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We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes
non-spinning binary black holes systems that evolve on moderately eccentric orbits. The inspi-
ral evolution is described using a consistent combination of post-Newtonian theory, self-force and
black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence,
we smoothly match the eccentric inspiral with a stand-alone, quasi-circular merger, which is con-
structed using machine learning algorithms that are trained with quasi-circular numerical relativity
waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasi-circular
compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical rel-
ativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between
1 ≤ q ≤ 5.5, and eccentricities e0 ∼< 0.2 ten orbits before merger. We use this model to explore in
detail the physics that can be extracted with moderately eccentric, non-spinning binary black hole
mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914,
GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning,
quasi-circular templates if the eccentricity of these events at a gravitational wave frequency of 10Hz
satisfies e0 ≤ {0.175, 0.125, 0.175, 0.175, 0.125}, respectively. We show that if these systems have
eccentricities e0 ∼ 0.1 at a gravitational wave frequency of 10Hz, they can be misclassified as
quasi-circular binaries due to parameter space degeneracies between eccentricity and spin correc-
tions. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of
including higher-order waveform multipoles in gravitational wave searches of eccentric binary black
hole mergers.

I. INTRODUCTION

The detection of gravitational waves (GWs) from
binary black hole (BBH) mergers and the first bi-
nary neutron star (BNS) inspiral [1–6], by the ad-
vanced Laser Interferometer Gravitational-wave Obser-
vatory (aLIGO) [7, 8] and the European advanced Virgo
(aVirgo) detector [9], has ushered in a revolution in as-
trophysics.

These groundbreaking discoveries have provided con-
clusive evidence that stellar mass BBHs form and coa-
lesce within the age of the Universe [10], and that their
astrophysical properties [11, 12] are consistent with Ein-
stein’s theory of general relativity [13]. Furthermore, the
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detection of two colliding NSs with GWs and broad-
band electromagnetic observations has confirmed that
BNS mergers are the central engines of short gamma ray
bursts (sGRBs) [6, 14], and the cosmic factories where
about half of all elements heavier than iron are produced
[15].

Ongoing improvements in the sensitivity of the aLIGO
and aVirgo detectors at lower frequencies will enable de-
tailed studies on the astrophysical content of GW signals.
Since eccentricity modifies the amplitude and frequency
evolution of GWs at lower frequencies, before it is radi-
ated away due to GW emission [16–19], GW observations
within the next few years with the aLIGO and aVirgo
detectors will provide unique opportunities to search for
and detect eccentric binary mergers.

Eccentricity is one of the cleanest signatures for the ex-
istence of compact binary systems formed in dense stellar
environments [20–24]. Therefore, identifying and care-
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fully measuring the imprints of eccentricity in GW sig-
nals will enable new and detailed studies of astrophysical
processes taking place in core-collapsed globular clusters
and galactic nuclei, which would otherwise remain inac-
cessible [21, 25–35].

Current flagship matched-filtering GW searches are
highly optimized for the detection of quasi-circular, spin-
aligned compact binary sources [36], and burst-like GW
signals [37]. GW sources that do not fall into these cat-
egories may be missed by these algorithms, as shown
in [18, 38–40]. Given the proven detection capabilities
of the aLIGO and aVirgo detectors, it is timely and rel-
evant to develop tools to confirm or rule out the exis-
tence of these GW sources [38]. This article focusses on
the development of an inspiral-merger-ringdown (IMR)
waveform model that is adequate for the detection and
characterization of compact binary populations that form
in dense stellar environments, and which are expected to
enter the aLIGO frequency band with moderate eccen-
tricities [21, 33, 41].

The model we introduce in this article, the ENIGMA
(Eccentric, Non-spinning, Inspiral-Gaussian-process
Merger Approximant) waveform model, builds on re-
cent work to accurately describe quasi-circular and mod-
erately eccentric IMR BBH mergers [18]. ENIGMA does
not require the calibration of free parameters for its con-
struction; instead, it combines in a novel way analyti-
cal and numerical relativity (NR) using machine learn-
ing algorithms [42, 43], which are a special class of algo-
rithms that can learn from examples to solve new prob-
lems without being explicitly re-programmed. In differ-
ent words, the same algorithm can be used across sci-
ence domains by just changing the dataset used to train
it [44]. Specifically, we use Gaussian Process Regression
(GPR) [45] to interpolate numerical relativity simula-
tions of the merger and ringdown across the waveform pa-
rameter space. GPR is well suited to this due to its flexi-
bility, the fact that it makes minimal assumptions about
the underlying data, and the ease with which it can be
extended to higher dimensional interpolation problems.
This last point will be particularly important when we
come to extend the model to include BH spins in future
work.

The main motivation to develop ENIGMA is to system-
atically quantify the importance of orbital eccentricity in
the detection of GW sources with aLIGO. As we show in
this article, ENIGMA can accurately reproduce the dynam-
ics of quasi-circular binaries and the true features of ec-
centric NR simulations. These features are of paramount
importance to clearly associate deviations from quasi-
circularity to the physics of eccentric compact binary
coalescence, and not to intrinsic waveform model inac-
curacies. We use ENIGMA to estimate the minimum value
of eccentricity which may be discernable with aLIGO ob-
servations of eccentric BBH mergers.

In this article we use units G = c = 1. The binary
components are labelled as m1 and m2, where m1 ≥ m2.
We use the following combinations of m{1, 2}: total mass

M = m1 +m2, reduced mass µ = m1m2/M , mass-ratio
q = m1/m2, and symmetric mass-ratio η = µ/M . This
article is organized as follows: Section II contextualizes
this work in light of recent efforts to model eccentric com-
pact binary systems. Section III provides a brief descrip-
tion of our waveform model. In Sections IV, V we vali-
date ENIGMA with a state-of-the-art, IMR quasi-circular
waveform model, and a set of eccentric NR simulations,
respectively. We discuss the detectability of moderately
eccentric BBH mergers with aLIGO in Section VI. In Sec-
tion VII we discuss the importance of including higher-
order waveform multipoles for the detection of eccentric
BBH mergers. We summarize our findings and outline
future directions of work in Section VIII.

II. PREVIOUS WORK

In this section we briefly summarize recent develop-
ments in the literature in connection to IMR waveform
models that describe moderately eccentric compact bi-
nary mergers.

An IMR model describing highly eccentric compact bi-
nary mergers was introduced in [46]. This model used a
geodesic based description for the inspiral dynamics, and
a quasi-circular merger waveform using the phenomeno-
logical approach described in [47]. The model was used
to study the detectability of burst-like signals in LIGO
data.

