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Black hole perturbation theory is useful for studying the stability of black holes and calculating
ringdown gravitational waves after the collision of two black holes. Most previous calculations were
carried out at the level of the field equations instead of the action. In this work, we compute
the Einstein-Hilbert action to quadratic order in linear metric perturbations about a spherically
symmetric vacuum background in Regge-Wheeler gauge. Using a 2 + 2 splitting of spacetime, we
expand the metric perturbations into a sum over scalar, vector, and tensor spherical harmonics, and
dimensionally reduce the action to two dimensions by integrating over the two sphere. We find that
the axial perturbation degree of freedom is described by a two dimensional massive vector action,
and that the polar perturbation degree of freedom is described by a two dimensional dilaton massive
gravity action. Varying the dimensionally reduced actions, we rederive covariant and gauge-invariant
master equations for the axial and polar degrees of freedom. Thus, the two dimensional massive
vector and massive gravity actions we derive by dimensionally reducing the perturbed Einstein-
Hilbert action describe the dynamics of a well studied physical system: the metric perturbations
of a static black hole. The 2 + 2 formalism we present can be generalized to m + n dimensional
spacetime splittings, which may be useful in more generic situations, such as expanding metric
perturbations in higher dimensional gravity. We provide a self-contained presentation of m + n
formalism for vacuum spacetime splittings.
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I. INTRODUCTION

The theory of metric perturbations of static black hole spacetimes is an old and well studied subject. The field began
with the work of Regge and Wheeler [1], who were the first to study linear metric perturbations of the Schwarzschild
background. In particular, Regge and Wheeler derived a closed form expression, the Regge-Wheeler equation, for
linear axial perturbations. The field was further developed by several workers, most notably Vishveshwara [2] and
Zerilli [3], the latter of whom derived a closed form expression, the Zerilli equation, for linear polar perturbations.
Black hole perturbation theory was first presented in a gauge invariant manner by Moncrief [4], who also wrote down
a Hamiltonian for axial and polar perturbations. Gerlach and Sengupta [5, 6] later formulated a covariant and gauge
invariant formalism to describe the metric and matter perturbations of a generic spherically symmetric spacetime. A
thorough exposition of the state of the field up until the mid 1980’s can be found in Chandrasekhar’s monograph on
the subject [7], while a more modern, covariant, and gauge invariant formulation of the theory of static black hole
perturbations including source terms is presented by Martel and Poisson in [8].

While much progress has been made in understanding and reformulating the equations of motion of metric pertur-
bations of static black holes, less work has been done on understanding the structure of the perturbed Einstein-Hilbert
action in this background (see, however [9-16]). The purpose of this paper is to further develop this aspect of metric
perturbation theory. There are several reasons why deriving the action for black hole perturbations may be useful,
two of which we briefly describe below.

Firstly, this formalism may be useful in constructing effective field theories of black hole ringdown. In the context
of FLRW cosmologies, a 1 + 3 decomposition is natural as the background can be naturally split into a three dimen-
sional maximally symmetric spacelike hypersurface and a time direction. The maximally symmetric subspace of a
Schwarzschild black hole is the two sphere. Adapting an effective field theory approach with a 2+ 2 formalism may be
more useful for this background, where a foliation by maximally symmetric subspaces would be by two dimensional
spheres (see, for example [17] for a related discussion).

Secondly, deriving the action for black hole perturbations may also be useful in understanding the quantum physics
of black holes. Two dimensional gravity has been used to study Hawking radiation and the quantum mechanics of
black holes [18-20]. The actions in Eqs. (49) and (71) could be useful in this context; for example in the construction
of a path integral formulation of Hawking radiation for the metric perturbations of a black hole.

In this article, we derive the perturbed Einstein-Hilbert action for spherically symmetric backgrounds. From this
action, we derive the equations of motion for the Schwarzschild black hole. We derive the action using a 2 + 2
spacetime splitting, which allows us to decouple the linear scalar, vector, and tensor (SVT) perturbations in the
action. While this is not the first work that derives black hole perturbations from the action [9-16], to our knowledge
the application of the 2 + 2 formalism directly to the perturbed Einstein-Hilbert action is novel, and brings to light
several interesting new conceptual points about the nature of black hole perturbations. For example, we find that the
polar perturbations of a Schwarzschild black hole are described by a (1+1)-dimensional dilaton massive gravity model,
which naturally emerges by dimensionally reducing the perturbed Einstein-Hilbert action in a spherically symmetric
background. Additionally, the axial perturbations of a black hole are described by a (141)-dimensional massive vector
field action. While we derive these actions in the Regge-Wheeler gauge, our results may trivially be reexpressed in a
gauge invariant fashion (see, for example, section IV B of [§]).

The organization of this paper is as follows. In Sec. II, we briefly review the m 4 n formalism for vacuum spacetime
splittings as applied to the Einstein-Hilbert action; more details are given in Appendices A and B. In Sec. III, we
set our notation and review metric perturbation theory in a spherically symmetric spacetime. In Secs. IVB and IV C
we derive the action for axial and polar perturbations respectively for a spherically symmetric background, which we
derive in the Regge-Wheeler gauge [1]. From the axial and polar equations of motion, we rederive covariant and gauge
invariant expressions for the axial and polar degrees of freedom, respectively. We discuss our results and conclude in
Sec. V. We review the mathematics of the geometry of surfaces of arbitrary codimension in Appendix A, compute
the Einstein-Hilbert action in ADM-like variables adapted to higher codimension spacetime splittings in Appendix B,
and provide a summary of the properties of scalar, vector, and tensor spherical harmonics in Appendix C.

Our sign conventions for the metric and Riemann tensor follow that of Misner, Thorne, and Wheeler [21]: for a
Lorentzian manifold the metric signature is — ++---, and R* 3, = gy, —---. We work in reduced Planck units:
G =c=---=1.

II. EINSTEIN-HILBERT ACTION IN THE m +n FORMALISM

In this section we briefly review the m + n formalism for vacuum spacetime splittings. A more detailed description
of this formalism is presented in Appendices A and B.



We begin with a d dimensional (semi-)Riemannian manifold M with metric g,, and connection V,. We assume
that the topology of M is R™ x ¥, so that we may foliate M with a family of n = d — m dimensional submanifolds
{Z¢}term. Unless otherwise noted we will drop the index subscript t from Y. For every point p € X, the tangent
space of p naturally splits into a tangent and transverse space, T,,(M) = T,(X) @ T,,(+¥). We define the tangent
projector on to the tangent space h,"” and the transverse projector [, = d,” — h,".

Let us define the notion of tangent and transverse in more detail. A tensor component is called tangent if its
contraction with the transverse projector is zero; e.g. if [,” P** = 0 then we say the p component of P*“ is tangent.
Likewise a component of a tensor is called transverse if its contraction with the tangent projector is zero. A tensor is
called tangent (transverse) if all of its components are tangent (transverse). We define the tangent extrinsic curvature
K7, and the transverse extrinsic curvature A7,

K7, =h,%h," V51,7, (1)
A7, =11,V gh (2)

We define a tangent derivative operator HVM as the tangent projection of the action of V, on a tangent tensor; e.g.
for some v, € T; (¥) we would have HVHU,, = huah,ﬁvauﬂ. Likewise we define the transverse derivative operator
LV, as the transverse projection the action of V,, on a transverse tensor. As the transverse spaces will generally
not integrate to form a set of submanifolds, the transverse derivative will generally not be torsion free. We define
curvature tensors for the tangent and transverse tensors as follows. For any v, € T(X), we define

”RQB,Y&’U(; = 2|‘V[QI|V5]U,Y . (3)
Similarly, for any v, € T (+X), we define
J‘Ralgvévls = 2J‘V{QLV[3]’UV + F)\aﬁlvévkvls R (4)

where the transverse torsion tensor is defined by F7 .5 = 2A7,5. With these definitions at hand, we can rewrite the
Ricci scalar as follows

R = (h*7RP? 4197150 + 2h°717°) Roges
=R+ R+ K\K* — Koo KM 4+ AyAN — Ayap AN =2V, (KM + AY), (5)

where K* = K*,* and A* = A 1.

