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A binary neutron star coalescence event has recently been observed for the first time in gravi-
tational waves, and many more detections are expected once current ground-based detectors begin
operating at design sensitivity. As in the case of binary black holes, gravitational waves generated
by binary neutron stars consist of inspiral, merger, and post-merger components. Detecting the
latter is important because it encodes information about the nuclear equation of state in a regime
that cannot be probed prior to merger. The post-merger signal, however, can only be expected
to be measurable by current detectors for events closer than roughly ten megaparsecs, which given
merger rate estimates implies a low probability of observation within the expected lifetime of these
detectors. We carry out Monte-Carlo simulations showing that the dominant post-merger signal
(the ` = m = 2 mode) from individual binary neutron star mergers may not have a good chance of
observation even with the most sensitive future ground-based gravitational-wave detectors proposed
so far (the Einstein Telescope and Cosmic Explorer, for certain equations of state, assuming a full
year of operation, the latest merger rates, and a detection threshold corresponding to a signal-to-
noise ratio of 5). For this reason, we propose two methods that stack the post-merger signal from
multiple binary neutron star observations to boost the post-merger detection probability. The first
method follows a commonly-used practice of multiplying the Bayes factors of individual events. The
second method relies on an assumption that the mode phase can be determined from the inspiral
waveform, so that coherent mode stacking of the data from different events becomes possible. We
find that both methods significantly improve the chances of detecting the dominant post-merger
signal, making a detection very likely after a year of observation with Cosmic Explorer for certain
equations of state. We also show that in terms of detection, coherent stacking is more efficient
in accumulating confidence for the presence of post-merger oscillations in a signal than the first
method. Moreover, assuming the post-merger signal is detected with Cosmic Explorer via stacking,
we estimate through a Fisher analysis that the peak frequency can be measured to a statistical error
of ∼ 4–20 Hz for certain equations of state. Such an error corresponds to a neutron star radius
measurement to within ∼ 15-56 m, a fractional relative error ∼ 4%, suggesting that systematic
errors from theoretical modeling (& 100 m) may dominate the error budget.

I. INTRODUCTION

The LIGO/Virgo collaboration recently announced the
first detection of a gravitational wave (GW) signal con-
sistent with the inspiral and merger of a binary neutron
star (BNS) system [1], corroborated by numerous obser-
vations of electromagnetic counterparts across the spec-
trum, from radio to gamma rays [2]. This one event has
already provided a wealth of new information: highlights
include the establishment of a connection between NS
mergers and (at least a class of) short gamma ray bursts,
evidence that a significant fraction of the universe’s r-
process elements are born in NS mergers, an upper-bound
constraint on the tidal deformability of neutron stars, a
measurement of the Hubble constant independent of the
cosmic distance ladder, and a stringent constraint that
the speed of gravitational waves equals the speed of light.

As loud as GW170817 was in gravitational waves with
a network signal-to-noise (SNR) ratio of 32, this still
all came from the inspiral phase of the event, and no

detectable merger/post-merger signal was reported by
the LIGO/Virgo collaboration. This is not surprising,
as regardless of what the outcome of the merger may
have been—prompt or delayed collapse to a black hole,
or a stable high mass NS remnant— the corresponding
GW emission is not expected to be loud enough to al-
low extraction from the noise at the relevant frequencies
> 1kHz. Thus, at present only informed guesses as to the
nature of the remnant can be made, based on the con-
sistency of models of post-merger electromagnetic (EM)
emission processes with observations (insofar as the emis-
sion depends on properties of the remnant; see e.g. [3]).
Given how crude existing models of the post-merger cen-
tral engine of the EM counterparts are, it would be ideal
to instead measure properties of the remnant in GWs,
and use that to inform interpretation of the counterpart
emission.

Beyond helping to decipher the EM data, the
merger/post-merger GW signal can contain much infor-
mation of intrinsic value in understanding the physics of
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the remnant. As mentioned, following the merger, the
BNS remnant may either promptly collapse to a black
hole (BH), form a supramassive neutron star or form a
hypermassive neutron star (HMNS) that will ultimately
undergo delayed collapse to a BH (see [4] for a recent
review). The latter two scenarios lead to a remnant
that spins rapidly and undergoes non-axisymmetric os-
cillations, emitting GWs in the process. More than a
decade of simulations of BNS mergers have revealed that
the post-merger GW spectrum is rich, with several dis-
tinct peaks that can be used to probe the merger rem-
nant through spectroscopy (see e.g. [5–17] for some his-
torical and recent work, [18–21] for related work on BH
spectroscopy, and [22, 23] for recent reviews). In the
first 10-20 ms after merger, the dominant component of
a post-merger GW is the ` = m = 2 mode (which we
call here the 22 mode for short). For BNS merger rem-
nants that may survive for longer times, a one-arm mode
(` = 2,m = 1, or 21 mode) can dominate the GW emis-
sion [24–28].

Extracting post-merger information from GWs is also
crucial for obtaining a full understanding of the physics
of nuclear matter. Individual NSs (with mass MNS) in
inspiralling binaries are described by cold nuclear mat-
ter, whereas BNS merger remnants (with mass ∼ 2MNS)
are described by hot nuclear matter. Therefore, GWs
from BNS merger remnants encode the physics of dense
nuclear matter in a regime that is not accessible in
the inspiral phase. In addition, measured post-merger
GWs could reduce the uncertainties in information drawn
from the inspiral phase, just as with binary BH mergers
(e.g. [29, 30]). Moreover, these waves will provide further
insight to help disentangle degeneracies between modu-
lations due to tidal effects from those induced by devia-
tions from General Relativity (e.g. [31–34]). We can also
anticipate that information on the interior composition
of cold neutron stars will be available through indepen-
dent electromagnetic observations, for example with the
recently launched NICER [35] (under suitable assump-
tions, NICER may determine neutron star radii to ' 5%
accuracy which, in turn, will help constrain the cold nu-
clear EOS). One can then envision either employing such
knowledge to further constrain GW predictions, or use
the GW observations independently and crosscheck for
consistency with results from EM observations.

GWs from BNS post-merger oscillations are challeng-
ing to detect, as indicated by previous studies [36, 37],
and evidenced by a lack of detection of any with
GW170817 [38]. With certain binary parameters, EOS,
etc., an event not too much closer than GW170817 could
produce a detectable post-merger signal with aLIGO sen-
sitivities. However, even with the more optimistic BNS
merger rates of 1540(+3200− 1220)/Gpc3/yr implied by
GW170817 [1], a similarly loud merger is roughly a once-
per-decade event. On the other hand, these merger rates
suggest several events (including GW170817) could be
expected in the aLIGO era, and even more in the era
of third-generation ground-based detectors, that are all

within a factor of a few in SNR of having individually
detectable post-merger signals. If there is a common
post-merger signal in these anticipated events, we can
therefore attempt to go after the common component by
combining, or stacking, the data from multiple events
appropriately. The data may also be combined through
unmodelled algorithms (e.g., [39]) for parameter estima-
tion purpose.

To simplify the analysis in our first study of this idea,
we only include the 22 mode of the post-merger signal.
We model it as an exponentially decaying sinusoidal func-
tion, which is consistent with the leading order behavior
identified in the principal component analysis of BNS
post-merger waveforms in [37]. We propose two meth-
ods to stack this data from different detections. With
the first method, we treat all events as independent and
combine the Bayes factor, following a similar approach
as discussed in [40] (referred to as “power stacking” in
this work). In the second method, we assume that the
theoretical uncertainties in future numerical BNS simula-
tions can be significantly reduced, such that the inspiral
waveform can be used to predict the phase of post-merger
modes. In this case, the dominant modes from different
post-merger signals can be coherently stacked together,
as shown in the black hole ringdown scenario [41]. Essen-
tially, coherent mode stacking is the shifting and rescaling
of N signals to align their phase using information from
the inspiral in order to construct a weighted, linear super-
position that boosts the post-merger SNR. Both methods
are able to boost the detectability of post-merger oscilla-
tions. The coherent stacking approach outperforms the
first method by taking advantage of the additional phase
information.

There are several important issues to note in this work.
First, the coherent stacking procedure presented here is
similar to the treatment we developed in [41], which was
designed to boost particularly relevant features in sig-
nals from binary black hole mergers, for instance the
SNR of secondary modes in BH ringdowns. However,
there are important differences between the stacking ap-
proach developed in this paper and in [41]. In partic-
ular, the inspiral-merger-ringdown waveform of binary
BHs is known from numerical relativity simulations suf-
ficiently accurately that it can be used to predict the
phase of secondary modes, which in turn set the basis to
align the secondary modes from different detected events.
By contrast, current numerical relativity simulations of
BNS mergers cannot reliably determine the phase of post-
merger oscillations, partly because there are important
pieces of physics (such as turbulent magnetohydrody-
namics, microphysical effects, NS spin effects etc.) that
are not fully resolved or accounted for. Despite the signif-
icant progress in our understanding of BNS post-merger
physics (see [22, 23] for recent reviews), there remain ob-
stacles both in the computational aspect and the physical
understanding of the problem that must be overcome be-
fore reliable GWs from numerical relativity simulations
can be used to construct GW templates. Therefore, in
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this work we emphasize the application of power stack-
ing, and also generalize the hypothesis test formalism
(Generalized Likelihood Ratio Test or GLRT) of [41] to
signals with unknown phase.

Second, although for a given EOS the frequency (un-
like the phase) of the 22 mode can be robustly deter-
mined by numerical simulations [12], the true underlying
EOS is unknown. Thus, in order to perform the hypoth-
esis test for detection, we assume an underlying EOS to
compute the mode frequencies for each event. Picking an
incorrect EOS would in principle generate frequency mis-
match which would degrade the SNR of the signal. On
the other hand, one can perform a model-selection study
to compare different EOSs for their relative consistency
with the data. We investigate this issue here as well.

