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This paper concludes our semi-analytic study of preheating in inflationary models com-

prised of multiple scalar fields coupled nonminimally to gravity. Using the covariant frame-

work of Ref. [1], we extend the rigid-spacetime results of Ref. [2] by considering both the

expansion of the universe during preheating, as well as the effect of the coupled metric

perturbations on particle production. The adiabatic and isocurvature perturbations are gov-

erned by different effective masses that scale differently with the nonminimal couplings and

evolve differently in time. The effective mass for the adiabatic modes is dominated by con-

tributions from the coupled metric perturbations immediately after inflation. The metric

perturbations contribute an oscillating tachyonic term that enhances an early period of sig-

nificant particle production for the adiabatic modes, which ceases on a time-scale governed

by the nonminimal couplings ξI . The effective mass of the isocurvature perturbations, on the

other hand, is dominated by contributions from the fields’ potential and from the curvature

of the field-space manifold (in the Einstein frame), the balance between which shifts on a

time-scale governed by ξI . As in Refs. [1, 2], we identify distinct behavior depending on

whether the nonminimal couplings are small (ξI . O(1)), intermediate (ξI ∼ O(1− 10)), or

large (ξI ≥ 100).

PACS numbers: 98.80.Cq ; 95.30.Cq. Preprint MIT-CTP/4849.

I. INTRODUCTION

This paper continues the work of Refs. [1, 2] by considering the early stage of post-inflation

reheating in models that involve multiple scalar fields, each with a nonminimal coupling to gravity.

Reheating is a critical epoch in cosmic history, connecting early-universe inflation with the successes

of the standard big-bang scenario. (For reviews of post-inflation reheating, see Refs. [3–8].) Both
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of the main features of the models we consider — multiple fields [9–14] and nonminimal couplings

[15–21] — are well-motivated by high-energy theory, and encompass such models as Higgs inflation

[22] (see also [23–28]) and related models with attractor-like solutions [29–33].

In Ref. [1] we established a doubly-covariant formalism with which to study the behavior of

field fluctuations and metric perturbations to linear order, which is gauge-invariant with respect

to spacetime transformations (xµ → x′µ) as well as invariant under field-space reparameterizations

(φI → φ′I). We also demonstrated in Ref. [1] that the strong single-field attractor that such models

generically obey during inflation [29–32] persists through the early stages of reheating, for at least

as long as the linearized approximation (in the field and metric perturbations) remains valid. The

attractor makes these models safe from destabilization issues like the ones described in Ref. [34].

In Ref. [2], we applied the covariant formalism in the rigid-spacetime limit, in which we imagine

holding the energy density fixed while sending Mpl → ∞. (The reduced Planck mass is given

by Mpl ≡ 1/
√

8πG ' 2.43 × 1018 GeV.) In that limit, we may neglect both the expansion of

spacetime during reheating as well as the effects of the coupled metric perturbations [7]. Then the

condensate(s) that had driven inflation oscillate periodically after the end of inflation, which can

lead to efficient particle production via parametric resonance. Within the rigid-spacetime approx-

imation, we studied the highly nonperturbative transfer of energy from the inflaton condensate

into adiabatic and isocurvature modes, using the tools of Floquet theory. In the long-wavelength

limit (k → 0), we identified three distinct regimes, depending on whether the nonminimal coupling

constants ξI are small (ξI . O(1)), intermediate (ξφ ∼ O(1 − 10)), or large (ξφ ≥ O(100)). For

both adiabatic and isocurvature modes, the most efficient particle production occurs for strong

couplings, ξI ≥ 100, and approaches self-similar scaling solutions in the limit ξI →∞.

In this paper we consider the post-inflation dynamics while relaxing the assumption of a rigid

spacetime, incorporating both the Hubble expansion and the contributions from the coupled metric

perturbations. Consistent with earlier studies [35–44], we find that the coupled metric perturba-

tions can have important effects on the preheating dynamics. In the models we consider here,

the metric perturbations have a particularly strong effect on the behavior of the adiabatic modes,

dominating their effective mass at early times with an oscillating, tachyonic contribution. Within

the single-field attractor, on the other hand, the metric perturbations play a minimal role for the

isocurvature modes. Instead, the behavior of the isocurvature modes is governed by the changing

ratio of two other contributions to their effective mass: the term arising from (gradients of) the

potential, and the term from the curved field-space manifold. We identify time-scales on which

these distinct contributions dominate the dynamics, and how those time-scales vary with increas-
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ing ξI . As in our previous studies [1, 2], we work to linear order in the perturbations, reserving

for future study such nonlinear effects as backreaction of the created particles on the oscillating

inflaton condensate [7, 37, 45, 46].

In Section II we briefly introduce our model and the covariant formalism with which to study

linearized perturbations. Section III examines the behavior of the adiabatic modes for k ∼ 0,

and Section IV examines the behavior of the isocurvature modes for k ∼ 0. In Section V, we

consider the contrasting behavior of adiabatic and isocurvature modes for nonzero wavenumber,

studying the evolution of both sub-horizon and super-horizon modes. In Section VI we briefly

consider possible observational consequences of the efficient preheating dynamics for this family of

models, and in Section VII we comment on potential implications of our analyses for reheating after

Higgs inflation. Concluding remarks follow in Section VIII. red In an Appendix, we consider the

time-scale over which the background dynamics transition from a matter-dominated to radiation-

dominated equation of state, and compare this cross-over time with the time-scales relevant for the

amplification of adiabatic and isocurvature modes, as derived in Sections III and IV.

II. MODEL AND FORMALISM

We consider models with N real-valued scalar fields φI in 3 + 1 spacetime dimensions. We

use upper-case Latin letters to label field-space indices, I, J = 1, 2, ..., N ; Greek letters to label

spacetime indices, µ, ν = 0, 1, 2, 3; and lower-case Latin letters to label spatial indices, i, j = 1, 2, 3.

The spacetime metric has signature (−,+,+,+). The action in the Jordan frame is given by

S =

∫
d4x

√
−g̃
[
f(φI)R̃− 1

2
δIJ g̃

µν∂µφ
I∂νφ

J − Ṽ (φI)

]
, (1)

where tildes indicate Jordan-frame quantities. We perform a conformal transformation

g̃µν(x)→ gµν(x) =
2

M2
pl

f(φI(x)) g̃µν(x) (2)

to bring the action in the Einstein frame into the form [47, 48]

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
GIJ(φK)gµν∂µφ

I∂νφ
J − V (φI)

]
. (3)

In the Einstein frame, the (curved) field-space manifold acquires a metric given by

GIJ(φK) =
M2

pl

2f(φK)

[
δIJ +

3

f(φK)
f,If,J

]
, (4)
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where f,I = ∂f/∂φI . (Explicit expressions for the components of GIJ for our two-field model may

be found in Appendix A of Ref. [1].) The potential in the Einstein frame is likewise stretched by

the conformal factor:

V (φI) =
M4

pl

4f2(φI)
Ṽ (φI). (5)

We expand the scalar fields and spacetime metric to first order in perturbations. Because we are

interested in the dynamics at the end of inflation, we consider scalar metric perturbations around

a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) line element,

ds2 = gµν(x) dxµdxν

= −(1 + 2A)dt2 + 2a (∂iB) dxidt+ a2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj ,
(6)

where a(t) is the scale factor. We also expand the fields,

φI(xµ) = ϕI(t) + δφI(xµ). (7)

To first order in the perturbations, we may then construct generalizations of the gauge-invariant

Mukhanov-Sasaki variable (see Ref. [1] and references therein):

QI = δφI +
ϕ̇I

H
ψ. (8)

