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We have investigated Lorentz violation through analyzing tides-subtracted gravity data measured
by superconducting gravimeters. At the level of precision of superconducting gravimeters, we have
brought up and resolved an existing issue of accuracy due to unaccounted local tidal effects in
previous solid-earth tidal model used. Specifically, we have taken local tides into account with
a brand new first-principles tidal model with ocean tides included, as well as removed potential
bias from local tides by using a worldwide array of 12 superconducting gravimeters. Compared
with previous test with local gravimeters, a more accurate and competitive bound on space-space
components of gravitational Lorentz violation has been achieved up to the order of 10−10.
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Einstein’s equivalence principle is the foundation of
general relativity. It is based on the universality of free
fall, local Lorentz invariance and, local position invari-
ance [1, 2]. The universality of free fall has been tested
up to accuracies of 10−13 [3–6]. Local position invariance
has been tested, e.g., by gravitational red shift measure-
ment with atom interferometers or clocks [7, 8]. In com-
parison, testing local Lorentz invariance (LLI) is a broad
field, as violations of LLI might manifest themselves in
the gravity sector itself, or in the matter sectors as well
as their coupling [9, 10].

In the simplest case, violations of LLI in the gravity
sector manifest themselves as a dependence of the force
of gravity between two objects on the direction of their
separation. Competitive bounds in this sector have been
established by various experiments and observations[24,
25], such as gravimetry [11–13], lunar laser ranging [14–
16] and astrophysics observations [17, 18]. Among these,
local gravimetry is the one of the easy-to-access and very
precise ground-based method. The underlying idea is
simple: if the force of gravity is anisotropic, then the
local acceleration of free fall on the rotating earth should
exhibit a modulation correlated with the earth’s rotation.
In analyzing such tests, the influence of the sun, the moon
and the planets have to be taken out, which is done by
subtracting a ”tidal model” describing of these influences.

However, a persisting problem has been pointed out in
previous works [11–13] whether a simple first-principles
solid-earth tidal model or a more sophisticated empirical
model should be used. The simple first-principles solid-
earth tidal model does not include any Lorentz violation
signal. But it’s not accurate enough beyond 10−10g with-

∗E-mail:zkhu@mail.hust.edu.cn
†E-mail:hm@berkeley.edu

out including local tidal effects like ocean tides. At the
precision of superconducting gravimeters, it may produce
fake Lorentz violating signals [13]. Sophisticated empir-
ical models are a lot more accurate, but it’s based on
fitting of gravity measurement which itself may contain
Lorentz-violating signals. In this work, we have recon-
ciled the conflict with a worldwide network of gravime-
ters analyzed with first-principle tidal models with ocean
tides included.

A worldwide network of local gravity observations was
made public through the Global Geodynamics Projects
(GGP) which is now called International Geodynamics
and Earth Tide Service (IGETS) [28]. We have analyzed
gravity data from twelve stations over a period spanning
up to 20 years and spanning a total of 120 station-years
with a first-principles tidal model which includes ocean
tides, yielding accurate and competitive bounds on sev-
eral modes of Lorentz violation. The large amount of
data from multiple stations included in our analysis also
enables us to remove potential bias from local tidal effects
of specific location.

We express our limits on Lorentz violation in terms
of coefficients in the minimal standard model exten-
sion (SME) of the pure-gravity sector. The SME is
an effective field theory that offers a theoretical frame-
work founded on well-established physics of the stan-
dard model and general relativity to describe experimen-
tal observable Lorentz violation (LV) signals [19–21]. It
can be formulated as a Lagrangian density containing
general relativity and the minimally coupled standard
model, and terms introducing Lorentz violation from dif-
ferent sectors [22, 23]. The Lorentz-violating terms can
be categorized based on its mass dimension d. The min-
imal SME of the pure-gravity sector that we use in this
work is a subset of the SME where only the leading-order
Lorentz-violating term of mass dimension d = 4 caused
by gravitational fields is taken into account.
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The action of minimal SME in the pure-gravity sector
can be written as [22]

S = SEH + SLV + S
′

, (1)

where SEH is the Einstein-Hilbert action of general rel-
ativity, SLV the leading Lorentz-violating gravitational
coupling, S′ the general matter action of the standard
model. The first two terms can be further formulated as
[22]

SEH + SLV =
1

16πGN

∫

d4xe[(R − 2Λ)

