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In this paper we design a search for continuous gravitational waves from three supernova remnants:
Vela Jr., Cassiopeia A (Cas A) and G347.3. These systems might harbor rapidly rotating neutron
stars emitting quasi-periodic gravitational radiation detectable by the advanced LIGO detectors.
Our search is designed to use the volunteer computing project Einstein@Home for a few months
and assumes the sensitivity and duty cycles of the advanced LIGO detectors during their first science
run. For all three supernova remnants, the sky-positions of their central compact objects are well
known but the frequency and spin-down rates of the neutron stars are unknown which makes the
searches computationally limited. In a previous paper we have proposed a general framework for
deciding on what target we should spend computational resources and in what proportion, what
frequency and spin-down ranges we should search for every target, and with what search set-up. Here
we further expand this framework and apply it to design a search directed at detecting continuous
gravitational wave signals from the most promising three supernova remnants identified as such in
the previous work. Our optimization procedure yields broad frequency and spin-down searches for
all three objects, at an unprecedented level of sensitivity: The smallest detectable gravitational wave
strain h0 for Cas A is expected to be 2 times smaller than the most sensitive upper-limits published
to date, and our proposed search, which was set-up and ran on the volunteer computing project
Einstein@Home, covers a much larger frequency range.

I. INTRODUCTION

Continuous gravitational wave (CW) signals at fre-
quencies between ≈ 10 − 1000 Hz are expected to be
emitted by rapidly rotating compact objects with shapes
that are not perfectly axially symmetric. Because these
signals are extremely weak [1–3], one needs to combine
the data over very long periods of time (months) in order
to raise the signal significantly above the average noise
level. On the other hand the ability to resolve different
waveforms increases very quickly with the duration of
the observation time, and hence CW searches over broad
ranges of different waveforms are computationally very
expensive. We can broadly characterize CW searches as
targeted, all-sky and directed according to the computa-
tional cost requirements.

Targeted searches for CW signals from objects like the
Crab and Vela pulsars are very inexpensive. The reason
is that since their sky position and frequency evolution
are known from electromagnetic observations, one only
needs to search for a single waveform or a small number
of waveforms around it. About 200 known pulsars ro-
tate at frequencies such that the expected gravitational
wave (GW) signal falls into the high sensitivity band of
LIGO and Virgo. Searches for GW signals from these
objects have been systematically carried out throughout
all observing runs [3–6].

At the other end of the spectrum of possible searches
are the so-called all-sky searches where one has no prior
information on any specific source. Typically these

searches span broad ranges of signal frequencies, tens or
hundreds of Hz, source positions anywhere in the sky and
spindown parameter ranges varying by up to two orders
of magnitude [1, 2, 7, 8].

Somewhere in between these two extremes lie the di-
rected searches in which we look for signals from an in-
teresting sky region or sky point, e.g. Cas A [9] and gen-
erally young supernova remnants [10], the Orion Spur
[11], Globular cluster NGC 6544 [12], the low mass x-
ray binaries Scorpius X-1 and XTE J1751-305 [13], and
the Galactic center [14]. In these searches the computa-
tional cost can still be very high because many different
waveforms may have to be searched for, corresponding to
different signal phase evolutions.

Even for supernova remnants which are very well local-
ized (i.e. for which the localization uncertainty is smaller
than the sky resolution of the GW search), the breadth of
different waveforms that we would need to search over,
corresponding to different frequency and spindown pa-
rameters values, is large enough that a single coherent
search is computationally unfeasible. We resort then to
semi-coherent search schemes [15–21]. In these, the data
set is split intoN shorter segments of duration Tcoh. Each
of these segments is matched with signal templates coher-
ently and in the end the results from these segments are
combined incoherently. By reducing the coherent dura-
tion Tcoh, at fixed mismatch, the resolution of the wave-
form parameters becomes coarser and the computing cost
is reduced. But this comes at the cost of a reduced sen-
sitivity. In realistic scenarios, we do not have unlimited
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computational power available to us. At fixed comput-
ing power and for a given data set, there are trade-offs
to be made between the length of the coherent segment
duration, the resolution in the waveform template bank
(the mismatch) and the breadth of the parameter space
that we search. Furthermore, these trade-offs should also
fold in what we know about the targeted objects, how far
they are and how old they are, and the priors that we hold
on their deformation and rotation frequency. In compu-
tationally limited problems like the ones we are dealing
with here, these trade-offs are critical; making the wrong
choices could lead us to miss detectable signals and waste
significant computational resources.

In [22] we presented an optimization method which,
for a given computational budget, a choice of astrophys-
ical priors, and the measured computational efficiency of
the search software, tells us how to distribute comput-
ing resources for directed CW searches by maximizing
the detection probability. The search parameters (includ-
ing, but not limited to, Tcoh and N) which will be called
search set-ups, determine both the computational cost
and sensitivity of the search. The optimization method
determines the optimal search set-ups for the different
targets at different waveform frequencies. The basic idea
is to break the large parameter space of the allowed gravi-
tational signals into many small cells, and to estimate the
computing cost and the detection probability for each
cell. Note that the computing cost for each cell depends
on parameters related to the search pipeline and soft-
ware. In particular it depends on the aforementioned
coherent segment duration Tcoh, the spacing of the tem-
plate bank (these are part of the search “set-up”), and
also the computational efficiency of the software. We
use the detection probability and computational cost to
rank what cells and with what search set-up should be
searched so that the overall detection probability is max-
imized. This is done with a linear programming tech-
nique. The interplay between the different factors is not
trivial and the results are not easy to guess without using
the optimization method.

A semi-analytic optimization scheme [23] was previ-
ously used to design a directed search for continuous
signals from Cas A [9]. Such a scheme minimizes the
smallest detectable signal at fixed parameter space and
fixed computing cost. In comparison to that scheme, the
advantage of the optimization approach [22] that we use
here, is that not only does it provide the optimal search
set-up, but it also tells us where in parameter space we
should spend the computing budget and on what targets.
Furthermore the astrophysical priors are explicit, forcing
us to spell out what they are. In previous schemes, in-
cluding [23], the interplay between different priors is often
folded-in in a priori choices that are not transparent.

