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We compare binary evolution models with different assumptions about black-hole natal kicks
to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons
attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current ob-
servations with state-of-the-art formation scenarios of binary black holes formed in isolation. We
estimate that black holes should receive natal kicks at birth of the order of σ ' 200 (50) km/s if
tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal
kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing
the merger rate below the observed value). Conversely, the natal kick distribution is bounded from
below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribu-
tion of misalignments increases our models’ compatibility with LIGO’s observations, if all BHs are
likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription,
we explore a range of possible BH natal spin distributions. Within the context of our models, for
all of the choices of σ used here and within the context of one simple fiducial parameterized spin
distribution, observations favor low BH natal spin.

I. INTRODUCTION

The discovery and interpretation of gravitational waves
(GW) from coalescing binaries [1] has initiated a revolu-
tion in astronomy [2]. Several hundred more detections
are expected over the next five years [3–5]. Already, the
properties of the sources responsible – the inferred event
rates, masses, and spins – have confronted other obser-
vations of black hole (BH) masses and spins [4], chal-
lenged previous formation scenarios [2, 4], and inspired
new models [6–9] and insights [10, 11] into the evolution
of massive stars and the observationally accessible grav-
itational waves they emit [12, 13]. Over the next several
years, our understanding of the lives and deaths of mas-
sive stars over cosmic time will be transformed by the
identification and interpretation of the population(s) re-
sponsible for coalescing binaries, with and without coun-
terparts, because measurements will enable robust tests
to distinguish between formation scenarios with present
[14, 15] and future instruments [16, 17], both coarsely and
with high precision. In this work, we demonstrate the
power of gravitational wave measurements to constrain
how BHs form, within the context of one formation sce-
nario for binary BHs: the isolated evolution of pairs of
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stars [18–28].
Within the context of that model, we focus our atten-

tion on the one feature whose unique impacts might be
most observationally accessible: BH natal kicks. Obser-
vations strongly suggest that when compact objects like
neutron stars are formed after the death of a massive
star, their birth can impart significant linear momentum
or “kick”. For example, observations of pulsars in our
galaxy suggest birth velocity changes as high as vk ∼ 450
km/s [29]. These impulsive momentum changes impact
the binary’s intrinsic orbit and stability, changing the or-
bital parameters like semimajor axis and orbital plane
[30, 31], as well as causing the center of mass of the rem-
nant BH binary (if still bound) to recoil at a smaller
but still appreciable velocity. While no single compelling
and unambiguous observation can be explained only with
a BH natal kick, the assumption of small but nonzero
BH natal kicks provides a natural explanation for several
observations, including the posterior spin-orbit misalign-
ment distribution of GW151226 and the galactic X-ray
binary misalignment [32–35] and recoil velocity [36–41].
Modest BH natal kicks can be produced by, for example,
suitable neutrino-driven supernova engines; see, e.g., [42]
and references therein.

We compare binary formation models with different
BH natal kick prescriptions to LIGO observations of bi-
nary black holes. Along with [42], our calculation is one
of the first to perform this comparison while changing
a single, physically well-defined and astrophysically in-
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teresting parameter: the BH natal kick strength. It is
the first to self-consistently draw inferences about binary
evolution physics by comparing observations simultane-
ously to the predicted detection rate; binary BH masses;
and binary BH spins, accounting for both magnitude and
misalignment.

This comparison is important because BH natal kicks
introduce two complementary and unusually distinctive
effects on the binary BHs that LIGO detects. On the one
hand, strong BH natal kicks will frequently disrupt pos-
sible progenitor binary systems. As the strength of BH
natal kicks increases, the expected number of coalescing
binary BHs drops precipitously [19, 20, 43]. On the ba-
sis of observations to date, BH natal kicks drawn from
a distribution with one-dimensional velocity dispersion σ
greater than 265 km/s are disfavored [26]. On the other
hand, BH natal kicks will tilt the orbital plane, misalign-
ing the orbital angular momentum from the black hole’s
natal spin direction – assumed parallel to the progenitor
binary’s orbital angular momentum [15, 31]. The imprint
of these natal kicks on the binary’s dynamics is preserved
over the aeons between the BH-BH binary’s formation
and its final coalescence [30, 44–46]. The outgoing radi-
ation from each merger contains information about the
coalescing binary’s spin (see, e.g., [47–49] and references
therein), including conserved constants that directly re-
flect the progenitor binary’s state [50, 51]. Several stud-
ies have demonstrated that the imprint of processes that
misalign BH spins and the orbit can be disentangled [52–
54].

In this work, we show that LIGO’s observations of
binary black holes can be easily explained in the con-
text of isolated binary evolution, if BH natal kicks act
with the (modest) strength to misalign the orbital plane
from the initial spin directions (presumed aligned). In
this approach, the absence of large aligned spins either
reflects fortuitous but nonrepresentative observations or
low natal BH spins. A companion study by Belczynski
et al. [42] describes an alternative, equally plausible ex-
planation: the BH natal spin depends on the progenitor,
such that the most massive BHs are born with low natal
spins. A longer companion study by Gerosa et al. [55]
will describe the properties and precessing dynamics of
this population in greater detail.

This paper is organized as follows. First, in Section II
we describe the entire process used to generate and char-
acterize a detection-weighted populations of precessing
binary BHs, evaluated using different assumptions about
BH natal kicks. As described in Section II A, we adopt
previously studied binary evolution calculations to deter-
mine how frequently compact binaries merge throughout
the universe. In Section II B, we describe how we evolve
the binary’s precessing BH spins starting from just af-
ter it forms until it enters the LIGO band. In Section
II C, we describe the parameters we use to characterize
each binary: the component masses and spins, evaluated
after evolving the BH binary according to the process de-
scribed in Section II B. To enable direct comparison with

Name σ (km/s) DKL(M) DKL(m1,m2)

M10 Ø 0.02 0.21

M18 25 0.006 0.094

M17 50 0 0

M16 70 0.016 0.28

M15 130 0.1 1.26

M14 200 0.17 1.56

M13 265 0.40 2.1

TABLE I. Properties of the formation scenarios adopted in
this work. The first column indicates the model calcula-
tion name, using the convention of other work [26, 56]. The
second column provides the kick distribution width. Model
M10 adopts mass-dependent, fallback suppressed BH natal
kicks. For the BH population examined here, these natal kicks
are effectively zero for massive BHs; see, e.g., [14]. The re-
maining scenarios adopt a mass-independent Maxwellian na-
tal kick distribution characterized by the 1-d velocity disper-
sion σ, as described in the text. The third column quanti-
fies how much the mass distribution changes as we change
σ. To be concrete, we compare the (source frame) total
mass distributions for the BH-BH binaries LIGO is expected
to detect, using a KL divergence [Eq. (4)]. If p(M |α) de-
notes the mass distribution for α = M10, M18, M17, . . .,
and α∗ denotes M17, then the third column is the KL di-
vergence DKL(M,α) =

∫
dMp(M |α) ln[p(M |α)/p(M |α∗)].

The fourth column is the KL divergence using the joint
distribution of both binary masses: DKL(m1,m2|α) =∫
dm1dm2p(m1,m2|α) ln[p(m1,m2|α)/p(m1,m2|α∗)]. Be-

cause M10 adopts fallback-suppressed natal kicks, while the
remaining models assume fallback-independent natal kicks,
we use the special symbol Ø to refer to M10 in subsequent
plots and figures.

observations, we convert from detection-weighted sam-
ples – the output of our binary evolution model – to a
smoothed approximation, allowing us to draw inferences
about the relative likelihood of generic binary parame-
ters. In Section III we compare these smoothed models
for compact binary formation against LIGO’s observa-
tions to date. We summarize our conclusions in Section
VI. In Appendix A we describe the technique we use to
approximate each of our binary evolution simulations. In
Appendix B, we provide technical details of the underly-
ing statistical techniques we use to compare these approx-
imations to LIGO observations. To facilitate exploration
of alternative assumptions about natal spins and kicks,
we have made publicly available all of the marginalized
likelihoods evaluated in this work, as supplementary ma-
terial.
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II. ESTIMATING THE OBSERVED
POPULATION OF COALESCING BINARY

BLACK HOLES

A. Forming compact binaries over cosmic time

Our binary evolution calculations are performed with
the StarTrack isolated binary evolution code [20, 57],
with updated calculation of common-envelope physics
[23], compact remant masses [58], and pair instability su-
pernovae [56]. Using this code, we generate a synthetic
universe of (weighted) binaries by Monte Carlo [24]. Our
calculations account for the time- and metallicity- de-
pendent star formation history of the universe, by us-
ing a grid of 32 different choices for stellar metallicity.
As shown in Table I, we create synthetic universes us-
ing the same assumptions (M10) adopted by default in
previous studies [26, 42, 56]. Again as in previous work,
we explore a one-parameter family of simulations that
adopt different assumptions about BH natal kicks (M13-
M18). Each new model assumes all BHs receive natal
kicks drawn from the same Maxwellian distribution, with
one-dimensional velocity distribution parameterized by σ
(a quantity which changes from model to model). In the
M10 model used for reference, BH kicks are also drawn
from a Maxwellian distribution, but suppressed by the
fraction of ejected material that is retained (i.e., does not
escape to infinity, instead being accreted by the BH). Be-
cause the progenitors of the most massive BHs do not,
in our calculations, eject significant mass to infinity, the
heaviest BHs formed in this “fallback-suppressed kick”
scenario receive nearly or exactly zero natal kicks.

