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Models that seek to explain cosmic acceleration through modifications to General Relativity (GR) evade
stringent Solar System constraints through a restoring, screening mechanism. Down-weighting the high density,
screened regions in favor of the low density, unscreened ones offers the potential to enhance the amount of
information carried in such modified gravity models.

In this work, we assess the performance of a new “marked” transformation and perform a systematic compar-
ison with the clipping and logarithmic transformations, in the context of ΛCDM and the symmetron and f (R)
modified gravity models. Performance is measured in terms of the fractional boost in the Fisher information
and the signal-to-noise ratio (SNR) for these models relative to the statistics derived from the standard density
distribution. We find that all three statistics provide improved Fisher boosts over the basic density statistics.
The model parameters for the “marked” and clipped transformation that best enhance signals and the Fisher
boosts are determined. We also show that the mark is useful both as a Fourier and real space transformation;
a marked correlation function also enhances the SNR relative to the standard correlation function, and can on
mildly non-linear scales show a significant difference between the ΛCDM and the modified gravity models.

Our results demonstrate how a series of simple analytical transformations could dramatically increase the
predicted information extracted on deviations from GR, from large-scale surveys, and give the prospect for a
potential detection much more feasible.

I. INTRODUCTION

Theories that invoke large-scale modifications to General
Relativity (GR), the so-called Modified Gravity (MG) theories
[1], are popular theoretical attempts to explain the recent ac-
celerative phase of the universe, as observed by a wide range
of observational probes [2–10]. The simplest ΛCDM cosmo-
logical scenario, that produces acceleration within the frame-
work of GR through a cosmological constant, Λ, is a great fit
of the data and thus widely accepted, but suffers from undesir-
able fine-tuning problems [11], that consequently motivated
the consideration of a range of alternatives. Any attempt to
provide a robust theoretical explanation of cosmic accelera-
tion through modifications to gravity, however, should satisfy
the stringent experimental constraints of GR in the vicinity of
the solar system [12], which would in principle be violated by
an additional degree of freedom [13].

In light of such tight constraints, viable MG candidates
usually invoke a restoring “screening” mechanism [14, 15],
which suppresses fifth forces in high density environments
and allows them to comfortably pass solar system tests. The
rich spectrum of screened MG models, is often categorized
into three wide classes, that reflect common qualitative fea-
tures of the screening mechanism: the Chameleon models
[16, 17], in which fifth forces by massive scalar fields are
heavily Yukawa-suppressed when high Newtonian potentials
are experienced and also the similar, but symmetry breaking,
“symmetrons” [18, 19] in which the couplings to matter are
additionally weakened in dense environments. In the other
two classes, the Kinetic/“K-Mouflage” [20, 21] and the Vain-
shtein mechanisms [22], the non-linearities of the Lagrangian
become significant in high densities, reducing the effective
couplings to matter and thus recovering GR.

The large-scale structure (LSS) of the universe is a sensi-
tive probe of fundamental physics and as a result it can be
used to infer the nature of the underlying gravitational theory.
For this reason, a large set of surveys both already active, like

eBOSS [23] or the Dark Energy Survey (DES) [24] and also
about to start operating in the following 10 years, like LSST
[25], DESI [26] or Euclid [27], will study the LSS at unprece-
dented accuracy, offering the opportunity to test the properties
of gravity and gain invaluable information about the nature of
the underlying mechanism responsible for the cosmic acceler-
ation. To maximize the impact of such observational efforts,
intense theoretical work is being performed, with the aim of
predicting cosmological signatures for ΛCDM as well as for
all the alternative scenarios. This is performed through a com-
bination of analytical [28, 29], semi-analytical [30, 31] and
numerical tools [32].

Screening, while essential for a mechanism’s viability, also
greatly suppresses the modified gravity signals in the high
density regions, which dominate the power spectrum signal,
making their detection particularly challenging even for the
ambitious future surveys of the LSS. This has motivated the
consideration of density transformations that up-weight the
lower density regime in favor of the higher, screened densi-
ties, so as to enhance MG signals in a density-dependent way.
Penalizing the higher densities to increase the amount of in-
formation encoded in the 2-point statistics of cosmological
density fields has been a valuable strategy even in the con-
text of ΛCDM considerations. A logarithmic transform of the
density field [33–35], makes the field more Gaussian allowing
the recovery of more information from the 2-point function.
Clipping the very high densities [36, 37] has also been found
to produce similar beneficial effects. In the context of MG,
clipping the screened densities [38] allows better discrimina-
tion between MG and GR, while in [39] a new generalized
restricted logarithmic transform was found to boost signals.