In this paper we present the first application of [22]
to set up a directed search by using the first observa-
tional run (O1) data of the Advanced LIGO detectors
[24]. Following [22], we investigate different astrophysical
targets and priors and consider a range of search set-ups

for different coherent segment durations, and optimize
over all these. We expand with respect to [22] because
i) whereas in [22] for each coherent segment duration we
considered a single grid spacing combination, here we
consider for each coherent segment duration many dif-
ferent combinations of grid spacings and optimize over
these, ii) for each grid spacing combination, we fold in
the measured mismatch distributions obtained from the
existing search codes for all the grid spacings and set-ups
considered, rather than the analytical estimate which can
have very large errors, iii) we revise the computational
cost model for our search software to account for recent
enhancements in computational efficiency in the search
software, iv) we evaluate the loss in detection efficiency
incurred if our estimate for the age of a target object
is wrong, and finally v) we introduce simplifications with
respect to the strictly optimal solution based on practical
considerations and estimate the impact on the detection
probability.

The plan of this paper is as follows: in Section II we
recall the basics of the signal that we want to detect,
and introduce quantities that will be referred to in the
rest of the paper. The search that we want to perform is
introduced in Section III, followed by Section IV where
we discuss the astrophysical priors on the signal popula-
tion. In Section V we carry out the optimization for the
three supernova remnants and finally, in Section VI, we
summarize and discuss the main results.

II. THE EXPECTED GRAVITATIONAL WAVE
SIGNAL

For any plane gravitational wave in standard general
relativity, we can choose a wave frame transverse to the
direction of propagation such that the two polarizations
have the form

h+(t) = A+ cos Φ(t)

h×(t) = A× sin Φ(t). (1)

The phase Φ(t) of the waves that we target with LIGO is
a rapidly varying function of time while the amplitudes
A+,× are generally slowly varying. In fact, consider a
rapidly rotating neutron star and let ι be the angle be-
tween the total angular momentum of the star and the
direction from the star to Earth. The amplitudes of the
signals of Eq. (1) are constant over time:

A+ =
1

2
h0(1 + cos2 ι)

A× = h0 cos ι. (2)

Here h0 is the intrinsic gravitational wave amplitude.
The signal at the detector, h(t), is a superposition of
the two polarizations

h(t) = F+(α, δ, ψ; t)h+(t) + F×(α, δ, ψ; t)h×(t), (3)

where F+(α, δ, ψ; t) and F×(α, δ, ψ; t) are the detector
beam pattern functions for the two polarizations. Here
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(α, δ) are the right-ascension and declination for the
source and ψ is the orientation of the wave-frame with
respect to the detector frame. Due to Earth’s rotation
around its axis and its orbit around the Sun, the rela-
tive orientation between the detector and the source is
changing continuously which makes F+,× time varying.

Φ(t) is the phase of the gravitational wave signal at
time t. If τSSB is the arrival time of the wave with phase
Φ(t) at the solar system barycenter, then the phase has
the form

Φ(τSSB) = Φ0 + 2π[f0(τSSB − τ0SSB)+

1

2
ḟ0(τSSB − τ0SSB)2 +

1

6
f̈0(τSSB − τ0SSB)3 + · · · ].

(4)

The transformation between detector time τDe and SSB
time τSSB is

τSSB(τDe) = τDe +
r(τDe) · n

c
+ ∆E� −∆S� , (5)

where r(τDe) is the position vector of the detector in the
SSB frame, n is the unit vector pointing to the source,
and c is the speed of light; ∆E� and ∆S� are respectively
the relativistic Einstein and Shapiro time delays.

III. THE SEARCH

Based on the results of [22], we concentrate on three
targets, Vela Jr., Cas A and G347.3, and illustrate the de-
sign of three directed searches for continuous GW signals
from these. These three targets are supernova remnants
and are believed to harbour a neutron star. The elec-
tromagnetic observations identify these as point sources.
The position of Vela Jr. comes from Chandra X-ray satel-
lite data [25]. The estimates of its age and distance are
uncertain [26]. Cassiopeia A (Cas A in short) is one of
the youngest known supernova remnants. The position of
Cas A comes from Chandra data [27], the distance from
[28] and the age from [29]. G347.3 is a target which is
not only close (1.3 kpc [30]) but also young (1600 years
old [31]). The position of G347.3 is also from Chandra
data [32].

We assume using the volunteer computing project Ein-
stein@Home [33], data with the average noise of the Ad-
vanced LIGO detectors during their first observational
run (designated as O1), and with the duration and aver-
age duty factor of the LIGO O1 data.

A. Search method

As mentioned earlier, we take a semi-coherent ap-
proach in which the data is divided into shorter segments
each spanning the same observation time Tcoh. Each of
these segments are analyzed coherently and afterwards
combined incoherently. The coherent analysis in each

segment uses the F statistic introduced in [34, 35]. The
final semi-coherent detection statistic is the average of
the F-statistic for each segment which shall be denoted

as 2̂F as implemented in the GCT (Global correlation
transform) method [20], used in the most recent Ein-
stein@Home papers [1, 2, 9].

B. Template banks and mismatch distributions

As mentioned earlier, each waveform is defined by the
parameters (h0, f, ḟ , f̈ , α, δ, ψ, ι,Φ0). However the coher-
ent search method analytically maximizes over the pa-
rameters (h0, ψ, ι,Φ0) and so we only need to explic-

itly search over (f, ḟ , f̈ , α, δ). Since we consider directed
searches the sky position is known and the different wave-
forms are determined by only (f, ḟ , f̈).

With the term “template bank” we indicate the collec-
tion of waveforms that we explicitly search for. These are
defined by values of the waveform parameters (f, ḟ , f̈).
The spacings in these parameters in principle has to be
fine enough that a real signal, with waveform parame-
ters lying between adjacent points in the template bank
would still be detectable.