In Ref. [48], the authors introduce an effective-one-
body (EOB) model that combines the quasi-circular dy-
namics of SEOBNRv1 [49], and eccentric post-Newtonian
(PN) corrections up to 2PN order. They compare the
model to three numerical relativity simulations: two of
mass-ratio q = 1 and eccentricities e0 = {0.02, 0.19}
at orbital frequencies {0.0105, 0.0147}, respectively; and
one with q = 5 and e0 ∼< 0.02 at an orbital frequency
0.0105.

Ref. [50] presents a formalism to consistently incorpo-
rate eccentricity corrections to the EOB formalism. The
radiative dynamics is restricted to 1.5PN order. No com-
parison to eccentric NR simulations is done.

In Ref. [19], the authors present an eccentric model
that includes PN corrections up to 2PN in the fluxes
of energy and angular momentum. They show that
their model can reproduce eccentric numerical relativ-
ity simulations with mass-ratios q ≤ 3, and eccentricities
eref ≤ 0.05, measured seven cycles before merger.

In this work, we show that ENIGMA reproduces the
most recent version of EOB models, SEOBNRv4 [51],
in the quasi-circular limit. Our model is not based on
phenomenological approximations for the description of
the inspiral and merger evolution. Rather, we develop
a hybrid inspiral model that encodes eccentric PN cor-
rections up to 3PN order that includes tail, tails-of-tails,
and corrections due to non-linear memory that enter at
2.5PN and 3PN order, as described in [18]. Furthermore,
we improve the inspiral evolution by including up to
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6PN quasi-circular corrections using self-force and black
hole perturbation theory (BHPT) results. We model the
merger phase using a machine learning algorithm that is
trained with a dataset of NR simulations. This approach
ensures that our merger model has the same fidelity of
NR simulations. We validate our model using a set of
12 Einstein Toolkit [52–63] eccentric NR simulations,
with mass-ratios up to q ≤ 5.5 and eccentricities e0 ∼< 0.2
ten orbits before merger.

Inspiral only models have steadily increased their ac-
curacy [29, 39, 40, 64–69]. However, as extensively dis-
cussed in [18, 39] and in this article, PN-based models,
even including up to 3PN eccentric corrections, are not
accurate enough to describe the dynamical evolution of
eccentric compact binaries through merger, since the PN
prescription breaks down at that point.

A key result in this article is the validation of ENIGMA
with eccentric NR simulations. Recent NR studies on
the physics of eccentric compact binary mergers in-
clude [66, 70–80]. In this article we show that ENIGMA
reproduces the true features of eccentric NR simulations
throughout late inspiral, merger and ringdown, with-
out requiring the use of eccentric NR simulations to
calibrate it. In different words, a consistent combina-
tion of analytical relativity formalisms, boosted with a
machine-learning based merger waveform provides a pow-
erful framework to describe both quasi-circular and ec-
centric BBH mergers.

III. WAVEFORM MODEL CONSTRUCTION

Our eccentric waveform model has two main com-
ponents. The first component is an inspiral evolution
scheme that combines results from PN theory [81], the
self-force formalism [82–89] and BHPT [90–94]. The
second component is a merger waveform, which is con-
structed by interpolating a set of NR-based surrogate
waveforms [95] using GPR [42, 43, 45, 96]. The training
dataset of NR-based surrogate waveforms describe BBHs
with mass-ratios 1 ≤ q ≤ 10.

In the following sections we present a succinct descrip-
tion of the improved inspiral evolution scheme, and a
detailed description of the stand-alone GPR-based wave-
form model. Thereafter, we describe how to combine the
inspiral and merger models to render a unified descrip-
tion of the dynamical evolution of moderately eccentric
compact binary systems.
ENIGMA is tailored to carry out searches of compact bi-

nary systems that enter the aLIGO frequency band with
moderate values of eccentricity. As discussed in [18],
this approximation covers an astrophysically motivated
population of compact binary sources that are expected
to enter the aLIGO frequency band with eccentrici-
ties e0 ≤ 0.3 at 10Hz, and circularize just prior to
merger [21, 33, 41]. Furthermore, using a set of eccen-
tric NR simulations, in Section V we show that ENIGMA
accurately describes BBH mergers that retain significant

residual eccentricity prior to merger. This feature may
prove useful anticipating astrophysically unconstrained
formation mechanisms for eccentric BBH mergers.

A. Inspiral evolution

We model the inspiral evolution within the adiabatic
approximation, i.e., we assume that the radiation time
scale is much longer than the orbital time scale, and
therefore we use an averaged description of the radia-
tion reaction over an orbital period [97]. Furthermore,
in order to combine a variety of recent results from an-
alytical relativity in a consistent way, we express the
equations of motion in a gauge-invariant manner using
as an expansion parameter the gauge-invariant quantity

x = (Mω)
2/3

, where ω represents the mean orbital fre-
quency.

A first attempt to accurately describe the inspiral evo-
lution of eccentric compact binaries with mass-ratios
1 ≤ q ≤ 10 was introduced in Ref. [18]. Below we
succinctly describe the main ingredients of that model.
Thereafter, we describe the new physics that we incorpo-
rate into ENIGMA.

The description of compact binary dynamics involves
the relative orbital separation of the binary r, which is
related to the eccentric anomaly u by

r

M
=

1− e cosu

x
+

i=3∑
i=1

aiPNx
i−1 . (1)

On the other hand, the mean anomaly `, which is related
to the mean motion n through the relation M ˙̀ = Mn, is
customarily described in terms of the eccentric anomaly
u as follows [81, 97]:

` = u− e sinu+

i=3∑
i=2

biPNx
i . (2)

The conservative dynamics, which are obtained from
a 3PN order Hamiltonian for eccentric compact binary
systems [81, 97], determines the time evolution of the

instantaneous angular velocity φ̇ and the mean anomaly
`:

Mφ̇ = x3/2
i=3∑
i=0

ciPNx
i +O(x11/2), (3)

M ˙̀ = x3/2

(
1 +

i=3∑
i=1

diPNx
i

)
+O(x11/2) . (4)

The instantaneous angular velocity φ̇ is related to the
mean orbital frequency ω through ω = 〈φ̇〉 = Kn, where
〈·〉 indicates average over an orbital period. K, k repre-
sent the periastron precession and the relativistic preces-
sion, respectively, and are related via K = 1 + k. The
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radiative evolution of the binary, which is driven by the
energy and angular momentum carried out by GWs from
the binary system, can be specified through the time evo-
lution of eccentricity e and the gauge-invariant expansion
parameter x

Mẋ = x5
i=3∑
i=0

yiPNx
i + ẋHT , (5)

Mė = x4
i=3∑
i=0

ziPNx
i + ėHT . (6)

The hereditary terms (HT) in Eqs. (5)-(6) include
tail, tails-of-tails and non-linear memory corrections at
1.5PN, 2.5PN and 3PN order. The 2.5PN and 3PN pieces
of Eq. (5) were derived in Ref. [18]. As discussed above,
we used the adiabatic approximation to model eccen-
tric BBH mergers, therefore the functions (yiPN, ziPN)
only depend on e, and Eqs. (5)-(6) describe a closed
system that can be solved given initial conditions for
x(t = 0) and e(t = 0). Once this is done, (x(t), e(t))
are used to numerically integrate Eq. (4). Thereafter,
(x(t), e(t), `(t)) are substituted in Eq. (2) to determine
u by root-finding. Finally, all these pieces are used to
determine Eqs. (1) and (3).