At this point we choose a basis adapted to the m +n foliation. Our discussion here most closely follows that of [22].
The coordinates {z*} of some chart of the spacetime manifold M are written as functions of two sets of variables,
{u} and {04}, so 2 = 2*(u?,64). Our notation is as follows: Greek indices run from 0, ...,d — 1, lower case Latin
indices run from 0,...,m — 1 and upper case Latin indices from from m,...,d — 1. Einstein summation notation will
apply to all different index types. Derivatives with respect to the variables {u®} will be denoted by 9, = 9/du®,
while derivatives with respect to the variables {64} will be denoted by 94 = 9/964. We set the variables {#} to be
intrinsic to the leaf ¥. We define a basis of frame vectors e} = 042 which span T,(X). The first fundamental form

of Xis yap = gageje%; the inverse of y4p is ”yAB , and the metric compatible induced covariant derivative is denoted

by V4. Upper case Latin indices are raised /lowered by vAB and y4p, respectively. The variables {u®}, which
may also be thought of as functions on the chart, are constant on each leaf. We define a congruence of vector fields
u) = d.x” upon which the frame vectors {e%} are Lie transported. We next define a basis for T;(J-E), né = Jqu’.

The components of the inner product matrix of the forms n2 is written as a®® = go‘ﬁngng. The matrix inverse of

a® is denoted by ayp. Formally, we will raise/lower lower case Latin indices with a®® and s, respectively. We note
that generally gy is generically not the first fundamental form of any submanifold as the transverse spaces generally
do not integrate to form a submanifold. We decompose the differential dz® into terms tangent and transverse to the
leaf ¥,

dz® = nZdu® + e5 (do* + Bitdu®) (6)
where we have defined the shift vectors {5$}. We now write down the line element for this adapted basis
ds® = agydudu® + yap (d0* + Bitdu®) (d6F + BPdu’) (7)

where we recall gagein’g = (0. With this line element the metric determinant factorizes as follows: detg = deta det~.

We can now compute the curvatures K7,5, A7 43, ”Ra[g,ﬂ;, and J-Rag,ﬂ; in terms of the metric components oy, Y48,
and 34

K ap zefegnflecAB, (8)



A,Ya/j zecvngn%Afb, (9)
IRogrs :eﬁegeﬁe?”RABcp, (10)
T Ragys =ngnining (LRabcd + 2050 repargy O P ALY Alg) : (11)
where
1
ICCAB 25 (80'7143 - HVABCB - HvBﬁcA) 5 (12)
1
Aacb :E (Bca“b _ aacabd’YCD]:c%) , (13)
FG =085 — 0BE + pPopBE — BLopsE (14)
IRPcap =0aTPcp — 9T ca + TP AT cp — TP 15T 04, (15)
1
Fcan =5 (OaveB + 9BYcA — OcyaB) s (16)
L,R'dcab :ngauﬂdcb - ngauﬂdca + QdiaQicb - QdibQicaa (17)
1
Qead . (N Ouich + 1l Oy ovcq — Nk dyaap) . (18)
The Einstein-Hilbert action in this formalism can be written as
SEn = /dmudne\/aﬁ(”R + CVCd'yABVCD (ICCABICdCD - ICCACICdBD)
+ R+ Pagpoed (AFAF — AEAY) — 2V, (KA + AY) ) (19)

We direct the reader to Appendices A and B for a more detailed discussion of the m + n formalism, including a
discussion of the relation of this formalism to the ADM 1+ (d — 1) formalism, and for derivations of the main results
stated in this section.

IIT. METRIC PERTURBATIONS FOR SPHERICALLY SYMMETRIC BACKGROUND

In this section, we consider perturbations around a spherically symmetric four dimensional background spacetime.
In a spherically symmetric spacetime, the full spacetime manifold naturally factorizes into the form M = M? x S2,
where both M? and S? are submanifolds of M. S? is the two-sphere and roughly speaking M? is the ‘(t,r) plane’ (see,
for example the discussion in section IT of [8]). For factorizable spacetimes the metric naturally factorizes as well; i.e.
we can choose a background metric such that the shift vectors {3} are all zero.

We write the background metric as

ds?® = Oagdutdul + Oy, 5do*do" . (20)

We identify Dag, and D45 as the metrics for M? and S2, respectively. The metric (Dy45 is equal to 72Qup,
where Q45 is the round metric. For a factorizable spacetime and metric we may also interpret (¢, as the induced
metric on M2, and define a metric compatible covariant derivative 1+V,, with Q.4 as the connection coefficients. See
Appendix B3 for a discussion of the m + n formalism and factorizable spacetimes.

We begin by describing the geometry of a linearly perturbed spherically symmetric background. We write

Aab :(O)Qab + 5aab7 (21)
B =087, (22)
vaB ="va8 + 6v4B. (23)

The perturbations dagp, 637, and §yap can be split into pieces that transform as scalars, vectors, and tensors with

respect to the SO(3) spacetime isometry. This is accomplished by decomposing dcvs, 6aa = VyapdBE, and dyap
into a sum over spherical harmonics as

Sorap(u®,04) = " bl (u)y'™ (0%), (24)

L,m



TABLE I. Gauge transformations for spherically symmetric background given by Eq. (20).

variable(s) gauge transformation
scalar hlm hé N hlm + Lva(glm)b + J_vb(é-lm)a
L e N TR VY
vector| 7" Ja" = Ja" + 75 (€8 )a + Bate”
i B 5 B 4 Dl
tensor| G'™ G'™ — G'™ 4 26
thm thm — thm +2£le
0B aa(u®,0%) =r® Y {0 (u")EF (04) + B () BY (04} (25)
I,m

YaB + 0vap(u®, 9’4) =72 Z {exp [2klm(ua)] QABYlm(HA)

l,m

+ G () Bl (0%) + h" (u) B (0M) }, (26)

where Y, {El ,Blm} and {E B 54"}3} are scalar, vector, and tensor spherical harmonics, respectively. We
collect the basic properties of these functions in Appendix C. Our notation for the spherical harmonic decomposed
perturbations follows Poisson and Martel [8], with the exceptions of K™, which we set to be K™ = | (see their
equation (4.3)), and the perturbations j and hl™, which we multiply by r? (see their equations (4.2) and (5.2)). We
further note that unlike Martel and Poisson [8], we raise/ lower in indices A with y4p5, and not the round metric Q4.
This includes the indices of the vector and tensor spherical harmonics. With the decomposition in Eqs. (24)-(26), we
have rewritten the ten metric perturbation degrees of freedom into a sum over SVT spherical harmonics. We see that
there are four scalar, four vector, and two tensor spherical harmonic degrees of freedom. In reduced Planck units the
variables {hfg}, Eim Glm, hl{”} are dimensionless, while the variables { gim, hflm} have dimensions of inverse length.

For completeness, we next review the gauge transformations of the perturbed quantities. Our treatment and
notation most closely follows that of Martel and Poisson [8]. A linear gauge transformation can be written as the Lie
derivative of the background metric along some arbitrary infinitesimal vector £*:

££"‘guu = gaaaguu + guaauga + guaauga = vugu + vl/é-u' (27)

Under these transformations, and with our line element in Egs. (20), (21), (22), and (23), we see that our perturbations
dgp, 6[3;4, and dyap transform as

Stah =00y + LV abp + L ViEq,
5ﬁaA —>5ﬂaA + (O)QacaAé.C + TQQA03a507 (28)
0va8 =074 + Qapcdr? + 1V atp + 1Vpea.

