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Ultracompact minihalos (UCMHs) have emerged as a valuable probe of the primordial power
spectrum of density fluctuations at small scales. UCMHs are expected to form at early times
in regions with δρ/ρ >∼ 10−3, and they are theorized to possess an extremely compact ρ ∝ r−9/4

radial density profile, which enhances their observable signatures. Non-observation of UCMHs can
thus constrain the primordial power spectrum. Using N-body simulations to study the collapse of
extreme density peaks at z ' 1000, we show that UCMHs forming under realistic conditions do not
develop the ρ ∝ r−9/4 profile and instead develop either ρ ∝ r−3/2 or ρ ∝ r−1 inner density profiles
depending on the shape of the power spectrum. We also demonstrate via idealized simulations that
self-similarity – the absence of a scale length – is necessary to produce a halo with the ρ ∝ r−9/4

profile, and we argue that this implies such halos cannot form from a Gaussian primordial density
field. Prior constraints derived from UCMH non-observation must be reworked in light of this
discovery. Although the shallower density profile reduces UCMH visibility, our findings reduce their
signal by as little as O(10−2) while allowing later-forming halos to be considered, which suggests
that new constraints could be significantly stronger.

I. INTRODUCTION

The matter structure that we observe in the universe
today, appearing in such forms as galaxies and galaxy
clusters, is understood to have grown by gravitational
attraction from small fluctuations in the primordial mat-
ter density field. These fluctuations also manifest them-
selves in the cosmic microwave background (CMB), and
their properties are well understood at large scales. In
particular, primordial density fluctuations are observed
to obey Gaussian statistics [1], allowing them to be
solely described by a power spectrum P(k) quantifying
the power contained in fluctuations at scale wavenum-
ber k. The primordial power spectrum is well con-
strained at large scales by the CMB [2] and down to wave-
lengths as small as 2 Mpc by the Lyman-α forest [3]. At
these scales, observations are consistent with a power law
P(k) ∝ kns−1 with ns = 0.9667± 0.0040 [4]. This nearly
scale-invariant spectrum is predicted [5] by the simplest
models of inflation [6–8]. However, numerous inflationary
models yield spectra departing from scale invariance at
small scales, whether through features in the inflaton po-
tential [9–13], multiple fields [14–18], particle production
[19–21], or other effects [22–36]. Non-inflationary pro-
cesses can also amplify small-scale fluctuations [37, 38].
In order to probe inflation and other early-universe pro-
cesses, it is important to extend our knowledge of P(k)
to smaller scales.

Access to sub-Mpc scales is limited by Silk damping in
the CMB and the impact of baryonic feedback on struc-
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ture formation, but excessive power at such scales can
still produce observable effects. Small-scale primordial
fluctuations with fractional density excess δ ≡ δρ/ρ >∼ 0.3
would collapse into primordial black holes (PBHs), and
constraints on their abundance supply robust upper
bounds on the power spectrum [39]. Stronger constraints
are obtained from the absence of CMB spectral distor-
tions [40], but the most stringent constraints come from
ultracompact minihalos (UCMHs) [41]. Density fluctua-
tions with amplitude δ >∼ 10−3, while too small to form
PBHs, are still large enough to form collapsed minihalos
long before the galaxy-scale structure that we observe to-
day begins to form; UCMHs are taken to be structures
that formed at redshift z >∼ 1000. Importantly, velocity
dispersions are small at these early times, so UCMHs are
assumed to follow the most extreme form of the radial
infall similarity solution [42, 43] and develop a ρ ∝ r−9/4
radial density profile.

This profile is much more compact than that of galaxy-
scale halos [44], a property that greatly boosts observa-
tional signatures and has led to considerable interest in
UCMHs. In the popular and well-motivated weakly in-
teracting massive particle (WIMP) model of dark matter
[45–47], WIMPs are thermally produced in the early uni-
verse and can therefore annihilate within UCMHs; con-
straints on UCMH abundance are then obtained from
non-observation of an expected annihilation signal [48–
57] or from indirect effects [58–62]. Constraints have also
been derived for decaying dark matter models [63–65],
and model-independent constraints can be obtained from
UCMH gravitational lensing signatures [66–69]. These
abundance constraints lead to constraints on the power
spectrum and hence on inflationary models [70] and re-
heating [71]. UCMH abundance has also been used to
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constrain PBHs [72] and cosmic strings [73].
While these constraints are calculated assuming

