waves imposed only at z = 0.

HS , while for Horndeski there are only a few minor dif-
ferences. We also see that, at k = 0.1, 0.05 h/Mpc and
at all redshifts, Σ − 1 and µ − 1 are always of the same
sign, following the conjecture made in [1].

The agreement between the exact and the QS calcu-
lations is much worse at k = 0.001 h/Mpc, where we

can see that the clouds of exact points are more spread
compared to the QS clouds. A necessary condition for
the QSA to hold is the requirement for the given Fourier
mode to be inside the scalar field’s sound horizon, i.e.

k

aH(a)
> cs(a) , (39)

where the speed of sound is given by Eq. (A19). In
addition, the QSA assumes that the time-derivatives of
the gravitational potentials and the scalar field perturba-
tions are negligible compared to the spatial derivatives.
To isolate the reason for the breakdown of the QSA at
k = 0.001 h/Mpc, we checked the fraction of models that
pass the necessary condition (39) and found that only 1%
out of the total sample of 104 models failed it. This im-
plies that for k . 0.001 h/Mpc one can no longer neglect
the time-derivatives of the metric and field perturbations
even on scales within the sound horizon of the scalar field.

In the case of GBD, as seen in Fig. 2, the majority of
both the QS and the exact values satisfy (Σ−1)(µ−1) ≥
0. Only about 1% of exact points in the k = 0.001
h/Mpc, a = 0.9 panel violate the conjecture, with no
violations seen in the other panels. For HS , the conjec-
ture holds very well for the QS points, but not always for
the exact points. We find that about 10% of the exactly
calculated points fall in the bottom-right quadrant at late
redshifts and large scales, i.e. in the k = 0.001 h/Mpc,
a = 0.9 panel, with only a handful of points violating the
conjecture at higher redshifts for k = 0.001 h/Mpc. Fi-
nally, for the full Horndeski sampling, we again find that
the conjecture holds well under the QSA, and for the ex-
act points on smaller scales (k = 0.1 and 0.05 h/Mpc).
However, about 10% of the models violate the conjec-
ture at all three values of a for k = 0.001 h/Mpc. It is
interesting to notice that, in those cases, the conjecture
is always violated in the same direction, with a positive
Σ− 1 and a negative µ− 1.

In Fig. 5, we show the effects of imposing the stability
constraints and observational priors on the distribution
of Σ and µ. We consider the case of the HS model at
k = 0.1 h/Mpc and a = 0.9, which is representative of
the trends we see at other scales and redshifts and in
the other models. The three panels show samples of the
HS models without imposing any constraints (left panel),
after filtering out models with the ghost and gradient in-
stabilities [72] (middle panel) and after imposing both
the stability constraints and observational priors (right
panel). In each case, we run the simulation until 104

“successful” models are accumulated. From these plots,
we can see that imposing the stability conditions removes
all points from the bottom-right quadrant. As discussed
in Section III C 2, this happens because stability requires
c2sα > 0. Finally, in the right panel, we see that adding
the observational priors eliminates the models belonging
to the top-left quadrant. This confirms the argument
made in Section III C 1 according to which getting Σ < 1
and µ > 1 would require large variations in Ω, which
are indeed strongly suppressed by the observational con-
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FIG. 5. Effects of imposing the stability conditions and observational priors on the Σ-µ distribution in the HS model for
a = 0.9 and k = 0.1 h/Mpc. The three panels correspond to samples obtained in three different runs: sampling without any
constraints (left panel), sampling with the stability constraints (middle), and sampling with both the stability constraints and
observational priors (right). Each panel contains 104 points. The impacts of stability and observational constraints shown here
are representative of what happens at other redshifts and scales, and in the other classes of models that we studied.

straints defined in the beginning of this Section. We note
that the points in the middle and the right panels are not
simple subsets of the left panel, since we run the simula-
tion until the same number of points is accumulated in
each case.

