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This is the second in a series of papers on preheating in inflationary models comprised

of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the

rigid-spacetime approximation and consider field trajectories within the single-field attrac-

tor, which is a generic feature of these models. We construct the Floquet charts to find

regions of parameter space in which particle production is efficient for both the adiabatic and

isocurvature modes, and analyze the resonance structure using analytic and semi-analytic

techniques. Particle production in the adiabatic direction is characterized by the existence of

an asymptotic scaling solution at large values of the nonminimal couplings, ξI � 1, in which

the dominant instability band arises in the long-wavelength limit, for comoving wavenumbers

k → 0. However, the large-ξI regime is not reached until ξI ≥ O(100). In the intermediate

regime, with ξI ∼ O(1− 10), the resonance structure depends strongly on wavenumber and

couplings. The resonance structure for isocurvature perturbations is distinct and more com-

plicated than its adiabatic counterpart. An intermediate regime, for ξI ∼ O(1−10), is again

evident. For large values of ξI , the Floquet chart consists of densely spaced, nearly parallel

instability bands, suggesting a very efficient preheating behavior. The increased efficiency

arises from features of the nontrivial field-space manifold in the Einstein frame, which itself

arises from the fields’ nonminimal couplings in the Jordan frame, and has no analogue in

models with minimal couplings. Quantitatively, the approach to the large-ξI asymptotic

solution for isocurvature modes is slower than in the case of the adiabatic modes.
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I. INTRODUCTION

This paper is the second of a three-part series focusing on the preheating dynamics of mul-

tifield models of inflation with nonminimal couplings. (See also Refs. [1, 2].) Such models are

well-motivated: realistic models of high-energy physics generically include many scalar degrees of

freedom at high energy scales [3–8], and nonminimal couplings are generically required as renor-

malization counterterms for interacting scalar fields in curved spacetime [9–15]. The family of

models we consider includes well-known examples like Higgs inflation [16] (see also [17–22]), as well

as related models with attractor-like solutions [23–27].

The epoch of post-inflation reheating is critical for several reasons. (For reviews of reheating,

see Refs. [28–33].) Reheating is responsible for populating the universe with Standard Model

particles in thermal equilibrium. Moreover, understanding the dynamics of reheating is essential

for connecting predictions from inflationary models with high-precision measurements of primordial

perturbation spectra, since reheating affects the expansion history of the universe between the end

of inflation and eras such as big-bang nucleosynthesis [34–41].

The first stage of reheating is characterized by the resonant decay of the scalar-field conden-

sate(s) that had driven inflation. We use the doubly-covariant formalism introduced in Ref. [1],

which self-consistently incorporates metric perturbations and field fluctuations to first order and

maintains reparameterization freedom of the nontrivial field-space manifold. In this paper we

focus on the early stage of preheating, working to linear order in the fluctuations. To simplify,

we only consider the decay of the inflaton into non-gauged scalar fields, for now ignoring higher-

spin particles such as fermions and gauge fields, although we expect that such fields will have a

rich phenomenology [32, 42–68]. Our study builds upon previous studies of preheating in models

with nonminimal couplings and/or noncanonical kinetic terms [69–79], with the aim of identifying

characteristic features across a wide range of parameters.

In Ref. [1], we identified several distinctions between preheating in multifield models with non-

minimal couplings compared to more familiar, minimally coupled models. First, the oscillations

of the background fields are affected by the conformal stretching of the fields’ potential in the

Einstein frame. Second, the single-field attractor behavior tends to enhance efficiency during pre-

heating compared to multifield, minimally coupled models [80, 81]. Third, in the limit of strong

couplings, ξI � 1, the nontrivial field-space manifold affects the effective masses for adiabatic and

isocurvature fluctuations differently, which in turn affects the energy transfer to long-wavelength

perturbations. In the present paper we analyze the structure of resonances in this family of models
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semi-analytically and numerically across wide regions of parameter space.

In this paper we adopt the approximation of a rigid spacetime, in which we imagine keeping

the energy density fixed while sending Mpl → ∞. (The reduced Planck mass is given by Mpl ≡

1/
√

8πG = 2.43 × 1018 GeV.) In that limit, we may neglect the expansion of spacetime during

preheating, as well as the effects of the coupled metric perturbations [32]. Then the oscillations of

the inflaton condensate(s) become periodic, and we may apply the tools of Floquet theory to study

the resonant amplification of perturbations. In Section II we examine the background dynamics for

a two-field model after inflation, highlighting distinctions between oscillations during preheating

with and without nonminimal couplings. We analyze the spectral content of the background

oscillations; as shown in Section II, analytic progress can be made in the limit of large nonminimal

couplings.

Knowledge of the behavior of the background fields during the oscillating phase is critical

for understanding the resonant production of particles during preheating. In Section III we briefly

review the covariant mode expansion for the fluctuations introduced in Ref. [1]. Using this covariant

formalism, we may construct Floquet charts and identify the instability bands for the fluctuations.

In Section IV we analyze the behavior of adiabatic modes and find a universal scaling form for the

Floquet chart which emerges in the limit of large nonminimal couplings. In Section V the more

complex case of isocurvature modes is presented. We construct the three-dimensional Floquet

charts for a wide range of nonminimal couplings and potential parameters. In the region of large

nonminimal couplings, the Floquet chart is comprised of a dense set of nearly parallel instability

bands, indicating a very efficient amplification of isocurvature modes. A scaling solution for large

ξI is found, similar to the adiabatic case, although the asymptotic limit is reached more slowly for

comparable values of ξI . Concluding remarks follow in Section VI.

II. BACKGROUND DYNAMICS

Following the analysis of Refs. [1, 23–26] we study inflationary models with multiple scalar fields

coupled nonminimally to the spacetime Ricci scalar. The formalism developed in those studies may

be applied to arbitrary numbers of fields, and in previous work [25] we confirmed that the single-

field attractor behavior in these models holds for cases with more than two fields. Nonetheless, in

this paper we restrict attention to models with just two fields, φ and χ, which significantly simplifies

visualizing various results. We work in 3 + 1 spacetime dimensions and choose the mostly plus

spacetime metric (−,+,+,+).
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We begin with the action in the Jordan frame, in which the fields’ nonminimal couplings are

explicit:

S =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
δIJ g̃

µν∂µφ
I∂νφ

J − Ṽ (φI)

]
. (1)

We use upper-case Latin letters to label field-space indices, I, J = 1, 2. For the remainder of

this paper we will consider a two-field model with φI = {φ, χ}T . Greek letters label spacetime

indices, µ, ν = 0, 1, 2, 3, and tildes denote Jordan-frame quantities. By performing the conformal

transformation

g̃µν(x)→ gµν =
2

M2
pl

f
(
φI(x)

)
g̃µν(x), (2)

we can bring the gravitational part of the action to the usual Einstein-Hilbert form [82, 83]

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
GIJ(φK)gµν∂µφ

I∂νφ
J − V (φI)

]
. (3)

The induced field-space metric is given by

GIJ(φK) =
M2

pl

2f(φK)

[
δIJ +

3

f(φK)
f,If,J

]
, (4)

where f,I = ∂f/∂φI . Explicit components of GIJ(φK) for our two-field model may be found in

Appendix A of Ref. [1]. We note that models that have canonical kinetic terms in the Jordan frame

will nonetheless develop a nontrivial field-space manifold in the Einstein frame [82]. The potential

in the Einstein frame is similarly stretched by a conformal factor,

V (φI) =
M4

pl

4f2(φI)
Ṽ (φI). (5)

Renormalization of models with self-coupled scalar fields in curved spacetime requires counter-

terms of the form ξφ2R for each nonminimally coupled field [9–15]. We therefore take f(φI) to be

of the form

f(φ, χ) =
1

2

[
M2

pl + ξφφ
2 + ξχχ

2
]
. (6)

Each scalar field φI couples to the Ricci scalar with its own nonminimal-coupling constant, ξI ,

which we take to be positive.

The form of the potential can be arbitrary. We adopt a simple polynomial potential in the

Jordan frame that includes the highest renormalizable interaction terms for scalar fields in 3 + 1

spacetime dimensions:

Ṽ (φ, χ) =
λφ
4
φ4 +

g

2
φ2χ2 +

λχ
4
χ4. (7)
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In order for the potential to be non-tachyonic, we must choose λI > 0. Furthermore we neglect

bare masses m2
I , the effects of which can be studied using the methods developed here and in [1].

On a more practical level, keeping only the quartic potential allows us to compare the resonances

and Floquet charts of nonminimally coupled models to their well-studied minimally coupled coun-

terparts [84–86], and identify features that arise due to the nontrivial field-space metric, which is

a manifestation of the nonminimal couplings in the Einstein frame.

As discussed in Section II B of Ref. [26], observational constraints place restrictions on combina-

tions of couplings at the high energy scales of inflation. In particular, in models like Higgs inflation

[16], one typically finds λI ∼ O(10−2 − 10−4) at the energy scales of inflation (the range stem-

ming from uncertainty in the value of the top-quark mass, which affects the running of λI under

renormalization-group flow) [87–90]. The range of λI , in turn, requires ξI ∼ O(102 − 104) at high

energies, in order to fit various observational constraints from primordial curvature perturbations

— a reasonable range, given that ξI typically rises with energy scale under renormalization-group

flow, with no UV fixed point [12]. Even with such large values of ξI , the inflationary dynamics

occur at energy scales well below any nontrivial unitarity cut-off scale. (See Ref. [88] and references

therein for further discussion.)

We are interested in the structure of resonances during the preheating phase for this family of

models, and hence we consider a broader range of values for the couplings, especially ξI . Many

features of the resonance structure vary markedly with ξI . In particular, we explore three regimes

of interest: 0 < ξI ≤ O(1), ξI ∼ O(1 − 10), and ξI ≥ O(100). We also analyze the asymptotic

behavior in the strongly coupled limit, ξI � 1.