We can split the four-vector £# into terms that transform as scalars and vectors with respect to the SO(3) isometry:

Eala®,0%) =) (€8 a(u®) Y™ (67),

l,m

(29)
5 % 6.A _7,22{5 9A)+§lm( a)Bi‘m(eA)}7

where the label S, stands for ‘scalar part’, £ for ‘electric (polar)’ part, and B for ‘magnetic (axial)’ part of the black
hole perturbations. We see that £, has two scalar and two vector degree of freedom, one of which is axial and the
other which is polar Note that we have chosen to normalize the scalars and vectors so that in reduced Planck units
the quantities { } have the dimension of length, while quantities {5 g”} are dimensionless. In Table I we
list how the SVT components of davgp, Ba , and dy4p transform under the gauge transformation in Eq. (27). Unlike in
cosmological perturbation theory [23], the tensor perturbations with respect to the (spherically symmetric) background
are not gauge invariant. Using the relations listed in Table I, one can construct gauge-invariant perturbations [4, §],



which we list for completeness

- 1

B =hy" — S 0ahy", (30)

pim =plm _ L7, — Ve, (31)

- 1 1

Etm =gim — §eaaar2 + 70+ naGhm, (32)
where ¢, is defined to be [8]

1
€a = rglm — 5r?aaG“". (33)

We see that Bflm is an axial, while ﬁfﬁf and k'™ are polar gauge invariant perturbation variables.
In this paper, we adopt the Regge-Wheeler gauge. Such a gauge fixes the scalar and vector components of the
gauge vector §Lm as follows:

m 1 m

lB = Qhé ) (34)

m 1 m

=g, (35)
(€8"), = —rPug" —r2jm. (36)

While Regge and Wheeler worked with Schwarzschild coordinates [1], we see that their gauge choice does not depend
on jhe detailed structure of the two-metric (V) agy, insofar that it has no functional dependence on the angular variables
{0} [8].

Importantly, as the gauge vector 53” is uniquely determined (e.g. with no integration constants) by the conditions
in Egs. (34)—(36), we can derive the correct perturbation and background equations of motion by imposing the gauge
conditions first and then varying the expanded Einstein-Hilbert action [24]. The Regge-Wheeler gauge leaves us with
the following six (two vector, four scalar) degrees of freedom: {hl™, hlm fim}.

Only one scalar and one vector degree of freedom, which correspond to the two polarizations of a gravitational
wave, are dynamical degrees of freedom. The other three scalar degrees of freedom are either fixed by the equations of
motion to be constants, or are absorbed into the definition of the Zerilli function W'  which describes the dynamics
of the polar perturbation [3, 4, 8]. For the remainder of this paper all of our calculations will be performed in the
Regge-Wheeler gauge. From the gauge transformations listed in Table I, we see that we can rewrite our formulas in
terms of the gauge invariant variables using the relations as follows: hl™ — hlm plm — plm and k'™ — k'™ so that

all the formulas we list can be cast into a gauge invariant form (see for example [8]).

IV. PERTURBED EINSTEIN-HILBERT ACTION IN REGGE-WHEELER GAUGE

In this section, we consider axial and polar perturbations of the Einstein-Hilbert action in the Regge-Wheeler gauge.

A. Background equations of motion

For completeness, we first derive the background equations of motion from unperturbed Einstein-Hilbert action in
spherical symmetry. The unperturbed dimensionally reduced action is

S = /dQu\/a <§LR + (Oar)? + 1> : (37)

Varying r and a®, we obtain the standard (see for example appendix B of [25]) equations of motion
0=r*R —2+0r, (38)
0= (2r"0r + (0e7)? — 1) agp — 27V, Vyr. (39)
We note that we can split up Eq. (39) by computing its trace and trace free components. The trace gives us

r+0Or 4 (9r)? — 1 = 0. We then use this in Eq. (39) to obtain *V,*Vyr = 2aq, Or (see, for example Eq. (2.8) of
[8] for a similar expression).



B. Axial perturbations

1. Auwzial action

Let us first consider axial perturbations. In the Regge-Wheeler gauge, the nonzero axial perturbations are completely
described by the variable hi™:

0Baa =17 himBY", (40)
Im
in other words we consider the line element
ds? = Dagdu®du’ + Oy p (d64 + 582 du®) (d6F + 58P au®) (41)

with (56{3 =~4853, 5 given by Eq. (40). For the remainder of this subsection our notation will be © gy = agp. The
Einstein-Hilbert action expanded to linear order in hi™ is zero in Regge-Wheeler gauge. So, we only need to consider
the action expanded to quadratic order in h/™. The terms of the Einstein-Hilbert action, Eq. (19), that are nonzero
with line element Eq. (41) are

1
S = /d4$\/aﬁ {aCd”YAB”YCD (KeapKacp — KeacKapp) — Zaacabd'YCngyfﬁ] (42)

We will now rewrite Eq. (42) by integrating over the two sphere. Firstly, we record the components of K.4p and
FS subject to the perturbation Eq. (40)

8CT T2 m m m
Keap ===7ap — %} hm (DsBY* + D BY") (43)
FG = _(B"™) (9ahi™ — 0uhl™) + O ((hh™)?) (44)
Im

where D4 is the covariant derivative on the two sphere (see Appendix C). Using the properties of the axial vector
spherical harmonics recorded in Appendix C, and after several integrations by parts we obtain for the first two terms
in Eq. (42) as

/d2QWQCdWABVCD (KeaKacp — KeacKasp)

2
=209 8,19y — % S U+ 1 [+ 1) — 2 a Rl R, (45)

Im

We drop the order zero term a®d,rd,r. We next dimensionally reduce the ‘field strength’ term (the one that depends
on (F£)?) and obtain

/ PO Fyapa®a FARS = Y 11+ 1)a™ e Fir Fip, (46)
I,m
where we have defined
Fupt = 0ahy™ = Ophl™ = TV ahi — FVhi" (47)

We can remove the factor of 74 from Eq. (46) (multiplied by v/—a in Eq. (42)) by performing the following conformal
transformation:

N 1
Qgp = T_404ab' (48)

Using Eqs. (45)—-(48), we see that the dimensionally reduced Einstein-Hilbert action for axial perturbations about a
spherically symmetric vacuum background is

SO =1 +1) [ duy/—alm [—
L,m

1 1
Jare MR Fly — LM (ranhiralr]. ()



where we have defined an effective mass Mj,(r) to be
M (r) = (P +1-2)r" (50)

The action in Eq. (49) is the central result of this section. We again note that up until this point the only condition
we have placed on the two metric ayp is that it has no functional dependence on the angular variables {6#4}. We
conclude that the action (Eq. (49)) describes the linear metric axial perturbations of the Einstein-Hilbert action in a
spherically symmetric vacuum background.

We now derive the first order equations of motion by varying Eq. (49) with respect to hl™:

0= t0nlm — @bt v, v, plm — M2 (r)him. (51)

Here 100 = a™V,V, and L@a are the derivative operators compatible with the background metric constructed from
dqp instead of ayyp. Taking the divergence of Eq. (51), we obtain a constraint on the vector hflm as

0="V, [MZ(r)a®him] . (52)

Recall that we may relate the Regge-Wheeler variable hl™ to the gauge invariant variable under the simple substitution
hl™ — h!™ o that to linear order in perturbation theory Eqgs. (49), (51), and (52) under this relabeling become gauge
invariant expressions.

2.  Master axial equation

For completeness, we demonstrate that we can rewrite Egs. (51), (52) as a single master equation (see, for example
[5, 8, 26-28]). Firstly, we rewrite our equation of motion in the metric a,p. Note that as va@®™ = /aa® and
ME(r) = (14 1)(L — 2)r? where (I +1)(I — 2) is a constant, we see that Eq. (52) is equivalent to

0="1v, (Tzaabhém) ' (53)
We conclude that we can rewrite h/™ in terms of the master variable for the odd parity perturbation W™, as
Wi = %ealﬁvb (rvliy) (54)
where ¢, is the Levi-Civita tensor® for the Lorentzian metric aq,. Next, we rewrite Eq (51) as
0="LV0[r* (L Vbl — LVRM) ] = (1= 1)(1 + 2)r?hlm. (55)
In a two dimensional manifold we have the identity
2V V pv4) = €abe“ VPV | vg). (56)
We use Eq. (56), along with Eq. (54) to rewrite Eq. (55) as

1
0=t 9 {1t | e, 9 (o) | - 0= D+ 2wt | (57)

We integrate this equation and choose the integration constant to be equal to zero. Expanding out our expression
and using the background equations of motion we obtain

I(l+1 3
0= {lm - % - fR] plm. (58)
We note that the master equation, Eq. (58) only holds in a vacuum spacetime, for which we have the Schwarzschild
background. For the background we can write “R = 4M/r3, and we recover the Regge-Wheeler equation [1] for axial
perturbations.