+(−uR+ sµνRT
µν + tκλµνCκλµν)],(2)

where u, sµν , tκλµν are the fields contributing to Lorentz
violation, RT

µν is the traceless Ricci tensor, Λ the cosmo-
logical constant, and Cκλµν the Weyl tensor. In this for-
mulation, the vacuum expectation values of the Lorentz-
violating fields ū, s̄µν , t̄κλµν are signals we are looking
for. However, within the post-Newtonian treatment, the
coefficients ū and t̄κλµν could be neglected since ū acts
as an unobservable rescaling of GN while t̄κλµν has no
effects on physical experiments at the leading order [23].
With the only remaining observable fields s̄µν , the La-
grangian of a two-body system can be written as:

LT =
1

2
mv2 +G

Mm

2r
(2 + 3s̄00 + s̄jk r̂j r̂k

−3s̄0jvj − s̄0j r̂jvk r̂k), (3)

where the indices j, k denote space coordinates, ~v the
relative velocity, and r̂ = ~r/r. The reference frame cho-
sen here is the lab frame (t, xj = x̂, ŷ, ẑ). It has the x
axis point south, the y axis east, and z axis vertically
upwards. Based on the Lagrangian, we can obtain the
vertical component of the acceleration at any location on
the Earth:

gz = g0

(

1 +
3

2
i1s̄

TT +
1

2
i4s̄

ẑẑ

)

− ω2R⊕sin
2χ

−g0i4s̄
T ẑV ẑ

⊕ − 3g0i1s̄
TJV J

⊕ , (4)

where g0, R⊕, V⊕ are the gravitational acceleration in
the absence of Lorentz violation, the radius of the Earth,
and the orbital velocity of the Earth respectively. The
quantities i1 = 1 + i⊕/3 and i4 = 1 − 3i⊕ are given by
i⊕ = I⊕/(M⊕R

2

⊕), where I⊕ is the spherical moment of
inertia of the Earth and M⊕ is the mass of the Earth.
We use the conventional sun-centered celestial equa-

torial reference frame (T,XJ = X̂, Ŷ , Ẑ) [26] to express
the coefficients for Lorentz violation. The difference be-
tween celestial and the lab time T and t can be written
as a phase difference φ ⋍ ω⊕(t−T ) [22], where ω⊕ is the
angular frequency of the Earth’s rotation. After appro-
priate transformation into the Sun-centered frame, the
variation of g in Eq. (4) can be decomposed into its
Fourier components

δg

g0
=

∑

m

Cm cos(ωmt+ φm) +Dm(sinωmt+ φm), (5)

where the coefficients Cm, Dm are functions of coefficients
s̄µν corresponding to six frequencies ω⊕, 2ω⊕, ω⊕ ± Ω,
and 2ω⊕ ± Ω. The angular frequency of the Earth’s
rotation and orbit are given by ω⊕ ≃ 2π/(23.93h) and
Ω = 2π/(1y). The functional forms of the coefficients
Cm, Dm are listed in Tab. I.
Established by Chan and Paik [27], the superconduct-

ing gravimeter presents one of the most sensitive tools
to measure gravity. It converts the acceleration of a
levitated test mass into a current signal in a coil. As
mentioned earlier we have complied and analyzed grav-
ity data available from IGETS [28]. In order to extract
Lorentz violation signals from the original superconduct-
ing gravimeters data, we need to properly separate sig-
nals caused by earthquakes and tides. The earthquake
signal is at much higher frequencies than tides or Lorentz
violation signal, so it can be easily identified. Depend-
ing on the length of seismic signals, they were properly
handled or removed by geophysics experts or the Interna-
tional Center of Earth Tide (ICET) in special software
like Tsoft [31]. The main focus of this work is to re-
move the tidal signal and look for Lorentz violation in
the residual.
The observed gravity g (t) could be decomposed into

tides GT (t), an air pressure related term bP (t), and the
Lorentz violation term δgLV , as:

gmeas (t) = GT (t) + bP (t) + δgLV , (6)

where P (t) is atmospheric pressure and b a regression
parameter to be determined. GT (t) consists solid Earth
tides and ocean tides, which can be expressed as nw wave
groups of harmonic series:

GT(t) =

nw
∑

n=1

Wn

ne
∑

k=ns

Hk cos (ωkt+ ϕk+∆ϕn),

(7)

where ωk, ϕk, and Hk are the frequency, phase and am-
plitude of each harmonic component, respectively, given
as a priori based on an Earth model. Wn and ∆ϕn are
corrections to the amplitude and phase of each tidal wave
group. It is to be noted that the tides here are modeled
based on conventional simple isotropic Newtonian gravity
theory instead of consistent anisotropic gravity theory in
SME, because the effect of anisotropy of gravity is highly
negligible in tidal models based on current limits set in
other works.[11–13, 17, 18].
In the empirical tidal model, the wave groups pa-

rameters Wn and ∆ϕn are determined by fitting to ob-
served data. A detailed treatment can be found in the
ETERNA3.40 software for example (Wenzel 1996 [29]),
which will provide a tidal model with residual directly
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TABLE I: Amplitude and phase of Lorentz violation signals in the vertical gravitational acceleration in each Fourier component
and the decomposed results from superconducting gravimeters data of Medicina, Italy (-5.7152 ). χ is colatitude, and η is the
inclination between the Earth’s equatorial plane and orbital plane.