Third, as mentioned earlier, the BNS merger remnant
can undergo collapse to a BH promptly after the merger,
in which case there is no GW signal from a HMNS to
stack. According to the work of [8] there exists a thresh-
old total binary mass that determines whether prompt
collapse will take place, independently of the mass ratio.
Therefore, we only consider events with total mass be-
low this threshold in our Monte-Carlo (MC) simulations
before stacking. Since in this study we focus on finite-
temperature, realistic nuclear EOSs we use the threshold
masses for prompt collapse determined in [42]. We show
how detection/non-detection of a stacked signal from a
suitable population of events can provide a direct test
of this collapse hypothesis, and further be used to place
constraints on the nuclear EOS.

Finally, the starting time of coalescence may be subject
to systematic uncertainties in modeling the tidal effects
of binary NSs in the inspiral stage using post-Newtonian
methods. This does not significantly affect the calcula-
tions in this paper, as we mainly focus on the properties
of the 22 (peak) mode, which radiates waves with fre-
quency above 2kHz (well above the merger frequency).
In addition, an accurate numerical waveform would nat-
urally take into account all tidal effects.

A. Executive summary

We now summarize the main results of this paper. Un-
less otherwise specified, for the sake of presentation our
calculations will focus on the Cosmic Explorer (CE) ex-
periment as the representative third-generation instru-
ment; we expect similar conclusions to hold for both CE
and the Einstein Telescope (ET). Based on the MC sim-
ulations we have performed, given an EOS (TM1 [43] for
reference) and with the adopted BNS merger rate, the
chances of detecting a single post-merger event after one
year of observations with third generation detectors are
good, but not certain (for simplicity, here and henceforth
we use the word “event” to only refer to the post-merger
signal). By stacking the loudest events, a detection be-
comes almost certain after a year of observations with
CE. For example, if the SNR threshold for detection is

set to 5, a one-year observation with CE has a ∼ 79%
chance of detecting a post-merger oscillation signal in a
single event, while the chances increase to ∼ 100% after
power stacking the top 5 loudest events.

Apart from power stacking that simply multiplies the
Bayes factor of each event [44–46] 1, we also investigate
combining signals if the phase of the post-merger modes
can be predicted using simulations informed by source
parameters measured from the inspiral waveform. This is
reasonable to expect by the era of third generation grav-
itational wave observatories, as future numerical mod-
elling of binary neutron star mergers is anticipated to
become sufficiently accurate by then. We compare these
two methods and find that coherent stacking is more ef-
ficient at enhancing the SNR of BNS post-merger signals
than power stacking (see Sec. III C and Fig. 4). This is
partially because the coherent stacking method we pro-
pose requires extra phase information.

We also carry out a Bayesian model selection analysis
to see how well one can distinguish between two differ-
ent EOS models. For example, the TM1 EOS can be
well distinguished from the DD2 EOS [43], with the aver-
age log-Bayes factor in the range 20–100 using the single
loudest event (and 130− 300 for power-stacked signals).
We further perform a parameter estimation study to de-
rive how accurately one can measure the peak frequency
of post-merger oscillations. We convert such a statistical
error on the peak frequency to a statistical error on the
NS radius of a 1.6M� NS using a universal relation be-
tween these quantities [12]. We find that with the power-
stacked signal and using CE, the statistical error on the
NS radius ranges from 15 m to 56 m, depending on the
underlying EOS, which constitutes a fractional relative
error of ∼ 4%. Such a measurement would thus compete
with NICER measurement of the mass-radius relation of
isolated NSs [49]. However, at this time systematic error
in the universal relations between post-merger oscillation
frequency and binary total mass, as well as in the tem-
plate construction, dominate over the statistical error;
this may be reduced in the future through, e.g., better
modeling of NSs and more accurate BNS merger simula-
tions.

A recent study by Bose et al. [50] also proposes to per-
form stacking of multiple BNS post-merger events with
a focus on parameter estimation. Apart from consider-
ing only second-generation gravitational-wave detectors,
and using results from simulations that do not employ
finite temperature EOSs, our results are distinct from
this work in at least two additional, significant aspects.

1 Calling this “power stacking” is a slight abuse of historic no-
tation, as this term has mostly been used to refer to analysis
strategies that add excess power in select tiles in a time-frequency
decomposition of multiple signals; see e.g. [47, 48]. These meth-
ods also give a composite SNR that scales as N1/4 for N identical
events each with low individual SNR, as multiplication of Bayes
factors does [41], which is why we have borrowed this nomencla-
ture.
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First, we focus on the dominant 22 mode modeled as a
single damped sinusoid, while in [50] a several parameter
fit to the entire post-merger signal is used, with addi-
tional assumptions on the phases of the modes used in
the fit. This alters the parameter estimation because the
target templates are different. Second, here we perform
a more detailed investigation and in-depth study to as-
sess the detectability of GWs from BNS merger remnants
by applying a Generalized-Likelihood-Ratio-Test (for hy-
pothesis testing). In particular, instead of focusing on
parameter estimation alone, we also discuss in detail the
performance of stacking methods in making a detection
of the dominant 22 mode, as well as a comparison to
the power stacking method. This discussion is necessary
because strictly speaking the interpretation of results of
parameter estimation using modes from a set of events is
only valid after a statistically significant confirmation of
the existence of the modes have been made.

B. Organization

This paper is organized as follows. In Sec. II we de-
velop the hypothesis test (GLRT) formalism for signals
with unknown phase and perform a MC study to probe
the detectability of post-merger oscillations from individ-
ual BNS remnants, assuming several different EOSs2 and
focusing on third-generation GW detectors. In Sec. III
we apply the hypothesis test (GLRT) formalism for sig-
nals with unknown phase to stacked signals. We use the
individual signals from the MC study of Sec. II to demon-
strate that these stacking methods significantly amplify
the SNR of BNS post-merger GWs and their detectabil-
ity. Moreover, we show that coherent stacking works
more efficiently than power stacking. In Sec. IV we dis-
cuss the possibility of distinguishing different EOSs us-
ing the stacked signal by carrying out a Bayesian model
selection study. We also perform a parameter estima-
tion study to derive the measurement accuracy of the
post-merger peak frequency, and in turn, that of the NS
radius. We conclude in Sec. V and discuss possible direc-
tions for future work.

II. SINGLE EVENT DETECTION

In this section we present the GLRT formalism we de-
velop for single events, and perform a MC study to assess
the detectability of BNS post-merger oscillations from in-
dividual events using third-generation ground based GW
interferometers.

2 Throughout this work we assume that in nature neutron stars
have a unique EOS. This is a standard assumption, though one
could envision mass-dependent EOS variations, or more unusual
situations where for example strange quark stars and conven-
tional neutron stars can both exist in the same mass range.

A. Hypothesis testing with unknown phase

Let us begin by describing how we generalize the
Bayesian hypothesis test formalism of [41, 51, 52] such
that it is applicable to coherent stacking of signals with-
out prior phase information. In this section, we extend
the formalism to the case of individual signals with un-
known phase offset, which is suitable for finding oscilla-
tions of BNS merger remnants. In Sec. III B, we describe
the procedure of coherently stacking a set of events,
which involves frequency rescaling and phase alignment.

As we mentioned in the introduction, in the first 10−20
ms following a typical BNS merger the 22 mode is the
dominant one. Thus, instead of trying to model full sig-
natures of post-merger waveforms, we focus on the dom-
inant peak of the 22 mode component (see also the Prin-
cipal Component Template in [37]). Here, we model the
22 mode oscillation as a damped sinusoid

h(t) = A′Ar sin(2πfpeakt− φ0)e−πfpeakt/QΘ(t) , (1)

where A′ is the amplitude, fpeak is the 22 mode peak os-
cillation frequency, while we label the time coordinate in
a way that the waveform starts at t = 0 (hence the Heavi-
side step function Θ(t)) and φ0 is a constant phase offset.
The factor Ar denotes the reduction of the wave ampli-
tude arising from source inclination and the response of
the detector. Finally, Q is the quality factor of the mode.

We now explain the GLRT formalism and its exten-
sion. The one used in [41, 51, 52] assumes that all the
parameters in the waveform are known a priori except for
the amplitude. In our context, we assume that fpeak, Q
and Ar are known from the inspiral information together
with a given underlying EOS. One can then repeat the
analysis with a different choice of EOS and carry out a
Bayesian model selection study to see which one is pre-
ferred (see Sec. IV A). On the other hand, the phase φ0 is
unknown for BNS post-merger GWs, which requires one
to extend the GLRT formalism. We begin by rewriting
Eq. (1) as

h(t) = [A′s sin(2πfpeakt) +A′c cos(2πfpeakt)] e
−
πfpeakt

Q Θ(t)

=Ashs(t) +Achc(t) , (2)

with A′Ar =
√
A′2c +A′2s and tanφ0 = −A′c/A′s. Here,

hc (hs) is proportional to the above cosine (sine) func-
tion with an arbitrary normalization constant. There-
fore, testing for a signal with unknown phase can be
phrased as a test between the following two hypotheses:

H1 : ỹ(f) = Ach̃c(f) +Ash̃s(f) + ñ(f) , (3)

H2 : ỹ(f) = ñ(f) , (4)

with A2
c + A2

s > 0 in H1. Here h̃c and h̃s are two
frequency-domain bases of the waveform which are nearly
orthogonal to each other (this is generally true if Q� 1,
i.e. there are enough cycles in the relevant waveform), so
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that 〈hc|hs〉 ≈ 0, where the inner product is defined as

〈χ|ξ〉 ≡ 2

∫ ∞
0

χ̃∗(f)ξ̃(f) + χ̃(f)ξ̃∗(f)

Sn
df , ||ξ||2 ≡ 〈ξ|ξ〉

(5)

with respect to the one-sided spectral density of detector
noise 〈ñ(f)ñ∗(f ′)〉 = [Sn(f)/2] δ(f − f ′).

The posterior probability of a hypothesis H being cor-
rect given some data y is given by Bayes’ theorem [53, 54]

P (H|y) =
P (H)P (y|H)

P (y)
, (6)

where P (H) is the prior belief in H, while P (y) is the
probability of the data, which serves as an irrelevant nor-
malization constant. The evidence P (y|H) is given by

P (y|H) ≡
∫
dϑP (ϑ|H)P (y|ϑH) , (7)

where P (ϑ|H) is the prior on the model parameters ϑ,
while P (y|ϑH) is the likelihood function.