These synthetic universes consist of weighted BH-BH
mergers (indexed by i), each one acting a proxy for a
part of the overall merger rate density in its local volume
[25, 39]. As our synthetic universe resamples from the
same set of 32 choices for stellar metallicity, the same
evolutionary trajectory appears many times, each at dif-
ferent redshifts and reflecting the relative probability of
star formation at different times.

The underlying binary evolution calculations per-
formed by StarTrack effectively do not depend on BH
spins at any stage.1 We therefore have the freedom to
re-use each calculation above with any BH natal spin
prescription whatsoever. Unlike Belczynski et al. [42], we
do not adopt a physically-motivated and mass-dependent

1 The response of the BH’s mass and spin to accretion depends on
the BH’s spin. We adopt a standard procedure whereby the BH
accretes from the innermost stable circular orbit. In our binary
evolution code, this spin evolution is implemented directly via
an ODE based on (prograde, aligned) ISCO accretion as in [59],
though the general solution is provided in [60] and applied since,
e.g., in [61, 62]. For the purposes of calculating the final BH mass
from the natal mass and its accretion history, we adopted a BH
natal spin of χ = 0.5; however, relatively little mass is accreted
and the choice of spin has a highly subdominant effect on the
BH’s evolution.

BH natal spin, to allow us to explore all of the possibili-
ties that nature might allow. Instead, we treat the birth
spin for each BH as a parameter, assigning spins χ1 and
χ2 to each black hole at birth. For simplicity and with-
out loss of generality, for each event we assume a fixed
BH spin for the first-born (χ1 = |S1| /m2

1) and a poten-
tially different spin for the second-born (χ2 = |S2| /m2

2)
BH. Both choices of fixed spin are parameters. By car-
rying out our calculations on a discrete grid in χ1, χ2

for each event – here, we use χ1,2 = 0.1 . . . 1 – we en-
compass a wide range of possible choices for progenitor
spins, allowing us to explore arbitrary (discrete) natal
spin distributions. For comparison, [53] adopted a fixed
natal spin χi = 0.7 for all BHs. Our choices for BH na-
tal spin distributions are restricted only by our choice of
discrete spins. Our model is also implicitly limited by
requiring all BHs have natal spins drawn from the same
mass-independent distributions. By design, our calcula-
tion did not include enough degrees of freedom to enable
the natal spin distribution to change with mass, as was
done for example in [42].

We assume the progenitor stellar binary is comprised
of stars whose spin axes are aligned with the orbital an-
gular momentum, reflecting natal or tidal [63, 64] align-
ment (but cf. [65]). After the first supernova, several
processes could realign the stellar or BH spin with the
orbital plane, including mass accretion onto the BH and
tidal dissipation in the star. Following Gerosa et al. [30],
we consider two possibilities. In our default scenario (“no
tides”), spin-orbit alignment is only influenced by BH
natal kicks. In the other scenario (“tides”), tidal dissi-
pation will cause the stellar spin in stellar-BH binaries
to align parallel to the orbital plane. In the “tides” sce-
nario, the second-born stellar spin is aligned with the
orbital angular momentum prior to the second SN. Fol-
lowing [30], the “tides” scenario assumes alignment al-
ways occurs for merging BH-BH binaries, independent of
the specific evolutionary trajectory involved (e.g., binary
separation); cf. the discussion in [42]. In both formation
scenarios, we do not allow mass accretion onto the BH
to change the BH’s spin direction. Given the extremely
small amount of mass accreted during either conventional
or common-envelope mass transfer, even disk warps and
the Bardeen-Petterson effect should not allow the BH
spin direction to evolve [66–69]. For coalescing BH-BH
binaries the second SN often occurs when the binary is in
a tight orbit, with high orbital speed, and thus less effect
on spin-orbit misalignment [15, 31]. Therefore, in the
“tides” scenario, the second-born BH’s spin is more fre-
quently nearly aligned with the final orbital plane, even
for large BH natal kicks.

B. Evolving from birth until merger

The procedure above produces a synthetic universe of
binary BHs, providing binary masses, spins, and orbits
just after the second BH is born. Millions to billions
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Formation mechanism Fraction

MT1(2-1) MT1(4-1) SN1 CE2(14-4;14-7) SN2 0.261

MT1(4-4) CE2(7-4;7-7) SN1 SN2 0.234

MT1(4-1) SN1 CE2(14-4;14-7) SN2 0.140

MT1(2-1) SN1 CE2(14-4;14-7) SN2 0.075

MT1(4-4) CE2(4-4;7-7) SN1 SN2 0.071

MT1(2-1) SN1 MT2(14-2) SN2 0.037

CE1(4-1;7-1) SN1 MT2(14-2) SN2 0.028

CE1(4-1;7-1) SN1 CE2(14-4;14-7) SN2 0.020

CE1(4-1;7-1) CE2(7-4;7-7) SN1 SN2 0.014

MT1(4-4) CE12(4-4;7-7) SN2 SN1 0.014

SN1 CE2(14-4;14-7) SN2 0.014

Other channels 0.16

TABLE II. The most significant formation scenarios and frac-
tion of detected binaries formed from that channel, for the
M15 model. While many of the coalescing BH-BH binaries
form via a BH-star binary undergoing some form of stellar
mass transfer or interaction, a significant fraction of binaries
form without any Roche lobe overflow mass transfer after the
first SN. In this example, in the second channel alone more
than 23% of binaries form without interaction after the first
SN. (The remaining formation channels account for 16% of
the probability.) In this notation, integers in braces charac-
terize the types of the stellar system in the binary; the pre-
fix refers to different phases of stellar interaction (e.g., MT
denotes “mass transfer,” SN denotes “supernova,” and CE
denotes “common envelope evolution”); and the last integer
SNx indicates whether the initial primary star (1) or initial
secondary star (2) has collapsed and/or exploded to form a
BH. [Some of our BHs are formed without luminous explo-
sions; we use SN to denote the death of a massive star and
the formation of a compact object.] A detailed description
of these formation channels and stellar types notation is pro-
vided in [20, 57]; in this shorthand, 1 denotes a main sequence
star; 2 denotes a Hertzprung gap star; 4 denotes a core heium
burning star; 7 denotes a main sequence naked helium star;
and 14 denotes a black hole.

of years must pass before these binaries coalesce, dur-
ing which time the orbital and BH spin angular mo-
menta precess substantially [45, 46]. We use precession-
averaged 2PN precessional dynamics, as implemented
in precession [70], to evolve the spins from birth un-
til the binary BH orbital frequency is 10Hz (i.e., un-
til the GW frequency is 20Hz); see [55] for details.
When identifying initial conditions, we assume the bi-
nary has already efficiently circularized. When identi-
fying the final separation, we only use the Newtonian-
order relationship between separation and orbital fre-
quency. The precession code is publicly available at
github.com/dgerosa/precession.