Having this workflow in mind, we realize that to im-
prove phase accuracy of any PN-based model, it is nec-
essary to include higher-order PN corrections to Eqs. (5)
and (6). This becomes apparent when we write the above
expressions in the quasi-circular limit. In the expressions
below, we have augmented the conservative and radiative
dynamics with self-force and BHPT results, i.e.,

Mφ̇
∣∣
e→0

= x3/2 , (7)

Mẋ
∣∣
e→0

=
64

5
η x5

{
1 +

(
−743

336
− 11

4
η

)
x+ 4πx3/2

+

(
34 103

18 144
+

13 661

2016
η +

59

18
η2

)
x2

+

(
−4159π

672
− 189π

8
η

)
x5/2

+

[
16 447 322 263

139 708 800
− 1712γ

105
+

16π2

3

− 856

105
log(16x) +

(
−56 198 689

217 728
+

451π2

48

)
η

+
541

896
η2 − 5605

2592
η3

]
x3 +

[
− 4415

4032

+
358675

6048
η +

91945

1512
η2

]
x7/2 + â4x

4 + â9/2x
9/2

+ â5x
5 + â11/2x

11/2 + â6x
6

}
, (8)

where γ is Euler’s constant, and the coefficients
â4, â9/2, â5, â11/2, â6 are presented in Appendix C of
Ref. [18]. As is demonstrated in Section III C, when
this hybrid inspiral formalism is combined with the GPR
merger-ringdown waveform presented in Section III B,
the GW emission from quasi-circular binaries with mass-
ratios in the range 1 ≤ q ≤ 10 is described with excellent
accuracy. As discussed in contemporary literature, this
is a basic requirement for any waveform model that aims
to establish a clear cut connection between eccentricity
and deviations from quasi-circular motion [18, 39, 40]. In
other words, accurate eccentric BBH modeling can only
be done with models that simultaneously incorporate an
accurate description of quasi-circular motion.

In order to obtain GW strain from inspiral trajectory
evolution, we use standard leading-order, eccentric PN
strain expressions for both (hI

+, h
I
×) polarizations as a

baseline, —where hI represent the Inspiral waveform—
and then include quasi-circular PN corrections up to 3PN

order (hI,QC
+ , hI,QC

× ), which are given by Eqs. (320)-
(323g) in Ref. [97]:

hI(t) = hI
+(t)− ihI

×(t) , (9)

with

hI
+ = −Mη

R

{(
cos2 ι+ 1

) [(
−ṙ2 + r2φ̇2 +

M

r

)
cos 2Φ

+ 2rṙφ̇ sin 2Φ

]
+

(
−ṙ2 − r2φ̇2 +

M

r

)
sin2 ι

}
+ hI,QC

+

(
φ, φ̇, M, η, ι, R

)
, (10)

hI
× = −2Mη

R
cos ι

{(
−ṙ2 + r2φ̇2 +

M

r

)
sin 2Φ

− 2rṙφ̇ cos 2Φ

}
+ hI,QC
×

(
φ, φ̇, M, η, ι, R

)
, (11)

where Φ = φ−χ, and (χ, ι) represent the polar angles of
the observer, and R is the distance to the binary. This
completes the description of the inspiral portion of our
ENIGMA model. As mentioned above, ENIGMA has been
developed to target eccentric compact binary systems
that circularize prior to merger. This is a reasonable
approach, since recent studies suggest that the eccen-
tricity distribution of aLIGO sources may be bimodal,
and the population with moderate values of eccentricity
may enter the aLIGO frequency band with eccentricities
e0 ≤ 0.1 at 10Hz. We show that our model is equipped
to target this population, as well as compact binaries
that may enter the aLIGO frequency band with eccen-
tricities up to e0 ≤ 0.3 at 10Hz. Under this assump-
tion, the following section describes the construction of
a quasi-circular merger waveform using GPR. The main
motivation for the use of GPR is that they may be easily
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extended to higher dimensional interpolation problems
which will be faced in future work simulating eccentric
mergers of spinning black holes.

B. Merger and Ringdown

The main limitation of the predecessor to the ENIGMA
model [18] was the treatment of the merger-ringdown
signal. In this section, a new machine learning based
approach to modeling the merger–ringdown signal, us-
ing NR simulations is described. A desirable feature of
this approach is the ability to identify regions of pa-
rameter space where the model performs poorly, and
rapidly incorporate additional NR simulations into an
updated model. This iterative procedure of improving
the model is a feature of this approach that will be illus-
trated throughout this section.

In this paper only non-spinning BBHs are considered
(although the approach is designed to be flexible enough
to allow for the extension to spinning and precessing
BBH systems in future); therefore the intrinsic parame-
ter space of the IMR model is 3–dimensional (mass ratio,
q, eccentricity, e, and mean anomaly, `; the total mass,
M , simply sets the overall dimensional scale of the prob-
lem). It is known that the mean anomaly ` affects the
amplitude and phase of the waveform strain [40, 98]. For
a given value of anomaly, these effects are handled by
the method we use to smoothly connect the inspiral and
merger waveforms, as described in the following section.

As is well known (see, e.g. [16–20]) BBHs with mod-
erate eccentricities early in the inspiral are efficiently
circularized by GW emission and are almost circular at
merger. This reduces the effective dimensionality of the
merger–ringdown model to just 1 dimension (mass ratio).

An initial training set, D1, of 19 quasi–circular NR
simulations from the public SXS catalog [99] at mass
ratios q∈Q1 ={1.0, 1.5, 2.0, . . . , 10.0} was used to build
a merger-ringdown model. Only the l=m=2 modes of
the merger waveforms were used. The effect of neglect-
ing higher-order waveform modes is quantified in Sec-
tion VII. The time series were decomposed into the am-
plitude, g1(t; q)2≡hM

+ (t; q)2+hM
× (t; q)2, and (unwrapped)

phase, g2(t; q)≡atan(hM
× (t; q)/hM

+ (t; q)). The waveforms
were rescaled (in time) such that the total mass was
unity, the peak luminosity occurs at t = 0, the ampli-
tude was rescaled to satisfy g1(t = 0, q) = 1 and the
phase was shifted to satisfy g2(t = 0, q) = 0. The time
series were sampled at n = 2800 points in the interval
–2500≤ t/M≤ +100 (with a higher sampling rate around
merger). The training sets for amplitude and phase are