A. Potential Geometry and Single-Field Attractor

Inflation occurs in a regime in which ξJ(φJ)2 �M2
pl for at least one component, J (for ξJ � 1

the condition becomes φJ � Mpl). The potential in the Einstein frame becomes asymptotically

flat along each direction of field space, as each field φI becomes arbitrarily large:

V (φI)→
M4

pl

4

λI
ξ2
I

[
1 +O

(
M2

pl

ξI(φI)2

)]
(8)

(no sum on I). Unless some explicit symmetry constrains all coupling constants in the model to

be identical (λI = g = λ, ξI = ξ), then the potential in the Einstein frame will develop ridges and

valleys, as shown in Fig. 1. We restrict the parameter space to −g <
√
λφλχ, where the potential

in both frames (Jordan and Einstein) is positive at all times. Since both the ridges and the valleys
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FIG. 1: (Left) Potential in the Einstein frame, V (φI), for a two-field model with λχ = 1.25 λφ, g = λφ,
and ξχ = 0.8 ξφ. (Right) Field trajectories for different couplings and initial conditions (from Ref. [25]).

Open circles indicate fields’ initial values (in units of Mpl). We set the fields’ initial velocities to zero and
adjust the initial angle in field space, θ0 = arctan(φ0/χ0). We fix λφ = 10−2 and ξφ = 103 and vary the

other parameters {λχ, g, ξχ, θ0} as follows: {0.75λφ, λφ, 1.2ξφ, π/4} (red), {λφ, λφ, 0.8ξφ, π/4} (blue),
{λφ, 0.75λφ, 0.8ξφ, π/6} (green), and {λφ, 0.75λφ, 0.8ξφ, π/3} (black). In each case, the initial transient

motion damps out within a few efolds, yielding effectively single-field evolution during inflation.

satisfy V > 0, the universe will inflate (albeit at different rates) whether the fields evolve along a

ridge or a valley toward the global minimum of the potential.

As the right side of Fig. 1 makes clear, multifield models with nonminimal couplings display

strong single-field attractor behavior during inflation, across a wide range of couplings and initial

conditions [1, 25, 26]. If the fields happen to begin evolving along the top of a ridge, they will

eventually fall into a neighboring valley at a rate that depends on the local curvature of the potential

[23, 26]. Once the fields fall into a valley, Hubble drag quickly damps out any transverse motions

in field space within a few efolds, after which the system evolves with very little turning in field

space for the remainder of inflation [23–26].

The orientation of the valley in field space, θ = arctan(φ/χ), depends on the choice of couplings

[23]. As demonstrated in Ref. [1], we may always exploit the covariant framework and perform

a rotation in field space, φI → φI′, such that the valley lies along the direction χ′ = 0 during

inflation. Once the fields settle into the single-field attractor, the field-space metric becomes

effectively diagonal: Gφ′χ′ = O(χ′) ∼ 0.

The fields will only remain near the top of a ridge for a significant duration of inflation if both

the local curvature of the potential and the initial conditions in field-space χ(t0) are tuned to be
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exponentially close to zero. In those cases, the system’s evolution during the last 60 efolds of

inflation can amplify non-Gaussianities and isocurvature perturbations, which could potentially

be observable [23, 26, 91]. However, if neither the local curvature of the potential nor the fields’

initial conditions are exponentially fine-tuned, then the system will rapidly relax into a valley and

evolve along an effectively single-field trajectory right to the end of inflation. Within the single-

field attractor, these models predict values for spectral observables such as the primordial spectral

index and its running (ns and α), the ratio of power in tensor to scalar modes (r), primordial non-

Gaussianity (fNL), and the fraction of power in isocurvature rather than adiabatic scalar modes

(βiso) all in excellent agreement with the latest observations [23–26].

We have extensively studied the geometry of the potential and its parameter dependence in

Ref. [1]. As discussed there, the single-field attractor behavior in these models persists after the

end of inflation and into the early phase of preheating, at least to linear order in the fluctuations.

For the remainder of this work, we will therefore only consider scenarios in which the background

fields evolve within a single-field attractor. Without loss of generality, we consider that attractor

to lie along the χ = 0 direction in field space.

B. Spectral Content of the Oscillating Background Field

Given the dependence of the effective equation of state on ξφ while the background field(s)

oscillate [1], we expect the oscillations themselves to show significant deviation from the case

of minimal couplings. We demonstrated in Ref. [1] that the frequency of oscillation ω exceeds

the Hubble expansion rate during preheating in these models, ω/H > 1, across the entire range

10−3 ≤ ξφ ≤ 103 (see Fig. 10 in Ref. [1]). To facilitate comparison with the well-studied case of a

minimally coupled field with quartic self-coupling [84–86], we therefore neglect Hubble expansion

during the oscillating phase (though its effects may be incorporated perturbatively [92]). We further

neglect backreaction from produced particles on the background fields’ oscillation. Hence we may

employ Fourier analysis to study the dependence of the harmonic structure of the background

oscillations on ξφ.

Although we are working in the rigid-spacetime approximation, we aim to be able to exploit

as many results as possible when considering the more realistic case of an expanding universe in

Ref. [2]. Hence it is important to examine the range of background field values that are relevant.

Fig. 2 shows the behavior of the inflaton background field φ(t) after the end of inflation, neglecting

backreaction. For ξφ & 1 inflation ends at φ ≈ 0.8Mpl/
√
ξφ [1]. However, using the rigid-spacetime
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FIG. 2: (Left) The rescaled background solution δ(t) =
√
ξφ φ(t)/Mpl as a function of t̃ =

√
λφMpl t/ξφ

after the end of inflation, with ξφ = 100. Shown in green is the evolution of δ(t) when Hubble expansion is
included self-consistently. The other curves show the rigid-spacetime solution with initial condition

δ(0) = (α× 0.8)
√
ξφ φ0/Mpl, with α = 1, 0.7, 0.5, 0.3 (blue, red, brown, and black, respectively). (Right)

The rescaled period of background oscillation in a static universe (in units of (
√
λφMpl)

−1) for

ξφ = 10, 102, 103, 104 (blue, red, green, and brown, respectively) as a function of the amplitude parameter
α. The analytic approximation for the period in the large-ξφ regime is shown in black, and is derived

under the assumption that 6ξφα
2 � 1.

approximation to study oscillations with amplitude φmax = 0.8Mpl/
√
ξφ introduces a considerable

error, since at the end of inflation the Hubble friction term is still non-negligible, leading to a

decrease of the inflaton amplitude by a factor of 2 within one oscillation. The most relevant

regime for calculating quantities like the period and spectral content of the oscillating inflaton

field is therefore φmax = (α × 0.8)Mpl/
√
ξφ with 0.3 . α . 0.5. These values will capture

particle production during the first few oscillations of the inflaton field, for which we may safely

neglect backreaction effects. We will restrict our analysis for the remainder of this work to φmax =

(0.5× 0.8)Mpl/
√
ξφ, unless stated otherwise.

Within the single-field attractor, with H ∼ 0, the background field φ(t) obeys the equation of

motion

φ̈+ Γφφφφ̇
2 + GφφV,φ ' 0. (9)

We rescale τ ≡
√
λφ t, so that the dynamics depend only on ξφ. After inflation ends at τend, φ(τ)

oscillates with a period given by

T = 2

∫ φ0

−φ0
dφ

√
Gφφ

2V (φ0)− 2V (φ)
. (10)

(We label φ0 = φ(τend) as the amplitude of the field at the start of preheating.) The period behaves

as T ∝ ξφ for ξφ � 1, as calculated in Appendix B of Ref. [1] and shown in Fig. 2. In the limit
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FIG. 3: Fast Fourier Transforms of φ(τ) for ξφ = 0 (left) and ξφ = 10 (right). For ξφ > 0, the background
field’s oscillations show a richer spectral content, including more non-negligible harmonics, which may

drive additional resonances compared to the ξφ = 0 case. All higher harmonics are normalized with respect
to the amplitude of the fundamental mode and ω is measured in units of

√
λφMpl.

ξφ � 1, the period T rises monotonically with α, though for intermediate values of ξφ the period

shows a more complicated dependence on α.

The terms in Eq. (9) that arise from the nontrivial field-space metric affect the harmonic

structure of φ’s oscillations. In the limit ξφ = 0, with the Jordan-frame potential of Eq. (7), Eq.

(9) may be solved analytically as a Jacobian elliptic cosine [84–86]: φ(t) = φ0 cn(φ0τ, 1/
√

2). The

function cn (x, κ) is periodic with period 4K(κ), where K(κ) is the complete elliptic integral of the

first kind [93]. The Jacobian elliptic cosine may be expanded in the infinite series (see Eq. 16.23.2

of [93])

cn (x, κ) =
2π√
κ K(κ)

∞∑
n=0

qn+1/2

1 + q2n+1
cos(4n+ 2)v, (11)

where q ≡ exp[−πK ′/K], v ≡ πx/(4K), and K ′(κ) = K(1 − κ). Given κ = 1/
√

2 for ξφ = 0,

we find q = 0.076, and hence terms with n ≥ 3 in the series expansion enter with coefficients

O(10−3) or less. In the case of minimal coupling, in other words, the oscillations of φ(τ) are well

approximated by a dominant cosine term and a first harmonic. As shown in Fig. 3, for ξφ > 0

the harmonic structure shifts, with (in general) more non-negligible harmonics. This can lead to

regions of enhanced resonance during preheating, as we will see in Sections IV and V.

For arbitrary ξφ, we may expand φ(τ) in a Fourier series. The Fourier coefficients an for each

harmonic are defined by

an =
2

T

∫ T

0
dτ φ(τ) cos

(nπτ
T

)
, (12)

with T given by Eq. (10). Given the initial conditions for φ(τ) at τend, the coefficients for all odd

n vanish identically. Moreover, as indicated in Eq. (11) for the ξφ = 0 case, all a4n for n ≥ 1
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FIG. 4: Magnitudes of the first seven nonzero Fourier coefficients an of φ(τ) as functions of ξφ. The an
have been normalized by the magnitude of the dominant mode a2 for fixed ξφ, so a2 is not displayed. The
Fourier coefficients corresponding to the asymptotic solution in the ξφ →∞ limit are marked by black dots

at the right side of the plot.

also vanish — a feature that remains true (to within numerical precision) for ξφ 6= 0. The only

nonzero coefficients of the Fourier expansion are a4n+2 for n ≥ 0. In Fig. 4 we plot the first seven

nonzero coefficients an as functions of ξφ. Consistent with the behavior in Fig. 3, the first two

coefficients dominate in the limit ξφ ∼ 0, whereas a richer spectrum emerges for ξφ > 1. Moreover,

the dependence of each an on ξφ becomes nearly flat for ξφ ≥ 100, indicating a single asymptotic

behavior in the limit ξφ � 1. We can analytically prove the existence of an asymptotic solution for

the inflaton oscillation, which is independent of ξφ in the limit of ξφ →∞, if we rescale the field as

δ ≡
√
ξφ φ/Mpl and time as t̃ ≡ Mpl τ/ξφ =

√
λφMpl t/ξφ. Performing these operations we arrive

at the ξφ-independent asymptotic equation of motion

δ̈ +
1− δ2

δ(1 + δ2)
δ̇2 +

1

6

δ

1 + δ2
= 0, (13)

Details of the derivation and solution of Eq. (13) are given in Appendix A.

