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This is the first of a three-part series of papers, in which we study the preheating phase

for multifield models of inflation involving nonminimal couplings. In this paper, we study

the single-field attractor behavior that these models exhibit during inflation and quantify

its strength and parameter dependence. We further demonstrate that the strong single-field

attractor behavior persists after the end of inflation. Preheating in such models therefore

generically avoids the “de-phasing” that typically affects multifield models with minimally

coupled fields, allowing efficient transfer of energy from the oscillating inflaton condensate(s)

to coupled perturbations across large portions of parameter space. We develop a doubly-

covariant formalism for studying the preheating phase in such models and identify several

features specific to multifield models with nonminimal couplings, including effects that arise

from the nontrivial field-space manifold. In papers II and III, we apply this formalism to

study how the amplification of adiabatic and isocurvature perturbations varies with param-

eters, highlighting several distinct regimes depending on the magnitude of the nonminimal

couplings ξI .

PACS numbers: 98.80.Cq ; 95.30.Cq. Preprint MIT-CTP/4716.

I. INTRODUCTION

This is the first paper in a three-part series that examines the early stages of post-inflation

reheating in models that involve multiple scalar fields, each nonminimally coupled to gravity. (The

companion papers are Refs. [1, 2].)

Post-inflation reheating is a critical phase in the history of the cosmos, necessary to connect

early-universe inflation to the usual successes of the standard hot big bang scenario. Reheating
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falls between two regimes that are well constrained by observations, and which match the latest

observations remarkably well: production of a spatially flat universe seeded with nearly scale-

invariant primordial curvature perturbations during inflation [3–10], and production of specific

abundances of light nuclei during big-bang nucleosynthesis [11–13]. Though it remains difficult to

relate the reheating phase directly to specific, testable predictions for observations, the process of

reheating remains critical in order to compare predictions from the inflationary era with present-

day observations, since relating comoving scales at different cosmological epochs requires knowledge

of the intervening expansion history of the universe [14–21]. See [4, 22–25] for recent reviews of

reheating.

The post-inflation reheating phase not only must bring the early universe to thermal equilib-

rium in a radiation-dominated phase at an appropriately high temperature; reheating should also

populate the universe with matter like the kind we see around us today. During inflation, the

energy density of the universe was presumably dominated by one or more scalar “inflaton” fields.

After reheating, the energy density should include contributions from multiple species of matter,

including the Standard Model particles or (at least) types of matter that decay into Standard Model

particles prior to big-bang nucleosynthesis. Such interactions could address other long-standing

challenges in cosmological theory, such as generating the observed baryon - antibaryon asymmetry

[26–29]. Reheating therefore must be a multifield phenomenon.

Arguably, inflation itself should be treated as a process involving multiple fields. Realistic

models of high-energy particle physics typically include many distinct scalar fields at high energies

[30–34]. Hence we consider multiple scalar fields to be a central ingredient of realistic models of

inflation. Nonminimal couplings between the scalar fields and the Ricci spacetime curvature scalar

are also a generic feature of realistic models of the early universe. Many theoretical motivations

for nonminimal couplings derive from high-energy model-building, including dilatons and moduli

fields, but a more basic motivation comes from renormalization: as has long been known, models

with self-interacting scalar fields in curved spacetime require nonminimal couplings as counterterms

in order to remain self-consistent at high energies. Nonminimal couplings are induced by quantum

corrections even in the absence of bare couplings; they are a generic feature of scalar fields in

curved spacetime [35–41]. Moreover, such couplings arise even in a classical background spacetime.

Thus their effects can be important at energy scales relevant to inflationary or post-inflationary

dynamics, even for models in which quantum-gravitational corrections to the Einstein-Hilbert

action — which would presumably be quadratic or higher order in the spacetime curvature — may

remain subdominant at those energy scales [42].
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In recent work [44–47] we have studied the dynamics during inflation from multifield models

with nonminimal couplings, including generalizations of “Higgs inflation” [48]. These papers have

demonstrated that such models generically predict observable quantities (related to the spectrum of

primordial curvature perturbations) squarely in the most-favored region of the latest observations.

Moreover, such models exhibit a strong attractor behavior: across broad regions of parameter space

and phase space the fields relax to an effectively single-field trajectory early in inflation. Hence

the predictions for observable quantities from these models show little dependence on coupling

constants or initial conditions [46]. Such attractor behavior is a generic feature of multifield models

with nonminimal couplings, including the so-called “α attractors” [49].

In this paper we focus on the dynamics of such models immediately after inflation, during the

“preheating” phase. During preheating, the scalar-field condensate(s) that drove inflation decay

resonantly into higher-momentum quanta. We develop a doubly-covariant formalism that incorpo-

rates metric perturbations and field fluctuations self-consistently (to first order), and which also

respects the reparameterization freedom of the nontrivial field-space manifold. We restrict atten-

tion to the early stages of preheating, for which an approximation linear in the fields’ fluctuations

remains reliable, and only consider decays into scalar fields rather than fermions or gauge fields.

Our approach complements previous studies that have examined reheating in models with non-

minimally coupled fields [50–56], including Higgs inflation [57–60], as well as with noncanonical

kinetic terms or other string-inspired features of the action [61–65]. In our companion papers

[1, 2], we analyze the amplification of perturbations in this family of models semi-analytically and

numerically across wide regions of parameter space.

We find three principal distinctions from the well-studied cases of preheating with minimally

coupled fields. First, the conformal stretching of the scalar fields’ potential in the Einstein frame

affects the oscillations of the background fields, compared to the case of minimal couplings. In

particular, for strong nonminimal couplings ξI � 1, the background fields’ oscillations interpolate

between the behavior of minimally coupled models with quadratic and quartic self-couplings. Sec-

ond, the single-field attractor behavior during inflation typically leads to greater efficiency during

preheating than in corresponding multifield models with minimal couplings, in which de-phasing

of the background fields’ oscillations usually damps resonances [24, 66, 67]. Third, the nontrivial

field-space manifold contributes differently to the effective masses for fluctuations in the adiabatic

and isocurvature directions, leading to distinct behavior depending on whether the nonminimal

couplings are small (ξI < O(1)), intermediate (ξI ∼ O(1− 10)), or large (ξI ≥ O(100)).