Two grids are set-up: a coarse grid, used for the co-
herent searches, and a fine grid, used for the incoher-
ent searches. The frequency spacing δf is the same for
both the coherent and incoherent searches whereas the
frequency derivative spacings are refined by a factor of
γ(1) and γ(2) going from the coherent to the incoherent

grids: δḟf = δḟc
γ(1) and δf̈f = δf̈c

γ(2) . The total number of

waveforms that are searched is Nfine = γ(1)γ(2)Ncoh with
Ncoh = NfcNḟcNf̈c , where Nfc , Nḟc and Nf̈c are the

number of coarse grid points in f , ḟ and f̈ respectively.
The grid spacings δfc, δḟc, δf̈c are parametrized by the

parameters mf , mḟ , mf̈ as follows [36]:

δfc =

√
12mf

πTcoh
, (6)

δḟc =

√
180mḟ

πTcoh
2 , (7)

δf̈c =

√
25200mf̈

πTcoh
3 . (8)

Every template bank for a given search set-up (Tcoh

and N) is characterized by its mismatch distribution.
The mismatch µ is the quantity that measures how much
signal-to-noise may be lost due to the mismatch between
a signal parameters and the discrete template bank. The
finer the template bank is, in general the smaller the mis-
match. The mismatch distribution can be measured by
simulating signals (no noise) and measuring the signal-
to-noise ratio ρ2

no-mismatch associated with a search per-
formed with a perfectly matched template (i.e. a tem-
plate with parameters identical to the signal parameters)
and the signal-to-noise ratio ρ2

mismatch associated with the
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FIG. 1: This histogram shows the mismatch distribution
for the grid spacing: mf = 0.15, mḟ = 0.3, mf̈ = 0.003,

γ(1) = 8, γ(2) = 20 and Tcoh=15 days for Vela Jr and it
is the set-up that was eventually chosen for the search.

The average measured mismatch is 〈µ〉 = 15.8%.

maximum of the detection statistic from a search per-
formed with the template grid that we want to charac-
terize:

µ :=
ρ2

no-mismatch − ρ2
mismatch

ρ2
no-mismatch

. (9)

The signal-to-noise ratio ρ2 for a semi-coherent F-
statistic search with N segments is connected to the ex-
pectation value of F̂ as follows: E[2F̂ ] = ρ2 + E[n],
where E[n] is the expected value of noise alone.

We derive the mismatch distribution for a given
search set-up Tcoh, N and a template bank defined
by mf ,mḟ ,mf̈ , γ

(1) and γ(2) by injection-and-recovery

Monte Carlos following Eq. (9). In particular, 500 ar-
tificial signals are produced with gaps simulating the
realistic output from the LIGO O1 detectors. These
data streams are jointly searched with our standard
semi-coherent search1. Because these injection-and-
recovery Monte Carlos are performed on the noise-free
data streams, the computed values of the search code cor-
respond to the expectation values of the statistic, E[F̂ ],
and therefore we obtain the mismatches directly from
Eq. (9). The range of the parameters of the 500 signals
is given in Table I. We have considered over 2000 dif-
ferent spacings. The ranges for these spacings are listed
in Table II. For illustration purposes, Fig. 1 shows the
mismatch distribution for Tcoh = 15 days, mf = 0.15,

mḟ = 0.3, mf̈ = 0.003, γ(1) = 8 and γ(2) = 20. The

1 The artificial data is created with lalapps Makefakedata v4.
The search is performed using lalapps HierarchSearchGCT

(GCT). Both programs are part of the LIGO Algorithm Library
(LALSuite) [37].

average measured mismatch is 〈µ〉 = 15.8% and this is a
typical value for a deep broad parameter space CW sur-
vey (cfr. for instance with the average mismatch of the
last stage follow-up in [1] which lies at ∼ 0.13).

C. Search software timing

In computationally limited problems, one needs a
rational process for allocating computational resources
amongst different competing proposals. For example,
should we allocate equal resources for each of Vela Jr.,
Cas A and G347.3? If not, then what is the optimal
distribution of computing power?

An important ingredient in the optimization is an accu-
rate estimation of the run-time of the search pipeline for
a given search set-up over a given parameter space. CW
searches are the most computationally expensive gravita-
tional wave searches and a great effort has been employed
to optimize them. As a result, a well developed timing
model has been developed for our main search pipeline.
Furthermore, the use of Einstein@Home demands that
we are able to predict the run-time of the work-units as-
signed to each of the host machines, which adds a further
incentive to characterize the software accurately.

The time τtotal that it takes to perform a search in a
parameter-space volume covered byNcoh coarse grid tem-
plates and Nfine fine grid templates, using data from Ndet

detectors, divided among N segments can be written as:

τtotal =NNdetNcohτRS +NNincτsumF

+NincτBayes +NcanτRecalc.
(10)

The timing coefficients τRS, τsumF , τBayes and τRecalc

are determined based on computing time measurements
executed with various search set-ups on Intel Xeon
E3-1231 v3 CPUs 2.

The first term in Eq. (10) is the cost of the coher-
ent step. When searching over several thousand signal
frequency bins corresponding to the same sky position
and spindown values, the best algorithmic implementa-
tion of the F-statistic is obtained by carrying out the fre-
quency demodulation of the signal by resampling a down-
sampled time-series according to τSSB and then perform-
ing an FFT [34, 38]. Our most recent enhancement of the
search codes uses this resampling + FFT method. τRS is
the time that it takes to calculate a value of the coherent
detection statistic, corresponding to a single template,
using data from a single detector and from a single seg-
ment. It can be written as [39] :

τRS = τFbin +
NFFT

samp

NFbin
(τFFT +Rτspin), (11)

2 http://ark.intel.com/de/products/80910/Intel-Xeon-Processor-
E3-1231-v3-8M-Cache-3 40-GH
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TABLE I: Injection parameters used in mismatch
investigation

Parameter Range

Frequency [Hz] 151 Hz ≤ f ≤ 152 Hz

First spin-down [Hz/s] −10−7 Hz/s ≤ ḟ ≤ −10−12 Hz/s

Second spin-down [Hz/s2] 10−22 Hz/s2 ≤ f̈ ≤ 7× 10−17 Hz/s2

Notes: Parameters of the fake signals used to derive the mis-
match distributions. f is uniformly randomly distributed; ḟ and
f̈ are log-uniformly randomly distributed.

TABLE II: Template bank
parameters

Parameter Range

Tcoh [days] 10, 15, 20, 30, 60

mf 0.1 ≤ mf ≤ 1.0

mḟ 0.1 ≤ mḟ ≤ 1.0

mf̈ 0.001 ≤ mf̈ ≤ 1.5

γ(1) 1 ≤ γ(1) ≤ 50

γ(2) 5 ≤ γ(2) ≤ 100

Notes: The total observation
duration Tobs is 120 days. It is
divided into N ≈ Tobs/Tcoh co-
herent segments, the “≈” due to
there being gaps in the science-
quality data.

where τFbin is the time spent on operations on each out-
put frequency bin, τFFT is the time spent on the FFT
per sample NFFT

samp of the resampled and zero-padded time
series, and τspin is the time spent per sample of the
SSB-frame resampled time series without zero-padding,
with length RNFFT

samp where R ≤ 1. Zero-padding is
used in order to obtain the desired frequency resolution
of the resulting F-statistic. The timing coefficients of
Eq. (11) are: τFbin = 6.0× 10−8 s, τFFT = 3.3× 10−8 s,
τspin = 7.5× 10−8 s.