From Fig. 5 we also notice that the combined effect
of the stability conditions and the observational priors is
to drastically reduce the models in the bottom-left quad-
rant, where µ − 1 < 0 and Σ − 1 < 0. In the absence of
ghosts, the scalar force is always attractive, thus the fifth
force contribution generally favours µ > 1. One could
still have µ < 1, driven by the 1/Ω factor in the QS ex-
pression (31) for µ, i.e. having Ω that is significantly
greater than 1 can result in µ < 1. However, observa-
tional constraints restrict Ω ∼ 1 at late times, making it
difficult to get µ < 1. We see in Fig. 3 that the bottom-
left quadrant has practically no points at a = 0.9, but is
more populated at earlier times, since the observational
constraint on Ω are weaker at higher redshifts.

V. SUMMARY AND CONCLUSIONS

We studied the range of values that phenomenological
functions Σ and µ can take in viable Horndeski theo-
ries. To do so, we built numerical samples of Horndeski
models that pass the no ghost and no gradient insta-
bility constraints, as well as a set of weak observational
constraints. For each model, we computed Σ and µ by
numerically solving the exact equations for cosmological
perturbations, and also by using the analytical expres-
sions of Σ and µ derived under the QSA. This allowed
us to check the validity range of the quasi-static approx-
imation (QSA), as well as the validity of the conjecture
made in [1] that (Σ − 1)(µ − 1) ≥ 0 in viable Horndeski
theories.

We find that the QSA holds really well at small and in-
termediate scales, but breaks down at k . 0.001 h/Mpc.
This happens despite the fact that the Fourier modes

in question are still well-within the scalar field’s sound
horizon. Instead, it is due to the time-derivatives of the
metric and the scalar field perturbations, which are ne-
glected under the QSA, becoming comparable to the spa-
tial derivatives.

We have considered three types of Horndeski theo-
ries summarized in Table I: the Generalized Brans-Dicke
(GBD) models, i.e. models with a canonical form of the
scalar field kinetic energy term, the HS class of models,
with the unchanged speed of gravitational waves, and the
full class of Horndeski models with the speed of grav-
ity constrained to be the same as the speed of light at
present epoch, to comply with the strict bound on the
gravitational wave speed at z < 0.01 from GW170817
and GRB170817A [30–32].

We find that the (Σ − 1)(µ − 1) ≥ 0 conjecture holds
very well for the GBD models. It also holds very well
for the other two classes of models within the QSA, but
the exact calculations show that about 10% of HS and
Horndeski models violate the conjecture at k = 0.001
h/Mpc, with Σ > 1 and µ < 1.

We analytically examined the conditions under which
(Σ−1)(µ−1) ≥ 0 can be violated, separately considering
the QS expressions for Σ and µ on the super-Compton
and sub-Compton limits. We identified the important
role played by the no ghost and no gradient instability
conditions in preventing values in the Σ > 1 and µ < 1
range. We have also highlighted the importance of the
constraints on the variation of the gravitational coupling
in ensuring the (Σ−1)(µ−1) ≥ 0 trend. Since the varia-
tion of the gravitational coupling affects the background
expansion history, constraints on the latter contribute to
restricting the range of Σ and µ values. This effect was
not included in an earlier study of correlations between
Σ and µ [27] that was based on a framework in which
the expansion history was assumed to be known inde-
pendently from the functions controlling the evolution of
perturbations. Our analysis shows that, when searching
for signatures of MG, the expansion history should be
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co-varied with Σ and µ aided by weak theoretical priors
based on broad classes of theories. Studies like this, and
the one in [77], could be used to build such theoretical
priors.

Our study demonstrates the benefits and the com-
plementarity of different frameworks for testing scalar-
tensor alternatives to GR. Phenomenological functions
such as Σ and µ are closely related to observations and
can be directly fit to data using simple parameterizations.
However, there is no guarantee that their best fit values
would be consistent with theory. On the other hand, fit-
ting the EFT functions of (6) or the Unified functions of
(7) directly to data is not practical, as there are many
degeneracies and the outcome strongly depends on the
assumed functional form. Instead, the EFT framework
can be used to systematically generate viable Horndeski
theories and derive theoretical priors on Σ and µ, simi-
larly to how it was done in this study. The Unified frame-
work is highly complementary, allowing to derive simple
QS forms of Σ and µ that make it easier to interpret the
numerical results analytically.