In Section II we review the doubly-covariant formalism with which we study the dynamics
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of background fields and fluctuations. In Section III we examine the background dynamics for

a two-field model during and after inflation, highlighting distinctions between oscillations during

preheating with and without nonminimal couplings. The behavior of the background fields during

the oscillating phase is critical for understanding the resonant production of particles during pre-

heating. In Section IV we introduce a covariant mode expansion for the fluctuations and derive

multifield generalizations of the “adiabatic parameter” with which to characterize the resonant,

nonperturbative growth of fluctuations. Concluding remarks follow in Section V.

II. DOUBLY-COVARIANT FORMALISM

When studying multifield models with nonminimal couplings, one must consider two types of

gauge transformations: the usual spacetime coordinate transformations, xµ → xµ′, as well as trans-

formations of the field-space coordinates, φI → φI′. To address the first type of transformation, we

adopt the usual (spacetime) gauge-invariant perturbation formalism [70–72]; see Refs. [4, 73, 74] for

reviews. To address the multifield aspects, we build on the methods of Refs. [31, 75–85]. Together,

these yield a doubly-covariant formalism for studying fluctuations in these multifield models [44].

We follow closely the notation and parameterization of [44–47]. We work in (3 + 1) spacetime

dimensions and adopt the spacetime metric signature (−,+,+,+). We consider models with N

real-valued scalar fields, each of which is coupled to the Ricci spacetime curvature scalar. In the

Jordan frame, the action takes the form

S =

∫
d4x
√
−g̃
[
f(φI)R̃− 1

2
δIJ g̃

µν∂µφ
I∂νφ

J − Ṽ (φI)

]
, (1)

where upper-case Latin letters label field-space indices, I, J = 1, 2, ..., N , Greek letters label space-

time indices, µ, ν = 0, 1, 2, 3, and tildes denote Jordan-frame quantities. We will use lower-case

Latin letters for spatial indices, i, j = 1, 2, 3.

We may perform a conformal transformation to bring the gravitational portion of the action

into canonical Einstein-Hilbert form, by rescaling g̃µν(x)→ gµν(x) = Ω2(x) g̃µν(x). The conformal

factor Ω2(x) is related to the nonminimal-coupling function,

gµν(x) =
2

M2
pl

f(φI(x)) g̃µν(x), (2)

where Mpl ≡ 1/
√

8πG = 2.43 × 1018 GeV is the reduced Planck mass. The action may then be

rewritten [69]

S =

∫
d4x
√
−g

[
M2

pl

2
R− 1

2
GIJ(φK)gµν∂µφ

I∂νφ
J − V (φI)

]
. (3)
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(See also Ref. [86].) The potential in the Einstein frame is stretched by the conformal factor,

V (φI) =
M4

pl

4f2(φI)
Ṽ (φI). (4)

In addition, the nonminimal couplings induce a curved field-space manifold in the Einstein frame,

with associated field-space metric GIJ(φK). Because the induced field-space manifold is not con-

formal to flat for N ≥ 2, no combination of rescalings of gµν and φI can retain the Einstein-Hilbert

form for the gravitational portion of the action while also bringing the fields’ kinetic terms into

canonical form [69]. The components of GIJ take the form

GIJ(φK) =
M2

pl

2f(φK)

[
δIJ +

3

f(φK)
f,If,J

]
, (5)

where f,I = ∂f/∂φI . The field-space metric satisfies GIJGJK = δIK , and field-space indices are

raised and lowered with GIJ .

Varying the action of Eq. (3) with respect to gµν yields the field equations

Rµν −
1

2
gµνR =

1

M2
pl

Tµν , (6)

with the energy-momentum tensor given by [44]

Tµν = GIJ∂µφI∂νφJ − gµν
[

1

2
GIJgαβ∂αφI∂βφJ + V (φI)

]
. (7)

Varying Eq. (3) with respect to φI yields the equation of motion

�φI + gµνΓIJK∂µφ
J∂νφ

K − GIJV,J = 0, (8)

where �φI ≡ gµνφI;µν and ΓIJK(φL) is the Christoffel symbol constructed from the field-space

metric GIJ .

We expand the scalar fields and the spacetime metric to first order in perturbations. We

are interested in the behavior of the fields at the end of inflation, so we consider scalar metric

perturbations around a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) line element,

ds2 = gµν(x) dxµdxν

= −(1 + 2A)dt2 + 2a (∂iB) dxidt+ a2 [(1− 2ψ) δij + 2∂i∂jE] dxidxj ,
(9)

where a(t) is the scale factor. We also expand the fields,

φI(xµ) = ϕI(t) + δφI(xµ). (10)

The fluctuations δφI represent finite displacements from the fields’ classical trajectory through field

space; the fluctuations δφI are gauge dependent with respect to both xµ → xµ′ and ϕI → ϕI′. We
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therefore proceed in two steps. First, following Ref. [84], we introduce a vector QI to represent the

field fluctuations covariantly with respect to the field-space metric, GIJ . (See also Ref. [85].) The

field-space vectors φI(xµ) and ϕI(t) may be connected by a geodesic along the field-space manifold

with some affine parameter λ. We take φI(λ = 0) = ϕI and φI(λ = ε) = ϕI + δφI . (We may take

ε = 1 at the end.) These boundary conditions uniquely specify the vector QI that connects φI and

ϕI , such that φI |λ=0 = ϕI and DλφI |λ=0 = (dφI/dλ)|λ=0 = QI , where Dλ is a covariant derivative

with respect to the affine parameter. Then [84]

δφI = QI − 1

2!
ΓIJKQJQK +

1

3!