To background order, the dynamics are governed by the coupled equations,

Dtϕ̇I + 3Hϕ̇I + GIJV,J = 0 (9)

and

H2 =
1

3M2
pl

[
1

2
GIJ ϕ̇I ϕ̇J + V (ϕI)

]
,

Ḣ = − 1

2M2
pl

GIJ ϕ̇I ϕ̇J ,
(10)

where overdots denote derivatives with respect to t, and the Hubble parameter is given by H(t) =

ȧ/a. Covariant derivatives with respect to the field-space metric are given by DJAI = ∂JA
I +

ΓIJKA
K for a field-space vector AI , from which we may construct the (covariant) directional

derivative with respect to cosmic time, DtAI = ϕ̇JDJAI = ȦI + ΓIJKϕ̇
JAK , where the Christoffel

symbols ΓIJK(ϕL) are constructed from GIJ(ϕK). The gauge-invariant perturbations obey

D2
tQ

I + 3HDtQI +

[
k2

a2
δIJ +MI

J

]
QJ = 0, (11)
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where the mass-squared matrix is given by

MI
J ≡ GIK (DJDKV )−RILMJ ϕ̇

Lϕ̇M − 1

M2
pla

3
Dt
(
a3

H
ϕ̇I ϕ̇J

)
(12)

and RILMJ is the Riemann tensor constructed from GIJ(ϕK). The term in Eq. (12) proportional

to 1/M2
pl arises from the coupled metric perturbations.

As in Refs. [1, 2], we consider a two-field model, φI = {φ, χ}T , with nonminimal couplings (in

the Jordan frame) given by

f(φI) =
1

2

[
M2

pl + ξφφ
2 + ξχχ

2
]

(13)

and Jordan-frame potential

Ṽ (φI) =
λφ
4
φ4 +

g

2
φ2χ2 +

λχ
4
χ4. (14)

The Einstein-frame potential V (φI) develops ridges and valleys for the generic case in which ξφ 6= ξχ

and/or λφ 6= g 6= λχ, and the background dynamics exhibit strong single-field attractor behavior

[1, 29–32]. Given our covariant framework, we may always perform a field-space rotation such that

the attractor lies along the direction χ = 0 in field space, without loss of generality. Within such

an attractor, the field-space metric becomes effectively diagonal, with Gφχ = O(χ) ∼ 0 [1].

We rescale the perturbations, QI(xµ)→ XI(xµ)/a(t), and quantize, XI → X̂I , expanding X̂φ

and X̂χ in sets of creation and annihilation operators and associated mode functions. Whereas in

Ref. [1] we worked in terms of conformal time, dη = dt/a(t), in this paper we will use cosmic time,

t, since our numerical routines are efficient at evolving ϕI(t), H(t), and XI(t) in terms of t. Within

the single-field attractor, the mode functions effectively decouple [1]:

v̈k +Hv̇k +

(
k2

a2
+m2

eff,φ(t)

)
vk ' 0,

z̈k +Hżk +

(
k2

a2
+m2

eff,χ(t)

)
zk ' 0.

(15)

The Hubble-drag term enters as Hv̇k (rather than 3Hv̇k, as in Eq. (11)), because we have scaled

the fluctuations, QI = XI/a ∝ a−1{vk, zk}T . Within the attractor (along χ = 0), vk is the mode

function for perturbations along the adiabatic direction and zk is the mode function for perturba-

tions along the isocurvature direction. Their effective masses consist of four distinct contributions

[1]:

m2
eff,I = m2

1,I +m2
2,I +m2

3,I +m2
4,I , (16)
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with

m2
1,φ ≡ GφK (DφDKV ) ,

m2
2,φ ≡ −R

φ
LMφϕ̇

Lϕ̇M ,

m2
3,φ ≡ −

1

M2
pla

3
δφIδ

J
φ Dt

(
a3

H
ϕ̇I ϕ̇J

)
,

m2
4,φ ≡ −

1

6
R,

(17)

where R is the spacetime Ricci curvature scalar; comparable expressions follow for the contributions

to m2
eff,χ. We note that m2

1,I arises from (covariant gradients of) the potential, m2
2,I from the

curvature of the field-space manifold, m2
3,I from the coupled metric perturbations, and m2

4,I from

the expanding spacetime. The form of each of these contributions differs from the case of minimally

coupled fields. The term m2
2,I , in particular, has no analogue for models with minimally coupled

fields and canonical kinetic terms, and can play important roles in the dynamics both during and

after inflation [1, 2, 29–32, 34]. Meanwhile, within the single-field attractor along χ = 0, the energy

densities for adiabatic and isocurvature perturbations take the form [1]

ρ
(φ)
k =

1

2

[
|v̇k|2 +

(
k2

a2
+m2

eff,φ

)
|vk|2

]
+O(χ2),

ρ
(χ)
k =

1

2

[
|żk|2 +

(
k2

a2
+m2

eff,χ

)
|zk|2

]
+O(χ2),

(18)

again keeping in mind that Qφ ∼ vk/a(t) and Qχ ∼ zk/a(t). We measure particle production with

respect to the instantaneous adiabatic vacuum, |0(tend)〉, which minimizes the energy densities ρ
(I)
k

at the end of inflation [7].

For evolution within an attractor along the direction χ = 0, the Hubble scale at the end of

inflation satisfies

H(tend) ' 0.4

√
λφ

12ξ2
φ

Mpl, (19)

and the background field’s frequency of oscillation at the end of inflation satisfies ω > H for all

ξφ ≥ 0, with ω/H ' 1.5 for ξφ ≤ 0.1 and ω/H ' 4 for ξφ ≥ 10 [1]. In particular, both the period

of oscillation T = 2π/ω and the Hubble time H−1 scale as ξφ for large ξφ. Hence we may capture

the relevant dynamics by rescaling our time variable t → t̃ ≡
√
λφMpl t/ξφ ∝ H(tend) t. For the

remainder of this paper, we will set t̃end = 0, where t̃end is the time at which inflation ends and

preheating begins.

In Fig. 1 we show the growth of ρ
(φ)
k and ρ

(χ)
k for k = 0 as we increase the nonminimal couplings

ξI . In particular, we select ξχ = 0.8ξφ, g = λφ, and λχ = 1.25λφ, such that all of the relevant ratios
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FIG. 1: The evolution of the energy densities ρ
(φ)
k (blue) and ρ

(χ)
k (gold) as functions of t̃ =

√
λφMpl t/ξφ

for k = 0. The parameter ratios are chosen as ξχ/ξφ = 0.8, g/λφ = 1, and λχ/λφ = 1.25. (Top, left to
right) ξφ = 1, 10; (bottom, left to right) ξφ = 102, 103.

among couplings are O(1), and hence no softly broken symmetry exists [2]. As in Refs. [1, 2], we

identify three distinct regimes, governed by the magnitude of ξI : inefficient growth of either set of

perturbations for ξI ≤ O(1) in the limit k → 0; modest growth of adiabatic modes for ξI ∼ O(10);

and rapid growth for both adiabatic and isocurvature modes for ξI ≥ O(100). Moreover, the

balance shifts between adiabatic and isocurvature modes between the intermediate- and large-ξI

regimes, with especially rapid growth of ρ
(χ)
k for ξI →∞. Hence we find that the growth within the

broad-resonance regime that we analyzed in Ref. [2] is robust, even when we relax the assumption

of a rigid spacetime. In the next two sections, we analyze semi-analytically the behavior shown in

Fig. 1.

III. RESULTS: ADIABATIC MODES

Within the single-field attractor, there are two significant components of the effective mass m2
eff,φ

for the adiabatic perturbations during preheating: m2
1,φ from the potential andm2

3,φ from the metric

perturbations. Within the single-field attractor, m2
2,φ ∼ O(χχ̇) ∼ 0, and m2

4,φ = −R/6 ∼ O(1)H2
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remains much smaller than the other terms [1].