C. Characterizing the observed distribution of
binaries

At the fiducial reference frequency adopted in this work
(20Hz), a binary BH is characterized by its component
masses and its (instantaneous) BH spins S1,2. For the
heavy BHs of current interest to LIGO, the principal ef-
fect of BH spin on the orbit and emitted radiation occurs
through the spin combination

χeff = (S1/m1 + S2/m2) · L̂/(m1 +m2)

= (χ1m1 cos θ1 + χ2m2 cos θ2)/(m1 +m2), (1)

where θ1,2 denote the angles between the orbital angu-
lar momentum and the component BH spins. That said,
depending on the duration and complexity of the source
responsible, GW measurements may also provide addi-
tional constraints on the underlying spin directions them-
selves [50], including on the spin-orbit misalignment an-
gles θ1,2. For the purposes of this work, we will be inter-
ested in the (source-frame) binary masses m1,m2 and the
spin parameters χeff , θ1, θ2, as an approximate character-
ization of the most observationally accessible degrees of
freedom; cf. Stevenson et al. [53], which used θ1,2, and
Trifirò et al. [50], which used θ1,2 and the angle ∆Φ be-
tween the spins’ projection onto the orbital plane. In
particular, ∆Φ is well-known to contain valuable infor-
mation [30] and be observationally accessible [50]. At
present, the preferred model adopted for parameter in-
ference, known as IMRPhenomP, does not incorporate
the necessary degree of freedom [71], so we cannot incor-
porate its effect here. With additional and more informa-
tive binary black hole observations, however, our method
should be extended to employ all of the spin degrees of
freedom, particularly ∆Φ. As input, this extension will
require inference results that incorporate the effect of two
two precessing spins, either by using semianalytical mod-
els [72–74] or by using numerical relativity [49].

We adopt a conventional model for LIGO’s sensitiv-
ity to a population of binary BHs [3, 25, 75]. In this
approach, LIGO’s sensitivity is limited by the second-
most-sensitive interferometer, using a detection thresh-
old signal-to-noise ratio ρ = 8 and the fiducial detector
sensitivity reported for O1 [4]. This sensitivity model is
a good approximation to the performance reported for
both in O1 and early in O2 [5]. Following [25, 39], we
use the quantity ri [Eq. (8) in [39]] to account for the con-
tribution of this binary to LIGO’s detection rate in our
synthetic universe, accounting for the size of the universe
at the time the binary coalesces and LIGO’s orientation-
dependent sensitivity. For simplicity and following pre-
vious work [3, 25], we estimate the detection probability
without accounting for the effects of BH spin. Previous
studies have used this detection-weighted procedure to
evaluate and report on the expected distribution of bi-
nary BHs detected by LIGO [26, 42, 56]. Since the same
binary evolution A occurs many times in our synthetic
universe, we simplify our results by computing one overall
detection rate rA =

∑
i∈A ri for each evolution. When

https://github.com/dgerosa/precession
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FIG. 1. Expected number of events versus kick
strength: Expected number of BH merger detections pre-
dicted at LIGO’s O1 sensitivity and for the duration of O1
by our formation scenarios. The predicted number of events
decreases rapidly as a function of the BH natal kick. Also
shown is the 95% confidence interval, assuming Poisson dis-
tribution with mean predicted by our model. This purely
statistical error bar does not account for any model system-
atics (e.g., in the overall star formation rate and metallicity
history of the universe). The horizontal red dashed line cor-
responds to the number (3) of observations reported in O1
[4].

this procedure is performed, relatively few distinct bi-
nary evolutions A have significant weight. While our syn-
thetic universe contains millions of binaries, only O(104)
distinct BH-BH binaries are significant in our final re-
sults for each of the formation scenarios listed in Table I.
Figure 1 illustrates the expected detected number versus
assumed BH natal kick strength.

The significant BH natal kicks adopted in all of our for-
mation scenarios (except M10) frequently produce signif-
icant spin-orbit misaligment. Figure 2 shows that strong
misalignment occurs ubiquitously, even for small BH na-
tal kicks; see [55] for more details. This strong spin-orbit
misalignment distribution produces an array of observa-
tionally accessible signatures, most notably via an invari-
ably wide distribution of χeff . In [55] the distribution
was constructed for all of our models, finding that (ex-
cept for M10) considerable support exists for χeff < 0.
Our calculation is fully consistent with the limited ini-
tial exploration reported in Rodriguez et al. [14], which
claimed χeff < 0 was implausible except for extremely
large natal kicks. Their collection of calculations ex-
plored fallback-suppressed kicks (e.g., equivalent to our
model M10); adopted natal kicks larger than we explored
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FIG. 2. Spin-orbit misalignment versus kick strength:
The misalignment θ1,SN1 after the first SN event, as a function
of the characteristic BH natal kick σ. (Note θ1,SN1 should be
distinguished from θ1 described in the text: θ1 is the angle
between the more massive BH and the orbital angular mo-
mentum, at 20 Hz.) The solid line shows the median value;
shaded region shows the 68% and 95% confidence intervals.

here; or adopted mass-dependent natal kicks. We show
that significant spin-orbit misalignment is plausible if all
BHs – even massive ones – receive a modest natal kick.
BH natal kicks therefore provide a robust mechanism to
explain the observed χeff and spin-orbit misalignments
reported by LIGO for its first few detections.

The procedure described above samples a synthetic
universe and synthetic observations by LIGO. However,
to compare to LIGO’s observations, we need to be able
to assess the likelihood of generic binaries according to
our formation scenario, extrapolating between what we
have simulated. We therefore estimate the merger rate
distribution as a function of binary masses, spins, and
spin-orbit misalignments. Our estimate uses a carefully
calibrated Gaussian mixture model, with special tuning
as needed to replicate sharp features in our mass and
misalignment distribution; see Appendix A for details.

III. COMPARISON WITH GRAVITATIONAL
WAVE OBSERVATIONS

A. Gravitational wave observations of binary black
holes

During its first observing run of T1 = 48.6 days, LIGO
has reported the observation of three BH-BH mergers:
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FIG. 3. Empirical cumulative distribution function for
χeff : The solid blue line shows the conventional prior dis-
tribution for χeff , generated by selecting masses uniformly
in m1,2 ≥ 1M�, m1,2 ≤ 100M�, m1 + m2 < 100M�,
and isotropic spins generated independently and uniformly
in magnitude. This prior was adopted when analyzing all
LIGO events. The solid black line shows the empirical cu-
mulative distribution for χeff , derived from the collection
of events α = GW150914, GW151226, and LVT151012 via
their posterior cumulative distributions Pα(χeff) via P (χeff) =∑
α Pα(χeff)/3. In this curve, the posterior distributions are

provided by LIGO’s full O1 analysis results [4], as described
in the text. The solid red line shows the corresponding re-
sult when GW170104 is included. The approximate posterior
distribution for GW170104 is based on published results, as
described in Appendix C.

GW150914, LVT151012, and GW151226 [1, 4, 76]. In an
analysis of T2 = 11 days of data from its second observing
run, at comparable sensitivity, LIGO has since reported
the observation of another binary BH: GW170104 [5]. To
draw out more insight from each observation, rather than
use the coarse summary statistics LIGO provides in tab-
ular form, we employ the underlying posterior parameter
distribution estimates provided by the LIGO Scientific
Collaboration for the three O1 events [4, 47, 48]. For
GW170104, we instead adopt an approximate posterior
distribution described in Appendix C based solely on re-
ported tabular results; that said, we are confident that
this approximation makes no difference to our conclu-
sions. For each event, for brevity indexed by an integer
n = 1, 2, 3, . . . , N , these estimates are generated by com-
paring a proposed gravitational wave source x with the
corresponding stretch of gravitational wave data d us-
ing a (Gaussian) likelihood function p(d|x) that accounts
for the frequency-dependent sensitivity of the detector

(see, e.g., [47–49] and references therein). In this ex-
pression x is shorthand for the 15 parameters needed to
fully specify a quasicircular BH-BH binary in space and
time, relative to our instrument; and d denotes all the
gravitational wave data from all of LIGO’s instruments.
This analysis adopts prior assumptions about the rel-
ative likelihood of different progenitor binaries pref(x):
equally likely to have any pair of component masses,
any spin direction, any spin magnitude, any orientation,
and any point in spacetime (i.e., uniform in comoving
volume). Then, using standard Bayesian tools [47, 48],
the LIGO analysis produced a sequence of independent,
identically distributed samples xn,s (s = 1, 2, . . . , S)
from the posterior distribution for each event n; that
is, each xn,s is drawn from a distribution proportional
to p(dn|xn)pref(xn). This approach captures degenera-
cies in the posterior not previously elaborated in detail,
most notably the well-known strong correlations between
the inferred binary’s component masses and spins (e.g.,
between χeff and m2/m1).2 Equivalently, this approach
gives us direct access to properties of the posterior dis-
tribution that were not reported in published tables [4],
most notably for the relative posterior probabilities of
different choices for binary BH spins (e.g., the data un-
derlying Figure 3).