[
ΓILMΓMJK − ΓIJK;L

]
QJQKQL + ... (11)

where the ΓIJK are evaluated at background order, as functions of ϕI . Note that δφI → QI to

first order in fluctuations, but one must take care to distinguish the two when working to higher

order, as we will do in Section IV A when we expand the action to second order in QI . Next, we

follow Ref. [44] and define a linear combination of QI and the metric perturbation ψ to form a

generalization of the gauge-invariant Mukhanov-Sasaki variable:

QI ≡ QI +
ϕ̇I

H
ψ. (12)

The vector QI is doubly covariant, with respect to spacetime gauge transformations (to first order

in metric perturbations) as well as transformations of the field-space coordinates ϕI . To first order

in perturbations, QI → QI → δφI in the spatially flat gauge.

For an arbitrary vector in the field space, AI , we may define the usual covariant derivative with

respect to the field-space metric,

DJAI = ∂JA
I + ΓIJKA

K , (13)

and a (covariant) directional derivative with respect to the affine parameter, cosmic time, t,

DtAI ≡ ϕ̇JDJAI = ȦI + ΓIJKϕ̇
JAK , (14)

where overdots denote partial derivatives with respect to t. To background order, we may then

write the equation of motion for the fields ϕI from Eq. (8),

Dtϕ̇I + 3Hϕ̇I + GIJV,J = 0, (15)

while Eqs. (6)-(7) yield the usual dynamical equations at background order,

H2 =
1

3M2
pl

[
1

2
GIJ ϕ̇I ϕ̇J + V (ϕI)

]
,

Ḣ = − 1

2M2
pl

GIJ ϕ̇I ϕ̇J .
(16)
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In Eqs. (15)-(16), H ≡ ȧ/a is the Hubble parameter, and the field-space metric is evaluated at

background order, GIJ(ϕK).

To first order in QI , Eqs. (6)-(8) may be combined to yield the equation of motion for the

gauge-invariant perturbations [44, 68, 82]

D2
tQ

I + 3HDtQI +

[
k2

a2
δIJ +MI

J

]
QJ = 0, (17)

where the mass-squared tensor takes the form

MI
J ≡ GIK (DJDKV )−RILMJ ϕ̇

Lϕ̇M − 1

M2
pla

3
Dt
(
a3

H
ϕ̇I ϕ̇J

)
(18)

and RILMJ is the Riemann tensor for the field-space manifold. All expressions in Eqs. (17) and

(18) involving GIJ , V , and their derivatives are evaluated at background order in the fields, ϕI .

The term in Eq. (18) that is proportional to 1/M2
pl arises from the coupled metric perturbations.

III. COUPLINGS AND BACKGROUND DYNAMICS

Renormalization of models with self-coupled scalar fields in curved spacetime requires counter-

terms of the form ξφ2R for each nonminimally coupled field [35–41]. Here we consider a two-field

model, φI = {φ, χ}T , and take f(φI) to be of the form

f(φ, χ) =
1

2

[
M2

pl + ξφφ
2 + ξχχ

2
]
. (19)

Each scalar field φI couples to the Ricci scalar with its own nonminimal-coupling constant, ξI ;

conformal coupling corresponds to ξI = −1/6. The field-space metric, GIJ(ϕK), is determined

by the form of f(φI) and its derivatives, as in Eq. (5). Explicit expressions for GIJ and related

quantities for this model may be found in Appendix A.

We consider a simple, renormalizable form for the potential in the Jordan frame,

Ṽ (φ, χ) =
λφ
4
φ4 +

g

2
φ2χ2 +

λχ
4
χ4. (20)

We take λI > 0 and neglect bare masses m2
I , in order to focus on effects from the quartic self-

couplings and direct interaction terms within a parameter space of manageable size. The effects

from nonzero m2
I may be incorporated using the methods developed here.

Several types of considerations may be used to bound the range of ξI of interest. Perhaps

most fundamentally, vacuum stability (under renormalization-group flow) requires ξI ≥ −0.03 [87].

Meanwhile, earlier studies of single-field models had found that |ξ| ≤ 10−3 for ξ < 0 in order to
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yield sufficient inflation [88–92]. These constraints leave a very narrow window of parameter space

for ξI < 0 that could still be viable. Moreover, as we will see below, the behavior of such models

with |ξI | � 1 tends to show only modest departures from the well-studied minimally coupled case,

whereas qualitatively new behavior arises for |ξI | � 1. Hence we restrict attention here to positive

couplings, ξI > 0.

Next we may consider observational constraints, such as the present bound on the primordial

tensor-to-scalar ratio, r ≤ 0.1 [93], which corresponds to the bound H∗ ≤ 3.4×10−5Mpl. (Asterisks

indicate values of quantities at the time during inflation when observationally relevant perturbations

first crossed outside the Hubble radius.) Models in our class predict [44–47]

r =
16ε

1 + T 2
RS

, (21)

where ε is the usual slow-roll parameter,

ε ≡ − Ḣ

H2
, (22)

and T 2
RS is the transfer function for long-wavelength modes between the adiabatic (R) and isocur-

vature (S) directions. As analyzed in Refs. [44–47] and discussed further in the next subsection,

models in this class generically display strong single-field attractor behavior. Within an attractor

the background fields’ trajectory does not turn, and hence T 2
RS → 0. Furthermore, given our

covariant framework, we may consider the case in which the fields move along the direction χ = 0

during inflation without loss of generality. In the limit ξφ � 1, we find to good approximation [46]