UCMHs develop the ρ ∝ r−9/4 profile, this profile is de-
rived in an idealized picture satisfying spherical sym-
metry, radial motion, and (after halo collapse) self-
similarity, or the absence of a scale length. It has been
reproduced in N-body simulations from carefully con-
structed self-similar initial conditions [74, 75] but not
from more realistic conditions [76–78]. In contrast, dark
matter halos at galaxy scales form by hierarchical clus-
tering, and simulations of this scenario yield halo density
profiles of the Navarro-Frenk-White (NFW) form [79, 80],
which scales as ρ ∝ r−1 within the innermost region. A
slightly steeper profile arises in simulations with a free-
streaming cutoff scale below which there are no fluctua-
tions: halos at that scale form by steady accretion and
develop ρ ∝ r−3/2 inner profiles [81–86]. Neither of these
pictures comes close to reproducing the UCMH density
profile. However, previous numerical experiments did not
explore the collapse of an extreme density fluctuation at
z ' 1000, and prior UCMH analyses have assumed that
the combination of small velocity dispersion and isola-
tion associated with a halo forming at such early times
will suffice to yield the ρ ∝ r−9/4 profile. A boost to the
power spectrum is necessary to effect any halo forma-
tion at z ' 1000, but following this reasoning, the boost
should be weak enough that such halos are highly iso-
lated.

Recent simulation work in Ref. [87], hereafter GABH,
has called the applicability of the ρ ∝ r−9/4 profile into
question. GABH simulated early structure growth in a
power spectrum with a narrow boost (which we will call
a “spike”) and concluded that the resulting halos have
NFW profiles. However, their analysis fails to rule out
UCMHs with the ρ ∝ r−9/4 profile because they did not
select for extreme density peaks, instead simulating a
typical box whose largest peak corresponded to a 4.3σ
fluctuation (smoothed at the scale of the spike). More-
over, GABH claim that the absence of ρ ∝ r−9/4 profiles
owes to the lack of spherical symmetry and isolation in
realistic conditions. Since Refs. [74, 75] observed (and we
confirm) that spherical symmetry is unnecessary for the
ρ ∝ r−9/4 profile, this claim suggests that halos forming
from peaks rarer than 4.3σ could be sufficiently isolated
to develop it. Ref. [53] uses peaks as extreme as 6σ to
derive observational constraints, above the 5σ level that
GABH claim based on idealized simulations to not pro-
duce the ρ ∝ r−9/4 profile.

Our approach differs in that we search millions of den-
sity fields to find a sufficiently extreme peak. We simu-
late 6.8σ peaks collapsing at z ' 1000 in a more weakly
boosted power spectrum than that of GABH. This level
of statistical extremity corresponds to UCMH mass frac-
tion f ' 10−9 in the analysis of Ref. [53], which is well
below constrained levels1, implying that our density peak

1 While our power spectrum spike peaks above the generalized
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FIG. 1. Dimensionless primordial power spectrum of curva-
ture fluctuations. Solid line shows spike modification, while
dotted line shows step. Dashed line indicates the smallest k
(largest scale) accessible in our simulations.

is rarer than any level hitherto assumed to suffice for de-
velopment of the ρ ∝ r−9/4 profile. We also consider an
alternative power spectrum amplification – a step instead
of spike – and show that the density profile depends on
the shape of the power spectrum. Finally, we use ideal-
ized simulations to argue that self-similarity is necessary
to produce the ρ ∝ r−9/4 profile, which would definitively
rule out its appearance in a Gaussian random field.

II. SIMULATING RARE COLLAPSE

We choose to study density fluctuations with wave-
lengths of order 1 kpc. The simulation starting redshift
is set at z = 8× 106 so that an overdense region that
collapses at z ' 1000 initially has δ ' 0.1. To prepare
our initial conditions, we calculate a power spectrum
at z = 1000 using the Boltzmann code CAMB Sources
[88, 89] with Planck cosmological parameters [4] and then
extrapolate it back to z = 8 × 106 using analytic linear
theory2 [90]. We consider two types of modification to the
power spectrum in order to effect the collapse of halos at
z ' 1000. In the first, shown as the solid line in Fig. 1,
we amplify density fluctuations over a narrow range of
scales, forming a spike in the power spectrum centered
at k = 7 kpc−1. This enhancement will induce a charac-
teristic separation between halos, allowing them to grow
in isolation, a situation that best matches the canonical
UCMH picture. Our particular spike boosts the power
spectrum by a peak factor of 625 and contains 90% of
its integrated power inside one e-fold in k. The second
modification, shown as the dotted line in Fig. 1, appears
as a “step” and represents amplification of fluctuations
over a wide range of scales. The boost factor in this case
is 64, tuned to produce a similar halo number density to
the spike at z ' 1000. Halos in this picture will grow hi-
erarchically, so there is no reason to expect them to differ

constraint in Ref. [53], it is not ruled out because it is not locally
scale invariant.