In this work, we investigate the performance of a new den-
sity transformation that up-weights the significance of lower
densities and was first proposed in [40], both as a simple den-
sity transformation and as a marked correlation function. We
find such a function to provide discriminatory power between
MG and GR and to increase the Fisher information signifi-
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cantly. Furthermore, we perform a systematic comparison of
the performance of these various transformations and discuss
our approach in the context of related work in the literature.

The organization of the paper is as follows: in Sec. II we
first review the MG models studied, the simulation data used
and the different density transformations considered. In Sec.
III we present our results, assessing the performance of the
different functions, before concluding and discussing future
work in Sec. IV.

II. FORMALISM

A. Modified gravity models

The most general form of a Lagrangian that describes
ghost-free scalar-tensor extensions to GR is of the known
Horndeski form [41, 42]. If by MPl we denote the reduced
planck mass MPl = mPl√

8πG
, by R the Ricci scalar, and by Lm

the matter sector component with fields ψm that possess non-
minimal coupling to the scalar field φ, the Einstein frame form
of such a Lagrangian is

L =
M2

Pl

2
R +L(φ, ∂µφ, ∂µ∂µφ) +Lm(e2β(φ)φ/Mpl gµν, ψm). (1)

The particular subclass that contains the screening mecha-
nisms considered here, the chameleons and the phenomeno-
logically similar symmetrons, corresponds to a scalar field La-
grangian of the form

L = −
1
2

(
∇φ

)2
− V(φ). (2)

The conformal coupling to matter, expressed through the di-
mensionless coupling constant β(φ), gives rise to an effective
potential

Ve f f = V(φ) +
eβφ/Mplρm

MPl
, (3)

which consists of the self-interaction potential V(φ) and a
matter dependent component. The qualitative features of the
particular screening mechanism are incorporated into the in-
terplay between these two components. In the chameleon
screening, V(φ) is of runaway form and in high densities
the field settles down to a minimum of Ve f f , becomes very
massive and decouples. In the symmetron model, on the
other hand, the interaction potential is of the “Mexican hat”
symmetry breaking form [19], which additionally generates a
density-dependent coupling. In low-density regions, sponta-
neous symmetry breaking allows coupling to matter, while in
high-density environments the symmetry is restored, the cou-
pling to matter vanishes and GR is recovered.

1. The f (R) model

Adding a non-linear function of the Ricci scalar R to the
String-frame expression of the Einstein-Hilbert action, has

been shown to produce cosmic acceleration, making the so-
called f (R) theories [43] widely-studied modified gravity
models. Here we consider the Hu-Sawicky f (R) model [44],
which can be incorporated [45] into the chameleon screening
formalism with β = 1/

√
6 and is usually parametrized as

f (R) = −m2
c1

(
R/m2

)n

c2

(
R/m2

)n
+ 1

, (4)

where m = H0
√

Ωm0, is a characteristic mass scale determined
by the the Hubble Constant H0, and Ωm0, the matter fractional
energy density today. The additional requirement of matching
the ΛCDM background expansion dictates that c1

c2
= 6 ΩΛ0

Ωm0
and

the two final free parameters of the model are f̄R0 =
d f (R)

dR

∣∣∣
z=0

and n, with

f̄R0 = −n
c1

c2
2

(
Ωm0

3(Ωm0 + ΩΛ0)

)n+1

. (5)

By ΩΛ0 above we denote the dark energy fractional energy
density today. Finally, within this formulation the characteris-
tic model-dependent mass takes the form

m(a) =
1

2997

 1
2| f̄R0 |


1
2
(
Ωm0a−3 + 4ΩΛ0

)1+ n
2(

Ωm0 + 4ΩΛ0
) n+1

2

[Mpc/h]. (6)

In this work, we will consider models that correspond to n = 1
and

∣∣∣ f̄R0

∣∣∣ = {10−6, 10−4}, that correspond to representative
choices of a weak and a strong modification choice respec-
tively.