In the limit ξφ → ∞, for which the background solutions δ(t) satisfy Eq. (13), we find the

Fourier coefficients (a2, a6, a10, ...) to be

{a4n+2} ≈ {1,−0.1265, 0.05813, −0.03513, 0.02415, −0.01790, 0.01396, ...} , (14)

where we have normalized the amplitude of the dominant mode to unity. We note both an alter-

nation between positive and negative values for rising n, as well as a falling magnitude. As can

be seen in Fig. 4, the Fourier coefficients calculated numerically for finite ξφ quickly asymptote to

these values once the nonminimal coupling reaches ξφ ' 100. On the other hand, there remains

significant variation of the Fourier coefficients an with ξφ for ξφ ∼ O(10). Whereas the inflationary
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observables, such as the spectral index ns and the tensor-to-scalar ratio r, attain their large-ξφ

values by ξφ ' 10 [23–26], the post-inflationary dynamics are sensitive to three distinct regimes for

ξφ, with behavior for 0 < ξφ < 1 distinct from ξφ ∼ O(1− 10), which in turn remains distinct from

the regime with ξφ ≥ 100. For preheating, in other words, there exists an intermediate-ξφ regime,

with important consequences for particle production.

For ξφ > 0, another significant modification to the oscillation of φ(τ) may occur, compared to

the ξφ = 0 case. In the equation of motion for φ, Eq. (9), the two distinct contributions from the

nontrivial field-space metric — the noncanonical kinetic term and the conformal stretching of the

Einstein-frame potential — may exactly cancel, resulting in simpler motion for φ(τ) than in the

minimally coupled case. In particular, for a specific amplitude φ0 = φ̃0(ξφ), with

φ̃0 ≡
Mpl√

ξφ(6ξφ − 1)
(15)

and ξφ > 1/6, Eq. (9) reduces to φ′′ +m2φ = 0, where primes denote d/dτ and

m2 =
(6ξφ − 1)

72ξ3
φ

M2
pl. (16)

In that case the background field motion is sinusoidal, φ(τ) = φ̃0 cos(mτ), with period

T =
2π

m
=

12π

Mpl

√
2ξ3
φ

6ξφ − 1
, (17)

in exact agreement with the value of T calculated from Eq. (10). We thereby find that the

inherently anharmonic oscillations in the ξφ = 0 case, arising from the nonlinear equation of

motion φ′′ + φ3 = 0, may reduce for ξφ > 1/6 to purely harmonic motion for a special value of the

amplitude. The fact that there is dependence on the amplitude is not surprising, given that Eq.

(9) is a highly nonlinear equation.

Given an initial amplitude of oscillation φ0 at τend determined self-consistently from the criterion

ε ≡ −Ḣ/H2 = 1, we may invert the relation between φ̃0 and ξφ in Eq. (15) to find the value of ξφ

at which all higher harmonics vanish. In Fig. 5 we plot the Fourier coefficients a4n+2 for n ≥ 1 in

the regime 0 ≤ ξφ ≤ 1, and find that all higher harmonics vanish at ξφ ≈ 0.486. We note, however,

that φ̃0 ∼ ξ−1
φ in the limit of large ξφ, whereas the amplitude of the inflaton at the end of inflation

scales as φ0 ∼ ξ−1/2
φ , so that the special, simple oscillation of φ(t) is unlikely to be relevant in the

limit ξφ � 1 before nonlinear effects such as backreaction alter the dynamics.

In summary, we find that the oscillations of φ(τ) display richer harmonic structure for ξφ > 0

than for the ξφ = 0 case. For most values of ξφ, we find more non-negligible harmonics than for the

minimally coupled case, and the magnitudes of those harmonics rapidly asymptote to fixed values



12

FIG. 5: The behavior of the Fourier coefficients a4n+2 for n ≥ 1 within the range 0 ≤ ξφ ≤ 1. For a given
initial amplitude, φ0, there exists a single value ξφ at which all higher harmonics vanish identically, leaving

purely harmonic evolution for φ(τ).

for ξφ ≥ 100. Meanwhile, for a special amplitude of oscillation, all higher harmonics vanish, again

in distinction to the ξφ = 0 case. We now turn to the fluctuations, which can be parametrically

amplified by the periodic motion of the background field.

III. EVOLUTION OF THE FLUCTUATIONS

In Ref. [1] we established a framework with which to study the evolution of the gauge-invariant

fluctuations QI during preheating, by expanding the action to second order in both field and metric

perturbations, calculating the energy density, and performing a (covariant) mode expansion. This

framework will enable us to use Floquet analysis to examine how the resonance structure changes

in the presence of ξI 6= 0 compared to the minimally coupled case.

To first order in the fluctuations, the equation of motion for QI may be written [1]

D2
tQ

I + 3HDtQI +

[
k2

a2
δIJ +MI

J

]
QJ = 0. (18)

Here DJQI = ∂JQ
I + ΓIJKQ

K is the covariant derivative with respect to the field-space metric

GIJ , in terms of which the directional derivative may be written DtQI = ϕ̇JDJQI , where ϕI(t) are

the spatially homogenous background fields. The mass-squared matrix is given by

MI
J = GIK (DJDKV )−RILMJ ϕ̇

Lϕ̇M − 1

M2
pla

3
Dt
(
a3

H
ϕ̇I ϕ̇J

)
, (19)

where RILMJ is the Riemann tensor constructed from GIJ , and the last term in Eq. (19) arises

from the coupled metric perturbations.
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We follow the decomposition of the perturbations using field-space vielbeins, as discussed in

detail in Section IV A of Ref. [1]. We rescale the fluctuations, QI(xµ)→ XI(xµ)/a(t), and quantize,

XI → X̂I , expanding the fluctuations in creation and annihilation operators and associated mode

functions:

X̂φ(xµ) =

∫
d3k

(2π)3/2

[(
vke

φ
1 b̂k + wke

φ
2 ĉk

)
eik·x +

(
v∗ke

φ
1 b̂
†
k + w∗ke

φ
2 ĉ
†
k

)
e−ik·x

]
,

X̂χ(xµ) =

∫
d3k

(2π)3/2

[(
yke

χ
1 b̂k + zke

χ
2 ĉk

)
eik·x +

(
y∗ke

χ
1 b̂
†
k + z∗ke

χ
2 ĉ
†
k

)
e−ik·x

]
,

(20)

where the operators obey b̂k|0〉 = ĉk|0〉 = 0 for all k, and[
b̂k, b̂

†
q

]
=
[
ĉk, ĉ

†
q

]
= δ(3)(k− q),[

b̂k, ĉq

]
=
[
b̂k, ĉ

†
q

]
= 0.

(21)

Within the single-field attractor, Gφχ ∼ 0 and hence e χ1 ∼ e
φ
2 ∼ 0, so that the equations of motion

for the mode functions effectively decouple:

v′′k + Ω2
(φ)(k, η) vk ' 0,

z′′k + Ω2
(χ)(k, η) zk ' 0,

(22)

where here primes denote derivatives with respect to conformal time, dη ≡ dt/a(t), and the effective

frequencies are given by

Ω2
(φ)(k, η) = k2 + a2m2

eff,φ(η),

Ω2
(χ)(k, η) = k2 + a2m2

eff,χ(η).
(23)

The effective masses may be decomposed into four distinct contributions [1],

m2
eff,φ = m2

1,φ +m2
2,φ +m2

3,φ +m2
4,φ, (24)

with

m2
1,φ ≡ GφK (DφDKV ) ,

m2
2,φ ≡ −R

φ
LMφϕ̇

Lϕ̇M ,

m2
3,φ ≡ −

1

M2
pla

3
δφIδ

J
φ Dt

(
a3

H
ϕ̇I ϕ̇J

)
,

m2
4,φ ≡ −

1

6
R,

(25)

where R is the spacetime Ricci curvature scalar; comparable expressions follow for the contributions

to m2
eff,χ.
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Within the rigid-spacetime approximation, a(t) → 1, η → t, and m2
3,I ,m

2
4,I → 0. Then the

only contributions to the fluctuations’ effective masses arise from the (covariant) curvature of the

potential (m2
1,I) and from the curved field-space manifold (m2

2,I). (As indicated in Refs. [1, 71, 94–

102] and further analyzed in Ref. [2], the contributions from the metric perturbations, m2
3,I , may

become significant in certain regions of parameter space when one relaxes the rigid-spacetime

approximation.)

Since we are considering motion of the background fields within a single-field attractor along

the direction χ = 0, vk ∼ δφk corresponds to fluctuations in the adiabatic direction, and zk ∼ δχk
corresponds to fluctuations in the isocurvature direction. The corresponding energy densities are

given by [1]

ρ
(φ)
k =

1

2

(
|v̇k|2 + Ω2

(φ)(k, t)|vk|
2
)

(26)

ρ
(χ)
k =

1

2

(
|żk|2 + Ω2

(χ)(k, t)|zk|
2
)
. (27)

We measure particle production with respect to the instantaneous adiabatic vacuum, |0(tend)〉,

which minimizes the energy densities ρ
(I)
k at the end of inflation [32].

Within the rigid-spacetime approximation, the frequencies Ω2
(I)(k, t) oscillate periodically as

the background field φ(t) oscillates periodically. Floquet’s theorem then stipulates that solutions

to Eq. (22) may be written in the form vk(t) = P1(k, t) exp[µkt] + P2(k, t) exp[−µkt] for some

periodic functions P1,2, and likewise for zk(t) [32]. The Floquet exponents µk depend, in general,

on the couplings, the background oscillation amplitude φmax, and the wavenumber k. Regions of

parameter space for which Re [µk] 6= 0 correspond to exponential instabilities, within which the

energy densities ρ
(I)
k grow rapidly due to particle production.