D1
α =

{
(q, gα(t; q)) | q ∈ Q1

}
, where α = 1, 2 . (12)

GPR is an interpolation (or extrapolation) technique
which makes minimal assumptions about the underlying
function. It is used here to interpolate the data in Eq. 12
to obtain the waveform at any mass ratio, q. A Gaussian
process (GP) of a single variable x is completely described

by a covariance function, k(x, x′) (and a mean function
µ(x) which is here assumed to be zero for simplicity). For
the first training set, D1, the parameterization x=q was
used. The covariance function, and any free parameters
therein, are free to be specified; however, they can also
be learnt from the training set by maximizing the proba-
bility of the training set being realized by the GP (max-
imizing the GP evidence). This learning process can be
computationally expensive, especially for large training
sets or when comparing covariance functions with many
free parameters; the techniques described in [100] were
used to accelerate this learning phase. The covariance
functions considered here were the squared-exponential
and Wendland polynomial functions used previously for
waveform modeling in [43]; these covariance functions are
all stationary, i.e. k(x, x′) = k(x − x′). For a discussion
of GPR see [101], or [42, 43] in the context of GW signal
modeling.

As zero–mean GPs were used for the interpolation, the
phase interpolation can be improved if a reference phase
function is first subtracted from the training set phases
to bring the values closer to zero; g2(t; q)→g2(t; q)−ϕ(t).
After interpolation the phase can be recovered straight-
forwardly by adding ϕ(t) to the result. The reference
phase function was chosen to be the phase of the equal
mass NR simulation; ϕ(t)≡g2(t; q=1.0).

It was found that the GPR interpolation using the 19
waveforms in the set D1

α was not sufficiently accurate;
typical errors on the interpolant were σ∼0.16 radians on
the phase and σ∼ 3×10−3 on the amplitude (see Fig. 1,
with n = 2800). A second training set, D2 was created
by adding more waveforms approximately uniformly in
mass ratio; the new set, D2

α, consisted of simulations at
mass ratios q∈Q2 ={1.0, 1.2, 1.4, . . . , 10.0}∪Q1 (a total
of 55 simulations). As sufficiently accurate, and long
duration NR simulations at these mass ratios were not
readily available, NR surrogate waveforms [95] were used
instead. Work is ongoing to replace the surrogate wave-
forms used in this study with full NR simulations. On
this training set GPR was tested using different param-
eterizations1 of the training set, x = f(q); it was em-
pirically found that x = ln(q) yielded the largest GP
evidence value and the best interpolant. From Fig. 1 it
can be seen that D2

α indeed outperforms D1
α across most

of the parameter space.

1 The parameterizations tried included the mass ratio, f(q)=q, a
simple compactification on to the interval –1 ≤ x ≤ +1, f(q) =
atan q, the symmetric mass ratio f(q) = η ≡ q/(1+q)2, which
compactifies on to the interval 0≤η≤0.25), and f(q)=ln(q).
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FIG. 1. The GPR estimates for the interpolation error, σ,
on the amplitude (g1(t; q), top panel) and phase (g2(t; q), in-
verted in the bottom panel) for the three training sets: D1

α

(red), D2
α (green), and D3

α (blue). The constant n= 2800 is
the number of time samples in the waveform. The (symmet-
ric) mass ratio values for the points in Q1, Q1 and Q3 are
indicated respectively by red, green, and blue dots along the
central horizontal panel. Each iteration of the training set
reduces the error in the amplitude and phase interpolations.

Finally, a third training set was constructed using 70
waveforms placed uniformly in the logarithm of the mass
ratio; q∈Q2 ={exp[(i− 1) ln(10)/69] | i=1, 2, . . . , 70}.
The use of a stationary covariance function k(x − x′)
(with x = ln(q)) leads to large errors near the training
set boundary x= 0 (or q= 1). Of course, this boundary
is artificial because the parameter space admits the
following identifications x → –x (or q → 1/q). It was
found that using the following non-stationary covariance
function incorporating this symmetry into the GP leads
to improved performance for nearly equal mass systems;

k′(x, x′) = k(x− x′) + k(x+ x′) . (13)

The errors on the GPR interpolants for the amplitude
and phase for the three training sets are shown in Fig. 1.
As expected, the D3 interpolant is generally the most
accurate, especially for nearly equal mass systems (the
D3 interpolant is used for the remainder of the paper).
A thorough validation of the combined inspiral–merger–
ringdown model is presented in Sec. III C. However,
the finalized GPR interpolant for the merger-ringdown
performs extremely well; it reproduces the NR surro-
gate waveforms in the mass ratio range 1≤q≤10 with
overlaps > 0.9998 computed over the entire duration
–2500≤ t/M≤+100.

C. Complete waveform model

In this Section we describe the method followed
to smoothly attach the hybrid inspiral model of Sec-
tion III A with the GPR-based merger waveform of Sec-
tion III B.

The studies we have carried out to do this work indi-
cate the regime of validity of our hybrid inspiral scheme,
and furnish strong evidence that analytical and numeri-
cal relativity can be blended together to create a model
that can accurately reproduce the true features of both
quasi-circular and eccentric compact binaries. We now
describe the construction of a map that determines the
optimal frequency at which the inspiral evolution can be
blended with the merger evolution for a given combina-
tion of masses m{1, 2}. In order to do this, a number
of signal processing tools are needed which will now be
described.

Given two signals h and s, and defining Sn(f) as
aLIGO’s design power spectral density (PSD) [102], and

h̃(f) as the Fourier transform of h(t), the noise-weighted
inner product between h and s is given by

(h|s) = 2

∫ f1

f0

h̃∗(f)s̃(f) + h̃(f)s̃∗(f)

Sn(f)
df , (14)

with f0 = 15 Hz and f1 = 4096 Hz. The waveforms used
in this study are generated with a sample rate of 8192Hz.
Additionally, the normalized overlap is defined as

O(h, s) = max
tc φc

(
ĥ|ŝ[tc, φc]

)
with (15)

ĥ = h (h|h)
−1/2

, (16)

where ŝ[tc, φc] indicate that the normalized waveform ŝ
has been time- and phase-shifted. Using these definitions,
we blend our inspiral and merger models as follows:

• Combine the inspiral and merger codes into a sin-
gle library that generates an inspiral waveform and
smoothly attaches a GPR merger waveform on the
fly

• At the point of attachment, ta, the inspiral, hI(t),
and merger, hM(t), waveforms satisfy continuity
and differentiability

hI(ta) = hM(ta) , (17)

ḣI(ta) = ḣM(ta) , ḣ =
dh

dt
. (18)

• The mass parameter space we consider to construct
this map ism{1, 2} ∈ [5M�, 50M�], in steps of 1M�
in the m{1, 2} dimensions.
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• For each of the points of the aforementioned pa-
rameter space, we generated quasi-circular ENIGMA
waveforms considering a wide range of frequen-
cies to connect the inspiral and merger waveforms,
namely: Mω ∈ [0.02, 0.1] in steps of 1× 10−4

• Thereafter, we computed overlaps between the set
of waveforms described in the previous item and
their SEOBNRv4 counterparts.