B. Comparing models to observations

The overall likelihood of GW data {d} using a model
parameterized by Λ is [77]

p({d}|Λ) ∝ e−µ
∏
n

∫
dxn p(dn|xn) R p(xn|Λ) (2)

where xn denote candidate intrinsic and extrinsic param-
eters for the nth observation, µ is the expected num-
ber of detections according to the formation scenario Λ,
p(dn|xn) is the likelihood for event n; p({d}|Λ) is the
marginalized likelihood; p(xn|Λ) is the prior evaluated at
event n; and R (implicitly depending on Λ as well) is
the average number of merger events per unit time and
volume in the Universe. In this expression, we have sub-
divided the data {d} into data with confident detections
d1, d2, . . . , dN and the remaining data; the Poisson pref-
actor exp(−µ) accounts for the absence of detections in

2 Different properties of the binary, like the masses and spins, in-
fluence the inspiral, and thus the radiation h(t), in generally
different ways; however, sometimes, several parameters can in-
fluence the radiation in a similar or degenerate way. For example,
both the binary mass ratio and (aligned) binary spin can extend
the duration of the inspiral. Similarly, both the binary masses
and spins – 8 parameters – determine the final complex frequency
of the BH – at leading order, only set by two parameters. Due
in part to degeneracies like these, LIGO’s inferences about the
parameters x for each merging BH lead to a highly correlated
likelihood p(d|x) and hence posterior distribution; see, e.g. [47–
49] and references therein.
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the remaining data; and the last product accounts for
each independent observation dn. Combined, the factors
e−µ

∏
nRp(xn) are the distribution function for an inho-

mogeneous Poisson process used to characterize the for-
mation and detection of coalescing BH binaries [78, 79].
As described in Appendix B, the probability density func-
tions p(x|Λ) are estimated from the weighted samples
that define each synthetic universe Λ, and the integrals∫
p(d|x)p(x|Λ) are performed efficiently via Monte Carlo

integration. Similarly, the expected number of detec-
tions µ at O1 sensitivity – a known constant for each
model Λ – is already provided by the detailed cosmo-
logical integration performed in prior work; see Sec. II
and Figure 1. Since the marginal likelihood can always
be evaluated, the model inference on our discrete set of
models becomes an application of Bayesian statistics. In
this work, we report the Bayes factor or likelihood ra-
tio Kij = p({d}|Λi)/p({d}|Λj) between two different sets
of assumptions. To fix the zero point for the log Bayes
factor, we adopt the M16 model with χ1 = χ2 = 0.5,
henceforth denoted collectively as J , and henceforth use
lnK as shorthand for lnKiJ .

In what follows, we will mainly discuss comparisons
of our models to all of LIGO’s reported detection can-
didates in O1: GW150914, GW151226, and LVT151012
[4]. We do this because LIGO’s O1 observational time
and survey results are well-defined and comprehensively
reported [4]; because we can employ detailed inference
results for all O1 events; and because, as we show below,
adding GW170104 to our analysis produces little change
to our results. Using the approximate posterior described
in Appendix C for GW170104, we will also compare all
reported LIGO observations (O1 and GW170104) to our
models.

Critically, for clarity and to emphasize the information
content of the data, in several of our figures we will illus-
trate the marginal likelihood of the data p({d}|Λ) evalu-
ated assuming all binaries are formed with identical natal
spins. These strong assumptions in our illustrations show
just how much the data informs our understanding of BH
natal spins. With only four observations, assumptions
about the spin distribution are critical to make progress.
As described in Appendix B, we can alternatively evalu-
ate the marginal likelihood accounting for any concrete
spin distribution, or even all possible spin distributions –
in our context, all possible mixture combinations of the
100 different choices for χ1 and χ2 that we explored. In
the latter case, as we show below, just as one expects a
priori, observations cannot significantly inform this 100-
dimensional posterior spin distribution. As suggested
in previous studies [e.g. 2, 42, 49, 54], LIGO’s observa-
tions in O1 and O2 can be fit by models that includes
a wide range of progenitor spins, so long as sufficient
probability exists for small natal spin and/or significant
misalignment. As a balance between complete generality
on the one hand (a 100-dimensional distribution of na-
tal spin distributions) and implausibly rigid assumptions
on the other (fixed natal spins), we emphasize a simple

one-parameter model, where BH natal spins χ are drawn
from the piecewise constant distribution

p(χ) =

{
λA/0.6 χ ≤ 0.6

(1− λA)/0.4 0.6 < χ < 1
(3)

where λA is the probability of a natal spin ≤ 0.6 and the
choice of cutoff 0.6 is motivated by our results below.

IV. RESULTS

In this section we calculate the Bayes factor lnK for
each of the binary evolution models described above. Un-
less otherwise noted, we compare our models to LIGO’s
O1 observations (i.e., the observation of GW150914,
GW151226, and LVT151012), using each model’s cor-
related predictions for the event rate, joint mass dis-
tribution (m1,m2), χeff distribution, and the distribu-
tion of θ1, θ2. For numerical context, a Bayes factor of
ln 10 ' 2.3 is by definition equivalent to 10:1 odds in
favor of some model over our reference model. Bayes fac-
tors that are more than 5 below the largest Bayes factor
observed are in effect implausible (e.g., more than 148:1
odds against), whereas anything within 2 of the peak are
reasonably likely.

A. Standard scenario and limits on BH natal spins
(O1)

The M10 model allows us to examine the implica-
tions of binary evolution with effectively zero natal kicks.
The M10 model adopts fiducial assumptions about bi-
nary evolution and BH natal kicks, as described in prior
work [26, 56]. In this model, BH kicks are suppressed by
fallback; as a result, the heaviest BHs receive nearly or
exactly zero natal kicks and hence have nearly or exactly
zero spin-orbit misalignment.

If heavy BH binaries have negligible spin-orbit mis-
alignment, then natal BH spins are directly constrained
from LIGO’s measurements (e.g., of χeff). For exam-
ple, LIGO’s observations of GW150914 severely constrain
its component spins to be small, if the spins must be
strictly and positively aligned [48, 49]. Conversely, how-
ever, LIGO’s observations for GW151226 require some
nonzero spin. Combined, if we assume all BHs have spins
drawn from the same, mass-independent distribution and
have negligible spin-orbit misalignments, then we con-
clude BH natal spins should be preferentially small. [We
will return to this statement in Section IV D.]

Figure 4 shows one way to quantify this effect within
the context of our calculations. The left panel shows the
Bayes factor for all of our formation models (including
M10) as a function of BH natal spin, assuming all BHs
have the same (fixed) natal spin χ = χ1 = χ2. As ex-
pected from LIGO’s data, large natal BH spins cannot
be adopted with M10 and remain consistent with LIGO’s
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FIG. 4. Standard small-kick scenario (M10) requires small natal BH spin: Left panel : A plot of the Bayes factor K
derived by comparing GW151226, GW150914, and LVT151012 to the M10 (blue) formation scenario, versus the magnitude of
assumed BH natal spin χ1 = χ2. All other models are shown for comparison. Colors and numbers indicate the Bayes factor;
dark colors denote particularly unlikely configurations. Right panel : As before (i.e., for M10), but in two dimensions, allowing
the BH natal spins for the primary and secondary BH to be independently selected (but fixed); color indicates the Bayes factor.
As this scenario predicts strictly aligned spins for the heaviest BH-BH binaries, only small BH natal spins are consistent with
LIGO’s constraints on the (aligned) BH spin parameter χeff in O1 (and GW170104); see Abbott, B. P. et al. (LIGO and Virgo
Scientific Collaboration) [5, 49] and [54].

observations. The right panel shows the Bayes factor for
M10 as function of both BH natal spins, allowing the
more massive and less massive BHs to receive different
(fixed) natal spins. [The blue line on the left panel uses
precisely the same data as the diagonal χ1 = χ2 on the
right.] The colorscale graphically illustrates the same
conclusion: though marginally greater freedom exists for
natal BH spin on the smaller of the two BHs, we can
rule out that all BHs, independent of their mass, have
significant natal spin if M10 is true. Conversely, if M10
is true and all BHs have the same natal spins, then this
natal spin is likely small.

B. BH natal kicks and misalignment (O1)

In the absence of BH natal kicks, the preponderance
of observed BH-BH binaries consistent with χeff ' 0
(e.g., GW150914 and GW170104) provided conditional
evidence in favor of small BH natal spins. But even small
BH natal kicks can frequently produce significant spin-
orbit misalignment. Once one incorporates models that
permit nonzero BH natal kicks, then even binary BHs
with large BH natal spins could be easily reconciled with
every one of LIGO’s observations. Figures 4 and 5 pro-
vide a quantitative illustration of just how much more

easily models with even modest BH natal kicks can ex-
plain the data, for a wide range of BH spins. When na-
tal kicks greater than 25km/s are included, the BH natal
spin is nearly unconstrained. As is particularly apparent
in Figure 5, some natal BH spin is required to reproduce
the nonzero spin seen in GW151226.