H∗ '
√

λφ
12ξ2

φ

Mpl, N∗ '
3

4
δ2
∗ , ε '

3

4N2
∗
, (23)

where

δ2 ≡
ξφφ

2

M2
pl

, (24)

and N∗ is the number of efolds before the end of inflation when relevant scales crossed outside

the Hubble radius. (See also Ref. [94].) Assuming 50 ≤ N∗ ≤ 60, we find r ∼ O(10−3) in

the limit ξφ � 1, and H∗ ≤ 3.4 × 10−5 Mpl for λφ/ξ
2
φ ≤ 1.4 × 10−8. In models like Higgs

inflation [48], one typically finds λφ ∼ O(10−2 − 10−4) at the energy scales of inflation (the range

stemming from uncertainty in the value of the top-quark mass, which affects the running of λφ under

renormalization-group flow) [95–97]. The range of λφ, in turn, requires ξφ ∼ O(102 − 103) at high

energies — a reasonable range, given that ξφ typically rises with energy scale under renormalization-

group flow with no UV fixed point [38]. Even for such large values of ξI , the inflationary dynamics
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occur at energy scales well below any nontrivial unitarity cut-off scale. (See Ref. [47] and references

therein for further discussion.)

For the opposite limit, with 0 < ξφ � 1, a similar analysis yields [92, 94]

H∗ '
√

λφ
12ξ2

φ

δ4
∗

(1 + δ2
∗)

2
Mpl, N∗ '

1

8ξφ
δ2
∗ , ε '

1

N∗(1 + 8ξφN∗)
, (25)

where δ2 is again defined as in Eq. (24). In this limit, the bound r ≤ 0.1 requires ξφ ≥ 0.006

(for N∗ = 50) or ξφ ≥ 0.004 (for N∗ = 60), which in turn yields a constraint on λφ typical of

minimally coupled models: λφ ∼ O(10−12) in order to keep H∗ ≤ 3.4× 10−5 Mpl [98, 99]. Thus in

the remainder of this analysis, we focus our attention to the range 10−3 ≤ ξI ≤ 104.

A. Single-Field Attractor

Inflation begins in a regime in which ξJ(φJ)2 > M2
pl for at least one component, J . The potential

in the Einstein frame becomes asymptotically flat along each direction of field space, as each field

φI becomes arbitrarily large:

V (φI)→
M4

pl

4

λI
ξ2
I

[
1 +O

(
M2

pl

ξI(φI)2

)]
(26)

(no sum on I). Unless some explicit symmetry constrains all coupling constants in the model to be

identical (λφ = g = λχ, ξφ = ξχ), then the potential in the Einstein frame will develop ridges and

valleys. Both the ridges and the valleys satisfy V > 0, and hence the system will inflate (albeit at

different rates) whether the fields evolve along a ridge or a valley toward the global minimum of

the potential. As seen in Fig. 1, even in the case of ξI � 1, in which inflation can occur for field

values φI for which the potential has not reached its asymptotically flat form, the potential still

exhibits ridges and valleys, all of which are capable of supporting inflation.

Given the distinct ridge-valley structure of the effective potential in the Einstein frame, these

models display strong single-field attractor behavior during inflation, across a wide range of cou-

plings and initial conditions [46]. If the fields happen to begin evolving along the top of a ridge,

they will eventually fall into a neighboring valley at a rate that depends on the local curvature

of the potential [44, 47]. Once the fields fall into a valley, Hubble drag quickly damps out any

transverse motions in field space within a few efolds, after which the system evolves with virtually

no turning in field space for the remainder of inflation [44–47]. As shown in Fig. 2, the single-field

attractor behavior is as generic in the limit ξI < 1 as it is for ξI � 1. For all of the trajectories

shown, the fields settle into a single-field attractor prior to the last 65 efolds of inflation.
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FIG. 1: Potential in the Einstein frame, V (φI), for a two-field model with ξχ/ξφ = 0.8, λχ/λφ = 1.25, and
g/λφ = 1, for ξφ = 102 (left) and ξφ = 10−2 (right ). Field values are in units of Mpl.

Within a single-field attractor, these models predict values for spectral observables such as

the primordial spectral index and its running (ns and α), the ratio of power in tensor to scalar

modes (r), primordial non-Gaussianity (fNL), and the fraction of power in isocurvature rather than

adiabatic scalar modes (βiso) all in excellent agreement with the latest observations [44–47]. Fig. 3

shows the tensor-to-scalar ratio r and the isocurvature fraction βiso as a function of the nonminimal

coupling. The approach to a constant ξI -independent value for large ξI is evident. The fields will

only fail to settle into a single-field attractor during inflation if both the ratios of certain coupling

constants and the fields’ initial conditions are fine-tuned. If the fields happen to begin very close

to the top of a ridge, for example, and if the local curvature of the potential in the vicinity of that

ridge has been fine-tuned to be small (DIJV/H2 � 1), then the system can exhibit significant

turning in field space late in inflation [44, 46, 47]. In such fine-tuned cases, the system’s evolution

during the last 65 efolds of inflation can amplify non-Gaussianities and isocurvature perturbations,

which could potentially be observable [44, 47, 68].