• Finally, we picked the attachment frequency value
Mω∗ that maximized the overlap for each point of
the BBH parameter space under consideration.

• Our ENIGMA code automatically translates Mω∗

into an optimal time of attachment t∗a, i.e., it de-
termines the time in the GPR NR-based merger
waveform that corresponds to Mω∗

Finally, the complete IMR ENIGMA waveform can be
written as

h(t) = hI(t)H(t∗a − t) + ei∆ΦhM(t+ ∆t)H(t− t∗a) , (19)

where H(t) is the Heaviside step function, and
(hI(t), hM(t)) represent the Inspiral and Merger wave-
forms. (∆t,∆Φ) are time and phase shifts that need to
be incorporated in the GPR merger waveforms to en-
force continuity and differentiability. In the next section
we explore the accuracy and robustness of this scheme in
the quasi-circular limit.

IV. VALIDATION OF ENIGMA IN THE
QUASI-CIRCULAR LIMIT

The algorithm we described in the previous section to
connect the inspiral and merger evolution utilizes a dis-
crete grid of 1100 points, which uniformly covers the BBH
parameter space m{1, 2} ∈ [5M�, 50M�]. To ensure that
this method is robust, we now compute the overlap be-
tween our ENIGMA model in the quasi-circular limit, and
SEOBNRv4 waveforms using a grid that covers the same
region of parameter space, but now using 2500 points.
For each m{1, 2} combination, we test 800 possible values
of attachment frequency.

To determine at which frequency we connect the inspi-
ral and merger waveforms, we consider the following: if
we were to blend in the inspiral and merger waveforms
using the lowest frequency of attachment in our dataset,
BBH systems with component masses similar to the first
and third GW transients detected by aLIGO would be de-
scribed entirely by our quasi-circular GPR merger wave-
forms. In that case, since we would only be using a quasi-
circular waveform, we would not be able to make any
meaningful statements regarding the effects of eccentric-
ity in the detection of BBH mergers with aLIGO. How-
ever, since we want to study eccentric binary mergers,
we require a model that can tolerate small eccentricity

values very late in the inspiral evolution. We can only do
so if we attach the merger waveform as late as possible,
i.e., using the largest possible frequency of attachment.

Based on these considerations, we have constructed
a map that smoothly connects the inspiral and merger
evolution, using the largest frequency of attachment,
and which guarantees that the overlap between quasi-
circular ENIGMA waveforms and SEOBNRv4 waveforms
is O ≥ 0.99. Figure 2 presents these results. This is the
level to which contemporary quasi-circular models agree
in many regions of BBH parameter space [51, 103]. In the
following section, we will show that this map works very
well when we consider binary systems with non-negligible
eccentricity.
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FIG. 2. Overlap of quasi-circular ENIGMA waveforms with non-
spinning, quasi-circular SEOBNRv4 waveforms. The overlaps
are computed using aLIGO design sensitivity power spec-
tral density, assuming an initial gravitational wave frequency
fGW = 15Hz.

V. VALIDATION OF ENIGMA WITH ECCENTRIC
NUMERICAL RELATIVITY SIMULATIONS

To show that ENIGMA reproduces the dynamics of ec-
centric BBHs throughout late inspiral, merger and ring-
down, we use a catalog of eccentric NR simulations, gen-
erated with the open source, community software the
Einstein Toolkit, and post-processed with the open
source software POWER [104]. The (e0, `0, x0) parameters
that describe these BBH NR simulations are provided in
Table I. To determine these parameters, we select the pa-
rameter combination that maximizes the overlap between
ENIGMA and NR waveforms, without using any informa-
tion based on the trajectory of the BHs. Appendix A pro-
vides a brief summary of the convergence and phase error
of these NR simulations, which were generated with three
different grid resolutions to assess their convergence. A
detailed description of this NR catalog is provided in an
accompanying paper [80]. To validate ENIGMA, we use the
highest resolution run of each dataset.
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TABLE I. Numerical relativity (NR) simulations, taken
from the NCSA catalog of eccentric BBH mergers [80], used
to validate ENIGMA. q is the mass-ratio of the BBH sys-
tem. (e0, `0, x0) represent the measured values of eccentric-
ity, mean anomaly, and dimensionless frequency parameters
of the NR simulation, respectively. The overlap, O, between
ENIGMA waveforms and their numerical relativity counterparts
is shown in the last column.

Simulation q e0 `0 x0 O
E0001 1.0 0.060 3.50 0.077 0.998
J0005 1.5 0.067 3.30 0.078 0.997
J0045 2.0 0.078 3.35 0.079 0.994
E0013 2.5 0.070 3.00 0.081 0.997
E0017 3.0 0.068 2.60 0.083 0.989
K0001 3.5 0.060 3.20 0.081 0.991
J0061 4.0 0.065 2.90 0.086 0.992
J0065 4.5 0.080 3.10 0.088 0.981
M0004 1.0 0.190 3.20 0.071 0.993
J0047 2.0 0.120 2.70 0.078 0.956
K0024 4.0 0.200 2.90 0.084 0.971
L0020 5.5 0.210 3.10 0.087 0.951
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FIG. 3. Validation of ENIGMA with a set of Einstein Toolkit numerical relativity simulations that describe binary black
hole mergers for a variety of mass-ratios, and moderate values of eccentricity—see Table I. The shaded region indicates the
merger-ringdown part of the ENIGMA waveforms.

Figures 3 and 4 indicate that ENIGMA reproduces with ex-
cellent accuracy the late-time radiative evolution of NR
simulations that describe BBH mergers with mass-ratios
q ≤ 4.5 and eccentricities e0 ∼< 0.08 ten orbits before

merger. The last column of Table I indicates that the
overlap between ENIGMA waveforms and their NR coun-
terparts is O ≥ 0.981.
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FIG. 4. As Figure 3, but now for BBH systems with more asymmetric mass-ratio values.

We have also explored the performance of our new
model to describe the evolution of BBH systems that
retain significant eccentricity right before merger. Fig-
ure 5 and the last column of Table I show that ENIGMA
can reproduce fairly well the dynamics of BBH systems
with mass-ratios q ≤ 5.5 and eccentricities e0 ≤ 0.21
ten orbits before merger; with overlaps O ≥ 0.95. It is
noteworthy that, even though ENIGMA was constructed
to faithfully reproduce the dynamics of moderately ec-
centric BBH mergers, it can also describe BBH mergers
that circularize right before merger. It is worth empha-
sizing that our ENIGMA model can do this because our
inspiral scheme can accurately reproduce the true dy-
namics of both quasi-circular and eccentric binaries very
late in the inspiral evolution, which is clearly indicated
in Figures 3, 4 and 5. These results imply that ENIGMA
can be used both for matched-filtering, burst and Deep
Filtering searches [38, 105–111].