2. The symmetron model

The free parameters of the symmetron model presented pre-
viously, are the scale factor at which symmetry breaking oc-
curs, assb, the force length range λφ0 and the coupling param-
eter β0. The characteristic coupling and mass take the form

β(a) = β0

√
1 −

(assb

a

)3

m(a) =
1
λφ0

√
1 −

(assb

a

)3
(7)

We study the model with the choice of values assb = 0.5, λφ0 =

1Mpc/h and β0 = 1 for the free parameters, which represents
a viable, realistic candidate based on the current experimental
constraints.

3. N-body Simulations

In order to produce accurate realizations of the LSS for a
wide range of scales, analytical considerations are inadequate
due to the non-linear nature of the collapsed structures and as
a result we have to resort to full blown N-body simulations.
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In the case of MG scenarios, the situation is further compli-
cated by the need to accurately capture the screening effects,
which are fundamentally incorporated in the non-linearities.
In this paper, we use z = 0 density snapshots that have been
produced in CDM N-body simulations presented in [31]. The
simulations were performed using a suitably modified version
of A. Klypin’s PM code [46], in which the MG screening was
captured effectively through the attachment of a phenomeno-
logical thin shell factor to the fifth force term [47]. The simu-
lations were initialized at an initial redshift of zi = 49, for 40
random initial seeds, for a background ΛCDM cosmology that
corresponds to ΩΛ0 = 0.75, Ωm0 = 0.25, σ8 = 0.8, ns = 1.0
and h = 0.7. The simulation box side L and number of par-
ticles used Np were L=200 Mpc/h and Np = 2563 respec-
tively, while the density was resolved in a 5123 grid using the
Cloud-In-Cell (CIC) assignment scheme. More details on the
specifics of the simulations and the screening implementation
can be found at [31].

B. Density transformations

The fundamental quantity of interest in our analysis, is the
fractional cold dark matter over-density δ(x, a), which is de-
fined as

δ(x, a) =
ρm(x, a)
ρ̄m

− 1, (8)

with a the scale factor, ρm(x, a) the matter density in each grid
cell and ρ̄m the mean density at the cosmological time consid-
ered (which is a = 1 for our analysis).

Using the CIC interpolation scheme, the density field, δ,
from each snapshot is reconstructed on a 2563 resolution
Cartesian grid and is then projected onto three orthogonal 2D
planes that correspond to the 3 independent Cartesian axes.
Through this process, the 40 random seeds initially produced
for each model, generate 120 independent realizations. We
find that 2D projections are significantly better for consider-
ing the transformations than the 3D density fields, sampled in
the initial 2563 snapshots, because the 3D cells, when up- and
down- weighted with the transformation, are more sensitive to
the sparse sampling and shot noise. The 3D cell size, which is
an arbitrary choice, that corresponds to this choice of param-
eters, is equal to 0.5

(
Mpc

h

)3
. This choice of cell volume was

found to provide the best combination of low shot noise and
high resolution.

Through a specific transformation, a new field δ′ = f (δ) can
be constructed, with the aim of enhancing the amount of in-
formation that can be extracted. In the following section, we
briefly introduce the various density transformations investi-
gated in this paper and focus on the key aspects that will be
relevant to our analysis.

1. Logarithmic transformation

The non-linearities in the dark matter power spectrum have
been shown [33–35] to become significantly smaller, and the

amount of carried information significantly greater, in terms
of signal-to-noise, when the fractional matter over-density un-
dergoes a transformation

δ′ = ln (δ + 1) . (9)

Besides restoring the linear character of the power spectrum,
down-weighting screened regions through a logarithmic map-
ping [38, 39] can serve to enhance the predicted power of MG
signals.

After such a mapping is performed, a large-scale multi-
plicative bias, blog, develops [48] between the power spectra
of the original and transformed fields, as given by

Pln(1+δ)(k) =
σ2

ln(1+δ)

σ2
δ

Pδ(k) = b2
logPδ(k), (10)

with (10) being valid as k → 0 and where σ2 denotes the vari-
ances of the density fields, as calculated by integrating over
the corresponding power spectra. Predicting the developed
multiplicative bias, as has been also performed through other
expressions proposed in [33, 49], will be particularly useful in
interpreting the large-scale behavior of ratios of transformed
fields in section III, when compared to the ratios of stan-
dard power spectra. Measuring ratios of transformed-density
power spectra could, however, be performed directly, without
requiring knowledge of the ordinary power spectrum or biases
with respect to it. It should be noted here, that we calculate
σ2

ln(1+δ) through a direct integration of the logarithmic power
spectrum over a top-hat filter, rather than making use of the
phenomenological formula proposed in [48].