2 We use an analytic calculation that neglects baryonic effects to
match simulation behavior.
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FIG. 2. (7.4 kpc)3 density field with narrowly amplified power spectrum (solid line in Fig. 1). Left: thin slice of the initial
density field at z = 8× 106. Center left: projected field at z = 715. The indicated halo, which collapsed at z ' 1000, is still
the only halo visible, a testament to its rarity. Center right: projected density field at z = 100. The boxed region is shown in
an expanded picture on the right (projected over a smaller depth). Color scales are logarithmic; lighter indicates denser.

from conventional halos, and we will only consider this
case briefly.

With power spectra chosen, we search Gaussian ran-
dom fields in a comoving periodic (7.4 kpc)3 box gener-
ated at the initial redshift. We select a box based on
the criterion that the linearly evolved field at z = 1000,
smoothed over 10−2kpc, has a peak with δ > 1.686, the
linear threshold for collapse. Once we have such a peak,
we construct initial conditions for our simulation using
the Zel’dovich approximation [91]. Finally, in order to
accurately model dynamics at early times, we simulate
the box using a version of the TreePM code GADGET-2
[92, 93] that we modified to include a smooth radiation
component.3

We now study the results from the spiked power spec-
trum (solid line in Fig. 1). After generating over 2 million
simulation boxes, we found nine matching our collapse
criterion. We simulated all nine boxes and found them to
produce similar results, and we present a representative
result here. This simulation was carried out with 10243

(5123) particles to z = 100 (z = 50), with inner structure
further resolved by resimulating the first halo at 8× par-
ticle density to z = 100; as a result, that halo contained
4.6 × 106, 1.1 × 107, 1.9 × 107, and 4.3 × 105 simula-
tion particles within its virial radius at z = 400, z = 200,
z = 100, and z = 50 respectively. The halo mass at these
redshifts was 8.1M�, 18M�, 31M�, and 51M�. Fig. 2
shows the density field at various times. The leftmost
picture shows the initial field, emphasizing how extreme
the largest peak is compared to its surroundings. The
center left picture shows that the first halo, forming near
z = 1000, is still the only halo in the box by z = 715.
The box at z = 100 (center right) clearly displays the
imprint of the spike in the power spectrum, for we see an

3 We explicitly checked that our modification reproduces the re-
sults of linear theory in the linear regime.

almost uniform distribution of halos with no large scale
structure. This is quite unlike a hierarchical clustering
picture (c.f. Ref. [44]). There is also minimal substruc-
ture within halos, as emphasized by the rightmost pic-
ture. Fragmentation is visible in the filaments but is not
expected to affect our result.4

We now examine the spherically averaged density pro-
file of the first halo. Fig. 3 shows the profile at z = 50,
z = 100, z = 200, and z = 400 plotted in physical (not
comoving) coordinates. We first draw attention to the
dotted line, which shows a ρ ∝ r−9/4 density profile for
comparison. The halo clearly does not follow this form,
and we have conducted extensive convergence testing to
confirm the validity of this result5 for r > 1.6× 10−6 kpc.
The inner profile instead scales as ρ ∝ r−3/2, which is
still steeper than NFW (note the dot-dashed line) but
matches the structure observed in simulations of the
smallest halos forming above a free-streaming cutoff [81–
86]. In retrospect, we might have expected this result,
because the two pictures – the spike and the cutoff –
are similar in their lack of structure below the scale of
the halo. We also see that the density profile is fixed in
time, which is explained by the observation that at late
times, the halo’s potential well is so deep that infalling
matter passes through too quickly to significantly affect
the central density. Such behavior is also exhibited by
the ρ ∝ r−9/4 similarity solution [43] and by NFW halos

4 Fragmentation is a numerical artifact present in simulations with
suppressed small-scale power [94], but due to our convergence
testing, we do not expect it to affect the density profile of the
early-forming halo. Moreover, it is also present when we repro-
duce the similarity solution in Fig. 4, so it cannot be the feature
that prevents formation of the steep inner profile.