The likelihood of Hypothesis 1 is given by

P (y|ϑiH1) ∝
∏
f>0

exp

(
−2|ỹ −Ash̃s −Ach̃c|2

Sn

)

∝ exp

(
−||y −Ashs −Achc||

2

2

)
, (8)

where ϑi = {Ac, As}. For a uniform prior on Ac and
As, the marginalization over ϑ in Eq. (7) corresponds to
maximizing the above likelihood over Ac and As. The
maximum likelihood estimator, using the shorthand no-
tation c = hc and s = hs, is then given by

Âc =
〈c|y〉
〈c|c〉

, Âs =
〈s|y〉
〈s|s〉

. (9)

Thus, according to Eqs. (7), (8) and the discussion above
Eq. (9):

P (y|H1) ∝ exp

(
−||y − Âss− Âcc||

2

2

)
, (10)

and consequently

P (H1|y) ∝ P (H1)P (y|H1)

∝ P (H1) exp

(
−||y − Âss− Âcc||

2

2

)
. (11)

Repeating these steps for Hypothesis 2 (As = Ac = 0)
gives

P (y|H2) ∝ exp

(
−||y||

2

2

)
, (12)

P (H2|y) ∝ P (H2) exp

(
−||y||

2

2

)
. (13)

The betting odds of H1 over H2, known as the odds
ratio, is given by

O12 ≡
P (H1|y)

P (H2|y)
=
P (H1)

P (H2)
B12 , (14)

where

B12 ≡
P (y|H1)

P (y|H2)
(15)

is the Bayes factor. We focus on using B12 throughout
this paper, though it agrees with O12 in the case of equal
priors P (H1) = P (H2) or in the case of uninformative
priors P (H1) = 0.5 and P (H2) = 0.5.

We next compute the log of the Bayes factor, which
using Eqs. (9), (10) and (12) is

T̂single ≡ log

[
P (y|H1)

P (y|H2)

]
Ac,s→Âc,s

=
〈c|y〉2

2〈c|c〉
+
〈s|y〉2

2〈s|s〉

=
〈c|c〉

2
(A2

c +A2
s) (16)

+
〈c|n〉2 + 〈s|n〉2

2〈c|c〉
+
As〈s|n〉+Ac〈c|n〉

〈c|c〉
= sT + nT , (17)

where sT is defined as the first term in equation (16)
i.e., sT = 〈c|c〉(A2

c + A2
s)/2 (= ρ2/2), and the remaining

terms are defined as nT . Note that in going from the
first line to the second and third lines in the above we
replaced the data y on the right-hand-side of the equality
in the first line by Eq. (3). Here, we have chosen the nor-
malization of hc and hs such that 〈c|c〉 = 〈s|s〉. If we are
to take the log of the odds ratio (defined in Eq. (14)) in-
stead of the log of the Bayes factor and P (H1) 6= P (H2),
sT needs to be shifted by log[P (H1)/P (H2)].

The evidence to favor (or disfavor) H1 over H2 de-
pends on the signal part sT , and the distribution of the
noise part nT . The GLRT ratio variable T̂single can be
intuitively thought of as an approximate spectral power
of y near the central frequency fpeak. The distribution of
nT is in general non-Gaussian, but when Ac,s = 0, it be-
comes χ2

2 (chi-squared with 2 degrees of freedom). Here
and throughout we assume that 〈c|n〉 and 〈s|n〉 are nor-
mally distributed. If we denote the right-tail probability
function of nT (whose probability distribution is PnT ) as

R(x) =

∫ ∞
x

PnT (z)dz , (18)

(with RAc,s=0 corresponding to that of the χ2
2 distribu-

tion) and the false-alarm probability is Pf , the criteria

for rejecting hypothesis H2 with T̂single computed from
observation data is

RAc,s=0(T̂single) ≤ Pf , (19)

or

T̂single ≥ R−1Ac,s=0(Pf ) . (20)
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Now, notice that under H1, T̂single = sT +nT is a random
variable depending on the underlying signal and detector
noise. Based on its distribution, one can infer the prob-
ability that the above inequality is satisfied, giving the
target detection rate (probability) Pd:

Pd ≥ R(R−1Ac,s=0(Pf )− sT ) . (21)

The amplitude of signal Ac,s required to satisfy the above
bound is then

1

2
〈c|c〉(A2

c +A2
s) ≥ R−1Ac,s=0(Pf )−R−1(Pd) , (22)

or equivalently, the SNR required to satisfy the bound is
given by

ρ ≥ ρthres ≡
√

2[R−1Ac,s=0(Pf )−R−1(Pd)] , (23)

where we used the relation sT = ρ2/2.
The probability distribution function PnT (z) inside the

integral of the right-tail probability functionR in Eq. (18)
is obtained as follows. For simplicity, we choose the nor-
malization such that 〈c|c〉 = 1 = 〈s|s〉, and denote X ≡
〈c|n〉2/2 + Ac〈c|n〉, Y ≡ 〈s|n〉2/2 + As〈s|n〉. Given that
X and Y are independent random variables, the proba-
bility distribution of the random variable Z = X + Y is
given by

PZ(z) =

∫ ∞
−∞

PX(x′)PY (z − x′)dx′ . (24)

However, notice that by definition X = (〈c|n〉+Ac)
2/2−

A2
c/2 ≥ −A2

c/2, and similarly Y ≥ −A2
s/2. Therefore,

Eq. (24) becomes

PnT (z) =

∫ z+A2
s/2

−A2
c/2

PX(x′)PY (z − x′)dx′ . (25)

Here

PX(x′) =

√
2

π

e−A
2
c−x

′
cosh[Ac

√
A2
c + 2x′]√

A2
c + 2x′

, (26)

which is obtained from a non-central χ2 distribution with
an appropriate change of variable. In fact, PnT can also
be obtained from a non-central χ2

2 distribution with an
appropriate change of variable. As expected, PX reduces
to a Gaussian distribution in the large Ac limit, and re-
duces to the χ2 distribution with one degree of freedom
for Ac → 0. The distribution PY follows similarly, with
c → s. For completeness, we show the variance of nT
in Appendix B. We also show the signal-to-noise level of
T̂ that one can use instead of ρ to discuss the detection
criterion.

There are two important facts regarding R. First, the
distribution R depends on Ac,s only through A2

c + A2
s.

This can be seen by writing nT as

nT =As〈s|n〉+Ac〈c|n〉+
1

2(A2
c +A2

s)
(Ac〈c|n〉+As〈s|n〉)2

+
1

2(A2
s +A2

s)
(As〈c|n〉 −Ac〈s|n〉)2 , (27)

and noting that Ac〈c|n〉+As〈s|n〉 and As〈c|n〉−Ac〈s|n〉
are independent Gaussian random variables with the
same variance, A2

c + A2
s. Second, if Ac,s = Amc,s is the

marginal solution that satisfies the equality in Eq. (22),
and if we further scale the detector noise such that
n → Cn without changing the definition of the inner
product 〈|〉 so that c and s do not have to be renor-
malized, it is straightforward to see that Ac,s = CAmc,s
still satisfy the equality in Eq. (22) with the rescaled
noise. Such a property is important as it means there is
a one-to-one mapping between the threshold event SNR
(schematically ∼

√
A2
c +A2

s/n) and Pf and Pd. Such a
property also carries over to the stacked signal we con-
sider in Sec. III B. Following the convention in [37], we
shall set the threshold SNR to ρthres = 5, which is con-
sistent with setting Pf = 0.01 and Pd = 0.982.

B. MC study

The detectability of post-merger oscillations from BNS
remnants is discussed in [37], assuming optimal sky ori-
entation and source inclination. The results indicate that
post-merger oscillations from individual sources are de-
tectable only by third-generation GW detectors. Here
we extend the analysis, but with two important modifi-
cations that make the analysis more realistic (although
unfortunately greatly reducing detectability):

1. Instead of assuming the optimal sky location and
source inclination that maximize the SNR, we ran-
domly sample sources in sky direction, orbit in-
clination angle and polarization angle. According
to [55, 56], the sky-averaged amplitude for a given
type of source receives a 2/5 reduction factor com-
pared to the optimized configuration (assuming an
“L”-shaped GW detector). In addition, the open-
ing angle between arm cavities in the design for
ET is 60◦, leading to an overall

√
3/2 reduction in

signal amplitude comparing to an “L”-shaped in-
terferometer with the same arm length. In our MC
simulations, we have a different reduction factor for
each source based on its parameters, although on
average it recovers the 2/5 factor for “L”-shaped
detectors. To obtain the reduction factor for each
source, we assume the “L”-shape antenna pattern
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function [55] for CE:

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ , (28)

F× =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ

+ cos θ sin 2φ cos 2ψ , (29)

and the single-detector antenna pattern function
for ET [56]:

F+ = −
√

3

4

[
(1 + cos2 θ) sin 2φ cos 2ψ

+2 cos θ cos 2φ sin 2ψ] , (30)

F× =

√
3

4

[
(1 + cos2 θ) sin 2φ sin 2ψ

−2 cos θ cos 2φ cos 2ψ] . (31)

Here θ and φ are the angular coordinates of the
source in the detector frame and ψ is the polariza-
tion angle. The amplitude fraction in each polar-
ization can be computed by

A+ = F+
1 + cos2 ς

2
, A× = F× cos ς , (32)

where ς is the inclination angle of the BNS orbit
with respect to the line of sight. The overall am-
plitude reduction factor with respect to the opti-
mal configuration that enters in Eq. (1) is then

given by Ar =
√
A2

+ +A2
× for an “L”-shape de-

tector and Ar = (2/
√

3)
√
A2

+ +A2
× for a sin-

gle detector following the ET design. If we al-
low three detectors placed in a triangle geometry
as explained in [56], the corresponding factor is

Ar = 2/
√

3
√∑

i,j A2
i (θ, φ+ 2πj/3, ψ, ς) with the

summation over i = (+,×) and j = (−1, 0, 1). The

total SNR receives a factor of
√

3 boost on average
compared to the single detector case. In fact, if
there are Nd identical detectors, the total SNR is a
factor of

√
Nd larger than the single detector SNR.