In order to distinguish the effects from m2
1,φ and m2

3,φ and examine their dependence on time

and ξI , we compute ρ
(φ)
k first by neglecting m2

3,φ and compare with the results computed using the

full effective mass, m2
eff,φ. The results for the k = 0 mode and different values of ξφ are shown

in Fig. 2, from which two main results become clear. First, the contribution from the coupled

metric perturbations, m2
3,φ, dominates during times immediately after the end of inflation, yielding

a significant, oscillating tachyonic contribution to m2
eff,φ that drives significant particle production.

The contribution from the potential, m2
1,φ, comes to dominate m2

eff,φ at later times, such that

the energy density computed with either m2
eff,φ or m2

1,φ alone share the same behavior after a

characteristic time-scale.

We start by examining the time when the metric perturbations dominate the growth rate of

the adiabatic modes, as a function of ξφ, focusing on ξφ ≥ 10. The maximum value (positive or

negative) of m2
3,φ may be well-fit numerically by

max(m2
3,φ) ' 2

√
6
∣∣∣φ̈max

∣∣∣ , (20)

where overdots denote derivatives with respect to t̃. We can see from the right panels of Fig.

2 that the coupled metric perturbations become unimportant when max(m2
3,φ) . 1

3max(m2
1,φ).

Numerical evaluation of the relevant functions for several values of ξφ ≥ 10 pinpoints this crossover

as occurring at t̃cross ∼ 9.5
√
ξφ. Upon using Eq. (19) and the relation t̃ =

√
λφMpl t/ξφ, this is

equivalent to Hend tcross ∼ 1.1
√
ξφ, where Hend ≡ H(tend) is the value of the Hubble parameter at

the end of inflation. The exact constant of proportionality is not particularly important; the point

is that the growth of adiabatic modes for ξφ ≥ 10 is dominated by the effects of the coupled metric

perturbations at early times, up to around Hend tcross ∼ O(1)
√
ξφ.

As we can see from the blue curves in the lefthand panels of Fig. 2, the times t < tcross correspond

to no particle production stemming from the potential term, m2
1,φ. Looking closely at the form of

m2
1,φ in the righthand panels of Fig. 2, we see that during this early phase m2

1,φ is qualitatively

different than its late-time form. At early times, m2
1,φ exhibits one global minimum at m2

1,φ = 0

and one local minimum at m2
1,φ > 0 for each period of oscillation. As long as the existence of

the local minimum is pronounced, particle production due to m2
1,φ is suppressed. However, the

distance between the local minimum and the two neighboring maxima decreases as a function of

time. Once the local minimum vanishes, the energy density in the adiabatic modes begins to grow

as a power law, exactly matching the late-time growth rate of ρ
(φ)
k when calculated using the full

effective mass, m2
eff,φ. This late-time behavior matches what we found in Ref. [2] using Floquet
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FIG. 2: (Left) The energy density for the adiabatic perturbations ρ
(φ)
k for k = 0 as a function of

t̃ =
√
λφMpl t/ξφ, computed using the full effective mass (black) and by neglecting the coupled metric

perturbations (blue). The red dotted curve is a shifted version of the blue curve, to help indicate the
time-scales on which m2

1,φ or m2
3,φ dominate m2

eff,φ. (Right) The rescaled adiabatic effective mass

m̃2
eff,φ = ξ2

φm
2
eff,φ (back dotted) and its two main components, m̃2

1,φ (blue) from the potential, and m̃2
3,φ

(red) from the metric perturbations. The nonminimal coupling is ξφ = 1, 10, 102, 103 (top to bottom).
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FIG. 3: (Left) The rescaled mass m̃2
1,φ = ξ2

φm
2
1,φ as a function of δ =

√
ξφ φ/Mpl, for

ξφ = 1, 10, 102, 103, 104, 105 (color coded in a rainbow scale with red corresponding to ξφ = 1). (Right) The
maximum value of m̃2

1,φ (red dotted) and the value of δpeak for which it occurs (blue dots) as a function of

ξφ, along with the fitting curve δpeak = 0.4 ξ
−1/4
φ (blue solid).

theory in the rigid-spacetime limit: the k = 0 mode for the adiabatic perturbations exhibited at

most power-law growth, rather than exponential growth.

We may evaluate the time at which the local minimum in m2
1,φ vanishes. During each oscillation,

the field passes through the interval 0 ≤ δ ≤ δmax, where δmax is the amplitude of oscillation, and

δ(t) ≡
√
ξφφ(t)/Mpl. We label δpeak as the value of δ at which m2

1,φ has a maximum; δpeak depends

on ξφ, as shown in Fig. 3. As long as δmax ≥ δpeak, the term m2
1,φ will oscillate between the global

minimum at zero, the local maxima, and the local minimum. Once δmax becomes less than δpeak,

however, m2
1,φ will only oscillate between zero and m2

1,φ(δmax), exhibiting just one minimum and

one maximum for each period of the background field’s oscillation.

As shown on the righthand side of Fig. 3, the quantity δpeak is well fit numerically by the curve

δpeak ' 0.4 ξ
−1/4
φ across nine orders of magnitude. The amplitude of oscillation, δmax, will redshift

due to Hubble friction, having begun at δmax(tend) = 0.8 for ξφ ≥ 1 [1]; at early times after tend, the

envelope of the background inflaton oscillations is well fit by the curve δmax ' 1.5 t̃−1/2 (as may be

gleaned from Fig. 2 of Ref. [1]). The local minimum of m2
1,φ vanishes when δmax ≤ δpeak ' 0.4ξ

−1/4
φ ,

which may be solved to give

Hend tpeak ' 1.7
√
ξφ . (21)

Our estimate of tpeak is quite close to the time tcross, when m2
1,φ from the potential begins to

dominatem2
3,φ from the coupled metric perturbations. We therefore conclude that forHendt .

√
ξφ,

the metric perturbations dominate m2
eff,φ, driving a tachyonic amplification of ρ

(φ)
k , whereas for

Hend t &
√
ξφ, the potential term dominates and the adiabatic mode with k = 0 grows as a
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FIG. 4: (Left) The rescaled effective mass for the isocurvature modes, m̃2
eff,χ = ξ2

φm
2
eff,χ (black-dotted)

along with the contributions from the potential, m̃2
1,χ (blue), and from the curved field-space manifold,

m̃2
2,χ (red), for ξφ = 10, as functions of t̃ =

√
λφMpl t/ξφ. (Right) The quantities m2

eff,χ (black-dotted),

m2
1,χ (blue), and m2

2,χ (red) rescaled by the Hubble parameter.

power-law rather than an exponential. The departure from the rigid-spacetime behavior found in

Ref. [2] grows with ξφ, in the sense that for larger ξφ, the metric perturbations drive an exponential

amplification of ρ
(φ)
k in the long-wavelength limit for correspondingly longer (rescaled) times t̃.

IV. RESULTS: ISOCURVATURE MODES

As expected, the phenomenology of isocurvature modes is richer than that of adiabatic modes.

The case ξφ ∼ O(1 − 10) deserves special attention, since it exhibits opposite behavior from the

large-ξφ regime. We see in Fig. 1 that isocurvature fluctuations for k = 0 and ξφ = 10 do not grow

initially. However for ξφ ≥ 100, quasi-exponential growth begins right away. This is in keeping with

the results we found in Refs. [1, 2], in which the isocurvature perturbations exhibited qualitatively

different behavior in the intermediate- and large-ξφ regimes.

Fig. 4 shows the evolution of m2
eff,χ for ξφ = 10, along with its two main components within

the single-field attractor, m2
1,χ from the potential and m2

2,χ from the curved field-space manifold.