5 The density profile is stable with respect to particle count, force
accuracy, force softening, and time step; see Ref. [95] (forth-
coming) for details. The smallest radius plotted at each redshift
contains N > 3000 particles and is larger than 2.8ε, where ε is the
softening length set at 0.03 times the mean interparticle spacing.
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FIG. 3. Density profile in physical (not comoving) coordi-
nates at z = 400, z = 200, z = 100, and z = 50 for a halo that
forms at z ' 1000 due to a narrow power spectrum amplifi-
cation. The density profile approaches ρ ∝ r−3/2 at small r
and ρ ∝ r−3 at large r, following the fitting form (solid line)
of Eq. (1). Several power-law curves are shown for visual
reference.

[96]; it is this property that steepens the outer profile
[97, 98].

We fit the form [99]

ρ(r) =
ρs

(r/rs)3/2(1 + r/rs)3/2
, (1)

the analogue of the NFW density profile for a ρ ∝ r−3/2
inner profile, to the density profile within the halo virial
radius at all four redshifts. Fig. 3 shows that this
form (solid line) provides a close fit. Because the in-
ner density profile does not evolve, it is plausible that
the same parameters would describe the density profile
today: we will take advantage of this argument later in
evaluating the gamma-ray luminosity of the halo. We
remark that the scale radius rs = 1× 10−4 kpc obeys
rs ' [(1 + zcoll)kspike]

−1, where kspike = 7 kpc−1 was the
comoving scale of the spike in the power spectrum and
zcoll ' 1000 is the halo collapse redshift. The right-hand
side of this relation is precisely the physical length scale
of the spike at the time of halo collapse. We also find
ρs ' 30(1 + zcoll)

3ρ0, where ρ0 is the mean matter den-
sity today; the right-hand side of this equation is propor-
tional to the matter density at the collapse time. We have
confirmed that these scalings are approximately obeyed
by later halos forming in the same simulation box, and
we probe them further in forthcoming work [95].

We also briefly report the results from the power spec-
trum with a step enhancement. This case has density
fluctuations broadly distributed across scales, so we ex-
pect structure to form by hierarchical clustering. In-
deed, the first halo in this simulation box collapsed near

z = 1000 as planned, but it undergoes multiple merger
events between z = 1000 and z = 200. The final density
profile is NFW with small radii sufficiently resolved to in-
dicate an asymptotic form at least as shallow as ρ ∝ r−1.
Unsurprisingly, the halos in this picture, even extreme
ones collapsing by z = 1000, still possess the relatively
shallow inner profiles that are characteristic of late-time
galaxy-scale halos. We have now considered two different
enhancements to the small-scale power spectrum, a nar-
row spike and a uniform amplification, and found them
to produce halos with different density profiles. In forth-
coming work [95], we will vary the shape of the spike to
explore the transition between these two regimes.

III. IDEALIZED SIMULATIONS

We now check whether we can produce the ultracom-
pact ρ ∝ r−9/4 density profile from an initially uniformly
overdense ellipsoid. We construct the initial peak at
z = 18000 to collapse near z = 1000, and we evolve it
under matter domination (so radiation is neglected) to
z = 200, at which time its radial density profile is plot-
ted in Fig. 4. We find that the density profile is well de-
scribed by a pure power law ρ ∝ r−α with α > 2. While
the power law index α is not exactly −9/4, the best fit α
is even steeper at α ' 2.38. We conclude that our sim-
ulation parameters are sufficient to produce such steep
cusps, and that it is for physical reasons that they do
not appear in realistic simulations. This test also con-
firms the finding of Refs [74, 75] that spherical symmetry
is not important to the production of the ρ ∝ r−9/4 den-
sity profile.

Let us recount three scenarios under which the ρ ∝ r−α
similarity solution has been reproduced in 3D simula-
tions. The first, Refs. [74, 75], used carefully constructed
initial conditions to match the structure of the analytic
similarity solution of Ref. [42]. The second, presented in
GABH, begins with an initial peak in the shape of a ra-
dial Gaussian function. The third, presented here, begins
with a uniformly overdense ellipsoid. The key feature
shared between these scenarios is self-similarity, or the
absence of a scale length. This is obvious in the first case
but more subtle in the other two. A uniform ellipsoid or
radial Gaussian clearly has a scale length, but only within
a finite (or effectively finite) region. This initial structure
does not significantly affect the final density profile be-
cause it collapses as the halo first forms, and outside of
it, the fractional mass excess contained within a given
radius obeys δM/M ∝M−1: it possesses self-similarity
of the form treated in Ref. [42]. This common feature
between otherwise disparate initial conditions strongly
suggests that self-similarity is a necessary condition to
produce the ρ ∝ r−9/4 profile.