2. We adopt a more up-to-date estimate of the BNS
merger rate from [1] based on the observed BNS
merger. Such a rate (RBNS = 1.54 Mpc−3 Myr−1)
is 1.5 times higher than the “realistic” rate of [57],
which was adopted in [37]. Naturally, as a re-
sult, we predict more detections over a one-year
observation period. Our conclusions can be eas-
ily modified if the true rate turns out to be dif-
ferent than this number. An argument about the
relevant scaling goes as follows. Considering the
case where for a given rate RBNS only one event
is above the detection threshold within a volume of
space V after Tobs = 1 yr of observations, we have

RBNS × V × Tobs = 1. But, V ∝ d3 ∝ 1/ρ3, with
d the distance. Thus, the SNR should scale with

the merger rate as ρ ∝ R
1/3
BNST

1/3
obs . In reality dif-

ferent merger events are not identical, their source
parameters and sky locations all affect their SNR,
and for sufficiently high redshift V is not simply
proportional to d3. Nevertheless, the above simple
expression can be used to approximately scale the
SNR that we present in our study below for differ-
ent merger rates or observation periods.

Our analysis is based on the waveform model of Eq. (1),
which depends on the peak frequency fpeak, the qual-
ity factor Q and the 22 mode amplitude A′, the angle-
dependent amplitude factor Ar and phase offset φ0. We
estimate the 22 mode frequency (fpeak) using the fit of
[12] (see also [11, 14, 58–61] for other fits)

fpeak
1kHz

=
m1 +m2

M�

[
a2

(
R1.6M�

1km

)2

+ a1
R1.6M�

1km
+ a0

]
,

(33)

where a0 = 5.503, a1 = −0.5495 and a2 = 0.0157 are
EOS-independent parameters; R1.6M� is the radius of a
non-rotating NS with gravitational mass 1.6M�, and this
parameter therefore encodes the EOS dependence. We
choose the masses by independently sampling the Gaus-
sian distribution [62]

P (MNS;M0, σ) =
1√

2πσ2
exp

[
− (MNS −M0)2

2σ2

]
(34)

with M0 = 1.33M� and σ = 0.09M�.
The quality factor and 22 mode amplitude in Eq. (1)

should also depend on the NS EOS, the mass ratio and
mass of the binary, but the detailed dependence is cur-
rently unknown. In order to enable comparison to the
results in [37], we set A′ and Q such that the peak value
of the characteristic strain and the SNR of Eq. (1) match
the peak characteristic strain and SNR of the dominant
22 mode component in Fig. 11 of [37], which corresponds
to the post-merger signal arising from a 1.35M�+1.35M�
BNS with optimal extrinsic parameters (sky location and
inclination angle), at luminosity distance d = 50Mpc
with the Hempel et al. EOS (TM1) [43]. The match-
ing process yields Q = 34, A′ = 2.5 × 10−22. For a
binary obeying the TM1 EOS, but with different compo-
nent masses and luminosity distance we still set A′ based
on a 1.35M� + 1.35M� BNS, i.e.,

A′ = 2.5× 10−22 × 50Mpc

d
. (35)

While choosing A′ based on results from 1.35M� +
1.35M� BNSs is not ideal, it should provide a reasonable
approximation if Eq. (34) is valid for merging BNSs, be-
cause it is narrowly peaked around 1.33M� and hence
the majority of BNSs are near equal mass binaries with
total mass ∼ 2.7M�. Nevertheless, such a prescription
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FIG. 1. Histogram for single event SNR for 100 realizations
in the MC simulation. Orange bins represent the SNR with
respect to the sensitivity of the ET (single detector). Blue
bins are associated with the triple-detector, triangle design of
the ET [56]. Green bins represent the SNR with respect to
the sensitivity of the CE (wide-band configuration). The de-
tection threshold (ρ = 5) is indicated by the red, dashed line.
The TM1 EOS and one year observation is assumed, and the
binary merger rate is taken to be RBNS = 1.54Mpc−3Myr−1.
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FIG. 2. Histograms of the second and third loudest events
with the CE sensitivity, from the same MC runs as in Fig. 1.
Orange bins represent the SNR of the second loudest event,
while blue bins represent the SNR of the third loudest event.

needs to be revised once we gain more systematic (and
accurate) understanding of the functional dependence of
A′ and Q on the binary intrinsic parameters from future
numerical simulations of BNS mergers, complemented by
actual observations. Since in this section we are only in-
terested in SNRs of individual events, we will set the
phase offset to zero.

We ran 100 MC realizations each covering one-year
of observations to calculate SNRs. In each realiza-
tion, we reject binaries with total mass exceeding the
prompt-collapse threshold mass Mthres based on the re-
sults of [42]. We note that, strictly speaking, a BNS with
total mass just below Mthres in general cannot survive
for more than a few ms following merger, and hence it

cannot exhibit any loud post-merger oscillations. The
simulations of [8] suggest that the threshold mass for
rejecting binaries from our MC realizations should be
∼ 0.95×Mthres. However, this effect has a small contribu-
tion to our results because the total mass distribution for
BNSs derived from Eq. (34) is also Gaussian and is given
by Eq. (34) with M0 = 2.66M� and σ = 0.1273M�.
As a result, the fraction of binaries with mass above
0.95×Mthres is only 1% (for the TM1 EOS3).

For the single-event study we consider both the ET
and CE third-generation ground-based GW observato-
ries. The ET sensitivity is obtained from [63] and the
CE sensitivity from [64]. For the CE, we choose the wide-
band configuration, because it has better sensitivity than
the “standard configuration” above 1kHz. For the ET
configuration, we consider both a single interferometer
and a triangular arrangement with three interferometers.

In each MC realization there are about 40-70 events
with ρ > 1. In Fig. 1 we present the SNR of the loudest
event in each of the 100 MC realizations with the TM1
EOS. Our MC simulations show that for the ET (with
single interferometer) and CE sensitivities, there is a 25%
and 79% chance respectively to have a single loud event
passing the detection threshold after acquiring data for
a full year (for the triple-detector ET case it is a 56%
chance). In Fig. 2 we present the SNR of the second
and third loudest event in each of 100 MC realizations
for CE. The plot shows that after a year of observations
there is about a 43% chance to have a second and a 23%
chance to have a third event above detection threshold.
The even lower chance of detecting secondary and ter-
tiary events above the detection threshold of 5 implies
that there is little room for stacking if one insists on us-
ing only signals above this threshold in order to obtain
a much stronger signal that will reduce the statistical
uncertainties in parameter estimation.

Given that the ET and CE are the most sensitive
ground-based GW detectors proposed so far, our results
indicate that (for the currently envisioned configurations)
unless the true BNS merger rate turns out to be sub-
stantially higher than the rate we adopt in our study,
or nature supplies a more “favorable” EOS as discussed
in the next paragraphs, over the next few decades the
prospect to directly probe the dominant peak of BNS
merger remnant oscillations from individual events does
not appear very promising. Of course, this observation is
a consequence of adopting ρthres = 5. Since post-merger
oscillations will be an example of a triggered search, it is
conceivable that a lower threshold could be targeted.

All of the above results were obtained with the TM1
EOS, but we also studied several other popular and re-
alistic, finite temperature nuclear EOSs. In particular,

3 For other EOSs we introduce later, this fraction is practically
the same for the LS220 EOS, even lower for the DD2 and Shen
EOSs, and a bit larger for the SFHo EOS (in the latter case,
however, we will see that the post-merger GWs are difficult to
detect in the first place).



9

we considered the Steiner et al. EOS SFHo [65], the
Lattimer Swesty EOS [66] with compressibility param-
eter K = 220 MeV (LS220), the Hempel et al. EOS
DD2 [43], and the Shen et al. EOS [67]. These EOSs were
chosen because they all have a maximum mass above
2.0M� [68, 69], they cover a range of stiffness, and be-
cause they take into consideration finite temperature ef-
fects self-consistently. The parameters for performing the
MC simulations with these different EOSs are listed in
Table I. The strain amplitude A′ and the quality factor Q
are chosen such that the peak value of the characteristic
strain and SNR of Eq. (1) match the peak value of the
characteristic strain and SNR of the post-merger dom-
inant 22 component reported in the BNS merger sim-
ulations of [13, 70, 71]. In Appendix A we show how
well the Lorentzian profile of Eq. (1) approximates the
post-merger spectra in the vicinity of the dominant post-
merger peak found in numerical relativity simulations.

Assuming RBNS = 1.54Mpc−3Myr−1, the results of
the MC realizations with different EOSs are presented in
Fig. 3, which shows that, among the EOSs that we study,
both SFHo and DD2 EOS have small detection rates (∼
13% and 30% respectively, with 76% for LS220 and 100%
for Shen) for post-merger oscillations after a full year of
observations with CE. However, it should be stressed that
these results should be considered only as approximate,
with the detailed numbers subject to change with more
accurate modeling of NS mergers in the coming years.

Given the richness and importance of the physics en-
coded in the post-merger signal, there is strong moti-
vation to improve its detectability by exploiting the in-
formation we can anticipate from the current/planned
generation of detectors, and informing designs for future
GW detectors to maximize their sensitivity to this phase
of BNS mergers. In this work we are focusing on the
former approach, and in next section show that stacking
signals from multiple detections can significantly enhance
the sharpness of the post-merger signal. We describe the
details of the power and coherent mode stacking methods
we propose in the next section.