We see that m2
2,χ dominates for early times and m2

1,χ dominates at later times. Furthermore,

the maximum amplitude of m2
2,χ is proportional to H2(t). This proportionality may be easily

understood. Within the single-field attractor along χ = 0 [1],

m2
2,χ =

1

2
R Gφφφ̇2 , (22)

where R is the field-space Ricci scalar, not to be confused with the space-time Ricci scalar R. The

peaks of m2
2,χ occur when φ vanishes and φ̇ reaches its maxima. Using the expressions in Appendix
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A of Ref. [1], for large ξI and φ = 0 we may easily derive

Rmax ∝ 6(1− ε)ξ2
φ , (23)

where ε = (ξφ− ξχ)/ξφ is the ellipticity of the field-space potential. Furthermore, for motion along

χ = 0 (within the single-field attractor) and with φ = 0 (where m2
2,χ peaks), we find Gφφ = 1. Thus

the peak of the contribution m2
2,χ has a very simple expression:

max
(
m2

2,χ

)
∝ 3(1− ε)ξ2

φ φ̇
2 . (24)

After inflation the kinetic energy density (Gφφφ̇2/2) and the potential energy density (V (φ, χ))

attain equal maximum values but oscillate out of phase. Averaged over a period of the inflaton

oscillation, the Hubble parameter is

〈H〉 =
1√

6Mpl

|φ̇max| , (25)

where |φ̇max| is the field’s maximum velocity within one oscillation. Then one finds

m2
2,χ

〈H〉2
∝ (1− ε)ξ2

φ , (26)

indicating that the contribution to m2
eff,χ that arises from the curved field-space manifold, m2

2,χ,

scales with H2(t) after the end of inflation.

On the other hand, the contribution arising from the potential, m2
1,χ, grows compared to H2(t),

and thus dominates m2
eff,χ at late times. For ξφ = 10, the terms m2

1,χ and m2
2,χ become approxi-

mately equal at t̃ ' 80, while for t̃ & 150, the term m2
1,χ clearly dominates. At these late times,

m2
eff,χ oscillates quasi-sinusoidally and can drive parametric resonance, depending sensitively on

wavenumber and couplings; this accounts for the late-time growth of ρ
(χ)
k for ξφ = 10 in Fig. 1.

The evolution of m2
1,χ/H

2 does not admit a simple solution, contrary to the adiabatic case

m2
1,φ/H

2, for the following reason. In the case of m2
1,φ the peak value occurrs at φ = 0, which

drastically reduces the dependence of the peak on parameters, since all terms involving powers of

φ vanish identically. In the case of m2
1,χ, the peak occurs at some nonzero φmax. Hence not only

do higher powers of φ not vanish at the maximum of m2
1,χ, but, as φ(t) redshifts, terms such as

M2
pl + ξ2

φφ
2 change their character over time. For ξφφ

2/M2
pl = O(1), which is true immediately

after inflation, M2
pl + ξ2

φφ
2 ≈ ξ2

φφ
2. However, as the amplitude of φ redshifts, the two terms in

M2
pl + ξ2

φφ
2 become comparable. Ultimately M2

pl + ξ2
φφ

2 →M2
pl as t→∞. Thus we can show that

m2
1,χ/H

2 grows, but the nature of the growth does not admit a simple expression.
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FIG. 5: The effective mass of the isocurvature perturbations, m2
eff,χ/H

2 (black-dotted), shown with the

contributions from the potential, m2
1,χ/H

2 (blue), and from the curved field-space manifold, m2
2,χ/H

2

(red), for ξφ = 102 (left) and ξφ = 103 (right), as functions of t̃ =
√
λφMpl t/ξφ.

In order to compare the two contributions m2
1,χ and m2

2,χ, we may consider the former in two

distinct regions:

m2
1,χ

H2
=

 O(ξφ), δ = O(1)

O(ξ2
φ), δ = O

(
ξ
−1/2
φ

)
,

(27)

where δ(t) =
√
ξφ φ(t)/Mpl. We use δ = O

(
1/
√
ξφ
)

as a point at which the amplitude of the

background field has redshifted significantly, since for this field value the term M2
pl + ξφφ

2 changes

its behavior. We can immediately see that m2
2,χ/H

2 ∝ ξ2
φ dominates initially, but will ultimately

become subdominant. We may further analyze the ξφ-dependence of the interplay between m2
1,χ

and m2
2,χ. The function δ(t̃) asymptotes to one universal behavior in the limit ξφ � 1 [1]. We noted

above that the amplitude of the inflaton decays as δ ∝ 1.5 t̃−1/2. This suggests that the crossover

time between when m2
2,χ and m2

1,χ dominates should scale as t̃ ∼ ξφ. We found that m2
1,χ ' m2

2,χ

at t̃ ' 80 for ξφ = 10. Fig. 5 shows that m2
1,χ ' m2

2,χ at t̃ ' 800 for ξφ = 102 and at t̃ ' 8000 for

ξφ = 103, confirming that the crossover time scales as t̃ ∼ ξφ.

As we increase the nonminimal couplings from ξI ∼ O(1−10) to ξI ≥ O(100), we find a dramatic

change in the behavior of the isocurvature modes in the long-wavelength limit. For ξφ = 100, for

example, ρ
(χ)
k exhibits strong initial growth (as shown in Fig. 1), which ceases around t̃ ' 130. As

shown in Fig. 6, m2
eff,χ is dominated at early times by m2

2,χ, with m2
2,χ/m

2
1,χ ' 100 = ξφ. (This

comes from comparing the heights of the global maxima and the local maxima in m2
eff,χ at early

times, and is in keeping with Eqs. (26) and (27).) Using Figs. 1 and 6, we infer that the growth of

ρ
(χ)
k ceases when the ratio falls to m2

2,χ/m
2
1,χ ' 15, which occurs at around one-sixth the crossover

time at which m2
2,χ = m2

1,χ, corresponding to t̃ ∼ 800/6 ∼ 130 for ξφ = 100. Since the relevant
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FIG. 6: (Left) The effective mass for the isocurvature perturbations, m2
eff,χ/H

2, for ξφ = 100 as a function

of t̃ =
√
λφMplt/ξφ. The time interval of 0 < t̃ < 300 is folded into the interval 0 < t̃ < 100 as follows:

0 < t̃ < 100 (blue), 100 < t̃ < 200 (red), and 200 < t̃ < 300 (green). (Right) The isocurvature mode zk(t)
for k = 0, folded into the same time interval as the left panel. The green curve is shifted upwards for

clarity. The black-dotted vertical lines correspond to the zero-crossings of the background field φ(t) in the
interval 0 < t̃ < 100. The brown lines show the transition between exponential growth and slow

red-shifting, which occurs around t̃ ∼ 130.

transition times scale as t̃ ∼ ξφ, we expect the period of rapid, initial growth in the case ξφ = 103

to cease at t̃ ∼ 8000/6 ∼ 1300, which indeed matches the behavior shown in Fig. 1.

We may understand the transition out of the initial period of rapid growth for large ξI as the

change from the broad- to the narrow-resonance regime [49]. At early times, the isocurvature mode

zk(t) (with k = 0) oscillates multiple times for each oscillation of the inflaton field, as shown on

the righthand side of Fig. 6. These early oscillations drive a broad-resonance amplification during

times when m2
2,χ dominates m2

eff,χ. At later times, however, the frequency of oscillation for zk(t)

asymptotes toward the inflaton’s oscillation frequency, which shifts the growth of zk(t) from broad

resonance toward the less-efficient narrow-resonance regime. Although narrow-band resonances will

drive exponential amplification in the rigid-spacetime limit, generically they become considerably

less effective in an expanding universe [49, 50]. Fig. 6b indicates that zk(t) transitions from 2-3

oscillations per inflaton oscillation toward one oscillation per inflaton oscillation around t̃ ∼ 130,

at the same time that the exponential growth of zk(t) ceases.