2. Clipped transformation

Another transformation that reduces the contribution of
higher over-densities, for the sake of maximizing the extrac-
tion of cosmological information from the up-weighted, less
dense regions, is clipping [36–38]. In this procedure, all den-
sities higher than a desired threshold δ0 are truncated to form
a new distribution:

δ′ = δc =

 δ if δ < δ0

δ0 if δ > δ0.
(11)

After (10) is applied, the new density field is “renormalized”
using the new mean density of the distribution, in order to
ensure that 〈δ′〉 = 0, which was proposed in [36] to get re-
sults that are rather insensitive to the choice of the thresh-
old. In our analysis we found such a prescription to perform
slightly better in terms of the Fisher information, compared
to when the density field is not “renormalized”, and so this is
the one adopted. Just like the logarithmic transform, clipping
enhances the extracted signals not only in ΛCDM, but also in
MG, by emphasizing on regions not subject to screening.

Similar to the result of (10), the response of the density
power spectrum to clipping on linear scales can be calculated
[37] by

Pc(k) =
σ2

c

σ2
δc

Pδ(k), (12)
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where Pc(k) is the power spectrum of a clipped field δc, and
the variances are again given by integrating the power spectra.
The validity of (12) can, if desired, be extended into the mildly
non-linear regime after the introduction of perturbative one-
loop contributions [37].

Given that the value of δ0 itself is dependent on the details
of each simulation, the fraction of cells clipped is a more eas-
ily transferable descriptor and so this is the one we will report.

3. Marked transformation

The use of density-dependent marks has been explored in
the context of breaking degeneracies in halo occupation dis-
tributions [50], and as a probe of identifying MG signatures in
the LSS [40].

In this work, we consider an analytical function as a means
of re-weighting the density field,

δ′ = m(δ) =

(
ρ∗ + 1
ρ∗ + ρm

)p

=

(
ρ∗ + 1

ρ∗ + ρ̄m(δ + 1)

)p

. (13)

where ρ∗ and p are free parameters and ρm the grid cell density
field, in units of the mean density ρ̄m.

III. RESULTS

In Figure 1, we present the ratios between the MG and
ΛCDM matter power spectra, PMG

PΛCDM
, for all transformations

considered. For the transformed fields, the ratios are found
to have, in principle, different values than in the case of the
standard δ, on both the large and the small scales. The large
scales are characterized by signal suppression with respect to
the standard ratios, which, for the logarithmic and clipped
transformations, is consistent with the low-k analytical pre-
dictions from equations (10) and (12). For the logarithmic
case, in particular, applying (10) twice on the individual MG
and GR power spectra and dividing by parts, gives

Pln(1+δ)(MG)
Pln(1+δ)(GR)

=
b2

MG

b2
GR

Pδ(MG)
Pδ(GR)

. (14)

When bMG < bGR, which we found to be the case for all
MG models, the different values of the multiplicative bias pro-
duced, as seen through (14), result in the transformed ratio be-
ing smaller at the lowest k bins. As shown in the left column
of Figure 1 for all 3 gravity models, when applied on our sim-
ulations, (14) performs well in predicting the offset between
the two ratios at the smallest k modes. We note that in some
previous analyses, e.g. [38], the power spectrum ratios were
normalized applying arbitrary multiplicative factors to align
the transformed ratios with unity at the lowest k bins, however
this is not necessary, since there is a clear analytic reason, in
(14), for an inequality between the two ratios. We find that
the clipped statistic has a lower standard error, in particular
at small k, than the logarithmic and marked cases. This can
be attributed to the fact that the clipped mapping only alters a

small fraction (∼1%) of the highest density regions, while the
logarithmic and marked cases affect the whole volume, and
upweight the most sparse regions associated with larger shot
noise, as found in [37].

On small scales, the signal is enhanced for the symmetron
and the | fR0 | = 10−6 models for all transformations by roughly
1 %, and also for the | fR0 | = 10−4 model in the marked trans-
formation.