In Ref. [47] we analyzed the geometric structure of the attractor in the limit ξI � 1; here we

generalize that analysis for arbitrary positive ξI . As in Ref. [47], we define convenient combinations

of couplings,

Λφ ≡ λφξχ − gξφ, Λχ ≡ λχξφ − gξχ, ε ≡
ξφ − ξχ
ξφ

, (27)

along with the new rescaled quantities

Λ̃φ ≡
Λφ
λφξφ

=
ξχ
ξφ
− g

λφ
, Λ̃χ ≡

Λχ
λχξχ

=
ξφ
ξχ
− g

λχ
. (28)
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FIG. 2: Field trajectories for different couplings and initial conditions. Open circles indicate fields’ initial
values (in units of Mpl). We set the fields’ initial velocities to zero and vary the initial angle in field space,
θ0 ≡ arctan(χ0/φ0). For the figure on the left, we set ξφ = 103 and λφ = 10−2; for the figure on the right,

we set ξφ = 10−1 and λφ = 10−10. In both figures, the other parameters {ξχ, λχ, g, θ0} are:
{1.2ξφ, 0.75λφ, λφ, π/4} (red); {0.8ξφ, λφ, λφ, π/4} (blue); {0.8ξφ, λφ, 0.75λφ, π/3} (green);

{0.8ξφ, 1.2λφ, 0.75λφ, π/6} (black). In each case, the initial transient motion damps out within a few
efolds, yielding effectively single-field evolution for (at least) the final 65 efolds of inflation. Moreover, as

demonstrated in Refs. [45, 46], large field velocities at the start of inflation redshift away very quickly and
do not significantly alter the single-field attractor behavior during inflation. Such large initial field

velocities therefore have no impact on conditions at the start of preheating.

FIG. 3: The tensor-to-scalar ratio (left) and the fraction of isocurvature modes (right) as a function of the
nonminimal coupling ξφ. The isocurvature fraction is calculated for the symmetric (Higgs-like) case

λφ = g = λχ and ξφ = ξχ.

For arbitrary ξI > 0, we find

DχχV |χ=0 =
λφφ

2

[1 + δ2]3[1 + (1 + 6ξφ)δ2]

[
−Λ̃φ(1 + 6ξφ)

(
δ2 + δ4

)
−
(

Λ̃φ + ε
)
δ2 +

g

λφ

]
, (29)

where δ2 ≡ ξφφ2/M2
pl as in Eq. (24). In the limit ξI � 1, the quantity δ2 � 1 during inflation, and

we find DχχV |χ=0 ∝ −Λφ [47]. In that limit, whenever Λφ < 0 the direction χ = 0 remains a local
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minimum of the potential and the background dynamics will obey strong attractor behavior along

the direction χ = 0. For ξI � 1, on the other hand, δ2 & 2 during inflation, as may be seen from

the scaling relationships in Eq. (25), and the orientation θ = arctan(χ/φ) of the local minimum

depends on the ellipticity, ε, and the ratio g/λφ in addition to the sign of Λφ. Even in these cases,

the existence of attractor solutions remains generic (as shown in Fig. 2), only the orientation of

the attractor in field space changes. For ξI � 1 there are special regions of parameter space for the

coupling values where the topography of the potential can change during inflation, meaning that

a ridge can turn into a valley as the inflaton rolls. Depending on the curvature, a waterfall-type

transition may occur [100].

The orientation of the valley of the potential in field space, θ = arctan(χ/φ), depends on

combinations of couplings λI , g, and ξI [47]. When studying inflationary dynamics in multifield

models, one typically projects physical quantities into adiabatic and isocurvature directions based

on the motion of the background fields, ϕI [4, 31, 76–79, 83]. For our two-field model, we may

define the orthogonal unit vectors [44–47]

σ̂I ≡ ϕ̇I

σ̇
, ŝI ≡ ωI

ω
(30)

in terms of the magnitude of the background fields’ velocity, σ̇, and their (covariant) turn-rate,

σ̇ ≡ |ϕ̇I | =
√
GIJ ϕ̇I ϕ̇J , ωI ≡ Dtσ̂I . (31)

We may then project any field-space vector into adiabatic (σ) and isocurvature (s) components,

Aσ ≡ σ̂IAI , As ≡ ŝIAI . (32)

Within a single-field attractor, ωI → 0, so that a vector in field space that lies along the adiabatic

direction at one time will continue to point along the adiabatic direction at later times. In that

case, we may exploit the covariant nature of our framework to perform a rotation in field space,

ϕI → ϕI′, such that the valley of the potential lies along the direction χ′ = 0. Then the attractor

will keep χ′ ∼ χ̇′ ∼ 0, and only φ′(t) will evolve. With respect to the new field-space coordinates

{φ′, χ′}, the adiabatic direction points along φ′ and the isocurvature direction along χ′.

We may quantify the strength of the attractor by examining the amount of fine-tuning needed

to evade it. We will concentrate on the large-ξI regime, as it is enough to show the trend in the

attractor’s strength as a function of ξI . Following the analysis of Ref. [47] for the case where

the fields ϕI start exponentially close to the top of a ridge, we use the linearized equations of

motion to study the strength of the attractor. Apart from the fine-tuned curvature of the ridge
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(Λ̃φ), the dynamics of the inflaton field, which is translated into the attractor strength, depend

very sensitively on the initial proximity to the top of the ridge. One obvious way to parameterize

proximity to the top of the ridge is with the angle in field space, θ. The initial angle is θ0 ≈ χ0/φ0

for χ0 � φ0. Our criterion will be the following: for the same dimensionless ridge curvature Λ̃φ

and the same initial proximity to the ridge θ0, the strength of the attractor is defined through the

number of efolds N ≤ 60 it takes for the inflaton field to develop a large angle in field space, θ ' 1.