TABLE I. Parameters for different EOS

EOS R1.6M� fpeak(kHz)
M�

m1+m2

A′(50Mpc)

10−22 Q Mthres
M�

SFHo 11.77 1.21 2.7 25.7 2.95

LS220 12.5 1.09 4.3 25.7 3.05

DD2 13.26 0.98 2.8 12.7 3.35

Shen 14.42 0.84 5.0 23.3 3.45

TM1 14.36 0.85 2.5 34.2 3.1

III. MULTIPLE EVENT DETECTION

In this section we present the GLRT formalism for
stacking multiple events, and we assess the detectability
of BNS post-merger oscillations through such a stacking
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FIG. 3. The same setting as in Fig. 1 but with different
EOSs and with respect to the CE sensitivity alone. Orange
bins represent the SNR for the SFHo EOS, blue bins for the
LS220 EOS, green bins for the DD2 EOS and red bins for the
Shen EOS.

analysis using third-generation ground based GW inter-
ferometers.

The GLRT formalism described in Section II A jus-
tifies the rationale of claiming detection from a single
event with unknown phase, within the Bayesian frame-
work. When it is applied to single-event detections, it
should give consistent results with previous studies [37].
However, as discussed in Sec. II B, these single events
are not likely to allow a direct detection of post-merger
oscillations even when using the most sensitive ground-
based GW detectors proposed so far, unless event rates
are higher than expected or the EOS is Shen-like. In the
few cases where we manage to beat the odds and have
a loud event, the chance of also having a second suffi-
ciently loud event is even slimmer (Fig. 2). Nevertheless,
regardless of whether there is a loud event passing the
detection threshold, our MC studies indicate that there
will likely be several tens of events with modest SNR (e.g.
1 ≤ ρ ≤ 5), which we exploit in this work to increase the
chances of detection and improve the accuracy of param-
eter estimation. Notice that although the post-merger
SNRs of these events are low, their inspiral SNRs will be
significantly higher and easily detectable. This point will
be further discussed in Sec. III B.

A. Hypothesis testing with power stacking

In this section, we apply the Bayesian model selection
approach discussed in [40] for multiple events, which we
refer to as power stacking. With a group of events yi
(i = 1, .., N), the combined Bayes factor is [40]

B12 =

N∏
i=1

P (yi|H1)

P (yi|H2)
, (36)
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where the combined T̂ variable is

2T̂power ≡2 log

N∏
i=1

P (yi|H1)

P (yi|H2)

=

N∑
i=1

{
(〈ci|yi〉)2

〈ci|ci〉
+

(〈si|yi〉)2

〈si|si〉

}

=

N∑
i=1

〈ci|ci〉(A2
c,i +A2

s,i) +

N∑
i=1

〈ci|ni〉2 + 〈si|ni〉2

〈ci|ci〉

+2

N∑
i=1

As,i〈si|ni〉+Ac,i〈ci|ni〉
〈ci|ci〉

=2sTp + 2nTp . (37)

Note that in writing down such a combination of Bayes
factors, we have implicitly assumed that all events follow
the same hypothesis. This assertion relies on the assump-
tion that post-merger oscillations should exist if the mass
of the remnants is below the (EOS-dependent) threshold.
This GLRT variable does not have the same type of noise
distribution as that analyzed in Sec. II A. Instead, its dis-
tribution is obtained from a non-central χ2

2N distribution
with an appropriate change of variable. For sufficiently
large N, due to the central limit theorem, the distribu-
tion of nTp is a Gaussian with mean N and variance (all
ci, si are normalized such that 〈ci|ci〉 = 〈si|si〉 = 1)

Var[nTp] = N +

N∑
i=1

(A2
c,i +A2

s,i) ≡ σ2
nTp . (38)

The distribution of the noise (2nTp) associated with the
null hypothesis Ac,s = 0 is just a χ2

2N distribution, which
also asymptotes to a Gaussian distribution in the large
N limit with mean 2N and variance 4N . Let us denote

Qσ(x) ≡ 1√
2πσ

∫ ∞
x

dy e−y
2/(2σ2) , (39)

and

U2N (x) ≡
∫ ∞
x

dy Pχ2
2N

(y) , (40)

so that the requirement to reject the null hypothesis with
significance level Pf , and the change of success (detection
rate) is Pd, is

N∑
i=1

(A2
c,i +A2

s,i) ≥U−12N (Pf )−R−12N (Pd)

≈U−12N (Pf )− 2N − 2Q−1σnTp
(Pd) , (41)

where R2N is the right-tail probability function for the
random variable 2nTp . In practice, Pd being around 0.99
is already a decent detection rate.

B. Hypothesis testing with coherent stacking

The coherent stacking approach developed in [41] for
black hole ringdowns relies on extra information to align
the phase between modes in different events. For BNS
mergers such accuracy in theoretical modelling (even
given the EOS) is unavailable at present. However, with
improvements in numerical simulations expected in the
future, it is possible that the inspiral part of BNS wave-
forms could be used to predict the phase of post-merger
modes (again, given the EOS). The investigation in this
section relies on the above assumption.

We develop a method of coherent stacking that relies
on the existence of a dominant post-merger peak fre-
quency, universally related to the component masses and
the radius via Eq. (33). The component masses and the
time of merger can be determined from the inspiral part
of the waveform to high accuracy. For example, a Fisher
analysis suggests that the mass of each individual compo-
nent in a 1.35M�+1.35M� NS binary located at 300Mpc
away from Earth can be measured to a precision better
than ∼ 0.1%, assuming optimal sky location and orien-
tation of the source using CE. The relation in Eq. (33)
itself is not exact, but we expect the theoretical under-
standing leading to it to improve over time with more
accurate numerical simulations and better constraints on
the EOS. Of course, one should note that even if Eq. (33)
were exact for the set of candidate EOSs studied, there
could still be a systematic error if none of these EOSs
are close enough to the true finite temperature NS EOS.
If this is the case, fpeak will be erroneously predicted,
degrading the efficiency of the coherent stacking process.
We refer to Sec. IV A for more discussions on comparing
different EOSs.

In our stacking approach we pick events with modest
SNR (ρ ≥ 1) and assume that the phase φ0 can be deter-
mined by the inspiral waveform within an uncertainty

σφ0 ≈ C

ρinspiral
, (42)

where C is a constant to be determined by future simu-
lations. For the Monte-Carlo investigation in Sec. III C
we choose C = 2π.

Different events will in general have different remnant
masses and hence different 22 mode frequencies; there-
fore, we need to rescale the data before stacking so that
all 22 modes have the same frequency. Such a procedure
has been described in detail in [41] to reprocess data be-
fore coherent stacking of BH ringdown modes, and in [37]
for constructing a “universal” template bank.

With this at hand, let us now proceed with stacking.
Suppose we have a set of rescaled data from N different
events with ρ > 1

ỹi(f) = g̃i(f) + ñi(f) , (43)

where i = 1, . . . , N labels different events with g̃i ≡
Ac,ih̃c,i +As,ih̃s,i. We further assume that φi = φ0i + δφi
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is the estimator for the phase of each event, where φ0i
are the unknown, true underlying phases while δφi is the
measurement uncertainty of φi. We then align the phases
and coherently sum up the data with different weights via
(0 < wi ≤ 1):

ỹ =
∑
i

wie
iφi(g̃i + ñi)

=g̃y + ñy , (44)

where g̃y (ñy) is the signal (noise) part of the stacked
data ỹ.

The stacked data can now be used to construct the log
Bayes factor for the hypothesis that a signal is present
versus one where no signal is present. Based on the dis-
cussion in Sec. II A, we then need to evaluate the quantity
〈y|I|y〉, with I ≡ |c〉〈c|+ |s〉〈s| and the brackets 〈|〉 here
are defined with respect to the spectrum of ny. The quan-
tities c and s are again defined as in Sec. II A but with
individually rescaled frequencies. It is also straightfor-
ward to verify that I|gi〉 = |gi〉, because we assume that
the frequency uncertainty with a known EOS is negligi-
ble. Using this property, T̂coherent is given by

2T̂coherent ≡ 〈y|I|y〉

=
∑
i

w2
i 〈gi|gi〉+

∑
i 6=j

wiwj〈gieiφi |gje−iφj 〉

+
∑
ij

wiwj〈nieiφi |I|nje−iφj 〉

+
∑
ij

wiwj [〈gieiφi |nje−iφj 〉+ 〈nieiφi |gje−iφj 〉]

= 2sTy + 2nTy , (45)

where 2sTy is used to designate the term appearing on
the first line and 2nTy all remaining terms. We refer to

sTy (nTy) as the signal (noise) part of T̂coherent.
The signal part of the stacked data can now be used to

determine a detection criterion. We begin by evaluating
sTy with an ensemble average over the phase uncertain-

ties (using 〈eX〉 = e−〈X
2〉/2 for any Gaussian random

variable X with zero mean)

2〈sTy〉 =
∑
i

w2
i 〈gi|gi〉

+
∑
i 6=j

wiwj〈gieiφ
0
i |gje−iφ

0
j 〉e−

σ2φi
2 −

σ2φj
2 , (46)

which corresponds to the stacked SNR squared, and
where σ2

φi
= 〈δφ2i 〉. Based on the discussion in Sec. II A,

the SNR of y has to be larger than 5 to pass the de-
tection threshold. Then, the detection criteria for the
stacked signal is just√

2〈sTy〉 ≥ 5 . (47)

The weight coefficients wi are chosen such that 〈sTy〉
is maximized, and in this work it is achieved using the

downhill simplex optimization method [72, 73]. Similar
to the single event case, we present the variance of nTy
in Appendix B, together with the signal-to-noise level of
T̂coherent.

The performance of stacking is discussed in Sec. III C,
but let us make an immediate observation. If there are
N events under stacking and all of them have compara-
ble SNR, this coherent stacking method would produce
an O(N1/2) boost in sTy

4. In reality, there is always
a small group of events with high SNR, while the re-
maining events have low SNR. Thus, in practice the im-
provement factor over the event with best SNR can never
achieve N1/2-type scaling. The same observation was
made when coherently stacking ringdown modes from BH
coalescences [41].

C. MC study

In this section, we show how stacking enhances the
chance of detecting BNS post-merger signals by using
the results of our MC simulations. We first compare the
results for power stacking against single event detection.
We next compare coherent stacking against power stack-
ing and show that the former works more efficiently than
the latter.