These results establish the accuracy of ENIGMA to de-
scribe eccentric BBH mergers, and indicate that the map
we have developed to smoothly connect our hybrid inspi-
ral scheme to a quasi-circular, NR-based merger wave-
form is robust to describe moderately eccentric BBH
mergers.

In terms of the astrophysically motivated systems that
can be described with ENIGMA, Figure 6 presents two sce-
narios. Each panel includes an eccentric ENIGMA wave-
form and its quasi-circular counterpart, generated with
the surrogate waveform family [95]. The insets show the
properties of the BBH systems and the overlap between
the two waveforms. The left panel presents a moderately
eccentric BBH with component masses (56M�, 16M�)
and e0 = 0.06 at fGW = 20.5 Hz. The right panel depicts
an eccentric BBH with component masses (44M�, 8M�)
and e0 = 0.21 at fGW = 31.7 Hz. We have chosen these
examples to represent a variety of astrophysically mo-
tivates scenarios, i.e., BBHs that enter the aLIGO fre-
quency band on nearly quasi-circular orbits, and moder-
ately eccentric BBH systems that may form in dense stel-
lar environments through a variety of dynamical mech-
anisms [21, 22, 112]. Since the proposed formation sce-
narios for eccentric BBH mergers are astrophysically un-
constrained, it is advantageous to use a waveform model
that can cover as deep a parameter space as possible,
and then let GW observations confirm or rule out poten-
tial formation channels. The analysis we carried out in
this section indicates that ENIGMA can be used for these
studies.
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FIG. 5. As Figure 3, but now for highly eccentric, and high mass-ratio binary black hole mergers.

Figure 6 provides a clear visual description of the im-
prints of eccentricity. Compared to quasi-circular signals,
eccentricity reduces the time-span of GW signals, and
induces significant modulations in frequency and ampli-

tude at lower frequencies. The overlap values quoted in
the inset have been computed using the design sensitivity
of aLIGO from the fGW quoted in the panels.

Having established the accuracy of our new waveform
model, in the following section we use it to quantify the
detectability of eccentric BBH mergers with GW obser-
vations.

VI. DETECTABILITY OF ECCENTRIC
BINARY BLACK HOLE MERGERS

Having established the accuracy of ENIGMA in the
quasi-circular limit, and its ability to describe the dy-
namics of eccentric systems throughout merger with a
set of eccentric NR simulations, we now want to quan-
tify the minimum value of eccentricity at which a circular
search is no longer effectual.

One can use a variety of criteria to accomplish this. In
this study, we use fitting factor (FF) calculations to es-
tablish a connection between eccentricity and deviations
from quasi-circularity. The FF is defined as [113]

FF = max
~θ
O
(
h, hT~θ

)
. (20)

The FF represents the overlap between a given GW sig-
nal h, maximized continuously over chosen intrinsic and

extrinsic parameters ~θ using templates of model hT . If

the set ~θ contains all parameters that describe the tem-
plate and model T also models the signal h, our contin-
uous FF would be unity by construction. In practice,

we perform this continuous maximization over ~θ using
particle swarm optimization [114]2. We find that using a
swarm size of 500 the FF converges to one part in 108.

Figure 7 presents a gallery of FF calculations for a
variety of eccentric BBH populations. In these pan-
els we present BBH populations with component masses

2 We use an open-source Python implementation of the particle
swarm optimization algorithm: pyswarm [115].
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FIG. 6. The panels show two potential astrophysical scenarios of eccentric binary black hole mergers. The left panel presents
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system that may form through a dynamical assembly channel in a dense stellar environment. Each panel presents the waveform
signal corresponding to the quasi-circular counterpart of the eccentric system.
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m{1, 2} ∈ [5M�, 50M�]. The eccentricity range we ex-
plore is e0 ≤ 0.325 at fGW = 10Hz.

A word of caution is in order to interpret these results.
Using a set of eccentric NR simulations, we have estab-
lished that ENIGMA can accurately describe eccentric BBH
systems throughout late inspiral, merger and ringdown.
We have also shown that, in the quasi-circular limit, our
model reproduces with excellent accuracy SEOBNRv4.
Just as EOB models have been calibrated with quasi-
circular NR simulations for the late inspiral and merger
evolution, and then applied to explore the dynamics of
BBH systems at lower frequencies, we expect that our
model will provide an adequate description of moder-
ately eccentric BBH systems during the early inspiral
dynamics. To accomplish this, we have introduced a hy-
brid inspiral scheme that combines recent developments
in the modeling of eccentric and quasi-circular BBHs,
and which we have shown to perform very well to cap-
ture the dynamics of both eccentric and quasi-circular
BBH systems very late in the inspiral evolution.

TABLE II. FF results for a variety of eccentric binary black
hole populations with masses m{1, 2} = [5M�, 50M�]. The
eccentricity e0 is defined at fGW = 10Hz. See Figure 7.

e0 FFmin FFmax

0.010 0.994 0.999
0.025 0.992 0.999
0.050 0.989 0.998
0.075 0.980 0.995
0.100 0.963 0.991
0.125 0.941 0.986
0.150 0.912 0.980
0.175 0.889 0.972
0.200 0.873 0.962
0.225 0.842 0.951
0.250 0.829 0.937
0.275 0.794 0.923
0.300 0.763 0.906
0.325 0.736 0.886

Table II presents key results extracted from the FF
calculations presented in Figure 7. Just as we found
in [40]—left panel of Figure 2 therein—the anomaly does
not have a significant impact in the FF results we present
in this section.

If we assume that eccentricity corrections become sig-
nificant when FF ∼< 0.97, then we can highlight the fol-
lowing results for the BBH parameter space m{1, 2} ∈
[5M�, 50M�]:

A circular search will be effectual for eccentric BBH
that satisfy e0 ≤ 0.05 at fGW = 10Hz. We notice that
eccentricity corrections become significant for e0 = 0.175,
since at this particular threshold FF ∼< 0.97 through-
out the entire BBH parameter space. This eccentricity
threshold is highlighted in Table II. Putting this infor-
mation in context with Figure 7, we notice that for this
eccentricity value, some regions of the BBH parameter
space have FF ∼ 0.9. These regions correspond to

low mass and highly asymmetric mass-ratio BBH sys-
tems. These results are consistent with previous results
reported in the literature [18], i.e., compact sources that
generate long-lived GW signals in the aLIGO frequency
band will be the ones that present the most significant
imprints of eccentricity. Shorter signals, represented by
eccentric, massive BBH systems, will be better recovered
by quasi-circular templates. This is because eccentricity
corrections have less time to accumulate, and thus have
a lesser impact in the waveform phase. This pattern is
clearly shown in the panels of Figure 7.
Table II indicates that FF ≤ 0.95 for e0 = 0.225. As
before, whereas massive BBH systems can be recovered
with FF ∼ 0.95, low mass and asymmetric mass-ratio
BBH systems have FF ∼ 0.84. Finally, we notice that
recovering a BBH population with e0 ≥ 0.275 would re-
quire the use of searches that specifically target eccentric
binaries.