We conclude that the variation of the dimensionally reduced action, Eq. (49), with respect to h!™ gives us the
correct equations of motion for linear metric axial perturbations about a spherically symmetric vacuum spacetime.
From these equations of motion we are able to derive a covariant and gauge-invariant master equation of motion for
a scalar axial perturbation variable, as is done in, for example, [5, 8, 26-28].

1 We note that the Levi-Cevita tensor €2 is related to the Levi-Cevita symbol é%? by €t = \/:ngab for a Lorentzian spacetime, so that
be c
€qp€’® = +04°.




C. Polar perturbations

1. Polar action

Next, let us look at polar perturbations. In the Regge-Wheeler gauge, there are four nonzero polar perturbations:
{nlm K™} We begin by defining the following quantity

% = 2%k, (59)
where (see Eq. (26))
e = Ze%mYlm. (60)
L,m
We next define
P =1 exp (klm) , (61)

so that

o2 =3 (¢'m) v, (62)

lm

Using Eq. (62), we can write the line element for a spherically symmetric spacetime with polar perturbations as
ds® = ((0)aab n 5aab) dutdu® + D2d*Q = agydu®du® + B2d%Q. (63)

With the metric in Eq. (63) at hand, we now derive the dimensionally reduced Einstein-Hilbert action. First we will
look at the terms which depend on K.4p and A%, which in the metric Eq. (63) evaluate to be

Keap =Qap Y Y'"¢!™ 00", (64)
Im
1
ab _ — Imyab Im
AY =3 %;(h )P ocy'™. (65)

Integrating over the two sphere we obtain

/ dPud*Qv/=ay /7 (KaK? = KaapK*4P) =3 "2 / dPuy/—alm (adqslmf, (66)
l,m

/ dPud?Qv/=ay/7 (Ap AP — AppAP?) =3 4l I D [ 2/ aim [(hlm)2 - (hf{}})z] , (67)

Im

where h!™ = (O)a“bhfﬁ)‘. Note that the dimensionally reduced action for the AL terms in Eq. (67) is the Fierz-Pauli
graviton mass [29]. We next compute I'R; firstly we compute

%R =2 - 208D, DpInd, (68)

where D 4 is the covariant derivative for the round metric Q45 (see Appendix C). Expanding ® in terms of spherical

harmonics and to second order in the perturbations k'™, ® = re? =13, ylmek™ —p S Y (14 K 4 L (KIm)2),
and integrating over the two sphere we obtain

/dQUdQQ\/—_aﬁ IR=>3" / d*uy/—atm 24201+ 1)k + O ((K'™)?)] . (69)
I,m

As all the terms in hﬁl’l’] are scalars under the SO(3) group action, we can straightforwardly dimensionally reduce
1L
R:

/ PPud*Qv/=a 7 TR =) / d?ur/—alm (pm)? LRIm, (70)
l,m
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In Eq. (70) we have not expanded out ~R into a background piece and pieces linear and quadratic in the perturbation
hlm. Combining Egs. (66)—(70), we obtain the dimensionally reduced action for linear polar perturbations of a
spherically symmetric vacuum background in Regge-Wheeler gauge given by

(blm 2 " A 2
Sﬁ%ar = lZ/d2u\/ —alm{—( 2) LRim 4 ((9,1(251 ) +1

S s 1>klm}. ™)

Equation (71) is the action for a (141)-dimensional dilaton massive gravity model (see [30] for another example of
such a model, but without a dilaton field). Note that by setting A" = 0 and k'™ = 0, the action in (71) reduces
to the standard dimensionally reduced gravity action for a spherically symmetric vacuum background, Eq. (37)
(see for example Appendix B of [25]). For notational purposes, it is simpler to combine the linear and quadratic
perturbations into the same action, and in Eq. (71) we have not expanded out +R!™ or ¢!™ into a background plus
linear perturbation.

We next derive the equations of motion that describe the dynamics of polar metric perturbations about a spherically
symmetric vacuum background. In the equations of motion one can disentangle the background and perturbation
degrees of freedom more easily than in the action. Varying Eq. (71) by k'™, we have

1
0= (p!"™)? RI™ — 29" 0" + UL+ 1A', (72)
Here we have defined h® = (0)qac (O)dehcd, and h = a2}, The derivative operators -V, are treated as covariant
derivative operators compatible with the metric agp = (D agy + dargs. (see Appendix B3 for a discussion of the m +n

formalism and factorizable spacetimes). Three more independent equations of motion are derived by varying Eq. (71)
by (alm)ab7

1 Im\2 Im L dm L m 1
== + O — =+ DE™ — =y,
0 2(3¢ ) ¢ ¢ 2( ) 2}0417

I(1+1)
1

We have not fully expanded out the metric, covariant derivatives, and ¢ = re® in this expression. The right hand side
of Egs. (72) and (73) can be related to certain combinations of components of the full four dimensional Einstein tensor
G- Namely, Eq. (72) corresponds to —(r Y!™) =1 (Ggg + Gye/sin’0), while Eq. (73) corresponds to 7%(2Y™)~1G .
We recall that the Regge-Wheeler variables h'7 and k' can be related to the gauge invariant variables A2 and k'™
with the simple substitution A7 — izfl’{] and k'™ — k'™ so that to linear order in perturbation theory Eqs. (71), (73),
and (75) under this relabeling are gauge invariant expressions.

— MV, Ve 4 (Al — agphl™) . (73)

2. Master polar equation
For completeness we demonstrate that we can rewrite Egs. (72), (73), and Eq. (75) as a single master equation (see,
for example [8, 26-28]). We set
rt =V, (74)
where the a index is raised/lowered with a®/ays, respectively.
We can take a divergence of Eq. (73), and use Eq. (72) to obtain the conditions
1 Im _ Lgbplm | L im _ ~Val ) im
0=2"Vk'" = =V°h + V'™ — ——h'". (75)
r

For higher dimensional massive gravity in flat space (for example, in 1 + (d — 1) dimensions), one can show that the
addition of the Fierz-Pauli mass term to the Einstein-Hilbert action implies that the metric perturbation dg,, obeys
a similar looking relation [31], namely V*6g,, — g**V,6gas = 0.

We next expand out Eq. (72). Using the background equations of motion, Eqs (38) and (39), along with Eq. (75)
and the fact that in two dimensions R,, = %aabR, we see that Eq. (72) reduces to

0 :% [—2+1(1+ 1) Al™, (76)
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for I > 1, we conclude that the metric perturbation is traceless. Lower [ values require special treatment (e.g. [8, 26]);
we do not consider [ = 0, 1 in this article.