Fourier Component Amplitude Phase Measurement/10−11(1σ)

C2ω
1

4
i4(s̄

XX
− s̄Y Y )sin2χ 2φ 2.6± 0.2

D2ω
1

2
i4s̄

XY sin2χ 2φ 6.1± 0.2

Cω
1

2
i4s̄

XZ sin 2χ φ −0.6± 0.2

Dω
1

2
i4s̄

Y Z sin 2χ φ −1.1± 0.2

C2ω+Ω −
1

4
i4V⊕s̄

TY (cos η − 1)sin2χ 2φ 0.1± 0.2

D2ω+Ω
1

4
i4V⊕s̄

TX(cos η − 1)sin2χ 2φ −0.3± 0.2

C2ω−Ω −
1

4
i4V⊕s̄

TY (cos η + 1)sin2χ 2φ −0.2± 0.2

D2ω−Ω
1

4
i4V⊕s̄

TX(cos η + 1)sin2χ 2φ 0.5± 0.2

Cω+Ω
1

4
i4V⊕s̄

TX sin η sin 2χ φ −204.8 ± 0.2

Dω+Ω −
1

4
i4V⊕[s̄

TZ(1− cos η)− s̄TY sin η] sin 2χ φ −112.2 ± 0.2

Cω−Ω
1

4
i4V⊕s̄

TX sin η sin 2χ φ 64.5 ± 0.2

Dω−Ω
1

4
i4V⊕[s̄

TZ(1 + cos η) + s̄TY sin η] sin 2χ φ 37.9 ± 0.2

calculated after processing. However, as pointed out ear-
lier, the fitted tidal model might hide potential Lorentz
violation signals from being detected. But in theoretical
models such as the one given by Tsoft [30], though not
as precise, the wave groups parameters are obtained by
calculation independent of gravity measurement. There-
fore, we use Tsoft to extract Lorentz violation signals
from experimental measurements in this work.

To estimate the coefficients of the violation s̄µν from
the superconducting gravimeters data, we decompose
the residual signal after subtracting the theoretical tidal
model δg into its Fourier components (Cm, Dm) by least-
squares fitting. Based on the functional relations listed
in Tab. I, we solve for the coefficients s̄µν from these
Fourier components. We present the data of Medicina,
Italy as an example shown in Figure 1. The raw data
spectrum after Fourier transform is plotted in Figure 1a)
in the scale of cycle per day (cpd). In the same scale, we
have also plotted the spectrum of theoretical tidal model
in Figure 1b) with some major tidal waves labeled, the
residual spectrum after subtracting the theoretical tidal
model (theoretical residual) in Figure 1c), as well as the
residual spectrum after subtracting the empirical tidal
model (fitting model residual) in Figure 1d). All data
are plotted in the unit of 1µGal=1× 10−8m/s2. The
Fourier amplitudes from least-squares fitting of the data
at this station are listed in the last column of the Tab. I.

It is worth noting that the Fourier amplitudes at fre-
quency ω ± Ω are significantly larger than others. This
can be explained by the way how the theoretical tidal
model works. In the theoretical tidal models like the
one given by Tsoft, the tidal waves consist of main diur-
nal waves (Q1, O1, P1 K1 etc.), main semidiurnal waves
(N2, M2, S2 and K2 etc.) at the leading order and other
branch wave groups (PSI1 etc.) [31, 32]. It predicts
main tidal waves (K1, K2) more accurately than other
tidal waves due to lack of knowledge of the Earth struc-
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FIG. 1: The data of Medicina, Italy (-5.7152). This data gives
an upper limit of 10−10 to the space-space components of s̄µν .
Figure a) shows the amplitude spectrum of raw data, figure b)
shows the amplitude spectrum of theoretical tidal model data,
figure c) shows the residual data based on the pure theoretical
tidal model, and the figure d) shows the residual data base on
an empirical tidal model.

ture and composition at higher orders [33]. In the plot in
Figure 1c), the remaining spectral feature of the theoret-
ical residual shows this inaccuracy in other waves close
to the main waves. However, branch wave groups are
significantly involved to predict Fourier components of
tides at frequency ω ± Ω and 2ω ± Ω. Therefore, the
tides could not be accurately subtracted at these frequen-
cies to get time-space components of Lorentz violation
signals s̄TX , s̄TY , s̄TZ . Besides, these time-space com-
ponents could be constrained more accurately in astro-
physics experiments like pulsar observations [17, 18]. So
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here we only focus on analyzing the space-space Lorentz
violation components with this theoretical tidal model.

