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attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves not
only a resummation in gradients (Knudsen number) but also resummation in the inverse Reynolds
number. We also demonstrate that the DNMR result provides a better approximation to the exact
kinetic theory attractor than Mueller-Israel-Stewart theory. Finally, we introduce a new method for
obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds
number, carry out this expansion to third order, and compare these third-order results to the exact
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I. INTRODUCTION

Relativistic hydrodynamics is currently the main theoretical approach to describe the time evolution of the rapidly
expanding quark-gluon plasma (QGP) produced in ultrarelativistic heavy ion collisions [1]. However, despite its
success, understanding how hydrodynamics can provide a reasonable description of the rapidly expanding matter
formed in these collisions is not an easy task. Traditionally, hydrodynamics has been understood as a truncation
of a gradient expansion [2] and, thus, its domain of validity could only be justified when gradients were sufficiently
smooth when compared to the inverse microscopic scales of the problem. In fact, the gradient expansion itself was
previously understood as a universal macroscopic limit displayed by microscopic theories, reached at sufficiently late
times. However, it has been recently shown [3–6] that the gradient expansion has zero radius of convergence for flow
configurations that are relevant for the QGP (both at strong coupling and also in kinetic theory) and, in this sense,
one cannot construct and improve a hydrodynamic theory by systematically taking into account higher order terms in
this series. Therefore, the concept that relativistic hydrodynamics is only applicable when gradients of macroscopic
quantities are small, derived from the gradient expansion, seems to be no longer well justified (or even needed). In the
end, these findings have lead one to revisit the very definition of viscous hydrodynamics in order to assess its domain
of applicability in heavy ion collisions.

As a matter of fact, though the early success of fluid-dynamical models was initially interpreted as a signature of
rapid thermalization of the quark-gluon plasma [7], model calculations [8–25] have suggested that such interpretation
was premature given that systems far from equilibrium may already display hydrodynamic behavior via a process
known as hydrodynamization, a novel feature of rapidly expanding fluids such as the QGP. Naturally, the validity of
hydrodynamics is not without bounds: it will eventually fail when the values of viscosity become sufficiently large or
when it is applied at sufficiently early times. Nevertheless, even in such extreme cases, it is possible to devise effective
theories that are capable of describing the quark-gluon plasma, the most notable being anisotropic hydrodynamics
(aHydro) [26–44].

In general, hydrodynamization is now expected to occur at a time scale τhydro shorter than the corresponding time
scales for isotropization and thermalization, driven by a novel dynamical attractor solution which has been studied
in kinetic theory, hydrodynamics, and holography [18, 45–49]. Such attractor solutions show that hydrodynamics
displays a new degree of universality far-from-equilibrium regardless of the details of the initial state of the system. In
fact, in the context of Bjorken flow [50], one observes that after being initialized with several different initial conditions
the system’s evolution approximately converges onto a single curve that still describes out-of-equilibrium behavior
before the true equilibrium state and consequently, thermalization, is (asymptotically) reached.

In the context of kinetic theory and standard statistical mechanics, thermalization is understood as the development
of isotropic thermal one-particle distribution functions for the partons which comprise the QGP. In a high-energy
heavy-ion collision, the large longitudinal expansion rate causes the center of the QGP fireball to only slowly relax to
an approximately isotropic state with τiso & 3 − 4 fm/c [51]1; however, the time scale for hydrodynamization of the
fireball appears to be much shorter (for a review see [25]). The catch, however, is that in practice one finds that the
relevant quantity for judging whether one is close to attractor behavior is the dimensionless variable w ≡ τT [45] which,
in conformal fluids undergoing Bjorken expansion [50], is proportional to the inverse of the Knudsen number KN with
1/T being the microscopic time scale. For small gradients where w > 1, the system follows the dynamics consistent
with the dynamical attractor. However, in the large gradient regime where w � 1 the dynamics of the system is
dominated by non-hydrodynamic modes (i.e., modes in the linearized dynamics whose frequency remains nonzero
even for a spatially homogeneous system [53]) whose evolution depends on the precise initial condition assumed. If we
consider a fixed proper time after the collision, this implies that as we move closer to the edge of the QGP one will be
more sensitive to the truly non-equilibrium dynamics associated with non-hydrodynamic modes. As a consequence,
some non-universal aspects of the underlying theory, be they e.g. kinetic theory or holographically inspired, will
start to affect the spatiotemporal evolution of the QGP. In this case, one must make a choice as to which underlying
microscropic theory best reflects the relevant physics. Since, as one moves close to the QGP edge, the system is much
more dilute, a kinetic theory approach would seem to be preferred in this spatial region.