We expand out Eq. (73) to first order in metric perturbations. Using h = 0 and the background equations of
motion, this reduces to

1 1
0= |:—TT’CJ'thiZL — Ercrdhl;:[ + P20k 4 3rre iV ok — §(l -1+ 2)/@“" Qab
1 1
+ 57‘7“0 (2J‘V(ahé7)7}2 — J‘Vchfﬂ?) + 1 [J‘R +I(1+4+ 1)} R P v/ L 2rr(aJ‘Vb)klm. (77)

From Egs. (75), (76), and (77), we can construct the Zerilli-Moncrief function, which is a covariant and gauge-invariant
scalar which describes the dynamics of the one independent polar degree of freedom. See, for example the discussions
in [8, 28] 2 . The Zerilli-Moncrief function in our notation is

v, = 1(12TTl) [%lm + % (r*r’hyy = 2rr VLR | (79)
where we have defined [8] the function
A=(=1)(+2) + gr2J‘R. (80)
The Zerilli-Moncrief function obeys the Zerilli equation,
0= ("0- Vi) Teten: (81)
where
Vi, = % [(z - 1% +2)° ((l - 1)(ij D+2, SLR) + %2 (*R)” ((z — 1 +2)+ %r“R)] . (82)

Note that *R = 4M/r® as the background is a Schwarzschild black hole spacetime; substituting this value in for *R
gives us a standard expression for the Zerilli potential. We refer the reader to [28] for details on how to derive the
Zerilli-Moncrief function and Zerilli equation from Egs. (75), (76), and (77).

We conclude that the variation of the dimensionally reduced action, Eq. (71), with respect to k& and a®® gives us the
correct equations of motion for linear metric polar perturbations about a spherically symmetric vacuum spacetime,
i.e. a Schwarzschild black hole. From these equations of motion we are able to derive a covariant and gauge-invariant
master equation of motion for a scalar axial perturbation variable, as is done in [8, 26-28].

V. DISCUSSION AND CONCLUSION

In this work, we derived the action for linear perturbations about a spherically symmetric vacuum background
in general relativity (Eqgs. (49) and (71)) using a 2 + 2 spacetime splitting. By dimensionally reducing the 2 + 2
Einstein-Hilbert action to (1 + 1) dimensions using the Regge-Wheeler gauge, we found that the axial perturbations
are described by a massive vector field action (Eq. (49)), while the polar perturbations are described by a dilaton
massive gravity action (Eq. (71)). Varying the actions Eqgs. (49) and (71), we are able to rederive covariant and gauge
invariant master equations for the axial and polar degree of freedom, respectively. While in this article we worked in
a vacuum spacetime, with the addition of a cosmological constant or matter source our results could be extended to
study other backgrounds, such as the Schwarzschild (anti)-de Sitter spacetime, or the Reissner-Nordstrom spacetime.

To our knowledge, Eq. (71) is a novel (1+1)-dimensional massive gravity action (for another example of a two
dimensional dilaton massive gravity model, see for example [30]). The fact that we recover a massive gravity model
from dimensionally reducing Einstein gravity may not come as a surprise: some four dimensional massive gravity
models also arise from dimensionally reducing higher dimensional gravity theories [31, 36]. One interesting feature of
this model is that it describes dynamics of linear gravitational waves about a Schwarzschild black hole. We note that

2 Our Eq. (77) is equivalent to Eq. (4.13) in [8] once we take into account the identity

1 1 R
VNV (aPbyc — 5Dpab - 5aabvcvdpcd = Pab; (78)

which holds for any traceless symmetric tensor pgp in a two dimensional manifold [5, 28].
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since Schwarzschild black holes are classically stable to linear perturbations, the massive gravity theory as described
by Eq. (71) is also classically linearly stable in that background. Two dimensional (dilaton) gravity has been used to
study Hawking radiation and the quantum mechanics of black holes for ‘S-wave’ scalar field perturbations (see, for
example, [18-20]). The actions in Egs. (49) and (71) could be useful in extending this program to investigating the
quantum mechanics of gravitational wave perturbations about Schwarzschild black holes; for example in constructing
the path integral formulation of Hawking radiation for metric perturbations of a Schwarzschild black hole.

The m + n formalism is not limited to four dimensions and can be applied to a spacetime of arbitrary metric
signature and arbitrary dimensionality. We caution that the m + n formalism we present may be less useful in
understanding the perturbations of spacetimes that cannot be foliated by subspaces that are maximally symmetric
under the isometries of the full spacetime, i.e. spacetimes where one cannot write the background metric in the form
of Eq. (20). In these backgrounds the background frame vectors n& do not form an involution (e.g. B2 # 0), the
quantity ayp is not the induced metric of a submanifold, and calculating and varying quantities such as LR ubed become
much more cumbersome. In particular, in the nonextremal Kerr spacetimes one cannot write the background metric
in a form such that 5 = 0 on the background. Because of this fact, other formalisms such as the Newman-Penrose
formalism [38] may ultimately remain more useful for understanding the dynamics and perturbations of backgrounds
such as the nonextremal Kerr spacetime.
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Appendix A: Geometry of arbitrary codimension foliations

In this section we most closely follow the treatment of this subject by [39]; we review and extend their calculations
here to set our notation and to make this article more self-contained. Assume that we have a d dimensional manifold
M that has the topology R™ x Y. Furthermore, assume that M can be foliated by an n = d — m dimensional family
of spacelike submanifolds which we index with the label t € R™, (X¢)tecgrm. Greek indices will run from 0,...,d — 1.
For any point p € M, the tangent space can split into T, = T, (%) & Tp(LEt), where ¥ is called the transverse
space to Xt and does not generally integrate to form a submanifold. From now on we will drop the subscript t from
¥t and +3; the use of the symbols ¥ and +¥ will refer to a specific leaf of the foliation unless otherwise noted.
We define the tangent projection operator h*, and the transverse projection operator (#, = §*, — h*, which project
vectors v* € T,(M) to T,(¥) and T,(1X), respectively. A tensor component is called tangent if its contraction with
the transverse projector is zero; e.g. if [, P"* = 0 then we say the yu component of P*“ is tangent. Likewise a
component of a tensor is called transverse if its contraction with the tangent projector is zero. A tensor is called
tangent (transverse) if all of its components are tangent (transverse). For example, consider a tensor PSl. LT at a
point p € . This tensor is tangent to the leaf at this point if

B gy o R e PR = P (A1)

v
and is transverse to the leaf at this point if
[y o100 17, 17, PRLTR = P, (A2)

1. Tangent/transverse derivatives and curvature tensors

We next define tangent derivatives and tangent extrinsic curvature. We introduce a metric g,,, and metric compati-
ble covariant derivative V,, on M. For tangent tensors P} J" € Tp,(X)®" @ T, (X)®*, the tangent derivative operator

HV# is defined as the projection of the covariant derivative V,, by h*,

IV PYtn = hoP By, hy 7By 7y, 7 Vg AL (A3)
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The tangent extrinsic curvature K, can be defined as follows. Consider v* € T},(X), then
h PV 0 =1V 07 — KV 07, (A4)
in other words we have
KU)\# = hA"h#PVplg”. (A5)
The tangent extrinsic curvature is also known as the second fundamental form. Following similar terminology to that
of Carter [40], we write K = K*,%, which we call the tangent curvature vector. As ¥ is a submanifold, K* v 18
symmetric under p > v; Carter [40] refers to this property as the generalized Weingarten-Frobenius identity . From
the definition in Eq. (A5) we see that

R K op ="K = 15" K, = 0. (A6)

The transverse derivative operator LVM and the transverse extrinsic curvature are defined in a similar manner to
what is done for 'V,,. Consider a transverse tensor PLLJ" € T,(+X)%" @ T (+X)®*, then

LV Pl = 1P, 1, B, T, T N g PO (A7)
The transverse extrinsic curvature A%, is defined as follows. Consider v* € T,(+X), then
1PV 0" =1V 07 — AV 0, (A8)
in other words we have
A"\ =1V phe. (A9)
We write A* = A*,%, which we call the transverse curvature vector. From the definition in Eq. (A9) we see that
DAY g = hot A g = hgt Aty = 0. (A10)
As the transverse space +¥ does not generally integrate to form a submanifold, the transverse extrinsic curvature

A®,, is generally not symmetric in g <+ v. This is reflected by the fact that the action of two transverse derivatives
J-VH on a scalar function f generally do not commute. We define the transverse torsion tensor F’\alg, where

FrgVaf =—21V, Vg f (A11)
= — 24,5 VS

We see that the transverse torsion tensor is the antisymmetric component of the transverse extrinsic curvature A* e
The transverse torsion tensor F' )‘aﬁ is also known as the twist connection.