We calculate the covariances for PMG/PΛ, in Figure 1, di-
rectly by considering the ratios of the statistics from the MG
and ΛCDM simulations with matching initial conditions. The
errors could, alternatively, be calculated from the covariances
of the individual simulations, as was proposed in [39], how-
ever, for simulations like ours in which the MG and ΛCDM
simulations have the same initial conditions, one needs to fac-
tor in the cross-correlation between the two [51]:

Var
(

PMG

PΛCDM

)
=

 P̄MG

P̄ΛCDM

2

× (15)Var(PMG)
P̄2

MG

− 2
Cov(PMG, PΛCDM)

P̄MG P̄ΛCDM
+

Var(PΛCDM)
P̄2

ΛCDM

 .
In order to assess each transformation’s efficiency in en-

hancing the information carried in MG signals, we calculate
the matter power spectra of the 2D projected density fields,
and density transformations, as described in sec. II B for each
of the 120 independent realizations. In addition to the frac-
tional boosts in the calculated power, expressed through the
ratio PMG

PΛCDM
, the fundamental quantity of interest for statis-

tically distinguishing MG models is the Fisher information
about parameters α, β [52] :

Fαβ = −

〈
∂2 lnL

(
data|α, β, priors

)
∂α∂β

〉
. (16)

Given a set of data with dependence on the parameters α, β,
L is defined as the likelihood function of the parameters from
the data, and in the case of a single parameter α, the above
reduces to the Fisher information about a parameter α:

Iα = −

〈
∂2 lnL

(
data|α

)
∂2α

〉
. (17)

When restricting our focus on information encoded in the
power spectra, as relevant for our analysis, (17) takes the form

Iα = −

〈
∂P(ki)
∂α

∂2 lnL
∂P(ki)∂P(k j)

∂P(k j)
∂α

〉
, (18)

in which the expectation value of the middle derivative term ,
basically the power-spectra Fisher matrix, can be well approx-
imated [53–55] by the inverse covariance C−1

i j , with

Ci j =
1

Nseed − 1

Nseed∑
r

(
Pr(ki) − P̄(ki)

) (
Pr(k j) − P̄(k j)

)
, (19)

for the Nseed = 120 realizations. It should be noted at this
point that the precision in the covariance matrix calculation
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FIG. 1: A side-by-side comparison of the ratios of the MG matter power spectra, PMG, for the symmetron [top row], | fR0 | = 10−6 [middle row]
and | fR0 | = 10−4 [bottom row] modified gravity models relative to ΛCDM, PΛCDM . For each model, the ratio is shown for the three density
transformations: logarithmic transformation [left column, red triangle], the clipped density field when 1.1% of the volume is clipped [center
column, red square] and the “marked” transform, m(δ) [right column, red star], with ρ∗ = 4 and p = 10, compared to the standard density
field, δ [all panels, blue circle]. The green lines in the left and middle columns show the variance-dependent, analytic predictions for the
power spectrum ratios for the large scale regime, as k → 0, for the logarithmic and the clipped transformation, from equations (10) and (12)
respectively. The error bands correspond to the standard deviations over the 120 realizations.

could be improved by applying a set of sinusoidal weightings
that depend on combinations of the fundamental modes [56],
as e.g. performed in [33], but we do not apply such an im-
provement in this paper. Under these assumptions, the Fisher

information about a parameter α takes the common form:

Iα =

Nbins∑
i, j

∂P(ki)
∂α

C−1
i j
∂P(k j)
∂α

. (20)

In this parametrization, changes in the gravitational model are
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FIG. 2: The variation of the Fisher and SNR boosts, defined in (21)
and (23), for the clipped density transformation relative to the normal
density distribution, as a function of the clipping threshold, shown as
the % of the simulation volume that is clipped (i.e. has δ > δ0). The
Fisher boost is shown for an | fR0 | = 10−6 cosmology, while the SNR
for the ΛCDM scenario.

reflected upon the different values taken by the single param-
eter α (not to be confused with the scale factor a), which for
the f(R) models is set equal to the respective values of | fR0 |, for
the symmetron equal to zssb = 1, and equal to 0 for ΛCDM,
as the limit of both parameters that recovers GR. The numera-
tor in the derivative terms is of course given by the difference
between the corresponding MG and ΛCDM power spectra.
In the general and realistic treatment involving multiple cos-
mological parameters, the inverse Fisher matrix is associated
with the marginalized errors in the parameter estimates, while,
in our single-parameter case, the unmarginalized error in the
parameter estimation is predicted to be [52], σα = I−1/2