Larger kicks produce frequent, large spin-orbit mis-
alignments and therefore greater consistency with the
properties of all of LIGO’s observed binary BHs. Spin-
orbit misalignment is consistent with the spin distribu-
tion of GW151226, and helpful to explain the distribution
of χeff for LIGO’s other observations. However, larger
kicks also disrupt more binaries, substantially decreasing
the overall event rate (see Figure 1). Figure 5 illustrates
the tradeoff between spin-orbit misalignment and event
rate.

C. Tides and realignment (O1)

All other things being equal, our “no tides” scenarios
most frequently produce significant spin-orbit misalign-
ment. As a result, even for large BH natal spins, these
models have a greater ability to explain LIGO’s obser-
vations, which are largely consistent with χeff ' 0. The
“tides” scenario produces smaller misalignments for the
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FIG. 5. Bayes factor versus spin and kicks, with and without tides: A plot of the Bayes factor versus BH natal spin
(χ = χ1 = χ2) and natal kick (σkick). The left and right panels correspond to “no tides” and “tides”, respectively. The top
two panels use only the O1 events; the bottom two panels account for the events and network sensitivity updates reported
in the GW170104 discovery paper. In each panel, the zero point of the Bayes factor is normalized to the BH-BH formation
scenario with χ1 = χ2 = 0.5 and σ = 70 km/s and “tides”.

second-born BH. Figure 5 quantitatively illustrates how
the “no tides” scenario marginally fits the data better. In
order to reproduce the inferred distribution of spin-orbit
misalignments (in GW151226) and low χeff (for all events
so far), the “tides” models likely have (a) larger BH natal
kicks ' 200kms/s and (b) low BH natal spins χ1,2 . 0.2.
Conversely, when “no tides” act to realign the second BH
spin, small natal kicks ' 50km/s are favored. Figure 5

illustrates the two distinct conclusions about BH natal
kick strength drawn, depending on whether stellar tidal
realignment is efficient or inefficient. Based on this figure
(and hence on the assumption of fixed natal spins), we
estimate that massive BHs should receive a natal kick
of ∼ 50 km/s if no processes act to realign stellar spins.
Significantly larger natal kicks, with one-dimensional ve-
locity dispersion ' 200km/s, will be required if stellar
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spins efficiently realign prior to the second BH’s birth.
Tides also introduce an asymmetry between the spin-

orbit misalignment of the first-born (generally more mas-
sive) and second-born (generally less massive) BH [30].
As a result, when we consider general prescriptions for
BH natal spins χ1 6= χ2, we find that scenarios with-
out tides produce largely symmetric constraints on χ1,2.
When we assume tidal alignment, we can draw stronger
constraints about the second-born spin rather than the
first. Paradoxically, large natal spin on the first born BH
is consistent with observations. The second born BH can-
not significantly misalign its spin through a natal kick;
therefore, for comparable mass binaries like GW150914,
we know that the second-born BH spin must be small, if
it is strongly aligned. More broadly, since observations
rule out large χeff , binary formation scenarios with tides
and with χ1 > χ2 fit the data substantially better than
scenarios with tides and χ2 > χ1. Because tides act to
realign the second spin, only when χ2 ≤ χ1 will we have
a chance at producing small |χeff |, as LIGO’s O1 obser-
vations suggest. Figure 6 illustrates this asymmetry.

The illustrative results described in this section follow
from our strong prior assumptions: fixed BH natal spins.
As described below, if we instead adopt some broad dis-
tribution of BH natal spins, the substantially greater free-
dom to reproduce LIGO’s observations reduces our abil-
ity to draw other distinctions, in direct proportion to the
complexity of the prior hypotheses explored. We describe
results with more generic spin distributions below.

D. BH natal spins, given misalignment (O1)

So far, to emphasize the information content in the
data, we have adopted the simplifying assumption that
each pair of BHs has the same natal spins χ1, χ2. This
extremely strong family of assumptions allows us to lever-
age all four observations, producing large changes in
Bayes factor as we change our assumptions about (all)
BH natal spins. Conversely, if the BH natal spins are
nondeterministic, drawn from a distribution with sup-
port for any spin between 0 and 1, then manifestly only
four observations cannot hope to constrain the BH na-
tal spin distribution, even were LIGO’s measurements
to be perfectly informative about each BH’s properties.
Astrophysically-motivated or data-driven prior assump-
tions must be adopted in order to draw stronger conclu-
sions about BH spins (cf. [80]).

As a concrete example, we consider the simple two-bin
BH natal spin model described in Eq. (3), with proba-
bility λA that any BH has natal spin χi ≤ 0.6 and prob-
ability 1− λA that any BH natal spin is larger than 0.6.
The choice of 0.6 is motivated by our previous results
in Figure 5, as well as by the empirical χeff distribution
shown in Figure 3. Using the techniques described in
Appendix B, we can evaluate the posterior probability
for λA given LIGO’s O1 observations, within the con-
text of each of our binary evolution models. Figure 7

shows the result: LIGO’s observations weakly favor low
BH natal spins. For models like M10 and M13, with
minimal BH natal kicks and hence spin-orbit misalign-
ment, low BH natal spin is necessary to reconcile mod-
els with the fact that LIGO hasn’t seen BH-BH binaries
with large, aligned spins and thus large χeff . Conversely,
LIGO’s observations will modestly less strongly disfavor
models that frequently predict large BH natal spins (e.g.,
λ . 0.6).

As we increase the complexity of our prior assump-
tions, our ability to draw conclusions from only four ob-
servations rapidly decreases. For example, we can con-
struct the posterior distribution for a generic BH natal
spin distribution (i.e., our mixture coefficients λα for each
spin combination can take on any value whatsoever). The
mean spin distribution can be evaluated using closed-
form expressions provided in Appendix B. In this ex-
treme case, the posterior distribution closely resembles
the prior for almost all models, except M10.

To facilitate exploration of alternative assumptions
about natal spins and kicks, we have made publicly avail-
able all of the marginalized likelihoods evaluated in this
work, as supplementary material.

E. Information provided by GW170104

The observation of GW170104 enables us to modestly
sharpen all of the conclusions drawn above, due to the
reported limits on χeff : between −0.42 and 0.09 [5]. Of
course, the reported limits for all events must always be
taken in context, as they are inferred using very specific
assumptions – a priori uniform spin magnitudes, isotrop-
ically oriented. Necessarily, inference performed in the
context of any astrophysical model for natal BH spins and
kicks will draw different conclusions about the allowed
range, since the choice of prior influences the posterior
spin distribution (see, e.g., [80, 81]). Even taking these
limits at face value, however, this one observation can
easily be explained using some combination of two effects:
a significant probability for small natal BH spins, or some
BH natal kicks. First and most self evidently, if all BHs
have similar natal spins, then binary evolution models
that assume alignment at birth; do not include processes
that can misalign heavy BH spins, like M10; and which
adopt a common natal BH spin for all BHs are difficult
to reconcile with LIGO’s observations. On the one hand,
GW170104 would require extremely small natal spins in
this scenario; on the other, GW151226 requires nonzero
spin. Of course, a probabilistic (mixture) model allow-
ing for a wide range of mass-independent BH natal spins
can easily reproduce LIGO’s observations, even without
permitting any alignment; see also [42], which adopts a
deterministic model that also matches these two events.
Second, binary evolution models with significant BH na-
tal kicks can also explain LIGO’s observations. As seen in
the bottom left panel of Figure 5, large BH natal spins are
harder to reconcile with LIGO’s observations, if we as-
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FIG. 6. Bayes factor versus spin, with and without tides (O1): For the M14 model (σ = 200km/s), a plot of the Bayes
factor versus χ1,2. Colors and numbers indicate the Bayes factor; dark colors denote particularly unlikely configurations. The
left panel assumes no spin realignment (“no tides”); the right panel assumes the second-born BH’s progenitor had its spin
aligned with its orbit just prior to birth (“tides”). Spin-orbit realignment and the high orbital velocity just prior to the second
SN ensures the second spin is at best weakly misaligned; therefore, χ2 would need to be small for these models to be consistent
with LIGO’s observations to date.

sume BH spin alignments are only influenced by isotropic
BH natal kicks. This conclusion follows from the modest
χeff seen so far for all events. Conversely, if we assume
efficient alignment of the second-born BH, then the ob-
served distribution of χeff (and θ1, mostly for GW151226)
suggest large BH natal kicks, as illustrated by the bottom
right panel of Figure 5.