In the next two sections, we follow the method of Section 3.2 of Ref. [32] to construct Floquet

charts showing regions with Re [µk] 6= 0 for both adiabatic and isocurvature fluctuations. Whereas

calculating the full Floquet chart for this system is a numerical task, semi-analytic progress can

be made if one wishes to calculate the boundaries of the instability bands, where the real parts of

the Floquet exponents vanish. Since the boundaries of the bands are defined by Re [µk] = 0, the

resulting perturbations vk(t) and zk(t) will be periodic there, with period simply related to the

periods of the functions Ω2
(φ)(k, t) and Ω2

(χ)(k, t).

Assuming a rigid spacetime, the only time dependence for the frequencies Ω2
(I)(k, t) comes from

m2
1,I(t) and m2

2,I(t), which themselves depend on φ(t) and φ̇(t). The periods Tn of [φ(t)]n and

[φ̇(t)]n are given by T if n is odd and T/2 if n is even, where T is the period of φ(t). This fact

enormously simplifies our consideration of the periods of complicated functions, since in the non-
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vanishing components ofMI
J , the only terms that arise are constants and terms of the form φ2n(t)

and φ̇2n(t), which are all T/2 periodic. It follows that each of the relevant components is T/2-

periodic. Therefore, the period of both Ω2
(φ) and Ω2

(χ) is half that of the background-field oscillation.

We thus look for regions in (g/λφ, k
2) space that give solutions to Eq. (22) that are either T/2

or T periodic, since these give the boundaries of stability bands. The details of the method are

presented in Appendix B and the results are shown in Section V, where they are compared with

full numerical calculations of the Floquet charts.

We further note that the exponents µk have units of inverse time, meaning that the magnitude

of µk should be defined in comparison to some time-scale. For preheating the relevant time-scale is

the Hubble time at the end of inflation. The Hubble time scales like 1/ξφ for large ξφ [1], hence one

relevant parameter that we could plot and compare is µkξφ. This is still a dimensionful quantity,

but it has the same parameter dependence as the dimensionless combination µk/H. However, one

might object to using the Hubble scale as a measure of time in the rigid-spacetime approximation.

Instead one may compare the rate µk to the period of background oscillations T , and use the

quantity µkT . For ξφ � 1 we found above that T ∼ ξφ, hence both normalization schemes scale in

the same way with ξφ: µkT ∼ µk/H ∼ µkξφ in the limit ξφ � 1. (Recall from Section II that the

period T is measured in units of (
√
λφMpl)

−1.)

Similarly, k is a dimensionful quantity, so we again need to divide by some energy scale in order

to find meaningful results. The only energy scale in the problem is the Hubble energy, so the

relevant combination is again k ξφ. In a static universe, we may consider a characteristic length-

scale l, defined as l = c T , which again gives the same relevant scaling for large ξφ: kT ∼ k ξφ for

ξφ � 1. Since in the limit of large ξφ, the scaling with T and H are equivalent, we will scale the

Floquet exponents and wavenumbers by the period of the background oscillation (or simply by ξφ)

for the remainder of this paper.

It is worth reiterating the applicability and limitation of the Floquet formalism, which requires

adopting the rigid-spacetime approximation. For example, one may be concerned about whether

such an analysis can accurately describe how long-wavelength modes, with k � aH, would behave

in an expanding universe, since such modes should be sensitive to the expansion of spacetime.

However, as shown in Ref. [42], even the behavior of the k = 0 mode and its transition from the

broad- to the narrow-resonance regime in an expanding universe may be understood from an anal-

ysis of the corresponding (rigid-spacetime) Floquet charts. More generally, modes whose Floquet

exponent (as calculated within the rigid-spacetime approximation) satisfies Re[µk] � H will be

significantly amplified in an expanding universe. One may estimate the resulting amplification
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by considering how a given mode would “flow” through the instability bands of a Floquet chart,

as both the mode’s physical wavenumber and the amplitude of the oscillating background field

redshift. (See, e.g., Refs. [32, 33, 42, 60, 66, 67].) Thus Floquet analysis can often yield both a

general intuition as well as a quantitative guide to how the system would behave in a dynamical

spacetime, at least for linearized dynamics (before fully nonlinear interactions dominate).

We may now explore the growth rate of perturbations for various values of the nonminimal

couplings, potential parameters, and wavenumbers. Since scanning the parameter space by brute

force is rather impractical (and wouldn’t provide much physical insight), we divide our analysis into

subsections, each focusing on a specific range of parameters and type of perturbation (adiabatic or

isocurvature). We focus on background-field trajectories within a single-field attractor, and consider

(without loss of generality) the attractor to lie along the direction χ = 0. As demonstrated in Ref.

[1], we may always exploit our covariant framework and perform a rotation in field space so that

the attractor lies along the χ = 0 direction.

IV. RESULTS: ADIABATIC MODES

We begin the analysis with the adiabatic modes, which are simpler than the isocurvature modes

since their behavior depends only on ξφ and k. Within the single-field attractor, the contribution

to m2
eff,φ arising from the curved field-space manifold vanishes, m2

2,φ ∼ O(χχ̇) ∼ 0 [1]. In the

rigid-spacetime approximation, therefore, the only contribution to m2
eff,φ comes from gradients of

the potential, m2
1,φ, and may be written

m2
eff,φ =

−2δ6(6ξφ + 1) + δ4(12ξφ + 1) + 3δ2

(δ2 + 1)2 ξφ (δ2(6ξφ + 1) + 1)2 M2
pl, (28)

where again τ =
√
λφ t and δ(τ) =

√
ξφ φ(τ)/Mpl is the rescaled field amplitude. In the limit

ξφ � 1 we may further simplify the effective mass:

m2
eff,φ ≈

M2
pl

ξ2
φ

(1− δ2)

3(1 + δ2)2
, (29)

where we have set 1 + ξφ ≈ ξφ as well as 1 + ξφδ
n ≈ ξφδn, since the regime of interest corresponds

to δ ∼ O(1). (Obviously the second of these approximations fails whenever δ(t) passes through

zero.) If we again rescale time by ξφ as t̃ ≡ Mpl τ/ξφ =
√
λφMpl t/ξφ, the equation of motion for

the adiabatic modes in Eq. (22) takes the form

v̈k + (k̃2 + m̃2
eff,φ) vk = 0, (30)
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FIG. 6: Rescaled effective mass for the adiabatic perturbations, m̃2
eff,φ = ξ2

φm
2
eff,φ (in units of Mpl) versus

t̃ ≡
√
λφMpl t/ξφ, for ξφ = 1, 10, 102, 103, 104 (brown, red, green, blue, and orange, respectively), with

m2
eff,φ given in Eq. (28). The sharp features become more pronounced in the limit ξφ � 1, and asymptote

to a single, self-similar behavior.

where k̃ = ξφk/(
√
λφMpl), m̃

2
eff,φ = ξ2

φm
2
eff,φ/M

2
pl, and overdots denote d/dt̃. As shown in Fig. 6

(and also highlighted in Ref. [79]), not only does m̃2
eff,φ(t̃) oscillate as φ(t̃) oscillates; it also develops

sharp features, which become more pronounced for ξφ � 1, asymptoting to a single, self-similar

behavior in the limit ξφ →∞.

As expected, the time dependence of m̃2
eff,φ(t̃) drives parametric resonances in the adiabatic

modes vk(t̃). Fig. 7 summarizes the dependence of the (real part of the) Floquet exponent on the

wavenumber and the nonminimal coupling. Starting with the large-ξφ regime, where interesting

self-similar behavior can be found, we see that the Floquet chart for ξφ � 1 asymptotes to a

common shape, once µk and k are rescaled by ξφ, as explained in Section III. The large-ξφ scaling

behavior may be understood analytically: after rescaling time and wavenumber by ξφ in Eq. (30),

ξφ drops out of the equation altogether.

In the small-ξφ regime, the dominant Floquet band occurs at a nonzero wavenumber. As ξφ

increases from 0 to 1, the band moves to larger wavenumbers and the magnitude of Re[µk]T is

enhanced by as much as 30%. For ξφ ∼ 1, a new band emerges at k ∼ 0. As ξφ increases

further and we move into the large-ξφ regime, the band at k ∼ 0 becomes the dominant band. For

asymptotically large ξφ, the value of Re[µk]T for the dominant band at k ∼ 0 becomes about 6

times larger than for the secondary instability band.

In Fig. 8 we plot ρ
(φ)
k for various values of ξφ and for the wavenumber k̃2 = 0.03. Consistent with

the scaling of the Floquet exponents shown in Fig. 7, we find three distinct regimes for ξφ at these

long wavelengths: no growth for ξφ = 1, modest growth for ξφ = 10, and then a quick approach to
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FIG. 7: (Left) The normalized Floquet exponent Re[µk]T for the adiabatic mode vk for 0 ≤ ξφ ≤ 1.
(Right) The normalized Floquet exponent Re[µk]T for the adiabatic mode vk for ξφ ≥ 1. The common

behavior for ξφ � 1 is evident.
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FIG. 8: Energy density ρ
(φ)
k versus t̃ =

√
λφMpl t/ξφ for k̃2 = [ξφk/(

√
λφMpl)]

2 = 0.03 and

ξφ = 1, 10, 102, 103, 104 (brown, red, green, blue, and orange, respectively). The energy density rapidly
asymptotes to a single behavior in the limit of large ξφ.

a single behavior of rapid growth for ξφ ≥ 102. (Because we are neglecting nonlinear effects like the

backreaction of created particles on the evolution of the background field, the exponential growth

of ρ
(φ)
k within a given resonance band appears to continue forever. Of course when nonlinear effects

are incorporated, the resonant amplification will end after a characteristic time [32, 67, 68, 96],

though such effects are beyond the scope of the present study.)