We note that it is difficult to define a SNR for a com-
bined set of events, because the statistical distributions
of T̂ for the true and null hypotheses (H1,2) are different
from those of a single event (see Eq. (16)). As a result,
we define a new quantity α, which is the universal scale
factor that the SNR of all events should be divided by (or
detector noise should be multiplied by): Ai → Ai/α, in
order to exactly satisfy the detection bound in Eq. (41)
or Eq. (47). The larger this detection-threshold-matching
factor α is, the more efficiently an analysis method per-
forms. We shall apply this α to characterize the perfor-
mance of stacking in this Section.

1. Power stacking versus single event detection

In each MC realization performed in Sec. II B, we
pick the top N events to construct the Bayes factor in
Eq. (37). In Fig. 4, for illustration purposes we choose N
to be 5 and 30, although N can be any positive integer
less than or equal to the total number of events detected
in general.

In Fig. 4, α for any single event is equal to its SNR/5.
Before applying power stacking with the TM1 EOS, there
is roughly a 79% chance to detect a post-merger 22 mode
with CE operating for a year. Power stacking leads to
a decrease in the false alarm rate. For N = 5, this de-
crease is enough to allow the stacked signals to pass the

4 Notice that Sn in the definition of the inner product scales lin-
early with N .
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FIG. 4. Histogram for power-stacked, coherently stacked and
single-event α (a proxy for SNR, with α = 1 being the detec-
tion threshold), in each realization for the TM1 EOS. Orange
bins represent the top event in each MC realization without
stacking, with 79/100 passing the detection threshold. Blue
bins represent power stacking using the loudest 5 events, and
demonstrate that all realizations pass the detection thresh-
old. Green bins represent power stacking using the loudest 30
events, showing an improvement compared to power stacking
5 events. Pink bins represent coherently stacking the top 5
events with C = 2π in Eq. (42); all cases pass the detection
threshold, and the skew of the distribution toward larger val-
ues of α indicates that coherently stacking the top 5 events is
more efficient than power stacking the top 30 events.
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FIG. 5. Vertical axis: the improvement factor of effective SNR
for the power stacked signal (N = 30) over the best single
event in each MC realization with the TM1 EOS. Horizontal
axis: the ratio of ρ between the second best event and the
best event in each MC realization.

detection threshold in all MC realizations. For N = 30,
all stacked events are able to pass the detection thresh-
old, and the improvement factor in α is roughly a factor
of 1.5. In principle, events with low SNR could con-
tribute more noise fluctuations than signal improvement
in T̂power, which means that adding more events does not
necessarily lead to better statistics for detection. This
is shown in Fig. 5 because some of the MC realizations
have α1st > αpower. Here α1st stands for the α factor of

the top event in each MC realization.
Intuitively we can interpret 5 × αpower as the “effec-

tive SNR” of the power stacked signals, as 5 × αsingle

is the SNR of a single event. In this sense, αpower/α1st

just characterizes the improvement in effective SNR by
power stacking. As shown in Fig. 5, this effective SNR
improvement ranges between 0.7 and 2.5, with median
value at 1.57. When the SNR of the best event is much
higher than the rest, so that ρ2nd/ρ1st is small, the ef-
fective SNR improvement tends to be smaller. Therefore
the power stacking approach works better for events with
more uniformly distributed SNRs.

We conclude this subsection with a short discussion
of how our results would change if we had chosen a dif-
ferent EOS. Assuming that the enhancement in SNR (a
factor of ∼ 1.5) due to power stacking relative to a sin-
gle event does not depend strongly on the EOS, one can
roughly estimate the distribution of ρ after stacking for
various EOSs by shifting the histograms in Fig. 3 to larger
SNR by a factor of ∼ 1.5. Doing so, one finds that it is
very likely that the stacked signal can be detected for all
EOS we consider here except for the case of the SFHo
EOS. This clearly shows that the detectability of the
post-merger signal is sensitive to the underlying EOS.

2. Coherent stacking versus power stacking

We now compare the SNR improvement between co-
herent and power stacking. In Fig. 4 we show α for a
coherently stacked signal using the top 5 events in each
of the 100 MC realizations discussed earlier, and C in (42)
is assumed to be 2π. Because the inspiral SNRs of these
events are much greater than the post-merger SNR, the
effect due to phase and frequency uncertainties of modes
is negligible. The weight wi is basically proportional to
post-merger SNRi, and the SNR of the coherently stacked

signal to close to
√∑

i SNR2
i . Figure 4 demonstrates that

the α distribution for coherent stacking of five events is
skewed toward larger values than power stacking of thirty
events. Thus, coherent mode stacking outperforms power
stacking in this setting.

Another way to compare the two stacking approaches
is to consider a simple scenario in which all N events have
identical SNR, and ask how many events are needed to
satisfy the detection threshold for each stacking method.
For power stacking, this gives the following equation for
the threshold number N in terms of the individual event
SNR ρ (for simplicity, we ignore the fact that N has to
be integer)

√
N

2
ρ2 =

1

2
√
N

[U−12N (Pf )− 2N ]−
√

1 + ρ2Q−11 (Pd)

≈ Q−11 (Pf )−
√

1 + ρ2Q−11 (Pd) . (48)

One immediate observation is that unlike the coherent
stacking case discussed in Sec. III B, the N − ρ relation
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is not a single power-law. For example, if Pd = 0.5, the
second term in Eq. (48) vanishes and we can see that the
threshold SNR satisfies ρ ∝ N−1/4. On the other hand, if
the second term dominates over the first term in Eq. (48)
and ρ� 1, the threshold SNR satisfies ρ ∝ N−1/2.

To compare the performance between coherent mode
stacking and power stacking, assuming all events have the
same single SNR ρ, we compute the number of identical-
SNR events N needed to satisfy the equality in Eq. (47)
for coherent stacking, and the equality in Eq. (41) or
Eq. (48) for power stacking. In the coherent stacking
case, this can be computed exactly:

√
Nρ = 5 , (49)

without considering phase uncertainty and

ρ2[1 + (N − 1)e
−σ2

φ0 ] = 25 , (50)

where for illustration purpose we also include a case with
phase uncertainty δφ0 ≈ 1/ρ 5. In the power stacking
case, one must carry out the calculation numerically for
a given Pf and Pd, as shown in Fig. 6. In this idealized
scenario, coherent stacking always outperforms power
stacking as it requires fewer events to pass the detection
threshold for the same Pf = 0.01 and Pd = 0.982. The
Gaussian distribution approximation (the second line in
Eq. (48) corresponds to the blue dashed line, which un-
derestimates the performance of power stacking (blue
solid line) for small N , but agrees better with the ex-
act expression in the first line of Eq. (48) for larger N ,
as expected. We also find that the phase uncertainty in
the coherent stacking case becomes more important in
the low-ρ regime – the red solid line departs more from
the red dashed line – as expected from Eq. (50).

IV. MODEL SELECTION AND PARAMETER
ESTIMATION

We now discuss how well one can distinguish two dif-
ferent EOS models, mainly focusing on power stacking.
We also show how accurately one can measure the peak
frequency (and in turn the NS radius) with the stacked
events.

A. Model selection for EOSs

In order to compare the likelihood of different EOSs
based on the measured data, and in particular based on
the stacked signal, we perform a Bayesian model selec-
tion method to evaluate the relative performance between

5 For a general event we expect ρ to be proportional to ρinspiral,
so that δφ0 ∝ 1/ρ according to Eq. (42). We arbitrarily picked
a coefficient 1 to illustrate the effect of phase uncertainty.
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FIG. 6. Number of identical events needed to satisfy the
detection threshold, as a function of single event SNR ρ, with
the false alarm rate Pf = 0.01 and the detection probabil-
ity Pd = 0.982. The blue solid (dashed) line represents the
requirement for power stacking with (without) the Gaussian
approximation. The red solid (dashed) line represents the re-
quirement for coherent mode stacking with (without) phase
alignment uncertainty considered. Note that coherent stack-
ing is always more efficient than power stacking (fewer events
are needed to cross above the detection threshold).

different models. In general, for a given data set y and
two possible models H1, H2, one can evaluate the Bayes
factor given in Eq. (15)6.

Given that we can perform the analysis we present in
Sec. III B for multiple EOSs, we can determine the EOS
which gives the best SNR, which here we call model 1,
and then perform a model selection test for other EOSs
by using the data set y corresponding to model 1. Then
within the GLRT framework, we evaluate the following
Bayes factor:

B1|2 ≡
P (y|H1)

P (y|H2)
. (51)

We shall denote the two basis functions in model 1 as
c(1) and s(1) and the basis functions in model 2 as c(2)

and s(2). According to Eq. (8), we then have

T̂1|2 = logB1|2

= −||y − Â1cc
(1) − Â1ss

(1)||2

2

+
||y − Â2cc

(2) − Â2ss
(2)||2

2
. (52)

Inserting the expressions for the maximum likelihood es-

6 For coherently stacking multiple events, we generically obtain
different stacked signals for different EOSs, and thus different
data sets that one has to compare to perform model selection.
This introduces a subtlety that we discuss in Appendix C, but
for simplicity we ignore it in the following analysis.
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timators (c.f. Eq. (9)) in the above equation, we obtain

T̂1|2 =
(〈c(1)|y〉)2

2〈c(1)|c(1)〉
+

(〈s(1)|y〉)2

2〈s(1)|s(1)〉

− (〈c(2)|y〉)2

2〈c(2)|c(2)〉
− (〈s(2)|y〉)2

2〈s(2)|s(2)〉
= ∆sTy + ∆nTy , (53)

where ∆sTy and ∆nTy are the signal and noise part of

T̂1|2 respectively. For multiple events under the power
stacking framework, we simply multiply all the posterior
distributions, and the total Bayes factor is

T1|2,power = log

N∏
i=1

B1|2,i

= −
N∑
i=1

||yi − Â1c,ic
(1)
i − Â1s,is

(1)
i ||2

2

+

N∑
i=1

||yi − Â2c,ic
(2)
i − Â2s,is

(2)
i ||2

2

= ∆sTp + ∆nTp . (54)

In this case, the expectation of T1|2 is

〈∆sTp〉 =

N∑
i=1

〈gi|I1,i − I2,i|gi〉

:= 〈logB1|2〉,power . (55)

On the other hand, we could coherently stack data
from different events, if the assumption made in Sec. III B
is met. By assuming that model 1 is the true EOS, we
then find

2〈∆sTy〉 =
∑
i

w2
i (〈gi|gi〉 − 〈gi|I2|gi〉)

+
∑
i 6=j

wiwj〈gieiφ
0
i |I1 − I2|gje−iφ

0
j 〉e−σ

2
φi
/2−σ2

φj
/2

:= 〈logB1|2〉,coherent , (56)

where we use 〈∆sTy〉 as the expectation of logB1|2 for
coherent stacking. Notice that 2〈∆sTy〉 above reduces to

2〈sTy〉 in Eq. (46) when I2 = 0 (i.e. when c(2) = 0 =

s(2)).
One can use the Jeffreys scale of interpretation of

Bayes Factor [74] to determine how significant a Bayes
factor is. If B1|2 is between [1, 3], the statistical signifi-
cance is barely worth mentioning; if 3 < B1|2 < 10 the
evidence is strong; if 10 < B1|2 < 100 the evidence is very
strong and beyond 100 it is decisive.