We now define the curvature tensors for the derivative operators ”Vﬂ and +V,,. Consider a form v, € Ty (%), we
then define

HRQIQV[SU[; E2”V[a”Vﬁ]U7 (A12)
=2hio " hg)” ha MV i (B *haPV o v,) .

The curvature tensor for the operator LV# is defined similarly, except that we need to take into account that it
generally will have nonzero torsion. Consider a form v, € T (+X), we then define

T Rapy 05 =27V (0 Vg0, + FAapl,° Vavs (A13)
ZQZ[Q“ZB]VLYAV“ (ZUO‘ZAPVQUP) - ZA)\[QB]Z,Y(SV)\U(; .

Note that the derivative acting on vs contracted with the torsion tensor is not J-VH as [ ,\pA’\aB =0
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2. Projections of the Riemann tensor

With the definitions in Eqs. (A5), (A9), (A12), and (A13), we can rewrite the projections of the Riemann tensor
by h," and [, entirely in terms of the tensors K<, A%, ”Raﬁ,y(;, and LRaﬁW;. These are summarized below:

hat b o hs? Ruvng =" Raprs — K aKass + K 5K xsa, (A14)

L1571, 5P Ruwrp = Rapys — AN aArss + AN 5 Arsars (A15)

" hs" 1y s Ruvap = — Lo hg" 1, sV Koy — 16" Bt 1, sV 1 Apas (A16)
— Ko K5 — Ao Asya,

ho"hg" by s Ryuwnp =2h1" b MV Ksa, (A17)

1o"15" 1, s’ Ruwnp =211"15) 15V Asaw + 247 (05 Koo (A18)

Eq. (A14) is the m + n generalization of the Gauss equation, Eq. (A16) is the m + n generalization of the Ricci
equation, and Eq. (A17) is the m + n generalization of the Codazzi equation. Eqs. (A15) and (A18) are identically
zero in codimension one spacetime splittings. We provide a derivation of Egs. (A15) and (A16) below; the derivation of

the other projections follow a similar procedure. Similar expressions projections of the Riemann tensor are presented
in Appendix A of [39].

a. Derivation of Eq. (A15)

To show Eq. (A15), let us consider v* € T),(+X). We then have
La"13" 1y Ryunrov” =211 15" 1,V .V 0

=21,15)" 1, AV, (17 + B (127 + 7a%) V0]
=24% 501, 7V p05 + 2o 1512V ha "V pog + 25V TV o,
=21V, V5105 + FPoply 7V pvo — 200" 151 00 (Vuly™) Vo (1" 0)
= Rapysv” + 200" 15 los (Vuly) (Vpha%) 0. (A19)

Consider the last term:

(1a"15” = 16"15) los (Vuly ™) (Vpha?) 0 = [(heMaVuly ™) Axss — (R "V i1y ") Axsa] ©°
(—AM o Arsp + AN 3ANsa) V0. (A20)

We conclude that Eq. (A15) holds,

la”lgyl,y)‘l(;prj)\p = LRQB’Y(s — A)‘,WAM,@ + A)‘%@)Ama. (A21)

b. Derivation of Eq. (A16)

To show Eq. (A16), let us consider v* € T,,(X). We compute
lo"hg" 1, Runsv® =214"hs"11,2V V0
=20, 0 A (V,uha?) (Vo) + (Tuha?)(Vvy)
+ IV, Vo0, + 0,V V ok
=21, hs A (VY haP) v,
=21,"h" 1,7 [V, (12 Viohas) — (Vo) (Vohas)] 0P (A22)
We next split this calculation into two different parts. We first look at

21,1 hs"11,7 [V, (1A Vihas) ] v° =200 1,7 [V, (R +1,%) 12 Vihas) | 0°



15

=206"hs"11,7 (Vi (Asor — Koa)] 07, (A23)
where we have used 6, = 1," + h,”. We further split this term into two more pieces
200517 (V, Asor) 00 = [~10"hs" 1, 0™V Axey + Lo hg” (V,u18) Asye] 0°
= (~1a”hs" L, W™V Argy — AsyaAgta) v°. (A24)
Similarly we have
20 hs"11 7 (V, Ko50) 00 = (1a"hs” 1T hs™ ™V Koaw + Ko g Kosx) 0°. (A25)
Finally, we look at the last term on the right hand side of Eq. (A22),
20,1 hs" 11,7 (Vulo?) (Vihias) v° =21 0" 1,7 (Viho™) (Vilas) 0°
=21, hg" s (V,uly7) (Vioho™) 0°
=0, (A26)
which is zero as v* is a tangent vector. With this final relation we can recover Eq. (A16),
LR 1, s Ruvrp = — Lo hg" 1 eV Koy pw — Lo hg" 1, sV A
— Ko 5K y55 — Ag™ o Asya. (A27)

3. Projected Ricci tensor and projected Ricci scalar

Using Eqs. (A14), (A15), and (A16), we can rewrite the Ricci tensor in terms of | Ryp.s, ~ Ragys, Ayaps, and Koap.
Using the completeness relation g,, = l,, + hy, we have

hohs*Rux =hothg™ (WP +177) Rux,
= — ho"h PV K pap — ha R MNPPN L, Ay
— K30 Ky — Ao Ao + 1 Rop, (A28)
L5 Ry =1a" 157 (1" 4+ h¥P) Ry
= — 1M1 PN Apny — 1o 15 RPN L Ky

— A0 A\ — KoM Kpox + S Rag, (A29)
hals Rup =ha' 15" (B 4+ 1Y) Ry
=2,"15" 1V pAarw + 20" ho) BV L K gay + 247 (5 K o6 (A30)

Eqgs. (A28), (A29), and (A30) are the projected vacuum Einstein equations. In the context of a double null foliation
in four dimensional spacetime (see section A5), some authors have pointed out that Eq. (A30), with a suitable
relabeling and interpretation of its variables resembles a Navier-Stokes equation [41-44] (see, e.g. [45] for a critique
of this interpretation).

Calculating one further contraction gives us the projected Ricci scalar,

R = (h*7RP? 4197150 4 2h°717°) Ry
=R+ R+ K\K» — Ko KM + A\AY — Ayap AN — 2V, (KN + A7) (A31)

One can similarly apply the Riemann projection formulas to rewrite scalar polynomials in the Riemann curvature,
such as Rap,5R*?7° in terms of the quantities || Rygys, ~ Ragys, Avag, and Koap.

4. Codimension one foliations

Let us now consider a special case with codimension one foliations. For a codimension one surface, we can write
" = entn”. We choose n* to be normalized to ¢ = £1 depending on whether n* is space- or time-like. The
completeness relation for the projection operators then reads

Juv = huu + €Ny ny. (A32)
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In this case, we see that

K)‘ag :enAha“hgl’V,,n#

=en*Kog, (A33)
AN = — a*nang, (A34)
J_Rocﬁ'yts 207 (A35)

where we have defined a* = n”V,n*, which is perpendicular to n, so that a“h,/\ = a*, and K, is the standard
second fundamental form for codimension one surfaces. We see that the torsion tensor F*,5 = 0. The projected Ricci
tensor components are

haths Ry = — ehohs*n’V, Ky, + €IV yag — anas — eKKop + 1 Rag, (A36)
n"n R, =1Vya* — eatay — 'V, K,, — K" K,», (A37)
nan’ R, = (HVAK)‘Q - HVQK) , (A38)

from which one can derive the standard 1+ (d — 1) projected Einstein equations. The projected Ricci scalar is
R=IR+¢(K* - K,K") -2V, (n*K —a). (A39)

Here we have defined K = K,*, and used the fact that n*a, = 0, so that h,%as = a,.