The second term in Eq. (10) is the cost of the incoher-
ent step: For every fine grid point we sum N detection
statistic values. For 2 ≤ N ≤ 12 the timing coefficient
τsumF is

τsumF = 7.28× 10−9 − 3.72× 10−10N (s) . (12)

Since the efficiency of adding up detection statistic values
increases with the number of segments, there is a nega-
tive term in Eq. (12) proportional to number of segments
N . Note that Eq. (12) has been measured by timing the
search on set-ups where N varies between 2 and 12, which
is the range of interest for our data set, hence, it may not
hold for N values outside of this range. Eq. (12) has been
obtained from the linear fitting of 23 timing trials with a
norm of residuals 2.4× 10−9.

As done in [1, 2] the main detection statistic is aug-
mented with variants that are robust to detector arte-

facts, namely the line-robust B̂S/GL and the transient-

robust B̂S/GLtL, as well as a detection statistic which

is sensitive to some types of transient signals, B̂tS/GLtL

[40–42]. The third term in Eq. (10) is the time to com-
pute these specialized statistics given the single detector
and multi detector coherent detection statistic values (see
Eq. (13) of [42]). This is the reason why τBayes is indepen-
dent of the number of segments. τBayes = 4.4×10−8 s is
also obtained from the 23 timing trials. For set-ups with
just a few segments, the cost of computing these various
statistics can be larger than the cost of the incoherent
step.

The last term in Eq. (10) is the computing cost for the
recalculation all these detection statistics at the exact
fine grid point in all the coherent segments. This is done
only for the Ncan candidates that are in the top list3.
In the last few Einstein@Home searches the number of
candidates in the top-list is Ncan = O(1000) and this
recalculation cost is negligible with respect to the costs
of the other three terms.

The computing time, and consequently the values of
the timing coefficients, in general depend on the CPU on
which the search is performed. Since the volunteer com-
puting project Einstein@Home comprises a broad range
of different CPUs, as we optimize this search for running
on Einstein@Home for a predetermined length of time,
we need to determine how much computing power that
corresponds to. A timing analysis based on duration of
the work units (WUs) of the O1 all-sky low frequency
Einstein@Home search [8], yields the results shown in
Fig. 2: run times are bi-modally distributed, with a mode
centered at 8-10 hours, the other at 24-26 hours. Based
on this we divide the host population of Einstein@Home
into two types: hosts that showed a runtime of less than
14 hours were put in one category (A) and hosts that
needed more time than that were placed in the other
category (B). The CPU models in host class (A) have an
average 8-hours runtime which is equivalent to the fast
nodes on the ATLAS computational cluster at the Al-
bert Einstein Institute in Hannover [43]. Therefore the

3 The top list is the list of top candidates that is returned by the
Einstein@Home volunteer computer to the main Einstein@Home
server. Typically multiple top lists will be returned, each ranked
according to a different detection statistic.
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FIG. 2: Distribution of the run-times of the
Einstein@Home O1 low frequency all-sky search work

units. The data in this figure is taken from a sample of
3076 hosts out of total 28764 hosts of Einstein@Home.

timings from fast nodes on ATLAS can be ideally used
for these Einstein@Home (A)-cores. Based on the O1 low
frequency all-sky search we estimate there are about 5300
cores in category (A) and a similar number of cores in cat-
egory (B). In the following we will assume using only the
(A)-type hosts of Einstein@Home, and hence that one
Einstein@Home month (EM) corresponds to 5300 (A)-
type cores used continuously for 1 month.

IV. ASTROPHYSICAL PRIORS

An important feature of our optimization scheme is
that it forces us to explicitly incorporate our astrophys-
ical priors on the signal parameters. In particular, we
need to choose the astrophysical priors on the following
parameters for each target:

• the age and distance of the target sources. The
age influences the spindown range that should in
principle be searched. The distance of the source
directly influences the amplitude h0 of the signal.
For some targets such as Cas A there is very lit-
tle uncertainty in the distance and/or age of the
object, so the prior is chosen as a delta function.
Other sources like Vela Jr., for instance, have large
uncertainty in age and distance. However as was
done in [22], we pick delta-functions at the extremes
of the possible range. In doing this we might also
include non-physically motivated age-distance com-
binations. We do this only to give a sense of the
impact of different priors on the final results.

• The star’s ellipticity ε and the fraction x of spin-
down energy carried away in GWs influence the
GW signal amplitude h0. For the former we pick

a log-uniform distribution; for the latter we pick a
value inspired by the upper limits measured with
targeted searches [3]

• The Pc depends not only on h0, but also on the
prior probability P (f, ḟ , f̈) that the actual signal is

in the cell defined by specific values of (f, ḟ , f̈).

The results in [22] indicate that the distance of an ob-
ject is the most important parameter in determining its
GW detectability. Among the targets considered in [22]
targets Vela Jr. is the only source which has large uncer-
tainties both in age and distance. However, even assum-
ing a fairly pessimistic value of 750 pc for the distance of
Vela Jr. [44], it still contributes the most to the total de-
tection probability with respect to all other targets. We
pick the four extremes for the priors on age and distance
of Vela Jr.: close and young (CY), close and old (CO),
far and young (FY) and far and old (FO) Vela Jr.. It is
important to keep in mind that the astrophysically viable
alternatives are CY and FO and there is no support for
CO and FY 4. However, we shall include all four alter-
natives for the purpose of illustrating the impact on the
optimization scheme. Realistic searches will obviously
consider only CY and FO.