We confirm the behavior, and the scaling with t̃, in Fig. 7. For these plots, we calculate all

zero-crossings of φ(t) and of zk(t) (for k = 0). For each field, we denote ∆t̃i as the difference in

time between the ith and (i + 1)th zero-crossings. The inverse of this quantity, 1/∆t̃i, may be

considered a local measure of frequency, which acquires different values for φ(t) and zk(t). Fig. 7

shows the evolution of these local frequencies for the background field and the isocurvature mode.

As expected, the frequency of φ(t) does not show significant variation, whereas the local frequency
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FIG. 7: The change in the effective local frequencies, 1/∆t̃i, as a function of t̃ =
√
λφMpl t/ξφ, for the

background inflaton field φ(t) (blue) and for the isocurvature mode zk(t) (with k = 0, red), for different
values of ξφ: ξφ = 102 (left), and ξφ = 103 (right).

of zk(t) displays significant dispersion, due to the strongly anharmonic oscillation of m2
eff,χ. Because

of the structure of m2
eff,χ, the local frequency for zk(t) is comprised of both short- and long-duration

components. Whereas at early times, the effective local frequency for zk(t) is considerably greater

than for φ(t), the two become comparable around t̃ ∼ 130 for ξφ = 102, and around t̃ ∼ 1300 for

ξφ = 103, in keeping with our expectations from the scaling arguments given above.

Another way to identify the importance of m2
2,χ in driving the early amplification of isocurvature

modes is to calculate ρ
(χ)
k by neglecting either m2

1,χ or m2
2,χ. The results are shown in Fig. 8 for

ξφ = 100. If there were no contributions from the potential — that is, if we set m2
1,χ = 0, which is

akin to setting g = 0 so that there were no direct coupling between φ and χ — one would still find

the same initial burst of growth in ρ
(χ)
k , stemming entirely from the curved field-space manifold

(which itself arises from the nonminimal couplings upon transforming to the Einstein frame). On

the other hand, if one neglected the effects of m2
2,χ and only considered the role of m2

1,χ, then one

would find little initial growth. The nonminimal couplings thus open a distinct “channel” for φ

and χ to interact, via their shared coupling to the spacetime Ricci scalar, R, in the Jordan frame

[51, 52]. In the limit of large couplings, ξI ≥ O(102), this channel can drive broad resonances.

We conclude this section by considering the case of ξφ ≤ 1, which departs strongly from both

the intermediate- and large-ξI regimes. From Fig. 9 we note that the contribution to m2
eff,χ aris-

ing from the curved field-space manifold, m2
2,χ, becomes subdomiant after the first oscillation of

the background field. In keeping with our analysis of the small-ξI regime in the rigid-spacetime

approximation [2], we find that the effects of the curved field-space manifold remain modest for

ξI ≤ O(1), making little change from the minimally coupled case.



16

FIG. 8: The energy density of isocurvature modes ρ
(χ)
k versus t̃ =

√
λφMpl t/ξφ for k = 0 and ξφ = 100,

calculated based on m2
2,χ alone (orange), on m2

1,χ alone (green), and on m2
eff,χ (yellow), for the same ratios

of couplings as in Fig. 1.

FIG. 9: The rescaled effective mass of the isocurvature perturbations m̃2
eff,χ = ξφm

2
eff,χ (black-dotted) as a

function of t̃ =
√
λφMpl t/ξφ for ξφ = 1. Also shown are m̃2

1,χ (blue) and m̃2
2,χ (red).

V. RESULTS: NONZERO WAVENUMBER

In Sections III and IV we analyzed the behavior of super-horizon modes with k/aH � 1,

focusing on the limit k → 0. In this section we briefly examine the behavior of adiabatic and

isocurvature modes with nonzero wavenumber, for modes with wavenumber comparable to the

Hubble radius (k/aH ∼ 1) as well as for modes whose wavenumber begins well within the Hubble

radius (k/aH � 1) at the start of preheating. We restrict attention to the large-ξI regime, in

which both adiabatic and isocurvature modes with k = 0 are amplified efficiently.

Fig. 10 shows the behavior of ρ
(φ)
k and ρ

(χ)
k for values of k within the range 0 ≤ k/[a(tend)H(tend)] ≤

20. For the adiabatic perturbations, we find a sharp distinction between sub-horizon and super-

horizon modes: only modes with k/aH ≤ 1 at the start of preheating become amplified. This
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FIG. 10: (Left) The energy density for adiabatic modes versus t̃ =
√
λφMpl t/ξφ with ξφ = 100 and

k/[a(tend)H(tend)] = 0, 1, 5, 10, 20 (black-dashed, red, brown, green, and blue, respectively). (Right) The
energy density for isocurvature modes with ξφ = 100 and k/[a(tend)H(tend)] = 0, 2, 10, 20 (blue, red, green,

and black, respectively). For both plots we use ξχ/ξφ = 0.8, λχ/λφ = 1.25, and g/λφ = 1.

behavior is in accord with our findings in Ref. [2]: for ξI ≥ O(102), the dominant resonance band

for adiabatic modes occurs for k → 0, while resonance bands for larger k shrink to the narrow-

resonance regime (and hence do not remain very effective in an expanding universe). Moreover, as

we found in Section III, in a dynamical spacetime the dominant amplification for adiabatic modes

at early times stems from effects of the coupled metric perturbations, which drive tachyonic growth

with m2
eff,φ < 0. Such tachyonic growth will only be effective for modes with (k/a)2 < m2

eff,φ, such

that the effective frequency becomes imaginary, Ω2
(φ)(k, t)/a

2 = (k/a)2 + m2
eff,φ < 0. Sub-horizon

modes, with k/aH � 1 at the start of inflation, therefore do not undergo the initial tachyonic

amplification. Meanwhile, the early burst of tachyonic amplification (for super-horizon modes)

persists only for as long as m2
3,φ dominates m2

eff,φ, which scales (as we found in Section III) as

t̃ ∼
√
ξφ. By the time the wavelengths of sub-horizon modes redshift to super-horizon scales, the

tachyonic amplification typically has ceased.

The behavior of the isocurvature modes is quite different. In Ref. [2] we found that for ξI ≥

O(102), the Floquet charts for the isocurvature modes show dense bands of instability regions, with

little k-dependence across a wide range of k. Moreover, as discussed in Section IV, the growth of

long-wavelength isocurvature perturbations occurs in the broad-resonance regime at early times,

when the modes zk(t) oscillate more rapidly than the inflaton φ(t). The effective frequency for

modes zk(t) increases with larger k, and the broad-resonance instabilities identified in Ref. [2]

remain robust in an expanding spacetime. As shown in Fig. 10, the spectrum of ρ
(χ)
k therefore

remains nearly flat for super-horizon and sub-horizon modes.
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VI. OBSERVATIONAL CONSEQUENCES

In general for multifield models, the growth of long-wavelength isocurvature perturbations can

affect the evolution of super-horizon adiabatic modes [10–14, 41–43, 53–56]. Such transfers of power

from isocurvature to adiabatic perturbations can affect CMB observables, such as the spectral

index ns or primordial non-Gaussianity fNL. In some cases, this process can produce significant

corrections from the preheating phase to values of observables calculated during inflation. (See the

discussion in Section 7 of Ref. [7], and references therein.)

Although we have found very efficient growth of isocurvature modes on super-horizon scales

during preheating for ξI ≥ O(102), such growth need not pose a direct threat to the close fit

between the predictions for primordial observables such as ns, r, and fNL from these models and

the latest observations [29–32]. In Ref. [29] we examined the evolution of the gauge-invariant

curvature and isocurvature perturbations, Rc and S, finding, in the long-wavelength limit:

Ṙc = 2ωS +O
(

k2

a2H2

)
Ṡ = βHS +O

(
k2

a2H2

)
,

(28)

where ω(t) is the turn-rate of the fields’ trajectory in field-space, and β(t) encodes the effects of

m2
eff,χ. For motion within a single-field attractor the turn-rate vanishes identically, ω = 0, and hence

the gauge-invariant curvature perturbation Rc remains conserved in the long-wavelength limit.