5. Relation between double null and codimension two foliations

The m + n formalism we have described is capable of describing the geometry of double null foliations. In a double

)

null foliation, spacetime is foliated by a pair of lightlike surfaces, 3° and ©', which have the null generators l((yo and

1), vespectively [22]. The intersections of the foliations, {%°} N {X!} form a spacelike foliation of codimension two,

which we then identify as the foliation 3. The transverse space TP(LE) for each point p € ¥ is spanned by the two
null generators (1(2)® and (IM)*. We can now define the transverse projection operator as

L = 110 + 101D, (A40)

The tangent projector can then be computed from the relation h,, = g — -

Appendix B: ADM-like variables for m + n spacetime splitting

In this section, we set up a coordinate system adapted to the foliation (3¢)term. We then write down the tensors
HRamg, J-Ramg, K)‘a,@, and AAQB as functions of these coordinates. We closely follow the work of [22] in defining
the basis vectors for T},(X) and T,,(+X); see also [46, 47] for similar treatments of this subject.

We recall our notation: Greek indices run from 0, ...,d — 1, lower case Latin indices run from 0, ...,m — 1 and upper
case Latin indices from from m, ...,d — 1. Einstein summation notation will apply to all different index types.

1. Coordinate system and metric decomposition

We begin by setting up a coordinate system on our manifold M adapted to an m + n spacetime foliation. The
coordinates x® of some chart of the spacetime manifold M are written as functions of two sets of variables, {u®} and
{64}, 2% = 2%(u®, 64). Derivatives with respect to the variables u® will be denoted by 9, = 9/du®, while derivatives
with respect to the variables 4 will be denoted by da = 9/90”. The set {#4} are the intrinsic coordinates on the
leaf ¥. The {u®} are scalar fields, the level sets of which define a congruence of curves that intersect all the leafs ¥
of the foliation. In other words, for the leaf ¥;cgm, we have

t=(u’ ..., um ). (B1)

We use this congruence to relate coordinates on each leaf to each other. For example, in the 1 + (d — 1) formalism
t = u® = ¢, the time function. Just as in the 1 + (d — 1) formalism, we neither assume that the congruence of curves
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to be geodesics nor assume that they are orthogonal to the leafs 3. The tangent vector for the congruence defined by
u® is denoted by

ul = 0.x”. (B2)

This is to be compared to the 14 (d — 1) formalism, where the time tangent vector is often denoted by t* = d;z*.
We now define a coordinate basis on the leaf ¥ as follows

€% = 0z, (B3)
from which we can construct the intrinsic metric on ¥
YAB = gapeielh. (B4)

We will raise/lower capital Latin indices with 45 and 74 respectively, where v4Z is the inverse of the induced
metric v45. The metric covariant derivative with respect to 45 will be denoted as 'V 4. At each point p € %, we
can define a basis for T (+X) as follows:

= Oqu®. (B5)

The one-forms {n%} need not be orthonormal with one another; we capture this lack of orthonormality with the
following symmetric inner product matrix

a®t = gBpa ng, (B6)

which is symmetric in a <+ b. As the {n%} are form a basis for T;(+X), a® is invertible and we denote its matrix
inverse by agp; Qg = (52, where (52 is the Kronecker delta symbol. We emphasize that a is not an induced metric
on the transverse space +¥, as in general 3 does not integrate to form a submanifold. We will formally raise/lower
frame indices for the transverse spaces with the inner product matrices a® and oy, respectively. The spacetime
scalar agp, corresponds to a generalization of the lapse function « in the 14 (d — 1) formalism. In particular, in the
1+ (d — 1) formalism we identify gy = —a? and a®® = —a~2. The unit normal forms to the leaves ¥ are computed
as follows,

Nae = QapOatl. (B7)
We now introduce a generalization of the shift vector. With the above definitions in hand, we see that the vectors

{’U/g - ng}a:O ..... m—1 (BS)

are orthogonal to the one forms {n%}bzo m—1. From this we conclude that we can write the vector ng as

nd =ul — B (B9)

a a’?

where we have defined the shift vectors {35}, which are orthogonal to the one forms n44; i.e. n4a8; = 0. The shift
vectors {82 }a=o,... m—1 are a direct generalization of the shift vector f* in the 1+ (d — 1) formalism. .

We next derive some useful relations for e} and ng. The relations Eq. (B3) and (B9) imply that in the coordinates
(u®, 64) we have

e = 09, (B10)
ng =05 — B'9%, (B11)

where the § is the Kronecker delta symbol and = means that this only holds in the specific coordinate choice {(u®,64)}.
We only use the symbol = in this section; in the Sections I-V we work with the coordinate choices defined by Egs. (B10)
and (B11). In the 1 + (d — 1) formalism the equivalent coordinate choice would be {t,z'}, where the {z'};=1 2 3 are
the three spatial directions. We see that in this basis the shift vectors have nonzero components only on their last n
indices: ¢ = (0,...,0,32). From Eqgs. (B10) and (B11) we conclude that the frame vectors €% are Lie transported
along each of the congruences defined by the level sets of the functions u*

£e% =0. (B12)
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Since this expression is tensorial, it holds in any coordinate system. Other useful tensorial relations we can derive
from the above expressions are

Leng = e Vang +n5Vael =0, (B13)
Loy eq =eLVyeq — ey Vayer =0, (B14)
£pon] =nSVan] —npVgn) = — FJ, (B15)

where we have defined the transverse torsion spacetime vector F, to be
Foy Z0uBy — B + 8y OpBY — B Oy (B16)
The vector F), is orthogonal to the forms ng
nfy]-'zb =0. (B17)

As this expression is tensorial it holds in general coordinate system. In the adapted basis {(u®,64)} we may write
Fly = el FS = FS to reflect this fact.

We now see how the metric is m +n decomposed. We begin by decomposing the differential dx® into terms tangent
and transverse to the leaf ¥ [22]

dz® = ngdu® + 5 (do* + Bitdu”) . (B18)
From which the spacetime line element can be written as
ds® = agpdu®du® + yap (0" + Bdu®) (d9 + BPdu’) . (B19)
We note that with the spacetime line element Eq. (B19) the metric determinant factorizes as follows
det (g, ) = det (aqp) det (yaB) - (B20)

We compare Eq. (B20) to the case in the 1+ (d — 1) formalism, where det(g) = a?det(v;;). Furthermore, we have the
following relations

hag :”yABeﬁeﬂB, (B21)
lop :aabngn%, (B22)

so that the metric can be written as follows (see, for example [22, 48] for similar presentations of the metric tensor)

Jop = aaanng + WABegeg. (B23)

2. Rewriting curvature terms in ADM-like variables

In this section, we compute the components of K43, ”Raﬂw;, Ayap, and T Rapgys in the adapted basis {(u®, 64)},
i.e. when the relations Egs. (B10) and (B11) hold. The curvature terms K.,3 and HRa,@vtS have direct analogues in
the 1+ (d — 1) formalism, and can be computed as functions of the metric Eq. (B19) in a way analogous to what is
done in the 1+ (d — 1) formalism. We have found a greater variety of functional forms for the curvature terms A+,
and J_Raﬂyts that have been presented in the literature. We recall that agp is generally not the induced metric for
any submanifold, as the transverse space Y can only integrate to form a manifold in factorizable spacetimes (see
Appendix B3).

a. Computing K ap

We first compute K, 3. We have

Kyap :hauhﬂyvvlw

__A_B I
=ejepns (ehepVine,)
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1
A
aeg ?y§ (eieﬁfnzgw)

EeﬁegnflecAB. (B24)

=€

We now rewrite the Lie derivative of n) in terms of covariant derivatives acting on the shift vectors 57 and the Lie
derivative of u). We compute

Luyvap =Ly (eieﬁggaﬂ)
:eieg £y79a8
:eieg (Vates + Vatea)
=efel; (Vanes + Vinea + VaBes + Vs Bea)
=e%ehLargas + 'V aBes +1VpBea. (B25)
From this we conclude that
Kyap =efefnSKean,

1
’CCAB EE (£u27AB - ”vAﬂCB - ”vBﬂcA) . (B26)