We have analyzed gravity data from 12 superconduct-
ing gravimeter stations all around the world with ge-
ographic location, ocean load correction, atmospheric
pressure taken into account in constructing the theoret-
ical tidal model. There are gaps ranging from 2 days to
about a year in the middle of data sets. But each con-
tinuous portion is at least a month long so the gap has
no significant effect on Fourier components at frequencies
ω and 2ω. Following the procedure described above, we
have obtained space-space components of Lorentz viola-
tion signal shown in Tab. II. Some results in this table
are not compatible with one another because we have not
yet included the systematic error of the tidal model into
this analysis. In Tab. III, we combined all data to get an
overall estimation of Lorentz violation by least-squares
fit. The mean values and statistical errors of Lorentz vi-
olation space-space components are listed in the 4th col-
umn of Tab. III along with results from previous work. In
order to estimate systematic error, we analyzed the resid-
ual spectrum after subtracting the theoretical model at
frequencies of interest (ω and 2ω), as shown in the Fig-
ure 1c) as an example. Since the theoretical model always
predicts the main tidal waves (K1, K2) at ω and 2ω bet-
ter than other close-by waves as shown in the spectral
feature of theoretical residual in the same plot, we can
use the largest residual peak at Lorentz-violation-free fre-
quencies close by to set conservative systematic bounds
for the theoretical model at each main tidal wave respec-
tively. Based on least-squares fitting of residual data for
all 12 stations, we assigned 0.15µGal and 0.5µGal as
conservative estimate for potential tide model error at
frequencies ω and 2ω respectively. The corresponding
systematic error for each Lorentz violation component is
listed in the fifth column of Tab. III. Thus we report the
overall estimate of space-space Lorentz violation compo-
nents in the last column of Tab. III. As we see, our
limits for the space-space components of Lorentz viola-
tion are up to the level of 10−10, one order of magnitude
smaller than that of atom interferometry [11], and simi-
lar to the single superconducting gravimeter result listed
in [13]. And more than precision, we have also resolved
the accuracy issue caused by inaccurate tidal model used
at the precision of superconducting gravimeters.

In this letter, we have tested the local Lorentz invari-
ance and resolved an issue of accuracy by analyzing grav-
ity measurement of a worldwide array of superconduct-
ing gravimeters with a first-principles tidal model with
ocean tides included for the first time and reached a
competitive result of ground-based experiments to bound
space-space Lorentz violation components to up to 10−10.
The ground-based gravimetry experiments for detecting
Lorentz violation are primarily limited by inadequate ac-
curacy in all available theoretical tidal models. In the
future, the sensitivity to Lorentz violation coefficients
would potentially be improved by orders of magnitude
with improved tidal models. Moreover, the approach in

this work of using a worldwide network of superconduct-
ing gravimeters and correctly handling tides with first-
principles tidal models, will also open new ways of testing
exciting new gravitational physics like some dark-matter
theories beyond the Standard Model.
We gratefully acknowledge support by the Na-

tional Natural Science Foundation of China (Grants
No.91636221 and No.91636219). Besides, this mate-
rial is also based upon work supported by the National
Science Foundation under CAREER Grant No. PHY-
1056620 and the David and Lucile Packard Foundation,
National Aeronautics and Space Administration Grants
No. 041060-002, 041542, 039088, 038706, and 036803.
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TABLE II: The space-space components of Lorentz violation from 12 superconducting gravimeter stations.