Following the linearized analysis of Ref. [47], we take the dominant field φ to follow the single-

field slow-roll solution, which is consistent to linear order in χ

φ̇SR = −
√
λφM

3
pl

3
√

3ξ2
φφ

, (33)

which can be trivially solved to give

φ =

√
φ2

0 −
4

3

M2
pl

ξφ
N, (34)

where φ(N = 0) = φ0 at the start of inflation and we take the Hubble term to be constant during

slow-roll,

H '
√

λφ
12ξ2

φ

Mpl . (35)

The linearized equation of motion for the secondary field χ, when starting near the top of a smooth

ridge (θ0 � 1, Λ̃φ � 1), is

χ̈+ 3Hχ̇−
Λ̃φM

2
pl

ξφ
χ ' 0, (36)

and the solution (for H = constant) is

χ(N) ' χ0 exp

[(
−3

2
+

√
9

4
+ 12Λ̃φξφ

)
N

]
. (37)

The evolution of the field-space angle θ follows immediately as

θ(N) = arctan

θ0

exp

[(
−3

2 +
√

9
4 + 12Λ̃φξφ

)
N

]
√

1− 4
3

M2
pl

ξφφ
2
0
N

 . (38)

As we can easily see from Fig. 4, for the same amount of fine-tuning of the couplings Λ̃φ and initial

position θ0, the attractor gets stronger as ξφ increases. We only consider this fine-tuned regime,

since for Λ̃ = O(1) or θ0 = O(1), the approach to the attractor is too fast for the extraction of
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FIG. 4: (Left) Evolution of the angle θ as a function of number of efolds from the beginning of inflation

for Λ̃φ = 0.001, θ0 = 10−4, ξχ = ξφ and λφ = λχ. The values of the nonminimal coupling are
ξφ = 10, 102, 103, 104 (brown, blue, red, and green respectively). The black dotted lines show the analytic
results from Eq. (38). (Right) Evolution of the turn rate |ω| ≡

∣∣ωI ∣∣ as a function of the number of efolds
from the beginning of inflation for the same parameters and color-coding. The turn-rate for ξφ = 10 is too

small (|ω| . 10−7) to be visible on this plot.

any reasonable conclusion. In Fig. 4 we also plot the turn-rate |ω| ≡
∣∣ωI ∣∣ as a function of time.

For ξφ = 10 and fine-tuned initial conditions, the attractor is too weak and the field remains on

the ridge for the duration of the inflationary epoch, leading to a suppressed turn-rate |ω| . 10−7.

For larger values of ξφ we see that the turn-rate spikes at the time when θ ' 1, as expected. The

turn-rate spikes earlier for larger couplings, indicating again a stronger attractor behavior. In the

cases of ξφ = 103, 104, the attractor is strong enough (meaning that the ridge is steep enough)

that the field reaches the valley of the potential while having a significant velocity, which leads

it to oscillate around the minimum before settling down to single-field motion. These oscillations

perpendicular to the dominant motion of the inflaton can be seen as “primordial clocks” with

possibly interesting observational consequences [101].

Eq. (29) shows that for asymptotically large field values (δ � 1) the ridge-valley nature of the

potential is only defined by the sign of Λ̃φ, whereas after inflation has ended and the fields have

settled into an oscillation pattern close to their minimum, in the limit of δ . 1, the nature of the

extremum is defined by the sign of g/λφ. There is of course a lot of parameter space between these

two extremes, where for example the ellipticity ε can significantly affect the potential curvature.

We will disentangle these effects one-by-one.

We start with the case of zero ellipticity, ε = 0, or ξφ = ξχ, which corresponds to Λ̃φ = 1−(g/λφ).

Fig. 5 shows how the nature of the extremum at χ = 0 varies with all relevant parameters, g/λφ,

ξφ and φ. A field rolling along an attractor remains along this attractor throughout inflation and

preheating. Furthermore, for ξφ & 1, the condition g/λφ > 1 for the existence of an attractor
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FIG. 5: (Left) The value of g/λφ for which DχχV |χ=0 = 0 versus φ (in units of Mpl) for ξφ = ξχ and

ξφ = 10−3, 10−2, 10−1, 1 (from bottom to top). (Right) The same quantity versus δ =
√
ξφ φ/Mpl for

ξφ = 1, 10, 100, 103, 104 (from bottom to top). For values of g/λφ above each curve, the potential exhibits a
valley along χ = 0.

remains quite accurate. For smaller ξφ, we see that even smaller values of g/λφ can provide an

attractor along χ = 0. Even more interestingly, there are cases in which the extremum can change

its nature during inflation. For example, for ξφ = 10−3 and g/λφ = 0.2, we see that the direction

χ = 0 switches from a ridge to a valley around φ ≈ 12 (in units of Mpl).

Next we consider the effect of an arbitrary ellipticity ε 6= 0. For simplicity, we choose two values

of the ellipticity with opposite sign, ε = 0.5 and ε = −1, and compare them to the previous case

ε = 0. The results are shown in Fig. 6. As expected, the values of g/λφ are shifted according to

the ellipticity, since we can re-write the parameter Λ̃φ as

Λ̃φ = 1− ε− g

λφ
. (39)

This means that in the limit where Λ̃φ defines the nature of the extremum (for large δ), the

extremum is a minimum for g/λφ > 1−ε. An interesting phenomenon occurs for positive ellipticity

and g/λφ & 1 − ε. In this case, the critical value of g/λφ is a non-monotonic function of φ. This

means that for a value of g/λφ slightly above the critical value, the valley, in which the field is

rolling, can turn into a ridge and then into a valley again. This can trigger some genuinely multifield

behavior, such as a waterfall transition, similar to hybrid inflation. Density perturbations during

a waterfall transition require specialized treatment, due to the lack of a classical field trajectory

around which to perturb, and can have interesting observational consequences such as seeding

primordial black holes [100]. However, in the context of the family of models that we consider

here, such waterfall transitions are rather fine-tuned cases, and we will not pursue them further.

In sum, these models include five coupling constants: λφ, λχ, g, ξφ, ξχ. The Hubble scale during

inflation is fixed by the combination λφ/ξ
2
φ ' 12H2/M2

Pl (assuming the field is rolling along χ = 0).
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FIG. 6: The value of g/λφ for which DχχV |χ=0 = 0 versus φ (in units of Mpl) for ξφ = 10−1 (blue) and
ξφ = 10−2 (red). For each value of ξφ, the ellipticity varies as ε = −0.5, 1, 2 (from top to bottom). For

values of g/λφ above each curve, the potential exhibits a valley along χ = 0.