In Fig. 9, we zoom in on modes k̃ � 1, which lie within the dominant Floquet instability band

in the limit ξφ � 1. On the righthand side we plot the energy density of the adiabatic modes. The

black-dotted lines correspond to exact exponential growth at the corresponding value of the Floquet

exponent, exp(2Re[µk]t); they match very well with the late-time exponential growth of ρ
(φ)
k at

various wavenumbers. The behavior of the k = 0 mode seems quite paradoxical at first. According
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FIG. 9: (Left) The Floquet chart for adiabatic perturbations with ξφ = 102, 103, 104 (red, blue, and black,

respectively). The colored dots correspond to the rescaled wavenumbers k̃ = ξφk/(
√
λφMpl) used in the

right panel. (Right) Energy density for the adiabatic mode with ξφ = 104 and

k̃2 = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 (black, blue, red, green, purple, brown, and cyan, respectively).
The black-dotted lines correspond to exact exponential growth, exp(2Re[µk]t). Note that the Floquet
chart (left) is normalized with respect to ξφ, to make the comparison with the evolution of the energy

density as a function of t̃ =
√
λφMpl t/ξφ (right) easier.

to the Floquet chart, Re[µk=0] = 0. We would therefore expect the mode to be non-growing, or

at most oscillating like the k̃2 = 0.06 mode. However we see that the growth is not exponential,

but rather polynomial, with vk(t̃) ∝ t̃, which is the growth exhibited by systems having two zero

eigenvalues. Hence the growth of the k = 0 mode is consistent with the Floquet chart.

Next we consider the effect of the background amplitude parameter α on the amplification of

adiabatic modes. The Floquet chart for large ξφ and varying values of α is shown in Fig. 10. An

interesting phenomenon occurs depending on the choice of normalization. If one normalizes the

Floquet exponent and wavenumber by T , then each band has a constant amplitude for different

values of α, but differs in width and position. However, if one normalizes by ξφ, then each band has

a fixed position and width, but its amplitude varies as a function of α. Using ξφ as a normalization

parameter is physically justified if we use the appropriate factors of Mpl to construct a dimensionless

quantity.

In sum, we identified a scaling solution for the growth of adiabatic modes at large ξφ. The

Floquet chart accurately predicts the late-time growth rate of the adiabatic modes. As one increases

ξφ, the Floquet chart approaches an asymptotic form. The most important difference between the

large-ξφ resonance structure and the corresponding structure for the minimally coupled case is the

emergence of a dominant instability band around k ∼ 0 for large nonminimal coupling. The fact

that the dominant band corresponds to k ∼ 0 means that overall amplification should be increased,

compared to the minimally coupled case: physical modes in an expanding universe will redshift
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FIG. 10: The Floquet chart for adiabatic perturations with ξφ = 103, and the amplitude of the

background oscillation parameterized as δ(0) = (α× 0.8)
√
ξφ φ0/Mpl, with varying α. (Left) The Floquet

exponent versus wavenumber, each scaled by the period of background oscillations T . (Right) The Floquet

exponent scaled by the nonminimal coupling ξφ, versus the rescaled wavenumber k̃ = ξφk/(
√
λφMpl).

toward the resonance band rather than out of it. In the meantime, special care is required for

handling the k = 0 mode, which grows linearly in a static universe.

V. RESULTS: ISOCURVATURE MODES

We now proceed to the case of isocurvature perturbations, where the dependence of µk on g/λφ

and ξφ/ξχ provides room for richer phenomenology. Since we want to satisfy the attractor condition

along the χ = 0 direction, we will choose g/λφ ≥ 1, which, as shown in Section III A of Ref. [1], is

a sufficient condition for a potential valley along that direction for ξφ = ξχ and any nonzero value

of ξφ.

We start with ξφ ≤ 1. As shown in Fig. 11, the results for ξφ = 0 reproduce the familiar

Lamé chart for the minimally coupled case [84–86]. As we increase ξφ, the bands get shifted to

lower values of the coupling g/λφ, and tilted further away from the g/λφ axis. The regions with

Re[µk] 6= 0 become reduced in width and height. In other words, in the regime 0 < ξφ ≤ 1,

preheating is less efficient than in the minimally coupled case.

This situation is reversed in the large-ξφ regime. In order to study this regime we perform one

further rescaling, by the dimensionless quantity g/λφ. As discussed in Ref. [1], for large ξφ the

direction χ = 0 will be an attractor in field space whenever Λ̃φ < 0, where

Λ̃φ ≡
ξχ
ξφ
− g

λφ
. (31)

The strength of the attractor is governed by the combination Λ̃φξφ; hence the attractor gets stronger

for larger values of ξφ. For a non-elliptical potential, in which the nonminimal couplings are equal
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FIG. 11: Normalized Floquet exponents Re[µk]T for the isocurvature perturbations zk as functions of
g/λφ and (kT )2, for ξφ = ξχ. (Top, left to right) ξφ = 0, 0.01; (middle, left to right) ξφ = 0.1, 0.4; (bottom,
left to right) ξφ = 0.7, 1. The bands are visibly tilting, shifting, and squeezing with increasing nonminimal

coupling, indicating less efficient preheating for ξφ ∼ O(1) compared to the ξφ = 0 case.
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FIG. 12: Normalized Floquet exponents Re[µk]T for the isocurvature perturbations zk, as functions of
[(g/λφ)− 1]ξφ and (kT )2, for ξφ = ξχ. (Top, left to right) ξφ = 10, 102; (bottom, left to right) ξφ = 103, 104.

The similarity of the Floquet charts for large ξφ is visible.

(ξφ = ξχ), the attractor-strength parameter may be re-written Λ̃φξφ = −[(g/λφ)− 1]ξφ. Since the

strength of the attractor is a characterization of the curvature of the potential in the adiabatic

direction, we will use the combination [(g/λφ) − 1]ξφ as the effective coupling strength, rather

than g/λφ, when examining the Floquet charts for large ξφ. Fig. 12 shows the 3-dimensional

Floquet charts, in which one may see a convergence into a forest of densely packed, large-valued,

almost parallel instability bands for large ξφ. We find substantially more efficient amplification of

isocurvature modes for ξφ � 1 than for the ξφ = 0 case.

In order to more readily examine the structure of these Floquet charts, we present 2-dimensional

slices of them in Fig. 13, in which each panel shows the Floquet exponent for a specific rescaled

wavenumber kT as a function of the effective coupling [(g/λφ)− 1]ξφ. There are several interesting

points about the band structure in the regime of large nonminimal couplings. First, there is an
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FIG. 13: Normalized Floquet exponents Re[µk]T for the isocurvature perturbations zk, as functions of
[(g/λφ)− 1]ξφ and (kT )2, for ξφ = ξχ = 10, 102, 103, 104, 105. Each two-dimensional plot corresponds to a

slice through the full Floquet chart of Fig. 12 at a specific normalized wavenumber: (top, left to right)
kT = 0, 1, (bottom, left to right) kT = 10, 100.

increase of the value of Re[µk] as one increases the nonminimal coupling. The approach to an

asymptotic solution is not as immediate as in the adiabatic case, though the ξφ = 104 case differs

from the ξφ = 105 case only by about 10%. For ξφ = 10 the value of Re[µk] is higher at lower

effective coupling. This situation is reversed as one increases the nonminimal coupling: for large

ξφ, nearly all bands have essentially the same height. Finally, from Fig. 13 we note that the bands

tilt and become narrower for increasing k, though the effect only becomes pronounced for kT ≥ 10.

In the large-ξI regime, we thus find a distinct behavior of the structure of the instability bands

that has no analogue in models with minimally coupled fields. Whereas our goal for this analysis

has been to characterize the resonance structure, and note significant differences from previous,

well-studied models, the behavior shown in Figs. 12 and 13 raises additional, interesting questions.

In particular, as discussed in Ref. [88], the perturbative unitarity scale Λ for these models becomes

a function of the inflaton amplitude. In the Einstein frame, in the limit ξφ � 1, the strong-coupling

scale Λ scales as Mpl during inflation (for φ ≥ Mpl/
√
ξφ) before asymptoting to Λ ∼ Mpl/ξφ for

small field values (φ < Mpl/ξφ). Therefore one should take care that the wavenumbers k under

consideration do not extend into the regime k > Λ.

Within the rigid-spacetime approximation (which we adopt throughout this paper), the strong-

coupling regime does not enter the analysis, since Λ ∝ Mpl → ∞; hence every mode with finite

comoving wavenumber satisfies k � Λ. Moreover, even if we restore Mpl to its usual value, we
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find at the start of preheating, when φ ∼ Mpl/
√
ξφ and Λ ∼ Mpl, that k < Λ for kT < 14.8 ξφ,

given that the inflaton period T scales as T ' 14.8 ξφ/Mpl in the large-ξI regime [1]. Later during

preheating, as the amplitude of φ falls and Λ→Mpl/ξφ, we expect modes with kT . 10 to satisfy

k < Λ. Of course, to fully explore the dynamics of the system beyond the linearized analysis

we have pursued here, one would also need to consider particle rescatterings, from which large k

modes could enter the strong-coupling regime. An analysis of the high-k behavior of these models

beyond linear order in the perturbations remains beyond the scope of the present paper, and we

leave potential implications of the strong-coupling regime for future research.

In sum, for the isocurvature modes zk and symmetric nonminimal couplings (ξφ = ξχ), there is a

weak convergence with increasing ξφ to an asymptotic solution that has large values of Re[µk] across

dense, almost-parallel instability bands. The dense instability profile for the isocurvature modes

for large ξφ is related to the rich spectral content of the background field for large ξφ, as identified

in Figs. 3 and 4. We may make sense of the behavior shown in Figs. 11-13 semi-analytically.

A. Small ξφ

As shown in Fig. 11, preheating into isocurvature modes becomes less efficient for 0 < ξφ < 1

compared to the minimally coupled case, with ξφ = 0. We may understand this trend qualitatively

by returning to Fig. 4, which shows the amplitudes of the first few nonzero Fourier coefficients

an of the background field’s evolution. In the limit ξφ → 0, only the first two harmonics (a2 and

a6) have any sizable amplitude, and the ratio between them is quite large, with a2/a6 ∼ 20. As

one approaches ξφ → 1 from below, one still finds only these two dominant harmonics, but the

magnitude of a6 falls relative to a2, such that the background field’s oscillations become more

nearly sinusoidal. With fewer nontrivial harmonics in the background field’s evolution, the coupled

perturbations experience fewer resonances, and the overall amplification falls. For ξφ > 1, on the

other hand, several harmonics begin to rise in magnitude, yielding the richer and more efficient

resonance structure depicted in Figs. 12 and 13.