For this reason, in this paper we investigate the dynamical attractors of different approximations to the relativistic
Boltzmann equation. We determine the dynamical attractors associated with aHydro and Denicol-Niemi-Molnar-
Rischke (DNMR) effective theory [54] for 0+1d conformal kinetic theory in the relaxation time approximation [55].
We compare our results for the non-equilibrium attractor in these theories with the corresponding results obtained
from the exact solution of the 0+1d conformal Boltzmann equation and also second-order Mueller-Israel-Stewart (MIS)
theory [56–58]. In this paper, we show for the first time that the aHydro formalism has an attractor solution which,

1 We note also that studies of non-equilibrium QGP dynamics using either the 2PI formalism or holography indicate that, in the highest
temperatures probed during heavy-ion collisions, an equation of state may be established well before pressure isotropization occurs
[22, 24, 52].
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surprisingly, is in very good agreement with the attractor solution of corresponding microscopic theory. We further
demonstrate that, in the aHydro formalism, the equation of motion for the shear stress tensor involves a resummation
of an infinite number of terms in the inverse Reynolds number [54]. Such terms are not present in traditional
hydrodynamic theories and we consider that this novel feature is the main reason behind the optimal agreement
between the attractors of aHydro and those of the Boltzmann equation (in the relaxation time approximation).

This suggests that an optimized hydrodynamic treatment of kinetic theory involves not only a resummation in
gradients (Knudsen number) but also resummation in the inverse Reynolds number. Correspondingly, we also demon-
strate that the DNMR result provides a better approximation to the exact kinetic theory attractor than MIS theory.
Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion
in inverse Reynolds number, carry out this expansion to third order, and compare the third-order results to the exact
solution.

This paper is structured as follows. In the next section we define the kinetic theory model used and the corresponding
second order hydrodynamic theories we consider in this work. Anisotropic hydrodynamics is discussed in Section III.
We investigate the attractor behavior of the different models in Section IV, while numerical results can be found in
Section V. We finish with our conclusions and outlook in Section VI. Appendices A and B are included to further
investigate different approximations and prescriptions within anisotropic hydrodynamics.

II. KINETIC THEORY AND SECOND ORDER HYDRODYNAMICS

We assume that the system is 0+1d, i.e. transversally homogeneous and boost-invariant [50]. As a result all

variables will only depend on the longitudinal proper time, τ =
√
t2 − z2. The metric is taken to be “mostly minus”

with xµ = (t, x, y, z), where the line element is ds2 = gµνdx
µdxν = dt2−dx2−dy2−dz2 with gµν being metric tensor

in Minkowski space. The longitudinal spacetime rapidity is ς = tanh−1(z/t). We assume that the system is conformal
[59] with an equation of state corresponding to Ndof massless degrees of freedom which is Landau-matched [60] to
the general non-equilibrium energy density, i.e. ε0(T ) = ε. In this case, one has ε = ε0(T ) = 3P0(T ) and T = γε1/4,

where γ is proportional to N
−1/4
dof . Also, for a (Bjorken) longitudinally boost-invariant system the flow velocity is

uµ = (cosh ς, 0, 0, sinh ς).
We will use kinetic theory to obtain the aHydro and second-order viscous hydrodynamics dynamical attractors.

For this purpose we start from the Boltzmann equation in the relaxation time approximation (RTA) [55]

pµ∂µf = −pµu
µ

τeq
(f − feq) . (1)

where τeq = 5η/(sT ) [61, 62] is the relaxation time with η being the shear viscosity, T is the local effective temperature
obtained via Landau matching, and s is the entropy density. For this massless gas, the Boltzmann RTA equation
changes covariantly under conformal transformations [63, 64] and η/s is constant. We will assume classical Boltzmann
distributions throughout, i.e. the equilibrium distribution function is feq(x) = exp(−x).

In kinetic theory the covariantly conserved energy-momentum tensor is given by

Tµν = Ndof

∫
dP pµpν f, (2)

with
∫
dP being the appropriate Lorentz invariant measure [55]. The local energy density is obtained via ε = uµuνT

µν

whereas the shear stress tensor is

Πµν = ∆µν
αβT

αβ , (3)

where ∆µν
αβ =

(
∆µ
α∆ν

β + ∆µ
β∆ν

α

)
/2 − ∆µν∆αβ/3 is the tensor projector orthogonal to the flow constructed using

∆µν = gµν − uµuν .
Bjorken symmetry and conformal invariance may be used to show that the energy-momentum conservation laws,

obtained from the first moment of the Boltzmann equation, can be reduced to a single equation

τ
d log ε

dτ
= −4

3
+

Π

ε
(4)

involving the energy density and Π = Πς
ς . In second-order hydrodynamic theories, such as MIS [56–58] and DNMR

[54, 65], one uses the 14-moment approximation for the single particle distribution function to obtain the most simple
form of a differential equation for Π, which can be written in the following form

Π̇ =
4η

3ττπ
− βππ

Π

τ
− Π

τπ
, (5)
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where ˙ = d/dτ and for RTA βππ = 38/21 and τπ = τeq in the complete second order calculation (which is the case for
DNMR) [54, 61, 65–67], while in MIS βππ = 4/3 and τπ = 6τeq/5 [68]. By solving Eqs. (4) and (5) one can determine
the dynamical evolution of this viscous fluid described by second order hydrodynamics and investigate the emergence
of hydrodynamic attractor behavior, as done in [45].