We may reorganize the couplings in terms of the three nontrivial combinations Λφ,Λχ, ε, introduced

in Eq. (27). Except for exponentially fine-tuned cases — fine-tuned in both parameter space and

the fields’ initial conditions — the predictions for CMB observables from these models follow

the Starobinsky attractor for ξφ & 10 and essentially any values of the remaining parameter

combinations, Λφ,Λχ, ε, as discussed in detail in Refs. [44, 46, 47].

Inflation ends when the scale factor stops accelerating, ä(tend) = 0, which is equivalent to

ε(tend) = 1. (As a reminder, ε ≡ −Ḣ/H2 should not be confused with the ellipticity parameter,

ε ≡ (ξφ − ξχ)/ξφ.) After tend, the background fields ϕI(t) oscillate around the global minimum

of the potential, governed by Eq. (15). If (as is generic) the system settles into the single-field

attractor before the end of inflation, then the motion of ϕI(t) in the direction of the potential’s

valley remains suppressed even after inflation. For example, if the system evolves along a valley in

the χ = 0 direction during inflation, then χ ∼ χ̇ ∼ 0 at tend and Eq. (15) will maintain χ ∼ χ̇ ∼ 0

for times t > tend, as shown in Fig. 7. Such attractor behavior after tend persists for at least as long

as backreaction from perturbations may be neglected, consistent with the linearized treatment of

Eq. (10). Thus the strong attractor behavior that was identified in Refs. [44–47] is characteristic

of the preheating phase as well.

The persistence of the attractor behavior after the end of inflation has important implications

for preheating. In particular, although the unit vectors σ̂I and ŝI may become ill-defined when

the motion of ϕI(t) is no longer monotonic, the orientation of the attractor in field space, θ =

arctan(χ/φ), remains unchanged after inflation. Upon performing a rotation ϕI → ϕI′ such that

χ′ = 0 lies along the direction of the attractor, then only one field, φ′(t), oscillates after tend. With

only one background field oscillating, there is no “de-phasing” of the background fields’ oscillations,
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FIG. 7: The evolution of H(t) (black dashed line), φ(t) (red solid line), and χ(t) (blue dotted line) during
and after inflation, in units of Mpl. The evolution shown here is for ξχ = 0.8 ξφ, λχ = 1.25 λφ, and g = λφ,

with ξφ = 102, λφ = 10−4, and initial conditions φ(t0) = 1, χ(t0) = 0.8, φ̇(t0) = χ̇(t0) = 0. (We plot
5× 104 H so its magnitude is comparable to φ.) With these parameters and initial conditions, inflation
lasts for Ntot = 111.6 efolds until tend = 3.99× 106. The system rapidly falls into a valley along χ = 0
within the first 3 efolds of inflation, after which χ(t) remains fixed at χ ∼ 0. After tend, φ(t) oscillates

around the global minimum of the potential.

as is typical for multifield models with minimal couplings [24, 66, 67]. As shown in Refs. [1, 2],

these attractor models therefore predict robust, resonant amplification of fluctuations across wide

regions of parameter space.

Within a single-field attractor, both the field-space metric, GIJ , and the mass-squared tensor,

MIJ of Eq. (18), become effectively diagonal. Upon rotating ϕI → ϕI′ as needed so that the

attractor lies along the direction χ′ = 0, then Gφ′χ′ ∼ Gφ′χ′ ∼ 0 and Mφ′

χ′ ∼Mχ′

φ′ ∼ 0. As we will

see in Section IV, this feature greatly simplifies the analysis of the fluctuations. Given that we may

always perform such a field-space rotation, for most of the following analysis we restrict attention

to cases in which the attractor lies along the direction χ = 0, with no loss of generality. In Section

IV C we demonstrate that our results remain robust even for cases in which the attractor lies along

some other direction θ in field space.

B. End of Inflation and Effective Equation of State

Within the single-field attractor, we may readily study how φ(tend) depends on the coupling

constants. First we note that in the single-field attractor (assumed to lie along a χ = 0 valley),

the evolution of φ(t) becomes independent of λχ, g, and ξχ. Furthermore, we may rescale t →

τ ≡
√
λφ t without affecting the dynamics: N =

∫
Hdt =

∫
Hdτ remains unchanged, as does
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FIG. 8: Within the single-field attractor, the value of φ(tend) depends only on ξφ. The blue curve shows

the numerical evaluation of φ(tend) (in units of Mpl), while the red dashed curve shows 0.8/
√
ξφ.

ε = −H′/H2 = −Ḣ/H2 (where H ≡ a′/a and primes denote d/dτ). Therefore φ(τend) = φ(tend).

Thus in the single-field attractor, the value of φ at the end of inflation depends only on ξφ. In the

limit ξφ � 1, we expect inflation to end when ξφφ
2(tend) ' M2

pl, which is indeed the behavior we

observe. As shown in Fig. 8, φ(tend) is very well fit by φ(tend) = 0.8Mpl/
√
ξφ for ξφ ≥ 1, whereas

φ(tend) → 2.1 Mpl in the limit ξφ � 1, approaching the result of a minimally coupled φ4 model.

The value φ(tend) sets the initial amplitude of oscillations at the start of preheating.

We may estimate the effective equation of state during the preheating phase by using the virial

theorem [102]. The total kinetic energy for the system (to background order) is [44]

1

2
σ̇2 ≡ 1

2
GIJ ϕ̇I ϕ̇J , (40)

and the energy density and pressure are given by

ρ =
1

2
σ̇2 + V (ϕI),

p =
1

2
σ̇2 − V (ϕI).