We may further understand properties of the Floquet charts by examining the Fourier structure

of certain field-space quantities. In the rigid-spacetime limit, Eq. (22) for the isocurvature modes

zk may be written in the suggestive form

d

dt

zk
żk

 =

 0 1

−(k2 +m2
eff,χ) 0

zk
żk

 , (32)
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again using m2
eff,χ = m2

1,χ +m2
2,χ in the rigid-spacetime limit. This equation is of the form

ẋ(t) = A(t) x(t) , (33)

where A(t) is a periodic matrix with period T/2, and T is the period of the background-field

oscillation. This allows us to employ the machinery of Floquet theory to semi-analytically study the

boundaries that separate resonant from non-resonant regions in parameter space. In particular, at

the boundaries between stable and unstable regions (at which Re[µk] = 0), there exist T/2-periodic

and T -periodic solutions for zk(t).

We describe the method in Appendix B and summarize the results here. The stability bound-

aries for the isocurvature modes zk are given implicitly by the equations

det
[
Z((kT )2, g/λφ)

]
= 0

det
[
Z((kT )2, g/λφ)

]
= 0

det
[
Z ′((kT )2, g/λφ)

]
= 0

det
[
Z ′((kT )2, g/λφ)

]
= 0 ,

(34)

where the matrices Z, Z, Z ′ and Z ′ are functions of g/λφ and k. For example, the components of

the matrix Z are given by

Z00 = k2 + bk,0.

Zp,p = −4p2ω2 + k2 + bk,0 +
1

2
bk,2p , p ≥ 1,

Zp,q =
1

2

(
bk,|p−q| + bk,p+q

)
, p 6= q,

(35)

where ω = 2π/T and bk,p are the coefficients of a (cosine) Fourier expansion of Ω2
(χ)(k, t). The

related Z ′, Z, and Z ′ matrices are constructed in Appendix B. There are four matrices altogether

for the isocurvature modes, arising from sine and cosine Fourier expansions for both the T/2- and

T -periodic solutions.

Solving the equations in Eq. (34) would give exact (implicit) equations for the boundaries of all

stable regions, but — since these matrices are infinite dimensional — doing so is computationally

intractable. However, by truncating these matrices at an appropriate order we may understand

the origin of the band-tilting with increasing ξφ. In particular, as demonstrated in Appendix B,

truncating to 3×3 matrices provides sufficiently accurate approximations with which to understand

the shift of the boundaries of the fundamental instability band. (For higher-order instability bands,

one may truncate the matrices to sizes larger than 3 × 3, though understanding the behavior of

the fundamental instability band will suffice for our purposes.)
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For small ξφ, the boundaries of the regions Re[µk] = 0 are approximately linear in the (kT )2-

versus-g/λφ plane, which means that the slope is approximately constant everywhere along a given

boundary. The intercepts along the (kT )2-axis are the solutions to the determinant equations of

Eq. (34) with g/λφ = 0, and those along the g/λφ-axis are the solutions with (kT )2 = 0. Since all

of the relevant matrices depend only on the Fourier coefficients of m2
eff,χ, the change in slope of

the Re[µk] = 0 boundary in the (kT )2 − (g/λφ) plane — which we call “band tilting” — may be

determined analytically by calculating the Fourier coefficients of dm2
eff,χ/dξφ.

We write the contributions to m2
eff,χ in a suggestive form, in which we isolate the dependence

on the coupling parameter g:

m2
1,χ =

{
gδ2

ξφ(δ2 + 1)2
−

δ4
(
δ2(6ξφ + 1) + 6ξφ + 2

)
(δ2 + 1)3 ξφ (δ2(6ξφ + 1) + 1)

}
M2

pl,

m2
2,χ =

2δ̇2
(
δ2(6ξφ + 1) + 3ξφ + 1

)
(δ2 + 1)2 (δ2(6ξφ + 1) + 1)

M2
pl,

(36)

where again we use δ ≡
√
ξφ φ/Mpl. In order to isolate the band-tilting effect, we study one

particular stability band, which we call the primary stability band : the large central band in the

first Floquet chart in Fig. 11. We consider how the upper stability boundary shifts with changing

ξφ. (Similar results may be obtained for the other stability boundaries.) For ξφ = 0, the upper

stability boundary has a slope in the (kT )2 - g/λφ plane of about 15; as ξφ increases toward 1,

the slope rises sharply to roughly 100, as shown on the left in Fig. 14. This band-tilting effect is

consistent with the features displayed in the Floquet charts of Fig. 11.

Another effect displayed in the Floquet charts in Fig. 11 is that the bands become narrower as

ξφ increases. Again we focus on the primary instability band, and consider its upper and lower

boundaries. The width of the band, ∆, can be quantified by the difference between the g/λφ-

intercepts of the upper and lower stability boundaries. The narrowing of ∆ with increasing ξφ is

shown on the right in Fig. 14, which again agrees with the results of Fig. 11.

B. Large ξφ

For large ξφ, we again consider Eqs. (32) and (36), but now examine how the distinct contri-

butions to m2
eff,χ scale with ξφ. We begin with m2

2,χ and consider the behavior for ξφ � 1 and

δ 6= 0:

m2
2,χ

M2
pl

=

(
2δ2 + 1

δ2 (δ2 + 1)2 +O(ξ−1
φ )

)
δ̇2 ∼ 1

ξ2
φ

, (37)
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FIG. 14: (Left) Slope y of the upper boundary of the primary stability band as a function of ξφ for
0 ≤ ξ ≤ 1. This plot shows that stability bands tilt upward in the (kT )2 − (g/λφ) plane as ξφ increases.

(Right) The width of the primary instability band ∆ as a function of ξφ, where ∆ is defined as the
difference between the g/λφ-intercepts of the upper and lower stability boundaries.

since δ̇ scales like 1/ξφ if we change the time variable to t → t̃ =
√
λφMpl t/ξφ. Using the same

dimensional arguments for m2
1,χ we find

m2
1,χ

M2
pl

=
δ2[(g/λφ)− 1]

(δ2 + 1)2 ξφ
+O(ξ−2

φ ) . (38)

Eqs. (37) and (38) reveal different scaling for the two components of m2
eff,χ, which makes the

analysis of the isocurvature modes in the large-ξφ regime more difficult than for the adiabatic

modes. Furthermore, the two components of m2
eff,χ oscillate out of phase, since one is proportional

to δ2 and the other to δ̇2. Their distinct scaling with ξφ controls the features of m2
eff,χ, such as

when it has sharp features and when it crosses zero. (See also Refs. [1, 79].)

We demonstrated in Ref. [1] that the attractor behavior along the χ = 0 direction is controlled

by the combination Λ̃φξφ, which (as we saw in Figs. 12 and 13) is also the effective coupling that

makes the Floquet charts exhibit self-similar scaling behavior in the large-ξφ limit. For the case

ξφ = ξχ (zero ellipticity), we may perform a change of variables

g

λφ
= 1− Λ̃φ = 1 +

aφ
ξφ
, (39)

where we have introduced the parameter aφ ≡ −Λ̃φξφ. (Recall that the attractor along χ = 0

corresponds to Λ̃φ < 0; here aφ is chosen to denote the word “attractor,” and should not be

confused with either the scale factor a(t) or the Fourier coefficients an.) The parameter aφ is

proportional to the parameter κ ≡ 4(λφξχ − gξφ)/λφ defined in Ref. [26], which was introduced

to study the evolution of isocurvature perturbations during inflation along the top of a ridge in

the potential; here we will use aφ to study preheating of isocurvature modes within a valley of the

potential.
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Using the attractor parameter aφ, the term m2
1,χ in Eq. (36) may be written

m2
1,χ

M2
pl

=
δ2
(
ξφ − aφ

(
δ2 + 1

) (
δ2(6ξφ + 1) + 1

))
(δ2 + 1)3 ξ2

φ (δ2(6ξφ + 1) + 1)
=

1− 6aφ
(
δ4 + δ2

)
6 (δ2 + 1)3 ξ2

φ

+O(ξ−3
φ ). (40)

We can therefore distinguish three distinct regimes of parameters relevant to the analysis of m2
eff,χ

for the isocurvature perturbations, all within the limit of zero ellipticity (ξφ = ξχ): a symmetric

potential, with g = λφ and hence aφ = 0; a softly broken symmetry, with |Λ̃φ| ∼ ξ−1
φ � 1 and

hence aφ ∼ O(1); and a generic potential, with |Λ̃φ| ∼ O(1) and hence aφ ∼ ξφ. For aφ ∼ O(1),

we find m2
1,χ ∼ m2

2,χ ∼ ξ
−2
φ , whereas for aφ � 1 we have m2

1,χ ∼ ξ
−1
φ and m2

2,χ ∼ ξ
−2
φ .

1. Symmetric Potential, aφ = 0

An interesting case is that of a symmetric potential, with ξφ = ξχ and g = λφ = λχ (and hence

aφ = 0). Apart from its simplicity, the symmetric case is relevant to models like Higgs inflation

[16, 24]. (For the Higgs inflation case there are 3 identical isocurvature modes [24], but this does

not change our analysis.) Fig. 15 shows the behavior of the rescaled effective masses m̃2
eff = ξ2

φm
2
eff

for the adiabatic and isocurvature modes, for ξφ � 1. We note that the sharp features in m̃2
eff,φ

that we identified in Fig. 6 are swamped by the spikes in m̃2
eff,χ in the limit ξφ � 1 (a trend

also noted in Ref. [79]). In particular, the spikes of m̃2
eff,χ for ξφ � 1 arise from the nontrivial

field-space manifold (m̃2
2,χ) rather than from the potential (m̃2

1,χ), and hence have no analogue in

the minimally coupled case.