We found in Ref. [1] that the single-field attractor behavior persists in these models throughout

preheating as well as during inflation. Thus, at least at the level of a linearized analysis, we do not

anticipate significant effects on primordial observables from the amplification of ρ
(χ)
k after the end

of inflation.

Nonlinear effects in such models could certainly become important after the end of inflation,

such as the formation of oscillons, which could affect the evolution of the effective equation of state

and thereby the expansion history [45, 57–60]. Moreover, the rapid growth of ρ
(χ)
k in these models

suggests that the majority of the inflaton’s energy could be transferred to isocurvature modes

within a single background oscillation [61]. Recent lattice simulations of related models that yield

near-instantaneous preheating have identified qualitative differences from linear analyses, such

as significant re-scattering between the inflaton and produced particles [62–64]. Such inherently

nonlinear effects are beyond the scope of the present analysis.
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VII. POTENTIAL IMPLICATIONS FOR HIGGS INFLATION

The strong resonances that we have identified in multifield models with ξI � 1 have potential

implications for reheating after Higgs inflation [22]. Most studies of Higgs inflation have adopted the

unitary gauge, in which the Higgs sector reduces to a single scalar degree of freedom. However, it is

well known that the unitary gauge suffers from poor behavior at energies that are large compared to

the symmetry-breaking scale [65]. The so-called Rξ gauges, on the other hand, remain well behaved

even for energies well above the symmetry-breaking scale. In the Rξ gauges (which include the

Feynman - ’t Hooft gauge and the Landau gauge), the Goldstone modes remain in the spectrum

[65–69]. In the framework we have developed here, these cases correspond to symmetric couplings

among the scalar fields (λφ = λχ = g and ξφ = ξχ), and the Goldstone modes correspond to

isocurvature perturbations [30, 70].

A salient feature of the Rξ gauges is the Goldstone boson equivalence theorem [71], according to

which the high-energy dynamics of electroweak vector gauge bosons, such as the amplitudes for W

and Z scattering, is captured by the dynamics of the Goldstone and Higgs scalars. This important

result follows from the fact that the longitudinal-polarization vectors for the gauge bosons scale

with momentum whereas the transverse-polarization states do not. Thus the amplitudes for high-

energy scattering processes are dominated by the longitudinal polarizations of the vector bosons.

And the longitudinal polarizations, in turn, are related to the Goldstone bosons via spontaneous

symmetry breaking. Thus one may calculate such quantities as the amplitude for WµWµ scattering

or Wµ-Higgs scattering in terms of the simpler interactions among the Goldstone and Higgs scalars

[71].

The Goldstone boson equivalence theorem stipulates that amplitudes for the high-energy scat-

tering of vector gauge bosons are identical to corresponding amplitudes involving the Goldstone

and Higgs scalars, up to corrections of order O(mW /
√
s), where mW is the mass of the W boson

and
√
s is the center-of-mass energy for a given process [71]. During and after inflation, the Higgs

field has a (time-dependent) vacuum expectation value, h(t) ∼ 〈φ(t)〉, since the background field

φ is displaced from the minimum of its potential. Therefore the electroweak symmetry is broken

during and after inflation, and should remain broken until the Higgs condensate dissolves at the

end of reheating. (See also Refs. [72, 76–78].) In the broken-symmetric phase, mW = g̃ h/2, where

g̃ ∼ O(1) is the electroweak gauge coupling. During reheating, we then have mW ∼ h, and the

equivalence theorem holds for energies
√
s > h.

At the start of preheating, the value of the vacuum expectation value is given by the dynamics
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of the background field φ(t):

h ∼ 〈φ〉 .
Mpl√
ξφ
. (29)

During reheating, the amplitude of the Higgs condensate decays due to the expansion of the universe

(even in the linearized approximation), and also due to the transfer of energy to fluctuations

(which requires a nonlinear analysis). For the scalar sector, meanwhile, the strong-coupling scale

in the Einstein frame, ΛE , as calculated in Refs. [81–83], satisfies (h/ΛE) < 1 for all values

0 < h ≤Mpl/
√
ξφ. Therefore the Goldstone boson equivalence theorem should be relevant during

preheating, for high-energy processes with h <
√
s < ΛE .

To match the COBE normalization for the amplitude of primordial perturbations in this model,

we require [72, 73]

ξφ√
λφ

= 4.7× 104 . (30)

From Eq. (19) we then find

Hend ' 0.4

√
λφ

12ξ2
φ

Mpl = 2.5× 10−6Mpl = 6.0× 1012 GeV. (31)

For best-fit values of the masses of the Higgs boson and the top quark, the running of the Higgs self-

coupling λφ yields λφ(µ) ' 5.0× 10−3 at the energy scale µ = Hend = 6× 1012 GeV [73]. Eq. (30)

then suggests that ξφ ' 3.3 × 103 at the start of preheating. (If the top-quark mass is greater

than the current best-fit value, then one expects λφ(µ) < 5.0 × 10−3 and hence ξφ < 3.3 × 103 at

µ = 6× 1012 GeV [74, 75].) Given the efficient amplification of isocurvature modes in such models

with ξφ ∼ 103, we may expect preheating after Higgs inflation to conclude within a few oscillations

of the inflaton.

The nonzero value of h = 〈φ〉 induces a mass for the Goldstone bosons χ. We may estimate the

mass-scale due to electroweak symmetry-breaking at the start of preheating as

m2
vev ∼ λφh2 ∼

λφM
2
pl

ξφ
. (32)

Given Eq. (31), we then find

m2
vev

H2
end

∼ 100 ξφ . (33)

Meanwhile, in Eq. (26) we calculated the ratio of the Hubble scale to the spike in meff,χ due to the

nontrivial field-space manifold, m2,χ, and found

m2
2,χ

H2
∼ ξ2

φ , (34)
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FIG. 11: Scattering vertices that allow the transfer of energy from the Higgs bosons to the rest of the
Standard Model, specifically into gauge fields (left) and fermions (right).

so for ξφ ∼ 103, we expect m2,χ � mvev at the start of preheating, since

m2
2,χ

m2
vev

∼
ξφ
100

. (35)

Even in the presence of electroweak symmetry breaking during the preheating epoch, the features

that are most responsible for rapid particle production — namely, the spikes in m2
2,χ which drive

violations of the adiabatic condition — dominate the dynamics of the scalar sector.

Significant backreaction from created particles will halt the background field’s oscillations, with

φ settling near φ ∼ 0, leaving a universe filled with scalar Higgs bosons. (See also Refs. [61, 72, 76–

78].) We found in Ref. [1] that the effective equation of state after inflation tends toward wavg ∼ 1/3

within several efolds after the end of inflation for ξI ≥ 100, based on analysis of the background

field’s dynamics. Since the Higgs potential is dominated by the quartic term after the end of

inflation, the Higgs bosons produced during preheating should behave as nearly massless radiation

modes (especially once φ ∼ 0), quickening the rate at which wavg → 1/3. Thus we expect a rapid

transition to a radiation-dominated equation of state after the end of inflation.

The successes of big-bang nucleosynthesis require more than just a radiation-dominated equation

of state; the universe must also become filled with a plasma of Standard Model particles some time

after inflation ends [7]. Ref. [63] studied the generation of a charged plasma from instantaneous

preheating. In that scenario, the universe becomes filled with hypercharge gauge bosons after

inflation, which scatter into Standard Model particles. In the case of Higgs inflation, we may

expect an inverse process to unfold.