F. Information provided by the mass distribution

The underlying mass distributions predicted by our
formation models do depend on our assumptions about
BH natal kicks, as shown concretely in Figure 8. These
modest differences accumulate as BH natal kicks increas-
ingly disrupt and deplete all BH-BH binaries. To quan-
tify the similarity between our distributions, Table I re-
ports an information-theory-based metric (the KL diver-
gence) that attempts to quantify the information rate
or “channel capacity” by which the universe communi-
cates information about the mass distribution to us. If
p(x), q(x) are two probability distributions over a param-
eter x, then in general the KL divergence has the form

DKL(p|q) =

∫
dxp(x) ln[p(x)/q(x)] (4)

Except for the strongest BH natal kicks, we find our mass
distributions are nearly identical. Even with perfect mass

measurement accuracy, we would need O(1/DKL) fair
draws from our distribution to confidently distinguish
between them. As demonstrated by previous studies
[78, 82], LIGO will be relatively inefficient at discrimi-
nating between the different detected mass distributions.
LIGO is most sensitive to the heaviest BHs, which dom-
inate the astrophysically observed population, but has
extremely large measurement uncertainty in this regime.
Thus, accounting for selection bias and smoothing us-
ing estimated measurement error, the mass distributions
considered here look fairly similar [78]. For constraints
on BH natal kicks, the information provided by the mass
distribution is far less informative than the insights im-
plied by constraints on χeff and θ1,2.

As a measure of the information LIGO can extract
per event about the mass distribution from each de-
tection, we enumerate how many different BH-BH bi-
naries LIGO can distinguish, which are consistent with
the expected stellar-mass BH-BH population (i.e., moti-
vated by LIGO’s reported observations to date, limiting
to m2/m1 > 0.5, m1 + m2 < 75M�, m2 > 3M�, and
m1 < 40M�). Counting up the distinct waveforms used
by gravitational wave searches in O2 [83], including spin,
there are only 236 templates with chirp masses above
LVT151012 (i.e., Mc > 15M�), and only ' 1,200 with
chirp masses above GW151226 (i.e., Mc > 8.88M�).
This estimate is highly optimistic, because it neglects
distance and hence redshift uncertainty, which decreases
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FIG. 7. High or low natal spin? Top panel : Posterior distribution on λA, the fraction of BHs with natal spins ≤ 0.6 [Eq.
(3)], based on O1 (dotted) or on O1 with GW170104 (solid), compared with our binary evolution models (colors), assuming “no
tides”. Unlike Figure 5, which illustrates Bayes factors calculated assuming fixed BH natal spins, this calculation assumes each
BH natal spin is drawn at random from a mass- and formation-scenario-independent distribution that is piecewise constant
above and below χ = 0.6. With only four observations, LIGO’s observations consistently but weakly favor low BH natal spins.
Left panel : Posterior distribution for χeff implied by the distribution of λA shown in the top panel (i.e., by comparing our
models to LIGO’s O1 observations, under the assumptions made in Eq. (3)). Right panel : As in the left panel, but including
GW170104. Adding this event does not appreciably or qualitatively change our conclusions relative to O1.

our ability to resolve the smallest masses (i.e., the un-
certainty in chirp mass for GW151226), and it also uses
both mass and spin information. Judging from the re-
ported mass distributions alone (e.g., the top left panel
of Figure 4 in [4]), LIGO may efficiently isolate BHs to
only a few tens of distinct mass bins, de facto limiting
the resolution of any mass distribution which can be non-
parametrically resolved with small-number statistics; see,
e.g., the discussion in [82].

V. PREDICTIONS AND PROJECTIONS

Using the Bayes factors derived above for our binary
evolution models and BH natal spin assumptions (col-
lectively indexed by Λ), we can make predictions about
future LIGO observations, characterized by a probabil-
ity distribution pfuture(x) =

∑
Λ p(x|Λ)p(Λ|d) for a can-

didate future binary with parameters x. We can then
account for LIGO’s mass-dependent sensitivity to gen-
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erate the relative probability of observing binaries with
those parameters. In the context of the infrastructure de-
scribed above, we evaluate this detection-weighted pos-
terior probability using a mixture of synthetic universes,
with relative probabilities p(Λ|d) and relative weight ri
of detecting an individual binary drawn from it.

Using our fiducial assumptions about BH spin realign-
ment (“no tides”), our posterior probabilities point to
nonzero BH natal kicks, with BH natal spins that can
neither be too large nor too small (Figures 5 and 7). In
turn, because each of our individual formation scenarios
Λ preferentially forms binaries with χeff > 0 [55], with a
strong preference for the largest χeff allowed, we predict
future LIGO observations will frequently include binaries
with the largest χeff allowed by the BH natal spin distri-
bution. These measurements will self-evidently allow us
to constrain the natal spin distribution (e.g., the maxi-
mum natal BH spin). For example, if future observations
continue to prefer small χeff , then the data would increas-
ingly require smaller and smaller natal BH spins, within
the context of our models. For example, this future sce-
nario would let us rule out models with large kicks and
large spins, as then LIGO should nonetheless frequently
detect binaries with large χeff .

As previously noted, with only four GW observations,
the data does not strongly favor any spin magnitude dis-
tribution. Strongly modeled approaches which assume
specific relationships between the relative prior probabil-
ity of different natal spins can draw sharper constraints,
as in [54]. If we allow the spin distribution to take on
any form [53, 84], many observations would be required
to draw conclusions about the spin distribution. Con-
versely, as described previously and illustrated by Figure
7, if we adopt a weak (piecewise-constant) model, we can
draw some weak conclusions about the BH natal spin

distributions that are implied by our binary evolution
calculations and LIGO’s observations.

Neither the expected number of events nor their mass
distribution merits extensive discussion. The large Pois-
son error implied by only four observations leads to a
wide range of probable event rates, previously shown to
be consistent with all the binary evolution models pre-
sented here [26, 56]. Conversely, due to the limited size
of our model space – the discrete model set and single
model parameter (BH natal kicks) explored – these poste-
rior distributions by no means fully encompass all of our
prior uncertainty in binary evolution and all we can learn
by comparing GW observations with the data. While
our calculations illuminate how GW measurements will
inform our understanding of BH formation, our calcula-
tions are not comprehensive enough to provide authori-
tative constraints except for the most robust features.

Finally, all of our calculations and projections have
been performed in the context of one family of forma-
tion scenarios – isolated binary evolution. Our calcula-
tions within this framework do not allow for one possible
variant of this channel: homogeneous chemical evolution,
where close binaries become tidally locked and rapidly
rotating, leading to a distinctively different evolutionary
trajectory that produces massive BH binaries while cir-
cumventing the common envelope phase [6, 7]. Globular
clusters could also produce a population of merging com-
pact binaries [8], with random spin-orbit misalignments
[85]. Several previous studies have described or demon-
strated how to identify whether either model contributes
to the detected population, and by how much, using con-
straints on merging BH-BH spins [2, 14, 15, 52, 53, 84].

VI. CONCLUSIONS

By comparing binary evolution models with different
assumptions about BH natal kicks to LIGO observations
of binary BHs, we estimate that heavy BHs should receive
a natal kick of order 50 km/s if no processes act to realign
stellar spins. Significantly larger natal kicks, with one-
dimensional velocity dispersion ' 200km/s, will be re-
quired if stellar spins efficiently realign prior to the second
BH’s birth. These estimates are consistent with observa-
tions of galactic X-ray binary misalignment [32–35] and
recoil velocity [35–41]. Our estimate is driven by two sim-
ple factors. The natal kick dispersion σ is bounded from
above because large kicks disrupt too many binaries (re-
ducing the merger rate below the observed value). Con-
versely, the natal kick distribution is bounded from be-
low because modest kicks are needed to produce a range
of spin-orbit misalignments. A distribution of misalign-
ments increases our models’ compatibility with LIGO’s
observations, if all BHs are likely to have natal spins.

Closely related work by Belczynski et al. [42] uses
similar evolutionary models but with a fixed physically-
motivated BH natal spin model that depends on BH
mass. They predict a distribution of χeff with substantial
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support at large values, in increasing tension with obser-
vations reported to date. They conclude that more effi-
cient angular momentum transport neeeds to be adopted
in evolutionary calculations to revise their BH natal spin
model and to match LIGO/Virgo observations. In this
work, by contrast, we explore a wide range of possible
spin distributions. We consistently find that distribu-
tions which favor low BH natal spins can more easily
reproduce current observations.