Figure 7 presents the five GW transients, consis-
tent with BBH mergers, currently reported by aLIGO:
GW150914, GW151226, GW170104, GW170814 and
GW170608. These are indicated by a star, a diamond,
a circle, a hexagon and a triangle, respectively. Ta-
ble III indicates that these events can be recovered us-
ing spinning, quasi-circular SEOBNRv4 templates with
FF ∼> 0.96 if e0 ≤ {0.175, 0.125, 0.175, 0.175, 0.125} at
fGW = 10Hz, respectively.

TABLE III. FF recovery of GW150914 (#1), GW151226
(#2), GW170104 (#3), GW170814 (#4) and GW170608
(#5) with quasi-circular, spinning SEOBNRv4 waveforms.

FF recovery with spinning SEOBNRv4 waveforms
e0 #1 #2 #3 #4 #5

0.010 0.996 0.994 0.998 0.997 0.995
0.025 0.996 0.993 0.997 0.996 0.994
0.050 0.994 0.992 0.996 0.995 0.992
0.075 0.992 0.984 0.993 0.991 0.986
0.100 0.986 0.976 0.989 0.987 0.973
0.125 0.982 0.961 0.984 0.982 0.956
0.150 0.977 0.943 0.978 0.974 0.934
0.175 0.969 0.928 0.970 0.963 0.920
0.200 0.960 0.913 0.960 0.960 0.906

To clearly emphasize the content of these results, in Fig-
ure 8 we present eccentric waveform signals that have
FF ∼> 0.98 with the quasi-circular waveforms which the
GW transients were assumed to be. The eccentric signals
have e0 = 0.1 at fGW = 10Hz. The quasi-circular SEOB-
NRv4 signals are generated from fGW = 14Hz. The over-
lap values quoted in each panel are computed using the
design sensitivity of aLIGO from fGW = 15Hz. These
results clearly indicate that the GWs we have detected,
and assumed to be quasi-circular, may have eccentricity
content at lower frequencies that is not easily discerned
by the time these signals become detectable by aLIGO
and aVirgo. Indeed, all these signals can be recovered
with O ≥ 0.98.



13

5 15 25 35 45
m1[M¯ ]

5

15

25

35

45
m

2
[M

¯
]

e0 = 0. 01 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 025 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 05 at fGW = 10Hz

0.989

0.990

0.991

0.993

0.994

0.995

0.996

0.998

0.999

1.000

F
F

5 15 25 35 45
m1[M¯ ]

5

15

25

35

45

m
2
[M

¯
]

e0 = 0. 075 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 1 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

m
2
[M

¯
]

e0 = 0. 125 at fGW = 10Hz

0.941

0.947

0.953

0.959

0.965

0.971

0.977

0.983

0.989

0.995

F
F

5 15 25 35 45
m1[M¯ ]

5

15

25

35

45

m
2
[M

¯
]

e0 = 0. 15 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 175 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 2 at fGW = 10Hz

0.873

0.885

0.897

0.909

0.921

0.932

0.944

0.956

0.968

0.980

F
F

5 15 25 35 45
m1[M¯ ]

5

15

25

35

45

m
2
[M

¯
]

e0 = 0. 225 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 25 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 275 at fGW = 10Hz

0.794

0.811

0.829

0.846

0.864

0.881

0.899

0.916

0.934

0.951

F
F

5 15 25 35 45
m1[M¯ ]

5

15

25

35

45

m
2
[M

¯
]

e0 = 0. 3 at fGW = 10Hz

5 15 25 35 45
m1[M¯ ]

e0 = 0. 325 at fGW = 10Hz

0.736

0.755

0.774

0.793

0.811

0.830

0.849

0.868

0.887

0.906

F
F
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been adjusted for each row to emphasize the eccentricity distribution across the binary black hole parameter space. The star,
circle, triangle, diamond and hexagon represent the first five binary black hole mergers detected by aLIGO and aVirgo.
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TABLE IV. Recovery of GW150914 (#1), GW151226 (#2),
GW170104 (#3), GW170814 (#4) and GW170608 (#5) with
quasi-circular, spin-antialigned SEOBNRv4 waveforms.

Recovery with spin-antialigned SEOBNRv4 waveforms
#1 δm1[%] δm2[%] sz1 sz2
1 1.78 0.26 0.043 -0.083
2 3.07 3.67 0.449 -0.738
3 0.41 0.96 -0.288 0.454
4 2.06 1.51 0.093 -0.145
5 4.75 5.14 0.051 -0.401

Furthermore, as shown in Table IV, the astrophysi-

cal parameters of both waveform signals, eccentric and
quasi-circular, are very similar, with differences in the
component masses of a few percent. The key difference is
that our ENIGMA model currently describes non-spinning,
eccentric binaries. In different words, GWs emitted by
quasi-circular, spin-antialigned BBH systems can easily
mimic the features of moderately eccentric, non-spinning
BBH mergers. We have also computed FF results us-
ing a template bank of SEOBNRv4 waveforms with the
spin of the binary components set to zero. Our results
are consistent using both spin-aligned and non-spinning
template banks, with deviations ≤ 2% level, in a similar
spirit to the results reported in [18].

In conclusion, even though recently detected GW tran-
sients can be effectively recovered with quasi-circular,
spinning SEOBNRv4 templates, it is plausible that
these events may have significant residual eccentricity at
fGW ∼ 10Hz, and circularize by the time these systems
become detectable by aLIGO, i.e., at fGW ∼> 20Hz. We
expect that when aLIGO [7, 8] and aVirgo [9] reach de-
sign sensitivity within the next few years, and we can
start observing the evolution of compact binary mergers
from fGW ∼> 10Hz, we will be able to quantify eccentric-
ity corrections, and clearly associate them to currently
unconstrained astrophysical formation channels of com-
pact binary populations in dense stellar environments.

VII. IMPORTANCE OF HIGHER-ORDER
WAVEFORM MULTIPOLES FOR THE

DETECTION OF ECCENTRIC BINARY BLACK
HOLE MERGERS

There are several studies in the literature that have
explored the importance of including higher-order wave-
form multipoles for the detection of quasi-circular bina-
ries [116–118]. There is, however, no study in the liter-
ature that has shed light on this important topic in the
context of eccentric binary mergers. In this section, we
provide a succinct introduction to this problem using our
catalog of eccentric NR simulations.