This work shows that, even with the strict bound on
the present day gravitational wave speed, there is still
room within Horndeski theories for non-trivial signatures
of modified gravity that can be measured at the level of
linear perturbations. Moreover, there are clear correla-
tions between the phenomenological functions Σ and µ
that can help to determine if a potentially measured de-
parture from LCDM is consistent with a scalar-tensor
theory.
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Appendix A: Relevant Equations

Under the QSA, the equations of motion for perturba-
tions in Horndeski theories can be written as [23]

A1
k2

a2
Φ +A2

k2

a2
π = −ρ∆, (A1)

B1Ψ + Φ +B3π = 0, (A2)

C1
k2

a2
Φ + C2

k2

a2
Ψ +

(
C3
k2

a2
+ Cπ

)
π = 0, (A3)

where

A1 = 2(m2
0Ω + M̄2

2 )

A2 = −m2
0Ω̇− M̄3

1

B1 = −m
2
0Ω + M̄2

2

m2
0Ω

B3 = −m
2
0Ω̇ + (H + ∂t)M̄

2
2

m2
0Ω

C1 = m2
0Ω̇ + (H + ∂t)M̄

2
2

C2 = −1

2
(m2

0Ω̇ + M̄3
1 )

C3 = c− 1

2
(H + ∂t)M̄

3
1 + (H2 + Ḣ +H∂t)M̄

2
2

Cπ =
m2

0

4
Ω̇Ṙ(0) − 3cḢ +

3

2
(3HḢ + Ḣ∂t + Ḧ)M̄3

1

+ 3Ḣ2M̄2
2 (A4)

The phenomenological functions µ and Σ can be written
as

4πGµ =
µ

2m2
0

=
f1 + f2 a

2/k2

f3 + f4 a2/k2
, (A5)

8πGΣ =
Σ

m2
0

=
f1 + f5 + (f2 + f6)a2/k2

f3 + f4 a2/k2
, (A6)

where

f1 = C3 − C1B3

f2 = Cπ

f3 = A1(B3C2 −B1C3) +A2(B1C1 − C2)

f4 = −A1B1Cπ

f5 = B3C2 −B1C3

f6 = −B1Cπ (A7)

The functions appearing in the “Unified” action (7) are
related to the functions appearing in the EFT action (6)
via [28]

M2
∗ = m2

0Ω + M̄2
2 (A8)

HM2
∗αM = m2

0Ω̇ + ˙̄M2
2 (A9)

M2
∗αT = −M̄2

2 (A10)

HM2
∗αB = −m2

0Ω̇− M̄3
1 (A11)

H2M2
∗αK = 2c+ 4M4

2 (A12)

. (A13)

These are related to the functions in the original Horn-
deski Lagrangian (5) via [28]

M2
∗ = 2[G4 − 2XG4X +XG5φ − φ̇HXG5X ] (A14)

HM2
∗αM =

dM2
∗

dt
(A15)

M2
∗αT = 2X[2G4X − 2G5φ − (φ̈−Hφ̇)G5X ] (A16)
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HM2
∗αB = 2φ̇[XG3X −G4φ − 2XG4φX ]

+8XH(G4X + 2XG4XX −G5φ −XG5φX)

+2φ̇XH2[3G5X + 2XG5XX ] (A17)

HM2
∗αK = 2X[KX + 2XKXX − 2G3φ − 2XG3φX ]

+12φ̇XH[G3X +XG3XX − 3G4φX − 2XG4φXX ]

+12XH2[G4X + 8XG4XX + 4X2G4XXX ]

−12XH2[G5φ + 5XG5φX + 2X2G5φXX ]

+4φ̇XH3[3G5X + 7XG5XX + 2X2G5XXX ] (A18)

The speed of sound of the scalar field perturbations is
given by

c2s =
2

α

[ (
1− αB

2

)(
αM − αT +

αB
2

(1 + αT )− Ḣ

H2

)
+
α̇B
2H
− ρm + Pm

2M2
∗H

2

]
, (A19)

where α = αK + 3α2
B/2.
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