Given limited statistics, we have for simplicity (and
modulo M10) assumed all binary BHs receive natal
kicks and spins drawn from the same formation-channel-
independent distributions. This strong assumption about
BH natal spins allows us to draw sharp inferences about
BH natal spins and kicks by combining complementary
information provided by GW151226 (i.e., nonzero spins
required, with a suggestion of misalignment) and the re-
maining LIGO observations (i.e., strong limits on χeff).
Future observations will allow us to directly test more
complicated models not explored here, where the natal
spin and kick distribution depends on the binary BH
mass as in Belczynski et al. [42] Necessarily, if BH na-
tal spins are small for massive BHs and large for small
BHs, as proposed in Belczynski et al. [42], then mea-
surements of low-mass BH binaries like GW151226 will
provide our primary channel into constraining BH natal
spins and kicks. At present, however, inferences about
BH natal spins and spin-orbit misalignment are strongly
model or equivalently prior driven, with sharp conclu-
sions only possible with strong assumptions. We strongly
recommend results about future BH-BH observations be
reported or interpreted using multiple and astrophysi-
cally motivated priors, to minimize confusion about their
astrophysical implications (e.g., drawn from the distribu-
tion of χeff).

For simplicity, we have also only adjusted one assump-
tion (BH natal kicks) in our fiducial model for how com-
pact binaries form. A few other pieces of unknown and
currently-parameterized physics, notably the physics of
common envelope evolution, should play a substantial
role in how compact binaries form and, potentially, on
BH spin misalignment. Other assumptions have much
smaller impact on the event rate and particularly on BH
spin misalignment. Adding additional sources of uncer-
tainty will generally diminish the sharpness of our con-
clusions. For example, the net event rate depends on the
assumed initial mass function as well as the star forma-
tion history and metallicity distribution throughout the
universe; once all systematic uncertainties in these inputs
are inclusded, the relationship between our models and
the expected number of events is likely to include signif-
icant systematic as well as statistical uncertainty. Thus,
after marginalizing over all sources of uncertainty, the
event rate may not be as strongly discriminating between
formation scenarios. By employing several independent
observables (rate, masses, spins and misalignments), each
providing weak constraints about BH natal kicks, we pro-
tect our conclusions against systematic errors in the event

rate. Further investigations are needed to more fully as-
sess sources of systematic error and enable more precise
constraints.

Due to the limited size of our model space – the discrete
model set and single model parameter (BH natal kicks)
explored – these posterior distributions by no means fully
encompass all of our prior uncertainty in binary evolu-
tion and all we can learn by comparing GW observations
with the data. As in previous early work [86–89], a fair
comparison must broadly explore many more elements of
uncertain physics in binary evolution, like mass transfer
and stellar winds. Nonetheless, this nontrivial example
of astrophysical inference shows how we can learn about
astrophysical models via simultaneously comparing GW
measurements of several parameters of several detected
binary BHs to predictions of any model(s). While we
have applied our statistical techniques to isolated binary
evolution, these tools can be applied to generic formation
scenarios, including homogeneous chemical evolution; dy-
namical formation in globular clusters or AGN disks; or
even primordial binary BHs.

Forthcoming high-precision astrometry and radial ve-
locity from GAIA will enable higher-precision constraints
on existing X-ray binary proper motions and distances
[90, 91], as well as increasing the sample size of available
BH binaries. These forthcoming improved constraints
on BH binary velocities will provide a complementary
avenue to constrain BH natal kicks using binaries in our
own galaxy.
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Appendix A: Approximating parameter
distributions from finite samples

Our population synthesis techniques allow us to gen-
erate an arbitrarily high number of distinct binary evo-
lutions from each formation scenario, henceforth indexed
by Λ. Instead of generating individual binary evolution
histories, we weigh each one by an occurrence rate, al-
lowing it to represent multiple binaries. For our calcu-
lations, however, we instead require the relative prob-
ability of different binaries, not just samples from the
distribution. We estimate this distribution from the
large but finite sample of binaries available in each syn-
thetic universe. We do not simply use an occurence
rate-weighted histogram of all the samples. Histograms
work reliably for any single parameter (e.g., p(m1|Λ)),
where many samples are available per potential his-
togram bin, but for high-dimensional joint distributions
(e.g., p(m1,m2, θ1, θ2, χeff |Λ)), many histogram bins will
be empty simply due to the curse of dimensionality.

In all our calculations, we instead approximate the den-
sity as a mixture of Gaussians, labeled k = 1, 2, . . . ,K,
with means and covariances (µk, Σk) to be estimated,
along with weighting coefficients wk, which must sum to
unity. The density can therefore be written as

p(x) ≈
K∑
k=1

wkN (x|µk,Σk), (A1)

where N (·) represents the (multivariate) Gaussian distri-
bution. We select the number of Gaussians K by using
the Bayesian information criterion.

To estimate the means and covariances of our mixture
of Gaussians, we used the expectation maximization algo-
rithm [92]; see, e.g., [93] for a pedagogical introduction.
Specifically, we used a small modification to an imple-
mentation in scikit-learn [94], to allow for weighted
samples in the update equation (e.g., adding weights to
Eq. (11.27) in [93]).

Ideally we would simply approximate each formation
scenario Λ’s intrinsic predictions p(x|Λ) with a mixture
of Gaussians, using the merger rate for each sample bi-
nary as its weighting factor. However, all astrophysical
indications suggest that more massive progenitors form
more rarely, implying this procedure would result in a

distribution that is strongly skewed in favor of the much
more intrinsically frequent low mass systems; our fitting
algorithm might end up effectively neglecting the samples
with small weights. This would risk losing information
about the most observationally pertinent samples, which
due to LIGO’s mass-dependent sensitivity are concen-
trated at the highest observationally accessible masses.
Alternatively, for every choice of detection network, we
can approximate each formation scenario’s predictions
for that network. If TV (x) is the average sensitive 4-
volume for the network, according to this procedure we
approximate V (x)p(x) by a Gaussian mixture, then di-
vide by V (x) to estimate p(x). To minimize duplica-
tion of effort involved in regenerating our approximation
for each detector network, we instead adopt a fiducial
(approximate) network sensitivity model Vref(x) for the
purposes of density estimation. We adopt the simplest
(albeit ad-hoc) network sensitivity model: the functional
form for V (x) that arises by using a single detector net-

work and ignoring cosmology (i.e., EV ∝ M15/6
c ) [75].

The overall, nominally network- and run-dependent nor-
malization constant in this ad-hoc model Vref scales out
of all final results.

Appendix B: Hierarchical comparisons of
observations with data

As described in Section III B, the population of binary
mergers accessible to our light cone can be described as
an inhomogeneous Poisson process, characterized by a
probability density e−µ

∏
kRp(xk) where xk = x1 . . . xN

are the distinct binaries in our observationally accessi-
ble parameter volume V. In this expression, the ex-
pected number of events and parameter distribution are
related by µ =

∫
dx
√
gRp(x); the multidimensional inte-

gral
∫
dx
√
g is shorthand for a suitable integration over

a manifold with metric; and the probability density p(x)
is expressed relative to the fiducial (metric) volume el-
ement, but normalized on a larger volume than V. Ac-
counting for data selection [77], the likelihood of all of
our observations is therefore given by Eq. (2).

To insure we fully capture the effects of precessing
spins, we work not with the full likelihood – a dif-
ficult function to approximate in 8 dimensions – but
instead with a fiducial posterior distribution ppost =
Z−1p(dk|x)pref(xk), as would be provided by a Bayesian
calculation using a reference prior pref(xk). Rewriting
the integrals

∫
dxkp(dk|x)p(xk|Λ) appearing in Eq. (2)

using the reference prior we find integrals appearing in
this expression can be calculated by Monte Carlo, using
some sampling distribution ps,k(xk) for each event (see,
e.g., [95]):∫

dxkp(dk|xk)p(xk|Λ)

=
1

Nk

∑
s

[p(dk|xk)pref(xk,s)]p(xk,s|Λ)

ps,k(xk,s)pref(xk,s)
, (B1)
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where s = 1, . . . Nk indexes the Monte Carlo samples
used. One way to evaluate this integral is to adopt a
sampling distribution ps,k equal to the posterior distri-
bution evaluated using the reference prior, and thus pro-
portional to p(dk|xk)pref(xk|Λ). If for this event k we
have samples xk,s from the posterior distribution – for
example, as provided by a Bayesian Markov chain Monte
Carlo code – the integrals appearing in Eq. (2) can be
estimated by∫

dxkp(dk|xk)p(xk|Λ) ' Z

Nk

∑
s

p(xk,s|Λ)

pref(xk,s)
, (B2)

We use this expression to evaluate the necessary marginal
likelihoods, for any proposed observed population p(x|Λ).