Table III details the parameters of the three objects
that we consider in this paper. Searches for signals from
one of the youngest known SNR, Cas A, have been car-
ried out with LIGO data [9, 10, 45]. The reason for tar-
geting this source is that a young object is more likely
to be spinning down faster and hence there is more ki-
netic energy that could potentially be radiated away in
GWs. Here we will see that Cas A is the third source
that contributes the overall detection probability. Vela
Jr. and G347.3 contribute much more to the total de-
tection probability and are thus more promising targets.
While [10] presents searches and upper limits for Vela Jr.
and G347.3, these have not been the primary targets for
any CW search to date. Thus there have not been any
deep CW searches for these two objects so far.

The ellipticity ε is the least known parameter so here
we take a flat probability density on log ε within a con-
servative range of values. We target weak signals and
hence the maximum value of ε we allow in the ith cell is:

εmax
i = min( εsd

i , ε
age
i , 10−6) , (13)

where εsd
i and εage

i are the spin-down ellipticity upper
limit and the spindown age-based ellipticity upper limit

4 To estimate the age for Vela Jr., one measures its angular size θ
and expansion rate R. It follows that the ratio of the distance
D and the age τ is given by D/τ = R/θ. Thus one does not
measure D or τ independently but only the ratio and so a larger
D implies a larger τ . Therefore we have astrophysical support
for CY and FO and not for CO or FY.
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TABLE III: Point source targets considered in this paper

SNR G name Other name Point source J Dkpc τkyr

111.7−2.1 Cas A 232327.9+584842 3.3–3.7 0.31–0.35

266.2−1.2 Vela Jr. 085201.4−461753 0.2–0.75 0.7–4.3

347.3−0.5 171328.3−394953 1.3 1.6

respectively:

εsd =

√
5c5

32π4G

x|ḟ |
If5

. (14)

and

εage =
c2

16π2f2

√
10c

GIτ
. (15)

In Eqs. (14) and (15), f is the instantaneous frequency of
the emitted GW signal, G Newton’s constant, c the speed
of light, and τ the age of the source. I is the the moment
of inertia and we use its standard value 1038 kg m2 for all
the results in this paper. x is the fraction of spin-down
energy loss due to GW emission. The latest observational
limits on GW emission from the Crab and Vela pulsars
constrain x to less than 0.2% and 1% respectively [3]. In
this paper, we will assume x = 1%. There is no guaran-
tee that the Vela and Crab results apply to these other
objects, but right now they are the only measurements at
hand. According to the results of [46], the realistic max-
imum value of ε is expected to be smaller than 4× 10−6.
Hence the third limit we use in this paper is 10−6. We
take εmin = 10−14 because deformations of a compact
star due to the internal magnetic field (at least 1011 G)
are not expected to be smaller than ∼ 10−14 [47]. Based
on the above discussion, our prior p(ε) is:

p(ε) =

{
1
ε

1
log(εmax/εmin) εmin < ε < εmax

0 elsewhere .
(16)

Since the GW frequencies emission frequencies are un-
known, our search encompasses a large range; namely,
from 20 to 1500 Hz. For a given f , the ḟ and f̈ ranges
are determined by the fiducial age of the source τ :

20 Hz ≤ f ≤ 1500 Hz

−f/(n− 1) τ ≤ ḟ ≤ 0 Hz/s

0 Hz/s
2 ≤ f̈ ≤ nf/τ2.

(17)

n is the braking index. If the frequency evolution follows
ḟ ∝ fn, the second order spindown is then f̈ = nḟ2/f .
In the second equation we take n = 2 to encompass the
broadest range of ḟ values. In the third equation we
assume a braking index n = 5, corresponding to phase
evolution purely due to GW emission, and a constant ḟ
value of −f/τ . For all other mechanisms n < 5 and in

particular for pure dipole electromagnetic emission n = 3
(see e.g. [48]). Therefore, our search ranges for ḟ and f̈
in (17) encompass all combinations of emission mecha-
nisms. Since none of the quantities that determine the
detection probability at a given frequency, such as the
maximum ellipticity or the noise level, depend on f̈ we
drop the f̈ dependence in the signal probability density
P (f, ḟ), equivalent to a uniform prior on the f̈ range.
We consider both uniform and log-uniform priors on the
search range of f and ḟ reflecting our ignorance on those
signal parameters.

In this search, we do not search over the third order
spin-down

...
f because, even for the youngest target, a

search over third order spin downs is not necessary for the
coherent and observation times that we are considering
here.

V. THE OPTIMIZATION

The optimization scheme is introduced in [22]. The
starting point is to divide the parameter space into non-
overlapping small cells such that the computing cost to
search each cell and the resulting detection probability
are roughly constant within each cell. The cost for each
should also be much smaller than the full computing cost
budget available to us. For each cell, we calculate the
computing cost and detection probability. For each cell
we define the efficiency, that is the ratio of detection
probability to computing cost. In the absence of any
constraint apart from the total budget, one could pro-
ceed simply by picking the most efficient cells till the
computing budget is exhausted. However, we do have
an additional constraint, namely that we do not want to
search the same parameter space cell with multiple search
set-ups. It is shown in [22] how this constraint can be
included in the optimization using linear programming
techniques.

The search set-ups are defined by 6 parameters: the
segment coherent duration Tcoh, the nominal mismatch
parameters mf , mḟ , mf̈ , and the refinement factors γ(1)

and γ(2) (see details in Section III B). For each given
search set-up we can compute the mismatch distribution,
i.e. the distribution of the fractional loss in signal-to-
noise ratio due to the discreteness of the template bank5.

5 Mismatch distributions of these set-ups are computed for Vela
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The optimization not only determines the best search
set-ups but also how to distribute the computing bud-
get among the different astrophysical targets and over
the parameter space. In [22] we presented this optimiza-
tion scheme under a set of simplifications. We now take
[22] as the starting point for an actual search design but
here we forego the simplifications that we made in [22]
and take into account issues of feasibility and practical-
ity. We shall take rectangular cells in (f, ḟ) space, and
each cell will be 10 Hz wide in frequency and 10−9 Hz/s

in ḟ . To completely specify the parameter space cells, we
need to include f̈ , and each of the (f, ḟ) cells are allowed

to take all permissible values of f̈ . As mentioned above,
for each cell, each search set up, and every choice of as-
trophysical prior, we calculate the computing cost and
detection probability. Since it is not possible to predict
the mismatch distribution of the GCT search for a given
set-up, these are produced from thousands of injection-
and-recovery Monte Carlos.