While events under detection threshold can be used to
accumulate statistics via stacking in Eq. (16), the inter-
pretation of the results of model selection (and also pa-
rameter estimation to be discussed in Sec. IV B) should
be used with caution. This is because if the combined
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FIG. 7. Average (log of) Bayes factor for different MC real-
izations, testing EOS TM1 against DD2. Blue bins represent
the stacked signals with the loudest 30 events according to
Eq. (55). There are 79 realizations where their best events in-
dividually pass the detection threshold, and their correspond-
ing Bayes factors are shown in orange bins.

statistics of a set of events does not pass the detection
threshold, the existence of a 22 mode in any of these
events is not confirmed. For simplicity we only present
the distribution of 〈logB1|2〉,power (using the 30 loud-
est events) versus the distribution of 〈logB1|2〉 for sin-
gle events; repeating the analysis with coherent stacking
will introduce the additional complication of dealing with
the effect of phase uncertainty, which we leave to future
studies.

As an application, we assume TM1 to be the under-
lying EOS (model 1), and test it against the EOS DD2
(model 2). As discussed in Sec. III, there are 79 out of 100
MC realizations with at least one event passing the detec-
tion threshold, and all 100 MC realizations that pass the
detection threshold when we apply power stacking for the
top 30 events. For each MC realization that can claim
a detection, we compute the corresponding Bayes factor,
which is shown in blue bins in the histogram in Fig. 7.
Notice that these average Bayes factors can only be used
to rank the models in a semi-quantitative manner, as it
is non-trivial to convert them to probability measures.
A full analysis would require one to generate statistical
distributions of these Bayes factors for each underlying
EOS. In other words, Fig. 7 should be interpreted as the
scattering of the average Bayes factor due to the astro-
physical distribution of sources. Based on the results of
comparing a single pair of EOSs, we conjecture that as
long as a single event has passed the detection threshold,
it can be used to distinguish between different EOSs with
“very strong evidence”. However, single events are less
likely to be detected than the stacked events, and thus,
the latter have more chance of distinguishing different
EOSs than the former.
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B. Parameter estimation for the peak frequency

Given a signal, we can also study the degree to which
we can estimate its peak frequency, which we do here via
a Fisher analysis. This can also serve as an alternative
approach to distinguish between different EOSs, as they
generally predict different peak frequencies. As a sim-
ple example, we assume TM1 as the best-fit EOS and
construct the stacked signal accordingly. Next we pro-
mote the waveform (Eq. (1)) parameter vector to four-
dimensions:

λi =
(
A, φ0, fpeak, Q

)
(57)

with A = A′Ar, and maximize Eq. (8) to obtain maxi-
mum likelihood estimators of these parameters.

In the Fisher approximation, the uncertainty in λi can
be evaluated through the (Fisher) information matrix

Γij = 〈∂ih|∂jh〉 , (58)

where ∂i ≡ ∂/∂λi and the inner product is defined with
respect to the spectrum of ñy in Eq. (44). The measure-
ment uncertainty of fpeak is simply

δfpeak ≥
√

(Γ−1)fpeakfpeak
, (59)

where the right hand side corresponds to the square root
of the (fpeak, fpeak) element of the variance-covariance
matrix. The inequality in the above equation comes
about because of the Cramer-Rao bound, which guar-
antees a best-case measurement for a set of parameters
in the high SNR limit [75]. We will use a Fisher analysis
here only as a rough estimate of the accuracy to which
parameters can be measured; a more complete analysis
would construct the posterior probability distribution for
each parameter through a detailed mapping of the likeli-
hood surface, but this is beyond the scope of this paper.

Using these arguments and the approximations in [37],
we assume that the off-diagonal terms of the Γ matrix
are small, so that

δfpeak ≈
(
Γfpeakfpeak

)−1/2
= 〈∂fpeak

h|∂fpeak
h〉−1/2

≈ 0.7
fpeak
Qρ

, (60)

where in the last approximate equality we used the fact
that the Fourier transform of Eq. (1) satisfies ∂fpeak

h̃ ∼
Qh̃/fpeak. The factor of 0.7 comes from a numerical
fit to our set of data using the TM1 EOS, which is
also expected by computing δfpeak/fpeak for a universal
Lorentzian-Type waveform. This shows that for Q = 34
(corresponding to the TM1 EOS) with a signal of ρ ∼ 6.5,
fpeak can be measured to ∼ 0.3% accuracy at best.

We now look at the effect of the off-diagonal terms in
the Fisher matrix. If we include φ0 in addition to fpeak
into the Fisher analysis, as they both enter the argument
of the phase factor in the waveform, we find that the
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FIG. 8. Histogram of δfpeak for different MC realizations,
assuming the TM1 EOS and a 1.35 + 1.35M� BNS merger
remnant with corresponding fpeak = 2.3 kHz. The blue bins
correspond to the power-stacked signal using the loudest 30
events from each of the 100 realizations that pass the de-
tection threshold, while the orange bins correspond to the
79 individual events that pass the detection threshold. A
δfpeak ∼ 8 Hz measurement roughly corresponds to a ∼ 26
m statistical error in the determination of the radius of a NS
with mass 1.6M�. However, systematic errors in the uni-
versal fpeak − R1.6M� relation used in the mapping could be
larger than ∼ 100 m, so these errors would dominate over the
statistical measurement error.

statistical frequency uncertainty increases by a factor of
1.4. Consequently, the statistical radius uncertainty also
increases by 1.4. Therefore, our Fisher analysis for TM1
including φ0 predicts δfpeak ∼ 8 Hz. For all the realiza-
tions with the best signal passing the detection thresh-
old, we evaluate the uncertainties in δfpeak numerically,
shown in Fig. 8.

Let us now map the statistical error in the peak fre-
quency δfpeak to that of the radius of a NS with mass
1.6M�, δR1.6M� . From Eq. (33), one finds the following
relation:

δR1.6M�

1km
=
δfpeak
1kHz

M�
m1 +m2

[
2a2

(
R1.6M�

1km

)
+ a1

]−1
,

(61)
where we have neglected the error in the estimation of
the component masses, as this is negligible for third gen-
eration detectors. Thus, a ∼ 8 Hz statistical uncertainty
in the peak frequency roughly corresponds to a ∼ 30
m (0.3%, “TM1” EOS) uncertainty in radius (for a NS
with mass 1.6M�). The total error is the root of the sum
of the squares of the statistical and all systematic errors.
One source for the latter, as discussed in [37], comes from
the fpeak − R1.6M� relation, and currently is above 100
m for R1.6M� . Therefore, for now, the error budget is
dominated by systematic error and not statistical when
considering third generation detectors. Of course, as dis-
cussed earlier, we expect this systematic uncertainty to
be considerably lowered by the time third generation de-
tectors come online, as more accurate understanding and



16

modeling of BNS merger remnants is developed.
Notice that the uncertainty in frequency, with mean at

about 8 Hz in Fig. 8 is significantly smaller than the value
of order 50Hz presented in [37]. In fact, we notice that
δfpeak/fpeak in [37] does not follow the 0.7/(Qρ) relation
derived here. In [37] for the TM1 EOS, δfpeak/fpeak ∼
50/2300 with the post-merger SNR being 5. Based on
Fig. 11 of [37], the SNR of the dominant 22 component
is roughly half of the post-merger total SNR, i.e., ρ ∼ 2.3.
This converts to δfpeak/fpeak(Qρ/0.7) ∼ 2.4. We suspect
this factor of 2.4 comes from the fact that we are using
different waveform templates for parameter estimation.

Let us end this section by commenting on how the
measurement accuracy of the NS radius changes if the
correct EOS in nature is not TM1. Among the 5 EOSs
considered in this paper, there is a very good chance of
detecting the post-merger signal after power stacking for
the DD2, TM1, LS220 and Shen EOSs, as discussed at
the end of Sec. III C 1. The Shen EOS is quite similar
to TM1, so let us consider LS220 here. The approxima-
tion in Eq. (60) shows that δfpeak/fpeak depends only on
Q and ρ. From Table I and comparing Figs. 1 and 3,
one sees that Qρ for the DD2 EOS is roughly a factor of
2 smaller than Qρ for the TM1 EOS, which leads to a
δfpeak that is approximately a factor of two larger, given
the difference in fpeak. Furthermore, using Eq. (61) one
finds that DD2 has a δR1.6M� that is roughly a factor of
1.1 times smaller. This means that if the post-merger sig-
nal is detected with CE via power stacking, depending on
the underlying EOS we expect that δfpeak and δR1.6M�

to lie in the range ∼ 4−20 Hz and 15−56m, respectively
(∼ 4% accuracy). Thus, systematic errors seem to always
dominate statistical errors on the NS radius measurement
irrespective of the EOS for third generation detectors (for
stacked signals that pass the detection threshold).