III. ANISOTROPIC HYDRODYNAMICS

The formalism behind anisotropic hydrodynamics has been explored in a series of papers (see e.g. [26, 27, 31–
35, 37–39]) and we refer the reader to those references for details. Here we only present the main points needed in
this paper to make the discussion self-consistent.

In the 0+1d case aHydro requires only one anisotropy direction and parameter, n̂ and ξ. This leads to a distribution
function Ansatz of the form [69, 70]

f(τ,x,p) = feq

(
1

Λ(τ,x)

√
p2
T + [1 + ξ(τ,x)]p2

L

)
, (6)

where Λ can be interpreted as the local “transverse temperature”. For a conformal system, using this form, one finds
that the energy density, transverse pressure, and longitudinal pressure factorize, resulting in

ε = R(ξ)ε0(Λ) ,

PT = RT (ξ)P0(Λ) ,

PL = RL(ξ)P0(Λ) ,

with [27, 71]

R(ξ) =
1

2

[
1

1 + ξ
+

arctan
√
ξ√

ξ

]
, (7)

RT (ξ) =
3

2ξ

[
1 + (ξ2 − 1)R(ξ)

ξ + 1

]
, (8)

RL(ξ) =
3

ξ

[
(ξ + 1)R(ξ)− 1

ξ + 1

]
, (9)

which satisfy 3R = 2RT +RL (the isotropic pressure is P0 = ε/3). In all expressions above, L and T correspond to
the directions parallel and perpendicular to n̂, respectively. Conventionally, the anisotropy direction is taken to point
in the beam line direction in heavy-ion applications (n̂ = ẑ). Using Landau matching, one has ε = R(ξ)ε0(Λ) = ε0(T ),
which results in

T = R1/4(ξ)Λ. (10)

Now we need an equation of motion for ξ since Λ is already connected to the temperature via the equation above.
We also employ the following moment of the Boltzmann distribution [33]

Iµνλ = Ndof

∫
dP pµpνpλ f, (11)

which will be important for the aHydro approach. Using the Boltzmann equation in the RTA (1), the equation of
motion for this moment is

∂αI
αµν =

1

τeq
(uαI

αµν
eq − uαIαµν) . (12)

We note that Iµνλ is symmetric with respect to interchanges of µ, ν, and λ and traceless in any pair of indices
(massless particles/conformal invariance). In an isotropic system, one finds Ixxx = Iyyy = Izzz = I0 with

I0(Λ) =
4Ndof

π2
Λ5 . (13)
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Using the aHydro form one finds

Iuuu =
3 + 2ξ

(1 + ξ)3/2
I0(Λ) ,

Ixxx = Iyyy =
1√

1 + ξ
I0(Λ) ,

Izzz =
1

(1 + ξ)3/2
I0(Λ) , (14)

with, e.g. Iuuu ≡ uµuνuλIµνλ, etc.
Taking the zz projection of Eq. (12) minus one-third of the sum of its xx, yy, and zz projections gives our second

equation of motion

1

1 + ξ
ξ̇ − 2

τ
+
R5/4(ξ)

τeq
ξ
√

1 + ξ = 0 , (15)

which can be used to define the evolution of the anisotropy parameter.

A. Connection with shear stress tensor and the inverse Reynolds number

In order to proceed in a manner that will allow a more transparent comparison between the aHydro equations of
motion and those of standard viscous hydrodynamics, we will rewrite Eq. (15) in terms of the shear stress tensor
component Π. Using that Π = P0 − PL one obtains

Π(ξ) ≡ Π

ε
=

1

3

[
1− RL(ξ)

R(ξ)

]
. (16)

In the left panel of Fig. 1 we plot Π as a function of ξ determined via Eq. (16) and, in the right panel, we plot ξ as
a function of Π determined via numerical inversion of Eq. (16). We note, importantly, that in aHydro Π is bounded,
−2/3 < Π < 1/3. This is related to the positivity of the longitudinal and transverse pressures which naturally emerges
in this framework. Furthermore, Π is related to the inverse Reynolds number [54] via

R−1
π =

√
ΠµνΠµν

P0
= 3

√
3

2
|Π| . (17)

As a consequence, a series in Π can be roughly understood as an expansion in R−1
π .

We will also need the relation between the time derivatives of Π and ξ which can be obtained from Eq. (16)

Π̇

ε
= Π

′
ξ̇ + Π∂τ log ε , (18)

which upon using Eqs. (16) and (4) gives

ξ̇ =
1

Π
′

[
Π̇

ε
+

Π

ετ

(
4

3
− Π

ε

)]
, (19)

where Π
′ ≡ dΠ/dξ.