The energy density of the universe at the end of inflation is ρ ∼M2
plH

2
end, while the momentum

of each Higgs mode can be taken to be comparable to the Hubble scale at the end of inflaton,

E ∼ k/aend ∼ Hend. Thus the particle density scales as n = ρ/E ∼ M2
plHend, while the velocity

for radiation modes is simply v ∼ c. The speed of the transition from a Higgs boson bath into a



22

plasma depends on the ratio of the scattering rate to the Hubble expansion rate,

Γ

H
=
nσv

H
. (36)

The scattering rate of Higgs particles into gauge bosons or fermions proceeds through vertices like

the ones shown in Fig. 11, and scales as

σ ∼
α2
Y

s
∼

α2
Y

H2
end

(37)

for the case of scattering into hypercharge U(1) bosons. Scattering into fermions has a similar

cross-section, and thus we may estimate for Eq. (36),

Γ

H
∼ a2

Y

(
Mpl

Hend

)2

∼ 109a2
Y � 1. (38)

We therefore expect that scattering of the Higgs bosons into the rest of the Standard Model particles

should occur almost instantaneously. Thermalization would proceed through similar interactions,

and should also be efficient. After the electroweak phase transition (which presumably would occur

at much lower energies than either inflation or reheating), the Higgs field would acquire a nonzero

vacuum expectation value of v ≈ 246 GeV. Then any remaining massive Higgs particles would

decay into Standard Model particles, following the experimentally known decay rates [79, 80].

In sum, for the case of reheating after Higgs inflation, with ξφ & 103, we may expect that the

efficient production of isocurvature modes — which, in this case, correspond to Goldstone modes

within the Standard Model Higgs doublet and therefore behave as the longitudinal modes of the

W and Z bosons when electroweak symmetry is broken — would lead to the rapid break-up of

the Higgs condensate into radiation modes, followed by a fast transition to a primordial plasma of

Standard Model particles. In such a scenario, the reheat temperature after inflation could be as

high as Treh ∼
√
HendMpl ∼ 10−3Mpl.

Such a high reheat temperature may pose a challenge for a more thorough investigation of

reheating after Higgs inflation, beyond the linearized analysis of the preheating phase we have

pursued here. Typical momenta for quanta in a blackbody distribution scale as k ∼ 3T . So if the

universe achieves thermal equilibrium at a temperature as high as Treh ∼ 10−3Mpl after inflation,

then typical scatterings among particles would involve momentum exchanges of order k ∼ 3Treh.

Meanwhile, in the scenario we have described here, the inflaton condensate would likely dissipate

quickly, falling from h ∼ Mpl/
√
ξφ to h < Mpl/ξφ via various nonlinear processes within a few

oscillations. Following Refs. [81–83], one may estimate the perturbative unitarity cut-off scale in

the Einstein frame, ΛE , arising from tree-level interactions within the scalar sector. The cut-off
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scale depends on h = 〈φ〉; one finds that ΛE falls to ΛE ∼ Mpl/ξφ for h < Mpl/ξφ. In that

case, typical momentum exchanges from particle scatterings within the thermal plasma would be

of order

k

ΛE
∼ 3Treh

Mpl/ξφ
∼ 3 ξφ × 10−3 ∼ O(10) (39)

for ξφ ∼ 3× 103. Such a large ratio of k/ΛE strongly suggests that some portion of the reheating

dynamics in such a scenario would fall within the strong-coupling regime; studying such dynamics

may well prove intractable. (The ratio in Eq. (39) remains unchanged if one works in unitary gauge

and calculates the strong-coupling scale in the Einstein frame from perturbative scattering of the

Higgs field and vector gauge bosons, Λgauge, since, for h < Mpl/ξφ, one has ΛE ∼ Λgauge ∼Mpl/ξφ

[81–83].) Meanwhile, given h < ΛE , we similarly estimate k/h ≥ O(10) in such a scenario, fur-

ther underscoring the appropriateness of renormalizable Rξ gauges for analyzing the post-inflation

dynamics.

Addressing the late-stage thermalization following the initial phase of preheating remains be-

yond the scope of this paper, and deserves further study. One interesting question relevant to such

further study concerns the behavior of the unitarity cut-off scale itself. The estimate ΛE ∼Mpl/ξφ

comes from analyzing perturbative processes involving a few particles in both the incoming and

outgoing states, such as 2→ 2 scattering [81–83]. But preheating involves the rapid production of

many particles in the final state, with number densities nk ∼ exp[2µkt]� 1. Even for perturbative

analyses, if the final state involves n � 1 bosons, then phase-space factors generically raise Λ
(n)
pert

above what one would calculate for 2→ 2 scattering, with Λ
(n)
pert typically growing linearly with n in

the limit n � 1 [84]. Moreover, the production of particles during preheating involves inherently

nonperturbative processes. The cross section for nonperturbative processes that yield n-particle

final states, σ1→n, has a very different scaling with energy than the corresponding perturbative

cross sections for few → few scattering [85]. If these considerations were to yield a cut-off scale

considerably different than ΛE , then ratios like Eq. (39) would need to be revisited. Such questions

remain the topic of further research.

VIII. CONCLUSIONS

Building on Refs. [1, 2], we have studied the preheating dynamics of adiabatic and isocurvature

perturbations in multifield models with nonminimal couplings. We exploit a doubly-covariant

framework and work to linear order in the perturbations, including both the expansion of the
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universe during preheating and the effects of the coupled metric perturbations. We focus on the

dynamics after inflation when the fields evolve within a single-field attractor, which is a generic

feature of this class of models.

We find that the behavior of the adiabatic and isocurvature perturbations depends on distinct

sets of contributions to their effective masses, m2
eff,I . The effective mass for the adiabatic modes,

m2
eff,φ, is dominated by a term arising from the potential, m2

1,φ, and a term arising from the coupled

metric perturbations, m2
3,φ. At early times, the metric perturbations dominate, driving a broad,

tachyonic amplification of super-horizon modes for ξI ≥ O(100). The time-scale during which the

tachyonic amplification persists scales as t̃ ∼
√
ξφ, where t̃ =

√
λφMpl t/ξφ ∝ H(tend)t. Sub-

horizon modes of the adiabatic perturbations are not affected by the tachyonic instability, and in

general are not strongly amplified after inflation.

The behavior of the isocurvature perturbations is driven by a different pair of contributions to

the effective mass, m2
eff,χ, namely, m2

1,χ from gradients of the potential and m2
2,χ from the curved

field-space manifold (which itself arises from the nonminimal couplings, upon transforming to the

Einstein frame). In contrast to the adiabatic modes, the amplification of isocurvature modes is

efficient for sub-horizon and super-horizon scales alike, and their growth rate for ξI ≥ O(100)

exceeds that of the super-horizon adiabatic modes. The duration of efficient, broad-resonance

amplification for the isocurvature modes scales as t̃ ∼ ξφ.

The amplification of both adiabatic and isocurvature modes becomes more efficient as the non-

minimal couplings become large, ξI ≥ O(100), underscoring the role of the nonminimal couplings

in driving the dynamics. The adiabatic modes grow primarily due to their coupling to metric per-

turbations; that coupling increases as ξI increases, which is most clear in the Jordan frame, given

the coupling f(φI)R in the action. Likewise, the isocurvature modes grow primarily due to the

nontrivial field-space manifold, which is likewise a manifestation of the underlying nonminimal cou-

plings, and whose curvature increases with ξI . The curvature of the field space manifold, RILMJ ,

allows for efficient transfer of energy from the inflaton condensate to isocurvature perturbations,

even in the absence of a direct coupling (within the potential) between the various fields.