In principle, the above ingredients are sufficient for the
optimization scheme. However, certain obvious simplifi-
cations can be made based on practical considerations:

• Among all the set-ups with the same Tcoh, for ev-
ery value of the computing cost, we select the set-
up which has the lowest average mismatch. In our
case, as we shall describe in greater detail below,
this results in 71 seeded set-ups for all the different
values of Tcoh considered.

• Among all the cells, each with 71 set-ups, we select
those so that the sum of relative detection probabil-
ities constrained by the available computing bud-
get, is maximized. This is done through linear pro-
gramming.

• Since we find that the optimal choice of cells spans
a very broad frequency range, we determine the
loss in detection probability caused by extending
the search parameter space to include the broad-
est frequency band. We further evaluate the loss
incurred with respect to the optimal solution due
to utilizing the same set-up across all cells for ev-
ery astrophysical target. Both these choices, when
viable, greatly simplify the post-processing of the
results.

• We compare the final results from different sets
of priors, estimate the loss in detection efficiency
due to having optimized assuming a wrong age and
choose the set-up such that this loss is the smallest.

In the next sections we describe the above steps in
greater detail.

Jr., since it is responsible for most of the detection probability

average mismatch 〈µ〉
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FIG. 3: 432 set-ups with Tcoh = 15 days. The 19 blue
stars in red circles are selected for further consideration

as explained in the text.

A. Set-ups: primary selection

Running the optimization scheme on ∼ 2000 set-ups is
computationally too burdensome. We hence down-select,
among the ones with the same Tcoh, those that yield the
lowest average mismatch at fixed computing cost over the
entire prior parameter range of Vela Jr.. In principle this
selection should be done separately for every target, but
here we simplify the procedure in this manner because
Vela Jr. contributes the bulk of the detection probability.

Fig. 3 shows computing cost and average mismatch for
432 set-ups corresponding to different grid spacings and
Tcoh = 15 days. Out of these, 19 are selected which have
the lowest measured average mismatch at fixed comput-
ing cost. Considering different values for Tcoh we select 71
set-ups : 13 are from Tcoh = 10 days, 19 from Tcoh = 15
days, 15 from Tcoh = 20 days, 14 from Tcoh = 30 days
and 10 from Tcoh = 60 days. Since the core of the optimi-
sation procedure is linear programming and its comput-
ing time grows at least polynomially with the number of
tested set-ups [49], it is easy to see that going from 2000
set-ups to 71 reduces the cost by at least a factor of >
100. For reference we note that it took ∼10 CPU hours
to perform the optimisation with the 71 set-ups.

The measured average mismatch 〈µ〉 of each of these
distributions is used to reduce the expected signal-to-
noise ratio ρ2 of a putative signal. More specifically, with
respect to Eq. (16) of [22] that used only ρ2, we now use
a more realistic estimate of the actual results of a search:

ρ2 → (1− 〈µ〉)× ρ2. (18)

This estimate folds-in the sensitivity-loss effect of using
finite grids and does it realistically because it is based on
the measured mismatch distributions of the actual search
codes.
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B. Optimization under different assumptions

Following Section V of [22], we now use linear program-
ming to determine how to best pick targets, waveform
parameter space to search and search set-ups under a set
of different assumptions on the age and distance of the
source. We consider 71 different set-ups. A significant
difference with respect to [22] is that here we consider a
number of different grid spacings for the same Tcoh and,
as explained above, the actual mismatch associated with
each of them.

Fig. 4 shows the results of the optimization under the
assumptions that Vela Jr. is at a distance of 200 pc (C),

that the signal frequency f and spindown ḟ are uniformly
distributed within their ranges (defined in Eq. (17)) and
with a 3 EM computing budget.

Fig. 4 shows the result of the optimization procedure.
Different colors represent search set-ups having differ-
ent Tcoh. The total detection probability R is defined
in Eq. (49) of [22] as the sum of detection probabilities of
the selected parameter space cells. C indicates the total
computational cost and in general this will be equal to or
smaller than the maximum budgeted 3EM. The results
for Vela Jr. for the CY and CO cases can be summarized
as follows:

• When Vela Jr.’s age is assumed to be 700 years, the
spin-down parameter space to search is large and
the Tcoh chosen set-ups for Vela Jr. are 10 days, 15
days and 20 days (see Fig. 4(a)). Fig. 4(c) shows
the Vela Jr. plane of Fig. 4(a) and we can appreci-
ate that more than 10 different set-ups constitute
the optimal search for young Vela Jr.

• When Vela Jr.’s age is assumed at 4300 years, the
spin-down parameter space shrinks and the Tcoh

chosen set-ups for Vela Jr. are all 20 days (see
Fig. 4(b)). This is the CO case and we emphasize
again that there is no astrophysical support for this
scenario. We include this to illustrate the effect of
the priors on the optimization results.

The total detection probability R corresponding to the
two different age priors is also different: 18.7% and 16.1%
for the young and for the old Vela Jr., respectively. Under
either assumptions Vela Jr. contributes the bulk of the
total probability: 14.4% out of 18.7% and 11.5% out of
16.1%. However in the former case the Vela Jr. search
uses up 38% of the computing budget whereas in the
latter it only uses 7%.

Figs. 5 reveals further details of the chosen set-ups.
In particular panels (a), (c) and (e) show how many cells
are searched with each of the different set-ups for G347.3,
Vela Jr. (CY) and Cas A, respectively. Panels (b), (d),
(f) show the same quantities but under the CO assump-
tion for Vela Jr.. Assuming Vela Jr. is 700 yr old (CY),
20-day set-ups are mostly selected for G347.3, 15-day set-
ups mostly for Vela Jr., and only 10-day set-ups for Cas

A. If we assume that Vela Jr. is 4300 yr old, the param-
eter space of Vela Jr. shrinks due to the age limit. Only
20-day set-ups are selected for Vela Jr.. The comput-
ing savings incurred due to the smaller parameter space
are re-invested in longer Tcoh. The dominant set-ups for
G347.3 use shorter Tcoh compared to the ones derived un-
der the Vela Jr. CY prior. This is due to the fact that,
with a smaller parameter space for Vela Jr., the most
probability is harvested by exploiting it the most, with
long (expensive) Tcoh and this is balanced by spending
less on the other targets. Finally, because of the dis-
tance of Cas A is much larger than Vela Jr. and G347.3,
the optimal way to distribute the computing budget is
by searching Cas A with relatively cheap (less-sensitive)
10-day set-ups.