Plugging (19) into (15), one obtains

Π̇

ε
+

Π

ετ

(
4

3
− Π

ε

)
−
[

2(1 + ξ)

τ
− H(ξ)

τeq

]
Π
′
(ξ) = 0 , (20)

with

H(ξ) ≡ ξ(1 + ξ)3/2R5/4(ξ) , (21)

and the understanding that ξ = ξ(Π) with ξ(Π) being the inverse function of Π(ξ) (shown in the right panel of figure
1). Written in this form, we can see explicitly that the aHydro second-moment equation sums an infinite number of
terms in the expansion in the inverse Reynolds number (17). This follows because the quantity in square brackets
in Eq. (20) is a function that contains all orders in ξ and, hence, Π. As we will see subsequently, this is extremely
important because the exact attractor possesses a large Reynolds number in the limit τT → 0. In the next section
we will expand this equation in powers of the inverse Reynolds number through second order in order to compare it
to standard viscous hydrodynamics.
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FIG. 1. The left panel shows Π as a function of ξ determined via Eq. (16). The right panel shows ξ as a function of Π
determined via numerical inversion of Eq. (16).

1. Small ξ expansion

In order to make the final connection to standard viscous hydrodynamics, one can expand Eq. (20) in ξ around
ξ = 0.2 For this purpose we need the ξ expansions of the various functions that appear in this formalism to construct
an explicit inversion and rewrite the equations solely in terms of Π. At second-order in ξ, one finds

Π =
8

45
ξ

[
1− 13

21
ξ +O(ξ2)

]
,

Π
′

=
8

45

[
1− 26

21
ξ +

131

105
ξ2 +O(ξ3)

]
,

(1 + ξ)Π
′

=
8

45

[
1− 5

21
ξ +

1

105
ξ2 +O(ξ3)

]
,

H = ξ +
2

3
ξ2 +O(ξ3) . (22)

Inverting the relationship between Π and ξ to second-order in Π gives

ξ =
45

8
Π

[
1 +

195

56
Π +O(Π2)

]
, (23)

which results in

Π
′

=
8

45
− 26

21
Π +

1061

392
Π

2
+O(Π

3
) ,

(1 + ξ)Π
′

=
8

45
− 5

21
Π− 38

49
Π

2
+O(Π

3
) ,

H =
45

8
Π

[
1 +

405

56
Π +O(Π

3
)

]
,

HΠ
′

= Π +
15

56
Π

2
+O(Π

3
) . (24)

Applying this to the equation of motion (20) and keeping only terms through Π2 gives

Π̇− 4η

3τπτ
+

38

21

Π

τ
− 36τπ

245η

Π2

τ
= − Π

τπ
− 15

56

Π2

τπε
(25)

2 The Taylor series around ξ = 0 has a finite radius of convergence and converges for |ξ| < 1 due to the cut in the H function at ξ = −1.
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where, on the left hand side, we have used the fact that one can eliminate the energy density by expressing it in terms
of the transport coefficients

ε =
15

4

η

τeq
, (26)

and relabeled τeq → τπ in order cast the equations in “standard” second order hydrodynamics form. Note that,
to linear order in Π, Eq. (25) agrees with previously obtained RTA second-order viscous hydrodynamics results
[54, 61, 65–67]. However, at order Π2, the value of λ1 implied is λ1 = ητπ/7 which is different by a factor of five
compared with prior reported values [72, 73] which obtained instead λ1 = 5ητπ/7.3 In addition, compared to the
standard second-order hydro result, at second order in the ξ expansion we find the appearance of an additional term
in the form of the last term on the left-hand side of (25). Such term goes beyond the standard truncation order used
in the derivation of the DNMR equations [54] since it is formally of O(KNR

−2
π ).

IV. ATTRACTOR DYNAMICS IN DIFFERENT MODELS

In this section we investigate the hydrodynamic attractor behavior of aHydro and compare it with the corresponding
results in MIS and DNMR theories. In all of these three cases, the system’s dynamics is determined by solving the
differential equations for ε and Π. To make contact with previous studies, however, we follow [45] and introduce the
dimensionless “time” variable

w ≡ τT (τ) . (27)

with which one may define the amplitude

ϕ(w) ≡ τ ẇ
w

= 1 +
τ

4
∂τ log ε , (28)

which is related to Π as follows

Π

ε
= 4

(
ϕ− 2

3

)
. (29)

From this we see that a solution for the proper-time evolution of the energy density uniquely specifies the w-dependence
of the amplitude ϕ, as it should be. Also, we note that the positive energy condition [74] imposes that ϕ is bounded
in the region 0 ≤ ϕ ≤ 1. We also note that the equation above implies that there is a relationship between the inverse
Reynolds number (17) and ϕ, i.e. ϕ = 2/3 + Π/4.