The energy density of the isocurvature modes likewise quickly exceeds that of the adiabatic

modes in the large-ξφ limit. In Fig. 16 we plot ρ
(χ)
k for the case of symmetric couplings, for various

values of ξφ and two distinct modes k. We note first the sensitivity to wavenumber: both modes

shown here become amplified exponentially quickly, but the k = 0 mode grows even more quickly

than the kξφ = 0.1 mode. For both modes, we find no particular growth for ξφ = 10, and then

a convergence toward a single large-ξφ behavior for ξφ ≥ 100. Compare with the more modest

amplification of the adiabatic modes for ξφ � 1 shown in Figs. 8 and 9. (As in our analysis of the

adiabatic modes, we neglect nonlinear effects such as backreaction; our goal is to understand the

earliest phases of the preheating resonances.)

2. Softy Broken Symmetry, aφ ∼ O(1)

For the case of a softy broken symmetry, with |Λ̃φ| � 1 and hence aφ ∼ O(1), we find that the

isocurvature modes zk(t) oscillate more times per background oscillation for larger values of aφ, as
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FIG. 15: The rescaled effective masses, m̃2
eff = ξ2

φm
2
eff , for the adiabatic (blue) and isocurvature (red)

modes (in units of Mpl) versus t̃ =
√
λφMpl t/ξφ, for a symmetric potential (ξφ = ξχ, g = λφ = λχ), with

ξφ = 103. The green and black dashed curves show the contributions to m̃2
eff,χ arising from the potential

(m̃2
1,χ) and from the nontrivial field-space manifold (m̃2

2,χ), respectively.

FIG. 16: Energy density ρ
(χ)
k for the isocurvature modes zk in a symmetric potential (ξφ = ξχ,

g = λφ = λχ), as a function of t̃ =
√
λφMpl t/ξφ. The wavenumbers are k̃ = 0 (left) and k̃ = 0.1 (right),

with k̃ = kξφ/(
√
λφMpl). In both plots, the nonminimal couplings are given by ξφ = 10, 102, 103, 104 (blue,

red, green, black-dashed respectively). Compare with the growth of adiabatic modes shown in Figs. 8 and
9.

shown in Fig. 17. This means that the system can move from the narrow to the broad resonance

regime [42], in which the (normalized) effective mass of the isocurvature modes becomes large. The

system exits the regime of softly broken symmetry once aφ becomes comparable to ξφ.

Fig. 18 shows the isocurvature effective mass for ξφ = 104 and varying aφ (or equivalently

varying g/λφ). As expected, the spike does not change, since it arises from the nontrivial field-

space manifold (m̃2
2,χ) rather than from the potential (m̃2

1,χ), and hence is independent of g/λφ.

The potential contribution m̃2
1,χ grows with growing g/λφ, leading the system from narrow to broad

resonance as m̃eff,χ becomes larger than the background frequency. By keeping aφ fixed and varying
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FIG. 17: The number of times the isocurvature mode zk(t) with k = 0 oscillates per background
oscillation (Nz/Nφ) as a function of aφ and ξφ, where g/λφ = 1 + (aφ/ξφ): aφ = 2 (blue), aφ = 20 (red),

and aφ = 200 (black).

FIG. 18: (Left) The rescaled effective mass for the isocurvature modes m̃2
eff,χ = ξ2

φm
2
eff,χ (in units of Mpl)

versus t̃ =
√
λφMpl t/ξφ for a softly broken symmetric potential with ξφ = ξχ = 104 and g/λφ = 1 + (2/ξφ)

(blue), g/λφ = 1 + (20/ξφ) (red), and g/λφ = 1 + (200/ξφ) (black). (Right) The effective mass m̃2
eff,χ for

g/λφ = 1 + (2/ξφ) and ξφ = 3, 10, 102, 103, 104 (brown, blue, red, green, and black, respectively).

ξφ, we see that the spike in the isocurvature effective mass becomes more pronounced for larger

values of the nonminimal coupling. In the case of ξφ = 10 there is no sharp feature, since the two

components of the isocurvature effective mass are similar in magnitude and opposite in phase. We

thus see again the clear distinction between the intermediate- and large-ξφ regime in the context

of preheating. These trends are reinforced in Fig. 19, which depicts the different contributions to

m̃2
eff,χ from m̃2

1,χ and m̃2
2,χ, and the dependence of ρ

(χ)
k on aφ and ξφ for the softly broken symmetry

case.



31

FIG. 19: (Left) Contributions m̃2
{1,2},χ = ξ2

φm
2
{1,2},χ to m̃2

eff,χ versus t̃ =
√
λφMpl t/ξφ for a softly broken

symmetric potential with ξφ = ξχ, g/λφ = 1 + (aφ/ξφ), and aφ = 2. Solid lines correspond to the
contributions that arise from the potential (m̃2

1,χ) and dotted lines correspond to the contributions that

arise from the nontrivial field-space manifold (m̃2
2,χ). (Right) The energy density ρ

(χ)
k for k = 0 and

ξφ = ξχ, with g/λφ = 1 + (aφ/ξφ) and aφ = 2 (dotted) and aφ = 20 (solid). In both plots, the nonminimal
couplings are given by ξφ = 10, 102, 103, 104 (blue, red, green, and black, respectively).

3. Arbitrary valley, aφ ∼ ξφ

We now consider a generic potential, meaning that g/λφ ∼ O(1) has some arbitrary value

(different from g/λφ = 1, which corresponds to the symmetric case). We will use g/λφ = 2 for

definiteness. In this case, aφ ∼ ξφ � 1.

The isocurvature effective mass is shown in Fig. 20 for a range of nonminimal couplings. We

can see that the overall magnitude of m̃2
eff,χ increases with increasing ξφ for a fixed value of g/λφ.

This is easily understood. For δ 6= 0 the velocity is δ̇ ∼ 0, hence the potential term dominates:

m̃2
1,χ � m̃2

2,χ. For aφ ∼ ξφ, we found above that m2
1,χ ∼ ξ−1

φ , and hence m̃2
1,χ = ξ2

φm
2
1,χ ∼ ξφ,

consistent with the behavior shown in Fig. 20 away from the spike. Thus larger ξφ values lead to

larger masses for the isocurvature perturbations. On the other hand, for ξφ ∼ O(10), max
(
m2

1,χ

)
∼

max
(
m2

2,χ

)
but with the two terms out of phase with each other, so m̃2

eff,χ does not develop sharp

features and the modes zk(t) do not undergo rapid amplification.

Since we have rescaled time as t̃ =
√
λφMpl t/ξφ, the background field’s oscillation period for

ξφ � 1 is given by T̃ = T/ξφ ' 14.8 (in units of (
√
λφMpl)

−1). As shown in Fig. 21, larger

values for the isocurvature mass put the system into the broad-resonance regime [42], in the sense

that the fluctuations oscillate multiple times for each background oscillation, with correspondingly

rapid growth of ρ
(χ)
k .
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FIG. 20: The rescaled effective mass m̃2
eff,χ versus t̃ =

√
λφMpl t/ξφ for g/λφ = 2 (or aφ = ξφ), and

ξφ = 10, 102, 103, 104 (blue, red, green, and black, respectively).

FIG. 21: (Left) The amplitude of the isocurvature mode |zk(t)| for k = 0, with g/λφ = 2 and varying ξφ.
Note that as ξφ increases, zk(t) oscillates more frequently per oscillation of the background field, entering

the broad-resonance regime. (Right) The isocurvature energy density ρ
(χ)
k for k = 0 and g/λφ = 2. For

both plots, ξφ = 10, 102, 103, 104 (blue, red, green, and black, respectively).

4. Varying Ellipticity

For completeness we construct the Floquet charts for elliptical potentials, with ξφ 6= ξχ. In

Ref. [26] we introduced the ellipticity parameter ε ≡ (ξφ − ξχ)/ξφ. Fig. 22 shows the resulting

instability bands for varying ellipticity. We fix ξφ = 104, which is well into the regime of large

nonminimal coupling. For positive ellipticity, meaning ξχ < ξφ, the instability bands become

larger both in amplitude and width. The opposite occurs for negative ellipticity, with ξχ > ξφ, for

which the instability bands become suppressed and further apart. For ξχ = 2ξφ (or ε = −1), the

resonances vanish for most values of the effective coupling −Λφξφ. This behavior during preheating

is reminiscent of the behavior of these systems during inflation [26], for which the fraction of

isocurvature modes produced, βiso, is enhanced for positive ellipticity and suppressed for negative
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FIG. 22: Floquet exponents for the isocurvature perturbations normalized by the period of background
oscillations for ξφ = 104 and varying ε = 0.5, 0,−1. Each two-dimensional plot corresponds to a slice of the
full Floquet chart at a specific normalized wavenumber: (top, left to right) kT = 0, 1, (bottom, left to right)

kT = 10, 100.

ellipticity [103].

VI. CONCLUSIONS

Using the covariant formalism developed in Ref. [1], in this paper we have investigated the

resonance structure for the amplification of adiabatic and isocurvature perturbations during pre-

heating in models with multiple scalar fields nonminimally coupled to gravity. In these models, the

background dynamics generically fall into a single-field attractor that persists (at least) through

the preheating phase [1], thereby avoiding the “de-phasing” [80, 81] that commonly occurs in multi-

field models with minimal couplings. Within the approximation of a rigid spacetime, we identified

several unique features of the preheating dynamics that arise due to the nontrivial field-space

manifold, which have no analogue in minimally coupled models.

For nonminimal couplings ξI ≥ O(1), the spectral content of the background field differs sig-

nificantly from its minimally coupled counterpart, the well-known quartic model. Whereas in the

case of the minimally coupled quartic model the background dynamics may be well described by

the first two harmonics, in the presence of nonminimal couplings higher harmonics attain compa-

rable magnitude to the lowest harmonics. Furthermore, for a specific combination of the field’s



34

amplitude and nonminimal coupling, all but the fundamental harmonic vanish, giving a simple si-

nusoidal solution. For large nonminimal couplings, the ratios of the Fourier coefficients for various

harmonics quickly asymptote to fixed values, such that for ξφ > O(100) the spectral content of the

background inflaton field is independent of the exact value of ξφ.

The behavior of the adiabatic and isocurvature perturbations is very different. For the adiabatic

modes, the Floquet charts for small nonminimal couplings present a dominant, primary instability

band at nonzero values of the wavenumber. This is completely reversed for large nonminimal

couplings, for which the primary instability band occurs for k ∼ 0, making the two cases —

small and large nonminimal coupling — qualitatively distinct. Furthermore, for large nonminimal

coupling ξφ & 103, the Floquet chart quickly asymptotes to a common shape, yielding a single

scaling behavior for the adiabatic perturbations in the limit of large ξI .