Since we do not know the age of Vela Jr., the set-up
corresponding to which of the two priors should we pick?
To answer this question, we investigate the consequences
of having picked the wrong prior, namely the impact on
the detection probability if we assume that Vela Jr. is
700 yrs old when Vela Jr. is 4300 yr old and if we as-
sume that Vela Jr. is 4300 yrs old when Vela Jr. is 700
yr old. In the first case we search a broader spin-down
range than we need to, in order to gather all the detec-
tion probability. To do this we use a less-sensitive set-up
(shorter Tcoh) for most of the frequency band for Vela Jr.
and, partly also for Cas A and G347.3 (see Fig. 5(a), (c),
(e)). The consequence of this is that we waste computing

power in the high ḟ region and lose detection probability
due to the shorter Tcoh set-ups used in the low ḟ region.
In the second case, we just search the low ḟ region with
longer T coh set-ups (see Fig. 5(d) ). We gain some de-
tection probability due to adopting longer T coh set-ups
in the low ḟ of Vela Jr. and in parameter space of Cas
A and G347.3. Meanwhile, we lose detection probability
because we give up the whole high ḟ range of Vela Jr..

The results are summarized in Table IV. From these
it is clear that using the youngest-age prior for Vela Jr.
leads to the smallest loss in detection probability if this
assumption is wrong, hence we use this prior in our op-
timizations.

C. The total computing budget

In the previous discussion we found that, if the like-
lihood of Vela Jr.’s frequency and spindown is uniform
between 20 and 1500 Hz, and if Vela Jr. is 700 yrs old
and at a distance of 200 pc, by optimally choosing set-ups
and target parameter space to search with 3 EMs, the to-
tal detection probability R is 18.7%. It is then natural to
ask whether by investing more computing resources we
could achieve an even higher detection probability. As-
suming a set of computing budgets from 0.1 EM to 12
EM, the optimization procedure yields the Rs shown in
Fig. 6 as a function of C. Although R always grows as C
increases, the growth rate decreases as R increases. We
identify three stages. In the first stage, when C is from
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FIG. 4: Parameter space coverage assuming uniform f, ḟ priors, Vela Jr. at 200 pc (C) and 3 EM computing
budget. In panel (a) we assume Vela Jr.’s age is 700 years (Y) and in panel (b) we assume that Vela Jr. is 4300

years old (O). The plane is indicated in aqua. Cells in blue are searched with 10-day Tcoh set-ups, magenta indicates
15-day Tcoh, yellow the 20-day Tcoh, red the 30-day Tcoh, and green the 60-day Tcoh (although not used in either

cases). The computing power used on Cas A, Vela Jr. and G347.3 is 1.36 EM, 1.14 EM and 0.50 EM, respectively,
for the set-ups of panel (a), and 1.97 EM, 0.21 EM and 0.82 EM for the set-ups of panel (b). The contribution to
the total detection probability from Cas A, Vela Jr. and G347.3 is 1.3%, 14.4% and 3.1% for panel (a), and 1.4%,
11.5% and 3.1% for panel (b). Note that each color represents set-ups which have the same coherent duration, but
might differ in the grid spacings. Figure (c) shows the set-up details on Vela Jr. plane in Figure (a). For example,

the blue circles represent the cells that need to be searched by using the set-up: mf = 0.15, mḟ = 0.15, mf̈ = 0.001,

γ(1) = 8, γ(2) = 10, and Tcoh = 10 day.

0.1 to 0.4 EM, R increases very fast. In the second stage
when C is from 0.4 to ∼3 EM, R still increases but not
as fast as before. In the last stage when C is larger than
∼3 EM, R increases even more slowly. In this regime a
gain in the R due to 9 additional EMs, is less than 1%.

Based on this we decide to invest around 3 EM in this
search, covering the first two stages of C(R).
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(a) G347.3 (close and young for Vela Jr.)
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(b) G347.3 (close and old for Vela Jr.)
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(c) Vela Jr. (close and young for Vela Jr.)
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(d) Vela Jr. (close and old for Vela Jr.)
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(e) Cas A (close and young for Vela Jr.)
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FIG. 5: Optimal set-up details. The left hand-side figures show the set-ups assuming Vela Jr. is close and young.
The right hand-side figures show the set-ups assuming Vela Jr. is close and old. As explained in in Section V D, the

arrows indicate the set-ups that will finally be adopted in the search.
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TABLE IV: Effect of using the wrong age prior for Vela Jr.

uniform distribution on f , ḟ log-uniform distribution on f , ḟ

C for Vela Jr. F for Vela Jr. C for Vela Jr. F for Vela Jr. 〈loss〉
R if Vela Jr. is 4300 yrs old 14.8%(16.1%): 7.9%(8.6%): 6.4%(11.4%): 4.7%(4.9%):

but prior assumes 700 yrs of age loss =7.9% loss =9.0% loss =43.9% loss =3.7% 16.1%

R if Vela Jr. is 700 yrs old 6.1%(18.7%): 5.1%(11.4%): 4.3%(9.2%): 3.0%(4.5%):

but prior assumes 4300 yrs of age loss =67.4% loss =55.1% loss =53.5% loss =33.3% 52.3%

Notes: The first number in each table cell is the R assuming a mismatch between the prior used in the
optimization and the true age of the object. The number in parenthesis is the R if the prior is matched
to the age of the object. The first number is always smaller than the R in parenthesis and the ratio in
detection probability is in bold font.
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FIG. 6: R versus computing budget C

D. Simplifications

As shown in the previous Sections, the optimal search
set-up may well comprise different coherent time base-
lines Tcoh in different f − ḟ ranges for each target, and
different grid spacings for the same Tcoh. For instance,
under the CY and uniform priors assumption for Vela
Jr., the set-prescription comprises 2 different set-ups for
Tcoh = 10 days, 7 set-ups for Tcoh = 15 days, and 5
set-ups for Tcoh = 20 days for Vela Jr.; 11 set-ups for
Tcoh = 10 days for Cas A and 27 set-ups distributed over
four different Tcoh values (10, 15, 20, 30 days) for G347.3.

The analysis of the results from a search comprising
this diversity in set-ups and coherent time baselines is
quite daunting. So we examine the following question:
how much detection probability would be lost if i) we
considered only a single set-up per target ii) we extended
the search frequency range for all targets to be fixed be-
tween 20-1500 Hz?