α .
To express the additional Fisher information encoded in

each density mapping, we define the “Fisher boost”, given by
the ratio of

√
Iα calculated for a given mapping to the

√
Iα by

the standard density for the same cosmological model:

Fisher boost =

√
Iα(δ′)
Iα(δ)

. (21)

While the Fisher information provides a way to quantify the
sensitivity of an estimator to changes in cosmological model
parameters, the “signal-to-noise” ratio (SNR), :

S NR =

√√√Nbins∑
i, j

P̄(ki)C−1
i j P̄(k j), (22)

is another method used in the literature to compare the perfor-
mance of different statistics for the same cosmological model
[33, 57]. As a comparison we consider how the SNR is af-
fected by the choice of density transformation for the ΛCDM
model. In the same vein as in (21), we consider the change in

10-1 100 101 102

ρ∗

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
o
o
st

p= 10

SNR

Fisher

10-1 100 101 102

p

ρ∗ = 4

SNR

Fisher

FIG. 3: The variation of the Fisher and SNR boosts, defined in (21)
and (23), for the marked transformation in an | fR0 | = 10−6 and ΛCDM
scenario, correspondingly, as a function of [left] ρ∗, with fixed p =

10, and [right] p, with fixed ρ∗ = 4.

the ΛCDM SNR created by each transformation, as the “SNR
boost”:

SNR boost =
SNR(δ′)
SNR(δ)

. (23)

For the clipped density transformation, the threshold, δ0,
relating the fraction of the volume which is clipped, is a free
parameter. In Figure 2 we show the sensitivity of the Fisher
boost as α varies from 0 to | fR0 | = 10−6, as well as for the SNR
boost, for ΛCDM, to the choice of δ0. We find that a thresh-
old value that corresponds to clipping the 1.1% most dense
cells of the simulated volume maximizes both quantities. We
note that our choice of using the same clipping threshold (the
same value of δ0) for both MG and ΛCDM models is different
than in Ref. [38], in which different clipping thresholds were
chosen for ΛCDM and MG. The choice in [38] was made to
match the MG to ΛCDM power spectra ratios of the trans-
formed field to those for the normal density field at the lowest
k bins. As we discussed for the logarithmic case, however, the
ratios of the normal and clipped density fields, in general, will
not be equal on large scales but instead are determined by the
variances of the original and remapped fields, through (12).

For the marked function, varying the values of the two free
parameters, p and ρ∗, is found to have, qualitatively, little ef-
fect on the shape and form of the transformed ratio, but a
significant impact on the magnitude of the Fisher and SNR
boosts, as shown in Figure 3. By fixing p and varying ρ∗ and
vice versa, we found the pair of values p = 10, ρ∗ = 4 to be
the optimal choice that maximizes the Fisher information as
α goes from 0 to | fR0 | = 10−6, and the SNR boost in our GR
simulations.

As was shown in Figure 1, the difference between the sig-
nal amplitudes and covariances, for the transformed statis-
tics, relative to the normal density field is scale, as well as
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FIG. 4: [Top] The variation of the Fisher boost for the logarithmic
[black, full], clipped [blue, dashed] and marked [red,dotted] transfor-
mation as a function of kmax for the | fR0 | = 10−6 case. [Bottom] The
variation of the square root of the Fisher information for the standard
[green, dashdot], logarithmic [black, full], clipped [blue, dashed] and
marked [red,dotted] density transformation as a function of kmax for
the | fR0 | = 10−6 model. The error bars have been obtained using the
Jackknife approach.