The isocurvature modes show richer phenomenology, since their behavior also depends on the

coupling between the two fields φ and χ. For small values of the nonminimal coupling the Floquet

chart resembles the Lamé chart, arising in the study of a minimally coupled quartic model. As

the value of the nonminimal coupling increases, the instability bands tilt and become narrower,

thus making preheating less efficient for 0 < ξI < 1 compared to the case with ξI = 0. For large

values of the nonminimal coupling, on the other hand, the Floquet chart is comprised of a dense

set of closely spaced, almost parallel instability bands, making the amplification of isocurvature

modes very efficient. Furthermore, the scaling solution found in the adiabatic case is also present

for isocurvature modes, although the single behavior in the ξI → ∞ limit is reached more slowly

with increasing ξI than in the adiabatic case.

Finally, the preheating dynamics for both adiabatic and isocurvature modes reveal an interme-

diate region, for ξI ∼ O(1− 10). Within this intermediate region, the resonance structure for both

adiabatic and isocurvature modes shows sensitive dependence on wavenumber and couplings, dis-

tinct from the minimally coupled case while also quite different from the behavior for ξI ≥ 102. The

emergence of this intermediate region during preheating is distinct from the behavior of spectral

observables during inflation, such as the spectral index (ns) and tensor-to-scalar ratio (r), which

attain their large-ξI values for ξI & O(10) [23–26]. Thus post-inflation dynamics might provide

one means of breaking the observational degeneracy of this class of models, even given the strong

single-field attractor behavior during and after inflation.

Our aim in the present paper has been to understand how the resonance structure for this

class of models changes with the strength of the nonminimal couplings, within the rigid-spacetime

approximation. We have therefore focused on the early preheating phase of reheating, working
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to linear order in the fluctuations and neglecting significant nonlinear effects such as backreaction

from produced particles. We have found efficient resonance for ξI ≥ O(100). In Ref. [2] we relax

the assumption of a rigid spacetime, and consider some possible observational consequences of such

an efficient preheating phase.

APPENDIX A: ASYMPTOTIC EQUATION OF MOTION

Starting from Eq. (13) and performing the folllowing change of variables,

x = log(1 + δ2), (41)

the term including the first derivative vanishes and the resulting equation is

ẍ+
1

3
e−2x(ex − 1) = 0 , (42)

where we work in terms of t̃ =
√
λφMpl t/ξφ and overdots denote d/dt̃. Eq. (42) is an analytically

solvable asymptotic equation of motion which may be integrated in two steps. The first integration

yields

ẋdẋ =
1

3
e−2x(1− ex) dx , (43)

which integrates to

ẋ =

√
2

(
C +

1

3
e−x − 1

6
e−2x

)
. (44)

The constant of integration C is defined by setting ẋ = 0 for x = log(1 + α2), where α is defined

via φmax = αMpl/
√
ξφ, where φmax is the maximum field amplitude during the oscillation phase.

By matching to the inflationary solution near t̃end, α is constrained to α ≤ 0.8. Eq. (44) may then

be integrated:

ex
√

6C + e−2x(2ex − 1) ln[1 + 6Cex +
√

(6C)(6Ce2x + 2ex − 1)]√
(2C)(6Ce2x + 2ex − 1)

= t̃+ C. (45)

The new integration constant C may be determined by setting x(0) = log(1 +α2). Finally we may

revert to our original variable by using x = log(δ2 + 1) and δ =
√
ξφ φ/Mpl.

This is anything but a simple formula, and it cannot be analytically inverted to give δ(t̃).

Nonetheless, we have demonstrated the existence of an oscillatory solution whose behavior is in-

dependent of ξφ in the limit ξφ → ∞. Hence we may solve the asymptotic equation of motion

(with no ambiguity about the value of ξφ) and calculate δ(t̃) numerically, as in Section II B. The

spectrum of δ(t̃) is easily derived and compared with the spectrum of φ(t̃) for finite values of ξφ,

as in Fig. 4, showing excellent agreement for ξφ � 1.
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APPENDIX B: SEMI-ANALYTIC CALCULATION OF FLOQUET-BAND BOUNDARIES

In this Appendix we construct infinite-dimensional matrices, whose vanishing determinants

may be used to determine the stability boundaries, where Re[µk] = 0, for both adiabatic and

isocurvature modes. We also demonstrate that the characteristics of the boundary for the primary

instability band may be determined with sufficient accuracy by truncating the matrices to simpler

3× 3 form.

1. T/2-Periodic Solutions

For convenience we define ω′ ≡ 4π/T = 2ω, where T is the period of the background field’s

oscillations. We may then make the following expansions for the mode functions and their effective

frequencies:

vk =
∞∑
j=0

αk,j cos 2jωt, zk =
∞∑
j=0

βk,j cos 2jωt

Ω2
(φ) = k2 + ak,0 +

∞∑
j=1

ak,j cos 2jωt, ak,j =

(
1− δj,0

2

)
4

T

∫ T/2

0
m2

eff,φ cos 2jωt

Ω2
(χ) = k2 + bk,0 +

∞∑
j=1

bk,j cos 2jωt, bk,j =

(
1− δj,0

2

)
4

T

∫ T/2

0
m2

eff,χ cos 2jωt.

(46)

Plugging these relations into the equation of motion for the adiabatic modes, vk, in Eq. (22) (and

taking the rigid-spacetime limit, so that η → t), we find

0 =

∞∑
m=0

(−4m2ω2 + k2 + ak,0)αk,m cos 2mωt+

∞∑
m,n=1

ak,mαk,n cos 2mωt cos 2nωt

=

∞∑
m=0

(−4m2ω2 + k2 + ak,0)αk,m cos 2mωt+

∞∑
m,n=1

ak,mαk,n
2

[cos 2(m+ n)ωt+ cos 2(m− n)ωt]

=

∞∑
p=0

γp cos 2pωt, (47)

where the γp are linear combinations of the αk,m coefficients. The boundaries of the stability

regions for the modes vk correspond to those places where each γp = 0. These correspond to the

row of a matrix, U , whose vanishing determinant enforces the equation of motion of Eq. (22). The
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elements of the matrix U are given by

U00 = k2 + ak,0

Up,p = −4p2ω2 + k2 + ak,0 +
ak,2p

2
, p ≥ 1

Up,q =
ak,|p−q| + ak,p+q

2
, p 6= q

(48)

The corresponding matrix for the isocurvature modes, zk, which we will call Z, is given by simply

replacing each a in the matrix above with b:

Z00 = k2 + bk,0

Zp,p = −4p2ω2 + k2 + bk,0 +
bk,2p

2
, p ≥ 1

Zp,q =
bk,|p−q| + bk,p+q

2
, p 6= q

(49)

We may also expand vk and zk into their respective sine series:

vk =
∞∑
j=1

αk,j sin 2jωt, zk =
∞∑
j=1

βk,j sin 2jωt (50)

With these expansions, Eq. (22) becomes

0 =
∞∑
m=1

(−4m2ω2 + k2 + ak,0)αk,m sin 2mωt+
∞∑

m,n=1

ak,mαk,n cos 2mωt sin 2nωt

=
∞∑
m=1

(−4m2ω2 + k2 + ak,0)αk,m sin 2mωt+
∞∑

m,n=0

ak,mαk,n
2

[sin 2(n+m)ωt+ sin 2(n−m)ωt]

=
∞∑
p=1

ζp sin 2pωt. (51)

Just as for the cosine expansion, we find a system of equations by setting each ζp = 0. The matrix

U is given by

Up,p = −4p2ω2 + k2 + ak,0 −
ak,2p

2
, p ≥ 1

Up,q =
ak,|p−q| + sign(q − p)ak,p+q

2

(52)

The corresponding matrix for the zk’s is represented by the matrix Z. The form of Z is exactly

the same as that of U under the replacement of ak,j with bk,j for all j.

2. T -Periodic Solutions

We now consider the case in which vk and zk are T -periodic. We can then make the following

expansions:

vk =

∞∑
j=0

αk,j cos jωt, zk =

∞∑
j=0

βk,j cos jωt. (53)
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Plugging these relations into Eq. (22), we find

0 =

∞∑
m=0

(−m2ω2 + k2 + ak,0)αk,m cosmωt+

∞∑
m,n=1

ak,mαk,n cos 2mωt cosnωt

=
∞∑
m=0

(−m2ω2 + k2 + ak,0)αk,m cosmωt+
∞∑

m,n=1

ak,mαk,n
2

[cos (2m+ n)ωt+ cos (2m− n)ωt]

=
∞∑
p=0

δp cos 2pωt , (54)

where δp are linear combinations of the αk,m coefficients. Just as in the previous case, we form a

matrix U ′ whose vanishing determinant yields equations for the boundaries of the stability bands

for the adiabatic modes, vk:

U ′00 = k2 + ak,0 (55)

U ′p,p = −p2ω2 + k2 + ak,0 +
ak,p
2
, p ≥ 1 (56)

U ′p,q =
ak,|p−q|/2 + ak,(p+q)/2

2
, p 6= q, p ≡ q mod 2 (57)

The corresponding matrix for zk, which we call Z ′, may be constructed by replacing ak,j with bk,j

for all j.

We must also consider sine series with period T . After a similar procedure, we find the matrices

of interest:

U ′p,p = −p2ω2 + k2 + ak,0 −
ak,p
2
, p ≥ 1

U ′p,q =
ak,|p−q|/2 + sign(q − p)ak,(p+q)/2

2

(58)

and the same for Z ′ with ak,j → bk,j .

To summarize, we construct eight distinct matrices: four U -matrices for the adiabatic modes vk

(coming from the T/2-periodic sine and cosine series and the T -periodic sine and cosine series), and

four Z-matrices for the isocurvature modes zk. Each of these matrices is a function of g/λφ and

k. The vanishing of the determinants of these matrices determines the boundaries of the stability

regions for the vk and zk modes in the (kT )2 − (g/λφ) plane. Finally, in Fig. 23, we demonstrate

that results of sufficient accuracy for the primary instability band may be calculated by truncating

the infinite-dimensional matrices to simple 3× 3 matrices.
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