The change of variables from {ε,Π} → {w,ϕ} is convenient because it allows one to express the coupled set of
first-order ODEs for {ε,Π} in terms of a single first-order ODE for ϕ(w) [45]. In the case of MIS and DNMR, this
procedure gives

cπwϕϕ
′ + 4cπϕ

2 +

[
w +

(
βππ −

20

3

)
cπ

]
ϕ− 4cη

9
− 2cπ

3
(βππ − 4)− 2w

3
= 0 (30)

where ϕ′ = dϕ(w)/dw, cπ ≡ τπT , and cη = η/s (with cπ = 5cη in the cases considered here). After defining the
rescaled variable w = w/cπ one can see that the equation above becomes

wϕϕ′ + 4ϕ2 +

[
w +

(
βππ −

20

3

)]
ϕ−

4cη/π

9
− 2

3
(βππ − 4)− 2w

3
= 0 , (31)

which makes it clear that the solution only depends on the ratio cη/π ≡ cη/cπ = (η/s)/(τπT ) and the value chosen
for βππ. To connect these equations with the RTA Boltzmann one must set cη/π = 1/5. Also, we note in passing
that cη/π is the relevant quantity needed in a linearized analysis of the causality and stability properties of MIS-like
equations [75, 76]. Using the MIS value βππ = 4/3 one obtains

wϕϕ′ + 4ϕ2 +

(
w − 16

3

)
ϕ−

4cη/π

9
+

16

9
− 2w

3
= 0, (32)

3 The coefficient λ1 emerges in the literature because the Π2 term appearing on the RHS is traditionally written in the form λ1Π2/(2τπη2).
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which agrees precisely with Eq. (9) of Ref. [45]; however, for RTA this value for βππ is incorrect. Using the correct
value for βππ = 38/21 one obtains the DNMR RTA equation (again neglecting quadratic terms in Π)

wϕϕ′ + 4ϕ2 +

(
w − 34

7

)
ϕ−

4cη/π

9
+

92

63
− 2w

3
= 0 . (33)

Also, we note that, as demonstrated in Eq. (25), aHydro naturally reproduces this equation when truncated at leading
order in ξ (linear order in the inverse Reynolds number).

Following [45], attractor behavior can be inferred from Eq. (30) using a procedure equivalent of the “slow-roll”
expansion in cosmology [77], which in this context may be described as follows. First, one formally introduces a small
parameter δ as a prefactor in the term wϕϕ′ in (31) and assume that the solution of the differential equation ϕ(w; δ)
can be written as power series expansion ϕ(w; δ) = ϕ0(w) + ϕ1(w) δ + O(δ2). After taking into account all orders,
one may take the limit δ → 1. The 0th order truncation is obtained by solving the simple quadratic equation

4ϕ2
0 +

[
w +

(
βππ −

20

3

)]
ϕ0 −

4cη/π

9
− 2

3
(βππ − 4)− 2w

3
= 0 (34)

and, out of the two possible solutions, the one that is stable and remains finite in the large “time” (large w) limit is

ϕ0(w) =
1

24

(
−3βππ +

√
64cη/π + (3βππ + 3w − 4)2 − 3w + 20

)
, (35)

and another which is unstable [45]. Though one may easily compute the higher order corrections, in practice one finds
that the 0th-order solution already represents a good approximation to the exact solution of the differential equation
for w > 4 and cη/π = 1/5. In practice, in the results section we will solve the attractor differential equation (31). In
this context, the slow-roll approximation allows us to compare to prior results in the literature and to also identify
analytically the boundary condition which should be used when solving Eq. (30).

Herein, we define the attractor solution using the boundary condition limw→0 wϕϕ
′ = 0 [45], which then implies

that

lim
w→0

ϕ(w) =
1

24

(
−3βππ +

√
64cη/π + (3βππ − 4)2 + 20

)
. (36)

This gives a smooth curve that necessarily agrees with the 0th order solution at w = 0 and also at late times. In the
next section we generalize the analysis performed here to determine the attractor dynamics of aHydro.

A. aHydro attractor

In this section we present our final dynamical equation for aHydro after recasting the two first-order differential
equations as a single second-order differential equation written in terms of ϕ and w. In order to obtain the aHydro
dynamical equation, we must combine the following identity

wϕϕ′ = −8

3
+

20

3
ϕ− 4ϕ2 +

τ

4

Π̇

ε
(37)

and (20). To do this we should first express Eq. (20) in terms of ϕ and w. Using that τ∂τ log ε = 4(ϕ−1) = −4/3+Π/ε,
one finds from Eq. (20)

τ

4

Π̇

ε
=

8

3
− 20

3
ϕ+ 4ϕ2 +

[
1

2
(1 + ξ)− w

4cπ
H
]

Π
′
. (38)

Plugging this into Eq. (37) gives our final result for the aHydro attractor equation

wϕ
∂ϕ

∂w
=

[
1

2
(1 + ξ)− w

4
H
]

Π
′
. (39)

Note that above ξ = ξ(Π) = ξ(4ϕ − 8/3) and likewise for Π
′
. We remark that the aHydro equation derived above

does not depend explicitly on cη/π - the aHydro attractor solution is universal if plotted as a function of w. Since
we work in relaxation-time approximation, this is true for the other second order hydrodynamic approximations (i.e.,
cη/π must be set to be 1/5 for RTA dynamics) presented above as well.
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The aHydro equation (39) the gradient expansion series solution in powers of 1/w has zero radius of convergence
[78]. Thus, the solution of the differential equation (39) may also be considered to be a resummation of the gradient
series, as in MIS theory [45]. However, we emphasize that the right-hand-side of Eq. (39) also includes a sum of an
infinite number terms in the inverse Reynolds number, which is conceptually different than DNMR which derived
their equations of motion assuming a perturbative series in R−1