model, dependent. In Figure 4, the variation of the square
root of the Fisher information in the power spectrum from
ΛCDM to | fR0 | = 10−6 is plotted as a function of the max-
imum wavenumber kmax, demonstrating a monotonically in-
creasing behavior for all 4 transforms. Out of all the MG
models considered, | fR0 | = 10−6 represents the most viable,
smallest perturbation around ΛCDM, which motivates its use
as the representative example for the behavior of the Fisher
information in Figures 2, 3 and 4. When focusing our analy-
sis on wave-modes larger than 0.4 h/Mpc, all transformations
comfortably predict boosts in the Fisher information, with the
marked and logarithmic mappings performing better than the
clipped transformation for all scales. Even though the mark
predicts a higher Fisher boost than the logarithmic transfor-
mation, the predicted difference is smaller than respective er-
ror bars, making it thus hard to differentiate confidently be-
tween these two mappings with the current number of realiza-
tions. The error bars have been calculated using the Jackknife
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FIG. 5: [Top] The variation of the signal-to-noise ratio (SNR) boost
for the logarithmic [black, full], clipped [blue, dashed] and marked
[red,dotted] transformation as a function of kmax for the ΛCDM case.
[Bottom] The variation of the signal-to-noise ratio (SNR) for the
standard [green, dashdot], logarithmic [black, full], clipped [blue,
dashed] and marked [red,dotted] density transformation as a func-
tion of kmax for ΛCDM. The error bars have been obtained using the
Jackknife approach.

method.
In Figure 5, and in a similar manner as in Figure 4, we plot

the variation in the cumulative SNR for all transformations,
recovering the same qualitative behavior as in the Fisher in-
formation case. The marked and logarithmic transformations
perform comfortably better, in terms of the SNR boost, than
the clipping case, with the difference from each other being
once again smaller than the error bars. As in the Fisher case,
the error bars were obtained by the Jackknife approach.

The Fisher boosts for each of the transformations, and each
modified gravity model, when calculated to three different
maximum wavenumbers, 1, 1.9 and 3.5 h/Mpc, are summa-
rized in Table I.

Just like in the | fR0 | = 10−6 model, the behavior of which
has been shown in detail in Figure 4, the marked and logarith-
mic transformations produce the highest increase in the Fisher
information for the rest two gravity models under considera-
tion, and for all 3 wavenumbers reported, with the differences
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Fisher Boost
kmax 1.0 h/Mpc 1.9 h/Mpc 3.5 h/Mpc
Transformation ln(1 + δ) δc m(δ) ln(1 + δ) δc m(δ) ln(1 + δ) δc m(δ)

Symmmetron 1.6 1.3 1.5 2.2 1.6 2.4 2.4 2.3 2.5
f (R) : | fR0 | = 10−6 2.3 1.7 2.4 2.8 1.9 3.3 2.8 2.5 3.2
f (R) : | fR0 | = 10−4 2.1 1.6 2.2 2.7 1.9 3.2 2.9 2.2 3.8

TABLE I: A summary of the boost in the Fisher information when using the power spectra of the transformed, logarithmic, clipped and marked,
density statistics relative to that of the standard density field for ΛCDM and the three modified gravity, symmetron and f (R), models. The
sensitivity of the Fisher boost to the maximum wavenumber considered is shown through the comparison of results with three different values
of kmax.

between the two mappings being smaller than the correspond-
ing uncertainties. Furthermore, again in a similar manner with
the | fR0 | = 10−6 case, the Fisher boosts achieved by the opti-
mal clipping transformation are lower than the ones produced
by the other two transformations, demonstrating an overall
consistent behavior for all 3 MG models. Our results also
reconfirm that clipping high-density screened regions results
in unscreening and enhancement of MG deviations [38] and
quantifies the boost on the Fisher information, to our knowl-
edge, for the first time.

Our results are also consistent with other studies [39], that
have shown, within the context of MG, that logarithmic map-
pings improve the total SNR, as they also do for ΛCDM [33],
and demonstrate that such transformations can be valuable in
providing additional discriminatory power for difficult to de-
tect MG models. It should be noted here that the “restricted”
logarithmic function proposed in [39], which is essentially the
the “sliced correlation function” at fixed δ proposed in [58], is
found to produce Fisher and SNR boosts of 1.1 and 5.7 in the
case of the | fR0 | = 10−6 and ΛCDM models, respectively, as
opposed to corresponding boosts of 3.2 and 3.8 produced by
the marked transformation, for k > 3.5h/Mpc.