Within the scope of our linearized analysis, we do not expect the rapid amplification of super-

horizon isocurvature modes to affect inflationary predictions for primordial observables (such as

the spectral index or non-Gaussianity), because the single-field attractor prohibits isocurvature

modes from sourcing a change in the gauge-invariant curvature perturbation on long wavelengths.

Whether such behavior persists beyond linear order in the perturbations remains the subject of fur-

ther study. In the meantime, the rapid amplification of isocurvature modes suggests that reheating
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in models like Higgs inflation, with ξφ ∼ 103, could be especially efficient.

APPENDIX: COMPARING RELEVANT TIME-SCALES

In Section III, we found that the effective mass for the adiabatic modes, m2
eff,φ, is dominated by

two contributions: m2
1,φ, arising from gradients of the Einstein-frame potential, and m2

3,φ, arising

from the coupled metric perturbations. In particular, the effects of m2
3,φ dominate the dynamics

at early times, while m2
1,φ dominates at later times. In terms of the rescaled time coordinate,

t̃ ≡
√
λφ
ξ2
φ

Mpl t , (40)

we may label the cross-over time between these two regimes as t̃
(φ)
cross. In Section III we found that

t̃
(φ)
cross scales as

t̃(φ)
cross ∼

√
ξφ (41)

in the limit ξφ � 1, for evolution within a single-field attractor along the direction χ ∼ 0.

In Section IV, meanwhile, we found that the effective mass for the isocurvature modes, m2
eff,χ, is

dominated by a different pair of contributions: m2
1,χ, arising from gradients of the Einstein-frame

potential, and m2
2,χ, arising from the nontrivial field-space manifold. In the case of the isocurvature

perturbations, the effects of m2
2,χ dominate at early times. In terms of t̃, we found the cross-over

time between the two regimes for the isocurvature modes to scale as

t̃(χ)
cross ∼ ξφ (42)

in the limit ξφ � 1, again for evolution within a single-field attractor along the direction χ ∼ 0.

We may compare the scaling of t̃
(φ)
cross and t̃

(χ)
cross with that of a third time-scale, namely, the

cross-over time in the equation of state for the background dynamics, wavg, between a matter-

dominated and radiation-dominated phase. We found in Ref. [1] that wavg ∼ 0 at the start of

preheating in this family of models, and that wavg → 1/3 within several efolds after the end of

inflation, though the number of efolds until wavg ∼ 1/3 grew with ξφ. (See Fig. 9 in Ref. [1].)

Here we estimate t̃
(w)
cross, the cross-over time between matter-dominated and radiation-dominated

evolution of the background dynamics.

Within a single-field attractor along χ ∼ 0, the Einstein-frame potential simplifies to

V (φ, χ) '
λφM

4
pl

4

φ4

[M2
pl + ξφφ2]2

=
λφM

4
pl

4ξ2
φ

δ4

[1 + δ2]2
, (43)
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where, as usual, we define δ ≡
√
ξφ φ/Mpl. Inflation ends at δ . 1, and the amplitude of φ

continues to fall as preheating proceeds. For δ < 1, we may therefore approximate

V '
λφM

4
pl

4ξ2
φ

δ4. (44)

At early times during preheating, the time-averaged equation of state obeys wavg ' 0, and hence

the energy density scales as

ρ ' ρ0e
−3N , (45)

where N is the number of efolds since the end of inflation. We may estimate

ρ ' Vmax =
λφM

4
pl

4ξ2
φ

δ4
max, (46)

where δmax =
√
ξφ φmax/Mpl is the rescaled amplitude of the field’s oscillations. If we label α ≡√

ξφ φ0/Mpl, where φ0 is the initial amplitude of φ(t) at the start of preheating, then from Eqs. (45)

and (46) we may estimate

δmax(t) ' αe−3N/4. (47)

Next we may estimate

H2 ' 1

3M2
pl

Vmax =
λφM

2
pl

12ξ2
φ

δ4
max(t), (48)

with which we may write

dN = Hdt '
Mpl

2
√

3

√
λφ
ξ2
φ

δ2
max(t)dt, (49)

or, upon using Eqs. (40) and (47),

e3N/2 '
√

3

4
α2 t̃. (50)

As we saw in Section IIIC of Ref. [1], the evolution of the background-order equation of state

depends on the shifting balance between the kinetic energy, σ̇2, and the potential, V (φI). Within

the single-field attractor, we have

σ̇2 ≡ GIJ ϕ̇I ϕ̇J → Gφφφ̇2, (51)

where

Gφφ =

(
M2

pl

2f

)[
1 +

3ξ2
φφ

2

f

]
=

(
1

1 + δ2

)[
1 + δ2 + 6ξφδ

2

1 + δ2

]
. (52)
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At the start of preheating, we have δ ∼ O(1), and hence Gφφ ∼ ξφδ2 � 1 for ξφ � 1. However, Gφφ
falls during preheating as the amplitude of φ(t) falls, eventually reaching Gφφ → 1 for 6ξφδ

2 � 1.

We may then approximate the cross-over time for the background equation of state, t̃
(w)
cross, as the

time when 6ξφδ
2
max(t

(w)
cross) ' 1, or

6ξφα
2 ' e3N/2, (53)

upon using Eq. (47). Comparing with Eq. (50), we then find

t̃(w)
cross '

24√
3
ξφ. (54)

Hence we find the scaling t̃
(w)
cross ∼ ξφ, akin to the large-ξφ scaling we had found for the cross-over

among dominant contributions to the effective mass of the isocurvature perturbations, t̃
(χ)
cross.

Though the similarity in scaling between t̃
(w)
cross and t̃

(χ)
cross is interesting, we note that wavg is

calculated to background-order only, and does not take into account the contributions to the total

energy density from particles produced during preheating. Hence wavg, as we have calculated it

numerically in Ref. [1] and estimated its cross-over time here, is independent of the production

of (say) χ particles. Rather, we may understand the similar scaling of t̃
(w)
cross and t̃

(χ)
cross with ξφ by

looking more closely at several relevant quantities.

The behavior of wavg, and hence of t̃
(w)
cross, depends on the ratio V (φI)/σ̇2, while the behavior of

m2
eff,χ, and hence of t̃

(χ)
cross, depends on the ratio m2

1,χ/m
2
2,χ. Within a single-field attractor along

χ ∼ 0, we have, from Eqs. (22) and (51),

m2
2,χ =

1

2
Rσ̇2, (55)

where R is the Ricci scalar for the field-space manifold. In the regime ξI � 1, δ2 � 1, and

ξφδ
2 ∼ O(1), along χ ∼ 0, we have

R '
12ξφξχ

M2
pl[1 + 6ξφδ2]2

, (56)

upon using the expressions in Appendix A of Ref. [1]. In that same regime, we find

m2
1,χ = GχK (DχDKV ) '

6|Λφ|M2
pl

ξφ

δ4

(1 + 6ξφδ2)
, (57)

where Λφ ≡ λφξχ − gξφ. Then in the regime of interest, we find

m2
1,χ

m2
2,χ

∼
|Λφ|M4

pl

ξχξ2
φ

δ4

σ̇2
(1 + 6ξφδ

2), (58)
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while for this same regime, we find

V

σ̇2
∼
λφM

4
pl

ξ2
φ

δ4

σ̇2
. (59)

For the case of weakly broken symmetries, with λφ ∼ g and ξφ ∼ ξχ, of the sort we examined

throughout Sections III and IV, we can expect |Λφ|/ξχ ∼ λφ. Then we find that the ratios in

Eqs. (58) and (59) scale quite similarly with parameters, especially around the critical transition

period when 6ξφδ
2 ∼ 1. The cross-over time t̃

(χ)
cross depends on the ratio in Eq. (58), while the

cross-over time t̃
(w)
cross depends on the ratio in Eq. (59), and hence we may understand why these

two distinct cross-over times scale in a comparable way with ξφ.
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