In the expression above, we need only consider some
of the degrees of freedom in the problem. Notably, the
probability distributions for extrinsic parameters like the
source orientation, sky location, and distance will always
be in common between our models and our reference
prior. So will any Jacobians associated with changes of
coordinate. Moreover, these assumptions are indepen-
dent of one another and of the intrinsic parameter dis-
tributions. Therefore, the ratio of probability densities
p(x|Λ)/pref(x) usually has product form, cancelling term
by term. We therefore truncate the ratio to only account
for some of the degrees of freedom.

To verify and better understand our results, we can
also approximate the likelihood function, using suitable
summary statistics. As an example, Abbott, B. P. et
al. (LIGO and Virgo Scientific Collaboration) [49] repro-
duce parameter estimates of GW150914 using a Gaus-
sian approximation to the likelihood and the assumption
of perfect spin-orbit alignment. Using this approxima-
tion, and a similar approximation for GW151226, we can
alternatively approximate each integral appearing in the
likelihood by using the (weighted) binary evolution sam-
ples xk,A and their weights wA:

∫
dxkp(dk|xk)p(xk|Λ) '

∑
A wAp̂(dk|xk,A)∑

A wA
(B3)

where p̂ refers to our approximate likelihood for the kth
event. Even though these likelihood approximations ne-
glect degrees of freedom associated with spin precession,
we can reproduce the observed mass and χeff distribu-
tions reported in Abbott, B. P. et al. (LIGO and Virgo
Scientific Collaboration) [49]. We used this approximate
likelihood approach to validate and test our procedure.
We also use this approach to incorporate information

about GW170104, which was not available at the same
level of detail as the other events.

As an example, we describe how to evaluate this in-
tegral in the case where p(xk|λ) is a mixture model
p(x|λ) =

∑
α λαpα(x), for λ an array of parameters. In

this case, all the integrals can be carried out via∏
k

∫
dxkp(dk|xk)p(xk|λ) (B4)

=
∏
k

[
∑
α

λα

∫
dxkp(dk|xk)pα(xk)] =

∏
k

∑
α

λαcα,k

where cα,k are integrals we can compute once and for all
for each event, using for example the posterior samples
from some fiducial analysis. As a result, the observation-
dependent factor in likelihood for a mixture model always
reduces to a homogeneous Nth-degree polynomial in the
mixture parameters λα. Bayes theorem can be applied
to λ to infer the distribution over mixture parameters.
Depending on the mixture used, this calculation could
incorporate a physically-motivated prior on λ.

We use a mixture model approach to hierarchically
constrain the spin magnitude distribution implied by our
data. In our approach, we first consider models where
both spin magnitudes are fully constrained. In the no-
tation of the mixture model discussion above, we adopt
some specific prior pα(χ1, χ2|σ) = δ(χ1 − xα)δ(χ2 − yα)
where xα, yα are the spin λα. A mixture model allowing
generic λ and thus including all such components allows
both component spins to take arbitrary (discrete) val-
ues. [We could similarly extend our mixture model to in-
clude kicks.] The posterior distribution over all possible
spin distributions p(λ|d) = p(d|λ)p(λ)/p(d) follows from
Bayes’ theorem and the concrete likelihood given in Eq.
(B4). In practice, however, we don’t generally compute
or report the full posterior distribution, as it contains far
more information than we need (e.g., the extent of the
ensemble of possible spin distributions that fit the data).
Instead, we compute the expected spin distribution

ppost(x) =
∑
α

〈λα〉pα (B5)

and the variance in each λα. For the modest number
of mixture components of interest here (' 100 possible
choices of both spin magnitudes) and the modest degree
of the polynomial (' 4 − 5), all necessary averages can
be computed by direct symbolic quadrature of a polyno-
mial in λα. The integral can be expressed as a sum of
terms of homogeneous degree in λ, and integrals of each
of these terms can be carried out via the following general
formula:

n!

∫
∑

i xi≤1

dx1 . . . dxnx
α1
i1
. . . xαZ

iZ
=

n!

(n− Z)!

Z∏
k=1

B(αk + 1, n+ 1− k +
∑
q>k

αq) (B6)
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where the integral is over the region xi ≥ 0 and
∑
i xi ≤

1. We can also find the maximum likelihood estimate of
λα, for example by using the expectation-maximization
algorithm [92]. In this work, however, we have many
more basis models α = 1, 2, . . . used in our (spin) mix-
ture than observations. Normally, we would reduce the
effective dimension, for example by adopting prior as-
sumptions in how the mixture coefficients can change as
a function of spins χ1, χ2. To minimize additional formal
overhead, we instead simply treat the spins hierarchically
in blocks [Eq. (3)], considering lower-dimensional mod-
els where (for example) λA denotes the a priori prob-
ability for χi ≤ 0.6 and 1 − λA denotes the a priori
probability for χi > 0.6, so for example the prior prob-
ability for (χ1, χ2) = 0.1 is λ2

A/36. In this four-block
and one-parameter model, we can compute the average
value of λA in terms of the net weights associated with
each block: CAA,k =

∑
χ1,χ2∈A cα,k, CAĀk, CĀAk and

CĀĀk. For example, if for each of three synthetic obser-
vations, CAA = 1 and all other weights are negligible,
then we would conclude a posterori that 〈λA〉 = 0.875
and σλA

= 0.11. This approach was adopted in Figu-
ure 7, in contrast to the preceding figures which adopted
fixed natal spins for all BHs.

Appendix C: Approximate posterior distribution for
GW170104

For most events examined in this study, we made use of
posterior samples provided and performed by the LIGO
Scientific Collaboration, generated by comparing each
event to the IMRPv2 approximation [71]. Because we
cannot employ the same level of detail for GW170104,
we instead resort to an approximate posterior distribu-
tion, derived from the reported GW170104 results [5] and
our understanding of gravitational wave parameter esti-
mation, as approximated using a Fisher matrix [96].

For GW170104 we construct an approximate (trun-
cated) Gaussian posterior distribution in only three cor-

related binary parameters: Mc, η, χeff . The shape of this
Gaussian (i.e., its inverse covariance matrix) was con-
structed via a Fisher matrix approximation, derived us-
ing the median detector-frame parameters reported for
GW170104 (i.e., m1 ' 37.1M�, m2 ' 22.6M�, and –
breaking dengeracy with an ad-hoc choice – χ1,zχ2,z '
χeff ' −0.12); the reported network SNR of GW170104
(i.e., ρ ' 13.0); and a suitable single-detector noise
power spectrum. Our effective Fisher matrix estimate
for the inverse covariance matrix Γ [97] adopted the
noise power spectrum at GW150914, using a minimum
frequency fmin = 30Hz; employed the (nonprecessing)
SEOBNRv4 approximation [98], evaluated on a grid
in Mc, η, χ1,z, χ2,z; and fit as a quadratic function of
Mc, η, χeff . We adopt a nonprecessing model and lower-
dimensional Fisher matrix approximation because the
posterior of this event, like GW150914, is consistent with
nonprecessing spins and is very well approximated, in
these parameters, by a nonprecessing model; see, e.g.,
[49]. This simple approximation captures important cor-
relations betweenMc, η and χeff , and the diagonal terms
of Γ−1ρ2 roughly reproduce the width of the posterior
distribution reported for GW170104. To obtain better
agreement with the reported one-dimensional credible in-
tervals, we scaled the terms ΓMc,x for x =Mc, η, χeff by
a common scale factor 0.29 and the term Γχeff ,χeff

by 0.9.
For similar reasons, we likewise hand-tuned the center
of the Gaussian distribution to the (unphysical) param-
eter location to Mc = 22.9, η = 0.32, χeff = 0.013.
Using this ansatz, we generate GW170104-like posterior
samples in Mc, η, χeff from this Gaussian distribution,
truncating any unphysical samples (i.e., with η > 1/4).
For our tuned posterior, the median and 90% credible
regions on the synthetic posteriors approximate the val-
ues and ranges reported. According to our highly sim-
plified and purely synthetic approach, the resulting 90%
credible regions are Mtot = 51.2+7.6

−6.8M�, q = 0.62+0.25
−0.24,

χeff = −0.12+0.28
−0.27.
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[43] K. Belczyński and T. Bulik, A&A 346, 91 (1999), astro-
ph/9901193.
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