V. DISCUSSION AND CONCLUSION

In this work we have studied the possibility of detecting
the GWs generated by the oscillations of hypermassive
NSs formed following BNS mergers with future ground-
based GW detectors. Based on the latest estimates of
the BNS merger rate and fitting formulas for the oscil-
lation peak frequency from state-of-the-art BNS merger
simulations, we found that the chance of detecting such
oscillations from individual sources could be low even for
third generation GW detectors, depending on the EOS.
However, we point out that detectability of individual
events could potentially improve if one considers all com-
ponents/peaks that arise in the post-merger waveform,
and not only the dominant peak, as we do here. Nev-
ertheless, it is not currently clear whether sub-leading
modes can persist and contribute substantially to the
SNR or whether their frequencies might drift, hence mak-
ing their detection challenging.

In order to increase the detection rate of the domi-
nant post-merger component, we multiplied the Bayes

factor of each event to derive the Bayes factor of com-
bined events. We refer to this approach as power stack-
ing. Such an analysis was used to propose a test of Gen-
eral Relativity in [44], to probe the BH no-hair property
in [45] and to explore EOS properties in [46]. We have
shown that this method can significantly boost the sta-
tistical chance of detection (shown in Fig. 4) as compared
to single events. The stacked signal can also be used to
distinguish between different NS EOSs. We formulated a
Bayesian model selection framework, and illustrated its
application by comparing EOS model TM1 vs DD2, as-
suming the former is the true EOS. In practice, such a
model selection method only suggests relative preference
between the two selected models, both of which do not
have to be the true EOS. Thus, the results of model se-
lection should be combined with the signal-to-noise level
of the stacked signal, assuming different EOSs, to obtain
an overall sense of the “true” EOS.

The power stacking methods can be naturally applied
to other post-merger oscillation modes both in isolation
or in combination with other modes. For instance, one
could apply this to the 21 mode, which can become strong
if a one-arm instability develops in the BNS remnant [24–
27]. In this case, there is a tight correlation between the
frequencies of the 21 and 22 modes which can be ex-
ploited to further enhance the achievable stacked SNR.
This method can also be used to stack other post-merger
GW templates, such as the Principal Component basis
developed in [37]. In an even broader context, this ap-
proach could also be exploited to help identify decay-
ing modes in cold atom data [76, 77] and their connec-
tion with possible BH duals through holographic argu-
ments [78, 79].

If in the future the theoretical uncertainty in modelling
gets down to a level that the initial phase of post-merger
modes can be estimated given the binary parameters (in-
cluding EOS), we can make use of this phase information
to coherently stack a set of post merger events to further
boost the collective SNR. We demonstrated that such co-
herent stacking could significantly increase the detection
probability of the BNS post-merger dominant 22 mode.
We explicitly showed that if we require the same level
of statistical significance, then coherent stacking is more
efficient at increasing the Bayes factor than the current
way power stacking is performed (at least in the Bayesian
framework we adopt); related comparisons are shown in
Figs. 4 and 6. It would be interesting to find a Bayesian
formulation that mimics the behavior of coherent stack-
ing for low-SNR events, for example by introducing dif-
ferent weights for different events.

The main limitation of the coherent stacking method
is that it requires small phase uncertainty in constructing
the coherently stacked signal. If the phase uncertainties
are large, the coherent part of the stacked signal (the sec-
ond line of Eq. (46)) will be reduced dramatically. This
could be alleviated if the initial phase of the 22 mode can
accurately be estimated using the inferred parameters of
the inspiral together with numerical simulations of the
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merger event. Though producing full templates of the
post-merger signals incorporating all the correct micro-
physics may not be practical within the next few years,
it may not be unreasonable to expect that simulations
can at least provide an accurate prediction of the initial
phase of the 22 mode, as this will be fixed within the first
few ms post-merger7.

Another limitation of the framework used in this paper
is that one needs to assume all the parameters are known
except for Ac and As (or the amplitude and the phase
offset). It would be interesting to extend the framework
further to the case with unknown fpeak and Q. Then, one
does not need to assume the underlying EOS a priori, and
one can reformulate the Bayesian hypothesis test problem
by taking into account the prior distribution of fpeak and
Q.

When the post-merger SNR is above unity, the inspi-
ral SNR will be large and one can likely extract nuclear
physics information from the measurement of NS tidal
deformations that occur in this phase. Thus, it would be
interesting to study how the post-merger detection via
stacking helps in probing nuclear physics by further in-
cluding the inspiral measurement. Universal relations be-
tween the post-merger oscillation peak frequency and the
leading tidal parameter in the inspiral waveform [60, 80]
may help in addressing this question. Alternatively, an
independent measurement of the tidal deformability and
the post-merger peak frequency may allow one to con-
firm such universal relations from observations. If such
relations are altered from the GR prediction in modi-
fied theories of gravity, one can use such a measurement
to probe strong-field gravity. A similar proposal was al-
ready made and demonstrated regarding the universal
relation between the tidal deformability and moment of
inertia [81–83]. Also, as mentioned, complementary in-
formation from electromagnetic observations – coupled
with refined numerical studies to connect the behavior of
cold and finite temperature nuclear EOS – could be ex-
ploited to inform suitable priors for the analysis described
here.
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minosity distance to the source is set to 50 Mpc. Solid lines
correspond to Eq. (1) with the values for the amplitude and
quality factor listed in Table I. Dashed lines correspond to
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Appendix A: Fitting the post-merger dominant
gravitational-wave mode

In this appendix, we show how well Eq. (1) approx-
imates the dominant peak of the post-merger 22 mode
obtained from the numerical simulations of [13, 70, 71].
As discussed in the main text the strain amplitude A′ and
the quality factor Q in Eq. (1) are chosen for each equa-
tion of state such that the peak value of the characteris-
tic strain and SNR with Eq. (1) match the peak value of
the characteristic strain and SNR of the dominant post-
merger 22 component found in the corresponding BNS
merger simulations. Figure 9 shows that the Lorentzian
profile (1) provides a reasonable approximation of numer-
ical relativity post-merger spectra around the dominant
peak.

Appendix B: Variance and Signal-to-noise Level of T̂

In this appendix, we explain the variance and the
signal-to-noise level of T̂ , which is the log of the Bayes
factor between the hypotheses H1 and H2. Such a signal-
to-noise level can be used, instead of ρ, to discuss the
detection criterion of the post-merger GW signals.

Let us begin with the single event case. The variance
of nT is given by

Var[nT ] =1 +A2
c +A2

s

=1 + ρ2 , (B1)
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(recall that we chose 〈c|c〉 = 1 = 〈s|s〉). We can then
define the ratio

2sT√
Var(nT )

=
ρ2√

1 + ρ2
, (B2)

which intuitively measures the signal-to-noise level in the
GLRT variable T̂single. In the limit that the detection
SNR = ρ� 1, it is straightforward to see that the above
ratio is approximately ρ.

We now explain the coherent stacking case. The noise
part of T̂coherent, i.e., nTy, follows a distribution similar
to Eq. (25), with Ac → 〈gy|c〉 and As → 〈gy|s〉. Its
variance is given by

Var[nTy] =

(∑
i

w2
i

∫
df

4Sni(f)|h̃c(f)|2

Sny (f)2

)2

+
∑
k

w2
k

∑
ij

wiwj

∫
df

2(g̃ig̃
∗
j e
i(φ0

i−φ
0
j ) + c.c.)Snk

Sny (f)2
.

(B3)

With Eq. (46) and Eq. (B3), one can compute

〈sTy〉/
√

Var[nTy] for the stacked signal y. As before,
this quantity is a measure of the signal-to-noise level in
the variable T̂coherent. Indeed, if all individual events have
the same SNR, then in the SNR = ρ� 1 limit one finds
〈sTy〉/

√
Var[nTy] ≈ N1/2ρ.

Appendix C: Model selection with different data sets

For different EOSs we generically obtain different
stacked signals, thus one is faced with the problem of
performing model selection using different data sets as
discussed in Sec. IV A. In this appendix, we explain how
one can construct appropriate Bayes factors for such a
model selection study.

We begin by generalizing further Eq. (15) to allow dif-

ferent data sets:

B12 ≡
P (y1|H1)

P (y2|H2)
, (C1)

where y1 (y2) is the data y stacked using the frequency
scaling of EOS 1 (2). Within the GLRT framework, one
may consider the expectation value and noise distribution
of the random variable

T̂12 ≡ logB12 (C2)

to do model selection using the Jeffreys criteria. Notice
that T̂12 = −T̂21. Let us assume that model 1 represents
the true underlying EOS. One interesting feature implied
by Eq. (33) is that even if we make an assumption that
the EOS is model 2 where the true underlying EOS fol-
lows model 1, the frequency rescaling factors depend only
on the total mass for each event, and of course the mea-
sured mass is EOS independent. Therefore, the main
consequence of assuming an “incorrect” EOS is that the
data from different events are not coherently stacked onto
each other due to the frequency mismatch between the
predicted signal and the actual signal. Such a mismatch
also brings systematic errors on the phase measurement,
making the signals further incoherent. Incomplete co-
herent stacking may greatly degrade the signal part of
GLRT variable.

Alternatively, if model 2 is so incorrect that the ρ of
the stacked signal is well below that of model 1, the phase
error in constructing the stacked signal is large and the
weights obtained by assuming an “incorrect” EOS are
far from their optimal values, then y1 seems to be a con-
vincingly better set of data than y2. Therefore, it is more
appropriate to evaluate the following Bayes factor:

B1|2 ≡
P (y1|H1)

P (y1|H2)
. (C3)

Intuitively, B12 may work better at distinguishing two
close EOSs, whereas B1|2 is expected to have wider ap-
plicability and the associated analysis is more straight-
forward. In this paper, we chose to study the statistical
behavior of B1|2, with model 1 being the one with better
SNR from the study in Sec. III B. The extension of the
analysis presented here to the case dealing with the ran-
dom variable B12 goes beyond the scope of the current
paper.
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