Recall that lower case Latin letters act as labels, so that 'V 48.5 = 048c8 — I'C aBBec, where I'C 45 is defined by
Eq. (B27). Also note that as y4p is a spacetime scalar, in the coordinate adapted basis we have LyyvaB = OcYAB-
This is to be compared to the 1 + (d — 1) spacetime splitting formalism, where instead one has £4o7;; = 0yvi;, and
there is only one shift vector 3°.

b.  Computing “Rag.yg
Next, we compute ”Rag.ﬂ;. The connection coefficients for the induced covariant derivative on X is computed as
follows:
FCAB EG%GCQVQGj
1
=5 (0a7Bc + O57ac — Oc7aB) - (B27)
Note that T'C 45 = 70D I'pap. We can now compute I R.pys in terms of contractions and derivatives of the connection
Toab-
IRopyef =2hio"hg)  hy V0 (hThaPV yel)
:2eae§]e$ (hV. IeP s+ TP T’ 4 + TP Tp 4)
;2ef2‘6§]6$ (—8A1“DCB + FDJBFICA) . (B28)

To obtain the third line we used the property I'g’4 = —I'! g4. We also used the fact that YoAB is a spacetime scalar
in M, and in our coordinate basis e’} = 8% so that €4V, T'cap = 94T cap. We conclude that

' Ragys ZefefeS e IR aop, (B29)
where
IRP cap =0aTPcp — TP s + TP AT cp — TP 15T o (B30)

c. Computing Aap

Let us next compute A,ag. We define the quantity AS, = ng‘nfvlgeg, so that A,ng = ecyngn%Agb. The
antisymmetric part of AS, (i.e. the transverse torsion) is

1
Al = = 5¢5

o [nb, na]’y
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1

=— —ecfgb, (B31)
where we obtained the second line using Eq. (B15). The symmetric part of A% is
ab 1
A(C ) 2 anﬁf ’Yg
1 a
=5 L0 b, (B32)

The second line holds as a result of Eq. (B13) and the definition of a®. Using Egs. (B10) and (B11), we conclude
that

@ Z 2 (9ca® — a®atlyopFL). (B33)

N =

d. Computing LRQBMS

We now compute J-RQBW;. We define the quantity
Qeab Enfncavﬂng‘
:% (RO cte + 0y Optae — nEd aap) - (B34)
To derive the second line of the above we used Eq. (B17). Note that in the coordinate adapted basis, Eq. (B11) we

have nt0,, Qi = 0aQij — ﬁf@Akaj. Similarly to I'c 4, whose first index can be raised with Y¢?, we can raise the
first index of Qeqp with a?, Q¢ = aQgas. We now look at

L Rapy’ng =205 1, V0 (L1 Vnd) — 243 051,  Vang. (B35)
We first focus on the last term of this expression. Using Eq. (B13), we see that
—24% 1,51,V ang = 2naanbﬂncWCD«4 A%C- (B36)
The first term of Eq. (B35) is

216" 1,V (L1 Vynd) =208 nfns (nhV Q% + Qo Qe + Q7 %)

=2nf, nins (n}9,0%. + Q% 0ac) - (B37)
To calculate the second line we have made use of the identities 2, = —%; and Q45 = 0, which follow from
Eq. (B34). We conclude that
*Ragys = ngn%n§n§ (LRabcd + 2aaiabj04ck04dl’YCDA[é«j] Al[’f) , (B38)
where
J_,Rfdcab = nga,qucb - lea Qdca + deancb - QdibQica- (B39)

e. Projected Einstein-Hilbert action
Having the above results at hand, we now rewrite the Einstein-Hilbert action in d dimensional spacetime
S = % / dz\/—gR, (B40)
in an m + n decomposition. Using Eqgs. (B20), (B26), (B33), (B29), and (B38), we have

S = /dmudne\/_\/_(”R+och ABACD (K oapKacp — KeacKapp)
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+ R 4+ 7P (AL AR — A AY) — 2V, (KX + AY) ) . (B41)

We can recover the complete Einstein equations by varying the Einstein-Hilbert action, Eq. (B41) with respect to
{@ab}tap=0,...m-1, {8 }a=0...m—1, and vap. This is to be compared to the 1 + (d — 1) formalism, where one varies
the Einstein-Hilbert action with respect to o, 3%, and 7;;, with « and 3% acting as constraint variables. Care must
be taken when varying Eq. (B41) as in general g, cannot be treated as a metric so there is in general no well
defined notion of a metric compatible connection for ay;, and we have relations such as IV s # 0. For a general
spacetime with no symmetries, a potentially more straightforward approach to finding the Einstein equations in the
m + n formalism is to contract the projected Riemann tensor relations, Eqs. (A14), (A15), (A16), (A17), and (A18)
to obtain the projected Ricci tensor relations.

3. m+n splitting in a factorizable spacetime

In a factorizable spacetime the spacetime manifold can be written globally as M = (1) x () where both (%) are

submanifolds of M. In a factorizable spacetime, we see that we can think of either a family of submanifolds {ZEQ)}
foliating M, indexed by coordinates on ©(!), or vice-versa. In the context of general relativity in four dimensions, an
important class of a factorizable spacetimes are spherically symmetric spacetimes, which take the form M = M? x 2,
where M? is a two dimensional Lorentzian manifold and S? is the two sphere. In factorizable spacetimes, we can
choose an adapted basis to this foliation structure so that the shift vectors {89 }a=0,... m—1 all vanish, so that the
metric can be written as

ds? = agpdudu® 4+ y4pdf*doP. (B42)
Unlike in the general m +n decomposition, We can introduce a two metric compatible derivative for the submanifolds
Y and ¥ which we denote by +V, and 'V 4, respectively. We see that Q.. takes on the role of the connection
of the submanifold (2(1), LV, ap). Writing down formulas for “R%.q and Acep become much simpler than in the

general m +n case as the shift vectors all vanish; in particular the directional derivatives along n§ become derivatives
in the coordinate u%; N0y — Oq.

Appendix C: Scalar, vector, and tensor spherical harmonics

In this section, we review the properties of the scalar, vector, and tensor spherical harmonics. We work on the two
sphere S?, with the round metric 45 and metric compatible covariant derivative D4: (S%,Qap, Da).
We begin with the scalar spherical harmonics. Such harmonics satisfy the following eigenvalue equation:

{Q4PDADp +1(1+1)} Y™ =0. (C1)

The scalar spherical harmonics form an orthogonal basis for functions in S5. We choose the following normalization
for Y™

/ QY'Y = 5106 (C2)
Next, we discuss vector spherical harmonics. The axial and polar spherical harmonics respectively are
EY" =DY'™, BY = e,BDpy'i™. (C3)

Note that divergence of BZ” is zero, D AB[;‘n = 0. The vector spherical harmonics satisfy the following eigenvalue
equation:

{Q*8DuDp + [-1+1(L+ D]} V™ =0, (C4)

where Vclf” is either Elcm or Blé”. The vector spherical harmonics form an orthonormal basis for functions in S5. The
vector spherical harmonics are orthogonal to one another, and are normalized to obey

/ 20 QABVI L™ 114100 (C5)
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Finally, we introduce tensor spherical harmonics. We define such harmonics to be traceless; this choice follows,
for example Poisson and Martel [8], but not Regge and Wheeler [1]. The traceless axial and polar tensor spherical
harmonics respectively are

I(1+1
EYy =D ER, + ( 5 JQpyim, (Co)
By =DuBY;. (C7)

The trace can be captured with Y 4, which behaves as a scalar under rotations. The tensor spherical harmonics
satisfy the following eigenvalue equation:

{Q*PDuDp + [-2+1(1+ )]} T =0, (C8)

where T is either EU or B4, The trace term Y'™Q4p has the scalar spherical harmonic eigenvalue (I + 1).
Finally, the tensor spherical harmonics satisfy the following orthogonality relation

/d2Q QABQEP T LM — %l(l + 1) [+ 1) — 2] 61 S - (C9)
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