Location φ time s̄XX
− s̄Y Y s̄XY s̄XZ s̄Y Z

rad yr 10−10 10−10 10−10 10−10

Metsahovi, Finland -5.4926 20 −8.5± 2.3 −10.2 ± 1.1 −1.0± 0.3 −1.7± 0.3
Medicina, Italy -5.7152 19 −6.9± 1.4 −9.8± 0.7 −0.1± 0.3 −2.5± 0.4
Membach, Belgium -5.8136 16 −18.5± 3.6 −10.6 ± 1.8 1.4± 0.8 −7.9± 0.8
Sutherland, South Africa -5.5552 15 −2.1± 1.1 −9.8± 0.6 10.5 ± 0.5 −3.8± 0.5
Boulder, Co, USA -1.4719 9 −4.5± 4.8 −11.0 ± 1.2 0.6± 0.5 −2.3± 0.5
Canberra, Australia -3.3177 8 −11.3± 1.1 −12.1 ± 0.6 8.5± 0.5 −0.3± 0.5
Pecny, Czech Republic -5.6603 7 −23.4± 2.3 −14.3 ± 7.3 −3.7± 0.5 −3.7± 0.5
Conrad Observat., Austria 5.6416 7 −7.9± 2.6 −9.4± 1.3 −3.6± 0.6 −0.3± 0.6
Bad Homburg, Germany -5.7681 7 5.8± 2.7 −10.8 ± 1.4 −3.6± 0.6 3.0± 0.6
Wetzell, Germany -5.6936 6 −21.7± 3.4 −9.7± 1.7 −4.5± 0.8 −1.5± 0.8
Schiltach, Germany -5.7731 4 −18.5± 3.6 −10.6 ± 1.8 −1.4± 0.8 −7.9± 0.8
Brasimone, Italy -5.7244 2 −7.2± 4.1 −14.5 ± 2.1 −6.8± 1.1 20.7 ± 1.1

TABLE III: The comparison of Lorentz violation (LV) bounds from atom interferometry [11], the superconducting gravimeter
at Bad Homburg [13] and a worldwide array of superconducting gravimeters in this work. This is the first bound of Lorentz
violation obtained by a first-principles tidal model with ocean tides. The possible systematic error given here is based on
residual spectrum at 2 ω.

Coefficient Atom interferometry [11]
Superconducting
gravimeter at

Bad Homburg [13]

LV estimate with
statistical errors

LV systematic errors
from the tidal model

Overall estimate of
LV in this work

s̄XX
− s̄Y Y (4.4± 11)× 10−9 (2± 1) × 10−10 (−8.8± 0.5) × 10−10 2.4 × 10−9 (−0.9± 2.4) × 10−9

s̄XY (0.2± 3.9) × 10−9 (−4± 1) × 10−10 (−11.0 ± 0.3) × 10−10 1.2 × 10−9 (−1.1± 1.2) × 10−9

s̄XZ (−2.6± 4.4) × 10−9 (0± 1) × 10−10 (−3.0± 1.4) × 10−11 1.8× 10−10 (−0.3± 1.8) × 10−10

s̄Y Z (−0.3± 4.5) × 10−9 (3± 1) × 10−10 (−2.4± 1.4) × 10−11 1.8× 10−10 (−0.2± 1.8) × 10−10
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[10] V. A. Kostelecký and N. Russell, Rev. Mod. Phys. 83,

11(2011) [arXiv:0801.0287].
[11] H. Müller, S. W. Chiow, S. Herrmann, S. Chu and K. Y.

Chung Phys. Rev. Lett. 100, 031101 (2008).
[12] K.-Y. Chung, S. W. Chiow, S. Herrmann, S. Chu, and

H. Müller, Phys. Rev. D 80, 016002 (2009).
[13] N. A. Flowers, C. Goodge and J. D. Tasson,

arXiv:1612.08495.
[14] K. Nordtvedt, Jr., Phys. Rev. 170, 1186 (1968).
[15] J. B. R. Battat, J. F. Chandler, and C.W. Stubbs, Phys.

Rev. Lett. 99, 241103 (2007).
[16] A. Bourgoin, A. Hees, S. Bouquillon, C. LePoncin-

Lafitte, G. Francou and M. C. Angonin, Phys. Rev. Lett.
117, 241301 (2016).

[17] L. Shao, Phys. Rev. Lett. 112, 111103 (2014).
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[20] V. A. Kostelecký and R. Potting, Nucl. Phys. B 359, 545

(1991).
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[26] V. A. Kostelecký and M.Mewes, Phys. Rev. D 66, 056005

(2002).
[27] H. A. Chan, M. V. Moody and H. J. Paik, Phys. Rev. D

35, 3572 (1987).
[28] http://isdc.gfz-potsdam.de/igets-data-base/
[29] Wenzel, H.-G., Bulletin d’Informations Mareés Terrestres

124, 9425-9439, Bruxelles 1996.
[30] M.V. Camp and P. Vauterin, Computers and Geosciences

31, (2005) 631-640.
[31] J.Q. Xu, X.D. Chen, J.C. Zhou and H.P. Sun, Chinese

Science Bulletin 57, No.20: 2586-2594.
[32] J.Q. Xu, J.C. Zhou, X.D. Chen and H.P. Sun, Chinese J.

Geophys. 57 (10), 3091-3102 (2014).
[33] A.M. Dziewonski and D.L. Abderson, Physics of the

Earth and Planetary Interiors 25 (1981) 297-356.