In addition to the Fourier space statistics investigated
above, we have also assessed the potential for discriminat-
ing between GR and MG models, using a real-space marked
correlation function. Marked correlation functions have been
proposed [59–64] as an extension to the standard, autocorre-
lation function ξ(r). We consider the marked correlation func-
tionM(r) of the form [40],

M(r) =
1 + W(r)
1 + ξ(r)

, (24)

where W(r) is the correlation function weighted by the mark
in (13). In Figure 6 we show, for one realization, the variation
in M(r), between GR and MG models for varying values of
p and ρ∗. This demonstrates that using a marked correlation
function of this form can serve as another quantity that breaks
the degeneracy between MG models and the standard ΛCDM
cosmological scenario. In Figure 7, we plot the marked cor-
relation functionM(r) with p = 10 and ρ∗ = 0.4, for ΛCDM
and the | fR0 | = 10−4 model, averaged over 10 random real-
izations. For this analysis, we used the initial 10, out of the
total of 30, realizations of the 3D density snapshots resolved
in the 2563 mesh, rather than the projected ones, while the 3D
real space autocorrelation functions were calculated using the
Super W of Theta (SWOT) code [65]. We note that, given the

functional form of (24), the observed difference between the
MG and ΛCDM models is smaller than that for the standard
power spectra. At r = 1.81Mpc/h, the fractional difference
is maximal, MΛCDM/MMG = 1.37, while at r = 4Mpc/h,
MΛCDM/MMG = 1.13. The SNR boost between W and the
standard ξ is equal to ∼ 3 for ΛCDM.

IV. CONCLUSIONS

Re-weighting cosmological density fields in order to sup-
press the contribution of dense, screened regions in favor of
the low-density, unscreened regime, has been proposed as a
recipe to improve the detectability of potential MG signatures.
In this paper, we assess the performance of a new analytical
function, first proposed in [40], both as a density re-mapping
and as a real space marked correlation function and also per-
form a systematic comparison with the logarithmic and clip-
ping transformations. Besides the fractional deviation in the
dark matter power spectra, PMG

PΛCDM
, each transformation is as-

sessed through the boost, with respect to the standard density
field, in the Fisher information in the power spectra for all
MG models, as well as through the boost in the total signal-
to-noise ratio for ΛCDM.

By exploring the parameter space of the “marked” density
transformation, we found the parameter choice of p = 10,
ρ∗ = 4, to be the one that produces the maximum boost in the
Fisher information for the | fR0 | = 10−6 model, as well as the
highest increase in the signal-to-noise in ΛCDM. The loga-
rithmic mapping was found to perform roughly equally well,
within the levels of accuracy, in maximizing these quantities,
while both transformations were found to be superior to clip-
ping of density peaks. These results, that also hold for the rest
of the gravity models considered, demonstrate that the marked
tracer could serve as a useful tool with which to discriminate
between MG models and the standard cosmological scenario.

The value of the clipping threshold that truncates the dens-
est 1.1% of each snapshot, was found to be the optimal
one that simultaneously produces the maximum boosts in the
Fisher information and the total signal-to-noise ratio, for all
models considered. By studying the performance as a func-
tion of the maximum Fourier mode, kmax, included, we found
clipping to predict smaller boosts compared to the other two
transformations at all scales, while still performing consider-
ably better than the standard density field.

Finally, we assessed the discriminatory potential of a real-
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FIG. 7: The marked correlation functions, M, for ΛCDM [red, full
line] and the | fR0 | = 10−4 [blue, dashed line] model, for ρ∗ = 0.4 and
p = 10, showing the average and variance over 10 realizations.

space, marked correlation function of the form (24), which,
tested on the | fR0 | = 10−4 model, was found to provide a max-
imum difference relative to ΛCDM of 37% at r = 1.81Mpc/h
and a ΛCDM SNR boost of ∼3, comparing W to ξ, clearly
demonstrating the power of such a real space statistic.

In this work, we have focused on the application of the
statistics using the dark matter particle distribution from the
N-body simulations. We recognize that in reality surveys sam-
ple astrophysical, biased, baryonic tracers of the dark matter
distribution, and the next natural step, that we will undertake
in future work, will be to investigate the utility of these statis-
tics on mock galaxy catalogs that more accurately represent
what we will observe with upcoming surveys. Other lines of
improvement could be incorporating the effects of redshift-

space distortions to the current analysis.
Models that aim to explain cosmic acceleration through

modifications to GR, evade strict solar system constraints
through characteristic screening mechanisms which suppress
deviations in high-density environments. In our paper we
demonstrate how one can, through a series of simple den-
sity transformations, differentiate more confidently between
ΛCDM and alternative scenarios. Such density-dependent
suppressions make the detection of potential MG signatures
challenging, even for future ambitious surveys of the LSS, like
the LSST, Euclid and DESI.
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