It is important to note that this form of self-similarity
only holds for uncompensated peaks. Peaks generated
by a localized boost to the power spectrum are compen-
sated by a surrounding trough, which maintains the scale
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FIG. 4. The density profile at z = 200 of a halo that
formed from a uniform ellipsoid. This follows a pure power
law ρ ∝ r−α (solid line) with α > 2, as predicted by radial
infall theory.

length indefinitely. To study how this permanent scale
length affects the density profile, we employed the de-
scription of Ref. [100] to construct an idealized initial
peak drawn from our spiked power spectrum of Fig. 1
with amplitude δ ' 0.1 constrained in order to effect col-
lapse at z ' 1000. This peak is necessarily in isolation
and possesses no substructure. We simulated it from
z = 8× 106 to z = 100 and found that it produced the
same density profile as Fig. 3. This is consistent with the
results of Ref. [81], who carried out similarly idealized
simulations of halos in a cutoff power spectrum, and we
conclude that isolation alone is not sufficient to produce
the ρ ∝ r−9/4 density profile.

While isolation is evidently insufficient to produce the
ρ ∝ r−9/4 profile, it is also clearly necessary. Halos that
undergo major mergers develop isotropic velocity fields
[101], which produce the ρ ∝ r−1 inner profile charac-
teristic of hierarchical growth [97]. GABH also con-
firmed via idealized simulations that an uncompensated
peak must have much greater amplitude than surround-
ing structure to maintain its ρ ∝ r−9/4 profile.

IV. DISCUSSION AND IMPACT

We argued in §III that self-similarity and isolation are
both necessary conditions for the development of the
ρ ∝ r−9/4 profile. We now claim that these conditions
cannot both be satisfied in a Gaussian density field. Con-
sider first the case where fluctuations are enhanced over
a wide range of scales, as in our “step” modification.
This picture produces a nearly self-similar peak in the
spherical average, but it also generates an abundance of
structure at ever smaller scales. Isolation fails here as
structure grows hierarchically, resulting in ρ ∝ r−1 inner
profiles. We can instead preserve isolation by suppressing
small-scale power by creating a spike (or cutoff) in the
power spectrum, but this feature imposes a scale length,
breaking self-similarity, and ρ ∝ r−3/2 profiles result. In
no Gaussian formation scenario can both self-similarity
and isolation be satisfied, and as a result, the ρ ∝ r−9/4
similarity solution is not physically realized if fluctua-

tions are Gaussian. We note, however, that an alterna-
tive seeding mechanism that generates uncompensated
peaks in a relatively smooth background can still yield
halos with ρ ∝ r−9/4 profiles, as demonstrated by the col-
lapse of the uniform ellipsoid described in §III and of the
radial Gaussian overdensity in GABH.

We now give an example of how this correction changes
observable UCMH properties. Some of the most stringent
bounds on the primordial power spectrum at small scales
come from the non-observation by Fermi -LAT of gamma-
ray sources matching the expected UCMH signal [53].
The gamma-ray luminosity L of a UCMH due to WIMP
annihilation is proportional to

L ∝
∫ R

0

ρ2(r)r2dr, (2)

where R is an outer boundary of the halo. Eq. (2) di-
verges for both ρ ∝ r−9/4 and ρ ∝ r−3/2, but in practice,
the cusp will flatten out near the center due to anni-
hilation. We use the estimate ρmax = mχ/[〈σv〉(t− ti)]
[102] for the maximum density at time t in a struc-
ture formed at ti owing to annihilation, where mχ is
the WIMP mass and 〈σv〉 its annihilation cross section.
Assuming mχ = 1 TeV and 〈σv〉 = 3× 10−26 cm3s-1, we
obtain ρmax and then evaluate Eq. (2) with the density
profile given in Ref. [53] for a ρ ∝ r−9/4 UCMH of scale
k = 7 kpc-1. We then compare6 this luminosity to that
obtained from the fitting form of Fig. 3, and we find that
our corrected form reduces the gamma-ray luminosity of
the halo by a factor of 200.

This calculation implies a substantial reduction in
UCMH visibility, which would, for instance, raise the up-
per bound on the number density of UCMHs from the ab-
sence of point-source observations (which scales as L−3/2)
by a factor of 3000. However, the loss of constraining
power may be counteracted by more sophisticated analy-
ses. In particular, there is no longer any reason to restrict
an analysis to halos forming at z >∼ 1000, and as shown
in Fig. 2, the universe becomes densely populated with
halos by z = 100 if density fluctuations are large enough
to induce collapse by z ' 1000. We will develop a for-
malism for calculating revised constraints in forthcoming
work [95].
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