π .
In the case of aHydro, even the 0th order approximation in the slow-roll expansion must be solved numerically so we

skip directly to the solution of the differential equation. Again, for this purpose, the attractor solution is obtained by
imposing the same boundary condition as before at w = 0. Using the numerical solution of the approximate equation,
one finds

lim
w→0

ϕ(w) =
3

4
. (40)

With this we simply numerically solve Eq. (39). Note that the limit above guarantees the positivity of the longitudinal
pressure of the attractor solution at all points in the plasma as w → 0.

B. Exact RTA attractor solution

In addition to comparing the attractors emerging from different hydrodynamic theories, we will also determine the
attractor which emerges from exact solution of the RTA Boltzmann equation. For this case, one can write down an
integral equation which can be numerically solved to arbitrary accuracy [79, 80]

Ē(τ) = D(τ, τ0)
R
(
ξFS(τ)

)
R (ξ0)

+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) Ē(τ ′)R

(( τ
τ ′

)2

− 1

)
, (41)

where τeq = cπ/Teff , Ē = E/E0 is the energy density scaled by the initial energy density, R is defined in Eq. (7), ξ0 is
the initial momentum-space anisotropy, ξFS(τ) = (1 + ξ0)(τ/τ0)2 − 1, and

D(τ2, τ1) = exp

[
−
∫ τ2

τ1

dτ ′′ τ−1
eq (τ ′′)

]
, (42)

is the damping function. A procedure for obtaining the attractor from this integral equation is explained in Ref. [46].4

However, in practice it amounts to using an infinitely oblate anisotropic initial condition ξ0 → ∞ in the solution to
this integral equation and taking the initial proper time arbitrarily small. A C-code for solving this integral equation
can be downloaded using the URL specified in Ref. [81].

V. RESULTS AND DISCUSSION

In Fig. 2 we compare the attractors for ϕ(w) determined using the solution of the differential equation in each
case in the left panel, i.e. Eqs. (32), (33), and (39), subject to their corresponding boundary conditions at w = 0
mentioned in the last section. In the right panel we show the corresponding longitudinal to transverse pressure ratio
which can be computed using

PL
PT

=
3− 4ϕ

2ϕ− 1
. (43)

Using the criteria that PL/PT > 0.9, we observe that approximate isotropization only occurs for w > 15. Also, we
note that, depending on the differential equation used to determine the attractor solution, ϕ might exceed 3/4, which
will cause this ratio to go negative due to a negative longitudinal pressure. As can be seen from the right panel, both
the MIS and DNMR attractors “pull” the system towards negative longitudinal pressures since ϕ > 3/4 at early times
corresponding to small w. This behavior does not occur in aHydro since, in this case, 1/2 < ϕ < 3/4.

4 The value for cπ used in Ref. [46] was cπ = 0.4, corresponding to an assumed shear viscosity to entropy density ratio of η/s = 0.08. In
our case, we solved the integral equation for a variety of different values of η/s and found that when plotted versus w = w/cπ all results
collapsed onto one universal curve as they must in RTA.
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FIG. 2. (Color online) The left panel shows the solution for ϕ and the right panel shows the solution for the corresponding
pressure ratio PL/PT .
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FIG. 3. (Color online) aHydro, MIS, and DNMR attractors compared to the attractor obtained from exact solution to the RTA
Boltzmann equation. Note that the MIS attractor, which has slowest approach to the exact solution, eventually converges to
the exact attractor from above, but at larger w than shown.

Next we turn to Fig. 3 where we compare the aHydro, MIS, and DNMR attractors to the corresponding quantity
obtained from the exact solution to the 0+1d RTA Boltzmann equation (41). Additionally, in Fig. 3 we include a
curve showing the Navier-Stokes (NS) result [45]

ϕNS =
2

3
+

4

9

cη/π

w
. (44)

which can be obtained by taking the w → ∞ limit of (35) and truncating at the first non-trivial order. As Fig. 3
demonstrates, the aHydro attractor solution is virtually indistinguishable from the exact RTA attractor. In fact, it
is unclear to us whether the remaining differences, being maximum of 0.04% in the range shown, might be purely
numerical in origin. Since aHydro involves not only a resummation in Knudsen number but also in the inverse
Reynolds number, the excellent agreement found between the aHydro solution and the exact kinetic theory result
suggests that the inverse Reynolds number resummation may also be a property of the latter. This may serve as
a guide to derive other new approaches to far-from-equilibrium hydrodynamics that do not rely on a perturbative
treatment of both the Knudsen and the inverse Reynolds number series, which may be particularly useful in the search
for a novel (causal and stable) hydrodynamic theory that incorporates the quasinormal oscillatory behavior found at
strong coupling using holography [62, 82, 83].
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FIG. 4. (Color online) aHydro attractor (solid black line) and numerical solutions (grey dashed lines) corresponding to a variety
of initial conditions for Π. The left panel shows the solution for ϕ and the right panel shows the solution for the corresponding
pressure ratio PL/PT .
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FIG. 5. (Color online) DNMR attractor (solid black line) and numerical solutions (grey dashed lines) corresponding to a variety
of initial conditions for Π. The left panel shows the solution for ϕ and the right panel shows the solution for the corresponding
pressure ratio PL/PT .