Limiting the set-up for each target to the 71 set-ups
considered in Section V A we have 713 = 357911 combi-
nations of setups. The computing costs of these ranges
from a few 0.1EM to a few hundreds EM. We want a
computing budget of a few EM. In Fig. 7 we zoom in

TABLE V: Profile of the chosen set-ups

Targets mf mḟ mf̈ γ(1) γ(2) Tcoh 〈µ〉
Cas A 0.3 0.5 0.003 4 20 10D 41.2%

Vela Jr. 0.15 0.3 0.003 8 20 15D 15.8%

G347.3 0.15 0.2 0.003 8 10 20D 12.1%

the cost range from 0 to 6EM and determine the total
detection probability for all the set-up combinations.

We find that the loss due to having restricted the choice
to a single set-up per target is smaller than ∼0.3% across
all priors. Since this loss is much smaller than the total
detection probability, we are persuaded to adopt this sim-
plification and save ourselves a great deal of effort in the
results post-processing phase.

We pick a computing budget just below 5 EM and
hence the set-ups corresponding to the right-most golden
star of Fig. 7. Actually, all these golden stars correspond
to the same set-ups independently of the priors for both
the distance of Vela Jr. and f and ḟ . The details of the
chosen set-up are listed in Table V.

We use arrows to indicate the three chosen set-ups in
Fig. 5. Under the CY and uniform f, ḟ assumption for
Vela Jr., the chosen set-up for G347.3 is also the domi-
nant one from the optimization scheme; the chosen set-up
for Cas A is the second dominant one from the optimiza-
tion scheme. Although the chosen set-up for Vela Jr.
is the fourth dominant one from the optimization pro-
cedure (see Fig. 5(c)) the chosen Tcoh = 15 days is the
same that of the dominant set-up from the optimization
scheme. These differences can be explained considering
that we take different prior combinations into account
overall and the computing budget set for Fig. 5 is 3 EM
which is below the final-set budget 5 EM.

VI. CONCLUSIONS

Following the search optimization procedure proposed
in [22], we design a search using a few months of Ein-
stein@Home optimized for a data set like the LIGO O1
data. We concentrate on 3 targets: Vela Jr., Cas A
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FIG. 7: R versus computing budget C from 357911 combinations of setups with different priors. Each dot on this
plot is a combination of setups, one per target. The green curve shows the optimal R as a function of C. The golden

stars highlight the best setup combinations around 3 EM.

and G347.3. We extend the method proposed in [22] by
adding more dimensions to the optimization : i.e. we con-
sider different search set-ups for the same coherent time
baseline Tcoh, varying the template banks in frequency
and spindown, and we fold-in the measured mismatch
distributions from the different banks.

We also investigate how a mistake in choice of the as-
trophysical prior on the age of the target that contributes
the most to the detection probability (Vela Jr.) would
impact the detection probability, and then pick the prior
that minimizes the loss.

We study the dependency of the attainable detection
probability on the computing budget, and, within prac-
tical constraints from running the search, we make sure
that we have nearly saturated the detection probability
growth. We pick a computing budget of ∼ 5 EM.

After having obtained the optimal combination of set-

ups for the different targets in the different regions of
parameter space, we significantly simplify it in order to
make the post-processing of the results less cumbersome.
Even limiting the search set-up to a single one per target,
we are able to achieve this without significant degrada-
tion in the detection probability. One may wonder if this
doesn’t prove that the optimization scheme is actually
not very important. In a sense it does, at least for this
data set. However, without knowing what the optimal
is, we would not have been able to judge the goodness of
any empirically motivated set-up.

This is the final set-up chosen:

• For the youngest source Cas A, a set-up with 10
days coherent time baseline (12 segments) will be
used. The computing cost employed on searching
for a signal from Cas A is 1.7 EM. The detection
probability is 1.2%, if we assume uniform priors in
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FIG. 8: Expected 90% confidence upper limit on the
GW amplitude h90%

0 from the directed searches
proposed here, based on the noise level of the LIGO O1
data and on the estimated sensitivity of the proposed
searches. We stress that this is not an observational

result but a prediction of it.

frequency and spin-down; the detection probability
is 0.2%, if we assume log-uniform priors.

• For the closest source Vela Jr., a set-up with 15
days coherent time baseline (8 segments) will be
used. The computing cost employed on searching
for a signal from Vela Jr. is 2.2 EM. If we assume
uniform priors in frequency and spin-down, a dis-
tance of 200 pc and an age of 700 yrs, the detec-
tion probability is 14.5%. The detection probability
drops to 3.8% if we assume a distance of 750 pc and
an age of 4300 yrs. If we assume log-uniform priors
in frequency and spin-down, a distance of 200 pc
and an age of 700 yrs, the detection probability is
7.4%. The detection probability drops to 3.0% if
we assume a distance of 750 pc and an age of 4300

yrs.

• For the second closest source G347.3, a set-up with
20 days coherent time baseline (6 segments) will be
used. The computing cost employed on searching
for a signal from Vela Jr. is 0.7 EM. The detection
probability is 3.1%, if we assume uniform priors in
frequency and spin-down; the detection probability
is 1.4%, if we assume log-uniform priors.

The search that we propose here is a deep and broad
frequency search for all the three targets Vela Jr., Cas A
and G347.3. It was set-up and ran for a few months on
the volunteer computing project Einstein@Home during
the first half of 2017. The post-processing of the results
will be reported in a separate paper. In case no signal
is detected the expected 90% confidence upper limit on
the GW strain amplitude h90%

0 is shown in Fig. 8. At the

detector’s most sensitive frequencies, ≈150 Hz, h90%
0 for

Cas A is 1.4 × 10−25, for Vela Jr. 1.0 × 10−25 and for
G347.3 9 × 10−26. We note that h90%

0 = 1.4 × 10−25 for
Cas A is 2 times smaller than the S6 upper limit [9] and
deep searches on Vela Jr. and G347.3 have never been
done yet. This can be quantified by using the notion
of sensitivity depth defined in [50]. The sensitivity depth
D90% of this search is 61.5 Hz−1/2 for Cas A, 79.1 Hz−1/2

for Vela Jr., and 85.8 Hz−1/2 for G347.3.
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