The NR higher-order waveform multipoles we use
in this section exhibit similar convergent behavior to
the (`, m) = (2, 2) we used in Section V to vali-
date the ENIGMA model. The waveform multipoles we
use in this section are those that contribute more sig-
nificantly to the waveform strain, namely (`, m) =

(2, 2), (3, 3), (4, 4), (2, 1) and (3, 2).

Figure 9 presents two cases. The top row presents the
higher-order waveform multipoles of simulation M0004
in our catalog, as described in Table I, i.e., q = 1 and
e0 = 0.19 twelve orbits before merger. To clearly show
the low impact of higher-order waveform multipoles for
equal mass, eccentric BBH mergers, we use two different
panels: the top left panel only shows the sub-dominant
multipoles, whereas the right panel shows the ampli-
tudes A`m of all multipoles in comparison to the leading
(`, m) = (2, 2) mode, clearly indicating that higher-order
waveform multipoles contribute up to 10% of the signal
power, with the greatest contribution near merger. In dif-
ferent words, these modes do not significantly contribute
to the detectability of equal mass, eccentric BBH signals.

The bottom panels of Figure 9 show the higher-order
waveform multipoles of the L0020 simulation: q = 5.5
and e0 = 0.21 ten orbits before merger. These re-
sults show that the sub-dominant multipoles (`, m) =
(2, 1), (3, 3), (4, 4) contribute up to 20% of the total
signal power in the vicinity of merger. Therefore, the
inclusion of higher-order waveform multipoles will be nec-
essary for searches of eccentric BBH mergers that have
asymmetric mass-ratios. This finding is consistent with
results in the context of quasi-circular BBH mergers [116–
118], i.e., higher-order waveform multipoles contribute
significantly to the total waveform strain of asymmet-
ric mass-ratio systems, having an important impact on
their SNR, and therefore on their detectability. A de-
tailed study of this important source modeling topic is
well underway, and will be presented in an accompany-
ing paper [119].

VIII. CONCLUSIONS

We have developed ENIGMA, a complete waveform
model to search for and characterize compact binary pop-

ulations that form in dense stellar environments, and
which are expected to enter the aLIGO frequency band
with moderate values of eccentricity.
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Our model is a combination of analytical and numerical
relativity results. It is constructed under the assumption
that moderately eccentric compact binary systems circu-
larize prior to merger. In this context, we describe the
inspiral evolution using a variety of recent results from
PN theory, the self-force and BHPT. On the other hand,
to describe the quasi-circular merger evolution, we use

GPR to create a stand-alone, merger waveform that is
trained with a dataset of quasi-circular NR waveforms.
We described a method to put together these two pieces
so as to provide a complete description of moderately
eccentric compact binary systems. Our results demon-
strate that ENIGMA describes with excellent accuracy the
dynamics of both quasi-circular and moderately eccentric
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FIG. 9. Higher-order waveform multipoles of numerical relativity simulations that describe BBH mergers with the following
properties, M0004: q = 1 and e0 = 0.19 twelve orbits before merger; L0020: q = 5.5 and e0 = 0.21 ten orbits before merger.
See Table I for additional information on these numerical relativity simulations.

systems in a single, unified framework.

We have validated ENIGMA with a set of eccentric NR
simulations that describe BBH mergers with mass-ratios
q ≤ 5.5 and eccentricities e0 ∼< 0.2 ten orbits before
merger. To the best of our knowledge, this is the only
model in the literature that can reproduce the dynamics
of eccentric compact binary mergers for this combination
of highly eccentric, and very asymmetric mass-ratio sys-
tems. We have also validated ENIGMA in the quasi-circular
limit using SEOBNRv4 waveforms, and have shown that
both waveform families have overlaps O ≥ 0.99, assum-
ing an initial filtering frequency fGW = 15Hz.

Having validated ENIGMA both in the quasi-circular
limit, and with eccentric NR simulations, we used it to
quantify the threshold at which the effect of eccentricity
is negligible, and existing circular searches are effectual
for moderately eccentric BBH mergers. Our studies show
that BBH populations with e0 ≤ 0.05 at fGW = 10Hz
will be recovered with spinning, quasi-circular SEOB-
NRv4 templates with FF ≥ 0.99. At this level, a circular
search will be effectual. On the other hand, BBH popu-
lations with e0 ∼ 0.175 at fGW = 10Hz will be recovered
with a maximum FF ∼ 0.97. However, within this same

population, low mass, and asymmetric mass-ratio BBH
populations are recovered with FF ∼ 0.88. BBH popula-
tions with eccentricities e0 ∼ 0.225 at fGW = 10Hz, will
be recovered with 0.84 ∼< FF ∼< 0.95. Finally, BBH pop-
ulations with e0 ≥ 0.275 will require the use of dedicated
eccentric searches, since these events would be poorly re-
covered with 0.79 ∼< FF ∼< 0.92.

Our calculations indicate that GW150914, GW151226,
GW170104, GW170814 and GW170608 can be recovered
with spinning, quasi-circular SEOBNRv4 templates with
FF ≥ 0.96 if the eccentricity of these events satisfies
e0 ≤ {0.175, 0.125, 0.175, 0.175, 0.125} at fGW = 10Hz ,
respectively. We have also shown that the first five GW
transients detected by aLIGO and aVirgo could be mis-
classified as quasi-circular systems, since spin corrections
can easily mimic the properties of moderately eccentric
signals when they become detectable by ground-based
GW detectors. We argue that future improvements to
the sensitivity of aLIGO and aVirgo will be critical to
identify and quantify eccentricity content in GW signals
at lower frequencies.

We have carried out a preliminary analysis of the im-
portance of including higher-order waveform multipoles,
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FIG. 10. Richardson extrapolation calculations to estimate the phase error of a sample of NR simulations used to validate
ENIGMA. The merger time, given by the amplitude peak of the (`,m) = (2, 2) mode of the NR waveforms, is at t = 0M .

and have shown that these will be important for searches
of eccentric BBH mergers whose components have asym-
metric mass-ratios. This result is consistent with similar
analysis carried out in the context of quasi-circular BBH
mergers.

Having completed the description of non-spinning, ec-
centric BBH mergers, ongoing work is focused on the de-
velopment of an extended version of ENIGMA that will en-
able the characterization of spinning, eccentric BBH sys-
tems. This new model will be useful to explore whether
the degeneracy between eccentricity and spin corrections
we have found in these studies can be resolved.
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Appendix A

Using Richardson Extrapolation, Figure 10 presents
the waveform phase error of a sample of eccentric NR
simulations that we have generated to validate ENIGMA.
We notice that the accumulated waveform phase error at
merger, which is defined as the amplitude peak of the
(`,m) = (2, 2) mode waveform, is ∼< 0.2 rads. A detailed
analysis of these simulations is presented in an accompa-
nying paper [80].
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