Turning to the second order approaches, we see that the DNMR attractor is in significantly better agreement with
the exact RTA attractor solution than MIS, as one might expect since the MIS equations have the incorrect value of
βππ within RTA. In this plot, the NS solution is included to emphasize that this approximation, although previously
thought of as the late-time attractor, does not coincide with the attractor solution until one reaches quite large values
of w (i.e., sufficiently close to local equilibrium).

Finally, we turn to Figs. 4 and 5. In these figures we compare the numerical solution of the aHydro and DNMR
dynamical equations along with their respective attractors and the NS solution. For the numerical solutions (grey
dashed), we fixed an initial energy density ε0 at proper time τ0 and then varied the initial condition for Π0 over a
given range. For the case of aHydro, we varied Π0 in the range −2/3 ≤ Π0 ≤ 1/3 which is the full range of variation
allowed in aHydro corresponding to −1 < ξ0 < ∞. This maps to initial conditions which have inverse Reynolds
numbers in the range 0 < R−1

π . 2.45 and covers an infinitely prolate to infinitely oblate initial momentum-space
anisotropy. For the case of the DNMR equations, there is, in principle, no bound on Π0 since, in this framework, one
can have negative longitudinal or transverse pressures. For the purposes of Fig. 5 we took −2/3 ≤ Π0 ≤ 1/2.

For both aHydro and DNMR, the numerical solutions shown in Figs. 4 and 5 converge to the attractor solution
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after approximately wattractor ∼ 2. In the context of heavy ion phenomenology, for LHC initial conditions with a
central temperature of T0 ∼ 500 MeV at τ0 = 0.25 fm/c and η/s ∼ 0.2, this translates into τattractor ∼ 1.3 fm/c in
the center of the fireball. Prior to this time, the system is subject to the evolution of non-hydrodynamic modes and
the precise evolution of these modes depends on the microscopic theory under consideration. Comparing to the NS
solution, one reaches the remarkable conclusion that the NS solution is a good approximation quickly after that. For
aHydro and the exact RTA solution, NS starts to be an accurate approximation at wNS ∼ 3 and, for DNMR already
at wNS ∼ 2. In these examples, we are led to conclude that wattractor . wNS. For the example at hand one would
find τNS ∼ 2.3 fm/c, which is quite soon after the attractor-driven dynamics kicks in. However, as we approach the
transverse edge of the fireball, the corresponding time scales grow, as does their absolute separation, e.g. in a region
with T0 ∼ 250 MeV we find τattractor ∼ 3.4 fm/c and τNS ∼ 6 fm/c assuming, again, that η/s = 0.2 and is constant.
If η/s increases at low temperatures these time scales would increase proportionally. Applying this as a rough guide
for full 3+1d simulations, one would conclude that low-temperature regions of the plasma (e.g. the edges) would still
be particularly sensitive to non-hydrodynamic modes.

VI. CONCLUSIONS AND OUTLOOK

In this paper we obtained the dynamical attractors associated with the aHydro and DNMR versions of viscous
hydrodynamics. Along the way we demonstrated that the aHydro dynamical equations resum an infinite number of
terms in the inverse Reynolds number, which does not occur in other approaches. As a direct consequence of this all-
order resummation, we found that (a) the resulting aHydro attractor was naturally restricted to 1/2 < ϕ < 3/4 which
guarantees the positivity of both the longitudinal and transverse pressures and (b) the resulting aHydro attractor was
virtually indistinguishable from the attractor emerging from exact solution of the RTA Boltzmann equation. On the
DNMR front, we demonstrated that it provides a significant improvement over the MIS attractor when compared to
the exact RTA solution due to the systematic inclusion of all second-order contributions (taken into account in the
coefficient βππ). We also showed that, when truncated at leading order in the inverse Reynolds number, the aHydro
dynamical equations identically reduce to the DNMR equations.

As part of the results presented we compared the numerical solution of the aHydro and DNMR equations with their
respective attractor solutions and found that, similar to other frameworks, the numerical solutions for a variety of
different initial conditions approach the attractor solution within a time τattractor. In LHC heavy-ion collisions, one
expects initial temperatures T0 . 500 MeV at τ0 = 0.25 fm/c and η/s ∼ 0.2, which translates into τattractor & 1.3
fm/c with the lower bound holding in the hot center of the fireball on average. Prior to τ ∼ τattractor, each local region
of the system is subject to the evolution of non-hydrodynamic modes [25, 82–84] whose precise evolution depends on
the microscopic theory being considered and whose “lifetime” increases as one approaches the low-temperature edge
of the plasma. As such, the dynamics of the system prior to τattractor is non-universal. In fact, at early times, the
whole set of non-hydrodynamic modes should contribute to the evolution of the system. In this case, in the context
of kinetic theory, the dynamics cannot be solely described by the lowest moments of the distribution function and the
coupling to higher order moments (which do not possess hydrodynamic interpretation) becomes relevant.

Faced with such a situation it becomes critically important to identify the appropriate microscopic theory to
describe the dynamics of the system. In the center of the fireball, where the energy densities are the largest at
early times, one would expect approaches that interpolate between perturbative QCD and holography to be the most
appropriate. However, as one approaches the dilute edges a formulation in terms of hadronic kinetic theory would seem
to be the most appropriate. Since some of these regions could, in principle, be described in terms of the Boltzmann or
Boltzmann-Vlasov equations and the same theories match smoothly onto the late-time hydrodynamical attractor, this
motivates the ongoing study of hydrodynamic theories that can be obtained from relativistic kinetic theory. Further
progress may be obtained once more realistic nonlinear collision kernels are included to investigate the properties of
the kinetic theory attractor, such as in [20] and [85, 86], where the microscopic dynamics is much more complex than
the single relaxation timescale used in the relaxation time approximation of the Boltzmann equation. It is important
to remind the reader that several results obtained in this paper relied on the relaxation time approximation of the
collision kernel in the Boltzmann equation. So far, this approximation has been widely employed in all calculations
of the hydrodynamic attractor in kinetic theory. However, it is still unclear how reliable this assumption is when
describing the physics of hydrodynamic attractors. For this reason, it is important to check in future calculations how
or if these results change qualitatively when they are realized with a more realistic collision term. In this context,
going beyond the RTA approximation will be crucial to investigate the possible connections between the late time
attractor behavior found here for the shear stress tensor in hydrodynamic theories and the universal out-of-equilibrium
behavior found at the level of the distribution function in [87–89].
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FIG. 6. (Color online) Third-order aHydro attractor (green dot-dashed) compared to the other solutions obtained and presented
in the main body of the paper. The left panel shows the solution for ϕ and the right panel shows the solution for the
corresponding pressure ratio PL/PT .
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Appendix A: An alternative expansion based on the aHydro second-moment method

In this appendix we consider what happens if we expand Eq. (39) to higher order in Π (inverse Reynolds number).

Through order Π
3
, in RTA, one obtains:

wϕ
∂ϕ

∂w
+

20352cη/π

3773
− 81w

49
+

(
603w

98
−

39070cη/π

3773

)
ϕ

−
(

44960cη/π

3773
+

1725w

196

)
ϕ2 +

(
81000cη

3773
+

1935w

392

)
ϕ3 , (A1)

with cη/π = 1/5. The boundary condition necessary is

lim
w→0

ϕ(w) =
1124

6075
+

7

12150

∑
σ=±1

3

√
−390484556 + 13365i

√
281726265σ ' 0.752251 . (A2)

In Fig. 6 we plot the solution to the differential equation (A1) subject to the above boundary condition. As can be
seen from this figure the third order expansion in Π provides a very good approximation of the aHydro attractor.
This expansion can naturally be systematically extended to higher orders.

Appendix B: aHydro attractor using the anisotropic matching principle

Recently, Tinti introduced an alternative method for obtaining the aHydro evolution equations which is based on
the so-called “anisotropic matching principle” [34]. In practice, in addition to the equations resulting from the first
moment of the Boltzmann equation, following [61] one computes the exact equation obeyed by the viscous tensor,
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FIG. 7. (Color online) aHydro second-moment based and Tinti’s “anisotropic matching principle” attractors compared to the
attractor obtained from exact solution to the RTA Boltzmann equation.

plugging in the anisotropic distribution form on the right hand side. The resulting equation for the pressure difference
for a 0+1d conformal system is [25]

∆̇ = − ∆

τeq
+ 2(1 + ξ)

∂∆

∂ξ
, (B1)

where

∆ ≡ PL − PT = R∆(ξ)ε0(λ) = −3

2
Π , (B2)

and R∆ ≡ [RL(ξ)−RT (ξ)] /3.
Using the last equality in Eq. (B2), we can write this as an equation for Π

Π̇

ε
= − Π

τeq
− 4

3

1 + ξ

τ

R′∆(ξ)

R(ξ)
. (B3)

Combining this with Eq. (37), one obtains

wϕ
∂ϕ

∂w
= −8

3
+

20

3
ϕ− 4ϕ2 + w

(
2

3
− ϕ

)
− 1 + ξ

3

R′∆(ξ)

R(ξ)
. (B4)

The solution of this differential equation subject to the boundary condition ϕ(0) = 3/4 is shown in Fig. 7. As
this figure shows, the moment method seems to reproduce the exact RTA attractor better than the Tinti matching
principle.
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