(41)

If we assume an equation of state of the form p = wρ, then we find

w =
σ̇2 − 2V

σ̇2 + 2V
(42)

to background order. Using Eqs. (16), (40), and (41), we may rewrite Eq. (22) as ε = 3σ̇2/(σ̇2 +

2V ). At tend, before the oscillations have begun, we have ε = 1 and therefore w = −1/3, indepen-

dent of couplings.

To estimate w once the background fields begin to oscillate, we define a covariant expression
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for the virial, q,

q ≡ GIJ ϕ̇IϕJ . (43)

Upon using ∂GIJ/∂t = (∂KGIJ)ϕ̇K and the usual relations among the Christoffel symbols ΓIJK ,

we find

q̇ = σ̇2 − V,JϕJ +
1

2
(∂KGIJ) ϕ̇I ϕ̇JϕK . (44)

Eq. (44) is analogous to applications of the virial theorem in general relativity, in which corrections

to the Newtonian result enter as gradients of the metric components [103]. For trajectories within

the single-field attractor (with χ ∼ χ̇ ∼ 0), we have σ̇2 ' Gφφφ̇2 and Eq. (44) becomes

q̇ ' σ̇2

[
1 +

1

2
φ∂φ lnGφφ

]
− V,JϕJ . (45)

From Eqs. (4) and (20), we further find

V,Jϕ
J = 2M2

pl

V

f
, (46)

where f is the nonminimal-coupling function of Eq. (19). Upon time-averaging over several

oscillations we have 〈q̇〉 = 0, and hence

〈σ̇2〉+
1

2
〈σ̇2 · φ∂φ lnGφφ〉 = 2M2

pl〈V/f〉, (47)

where the second term on the left-hand side is the contribution of the stretched field-space manifold.

The equation of state can be calculated by noting that energy conservation requires (if one neglects

Hubble friction)

σ̇2 + 2V = 2Vmax, (48)

which allows Eq. (42) to be written solely in terms of φ and not φ̇.

After tend, φ(t) begins to oscillate with an initial amplitude φ(tend) ∼ Mpl/
√
ξφ for ξφ & 1;

at later times, its amplitude falls due to both the expansion of the universe and the transfer of

energy to decay products. Fig. 9 shows the equation of state wavg calculated by solving the

background evolution and averaging Eq. (42) over several oscillations of φ(t), starting at the end

of inflation, when w = −1/3. We see that for large nonminimal couplings, the equation of state

spends more time around wavg ≈ 0, as the universe continues to expand, while eventually reaching

wavg = 1/3 at late times. Early in the oscillation phase, in other words, the conformal stretching

of the Einstein-frame potential makes the background field behave more like a minimally coupled



20

FIG. 9: The equation of state, w from Eq. (42), averaged over several oscillations of φ(t), as a function of
efolds, N , after the end of inflation. From bottom to top: ξφ = 104 (orange dotted line), ξφ = 103 (brown

dashed line), ξφ = 102 (black line), ξφ = 10 (red dashed line), ξφ = 1 (blue short-dashed line), and ξφ = 0.1
(green dotted line). All simulations used ξχ = 0.8 ξφ, λχ = 1.25 λφ, and g = λφ. Initial conditions at the

start of inflation were set as θ0 = arctan(χ0/φ0) = π/6; in each case, the fields settled into the single-field
attractor along χ ∼ 0 before the end of inflation.

field in a quadratic potential, V (φ) = 1
2m

2φ2, than a quartic potential, V (φ) = λ
4φ

4. At late

times, however, the system behaves like radiation, as in the minimally coupled case. Calculated to

background order, wavg reaches 1/3 within several efolds after the end of inflation across the range

10−1 ≤ ξφ ≤ 104.

C. Background-Field Oscillations

To facilitate comparison with the well-studied case of a minimally coupled field with quartic

self-coupling, in this subsection we neglect Hubble expansion during the oscillating phase. This

approximation becomes more reliable as the frequency of oscillation ω grows significantly larger

than H; in our case, we find a modest separation of time-scales, with ω/H > 1 across a wide range

of ξφ. (One may incorporate effects from the expansion of the universe perturbatively [104], though

the H ∼ 0 limit will suffice for our purposes here.)

Within the single-field attractor, in the limit H → 0 and neglecting backreaction from produced

particles, Eq. (15) becomes

φ̈+ Γφφφφ̇
2 + GφφV,φ ' 0. (49)

We rescale τ ≡
√
λφ t, so that the dynamics depend only on ξφ. After τend, φ(τ) oscillates
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FIG. 10: (Left) The period of φ(τ)’s oscillations, T (in units of Mpl), as a function of ξφ, within the
single-field attractor. For large ξφ, T grows linearly with ξφ, asymptoting to T → 14.8ξφ/Mpl (red dashed
line). (Right) The ratio of the frequency of φ’s oscillations, ω = 2π/T , to the Hubble scale at the end of

inflation, H(tend). For large ξφ, both ω and H(tend) scale as 1/ξφ, yielding ω/H(tend) ' 4.

periodically with period given by

T = 2

∫ φ0

−φ0
dφ

√
Gφφ

2V (φ0)− 2V (φ)
. (50)

(In this subsection we label φ0 = φ(τend) as the amplitude of the field at the start of preheating,

rather than the start of inflation.) As shown in Fig. 10, the period scales approximately linearly

with ξφ for ξφ > 1, and hence the frequency of oscillations ω = 2π/T scales like 1/ξφ. The

Hubble scale at the end of inflation H(tend) also scales like 1/ξφ in the limit of large ξφ. We find

ω/H(tend) > 1 across the entire range 10−3 ≤ ξφ ≤ 103, with ω/H(tend) ∼ 3 at ξφ = 1 and

ω/H(tend)→ 4 for ξφ � 1.

In the limit ξφ � 1, the integral for T in Eq. (50) may be calculated analytically. For initial

data of the form φ0 = φ(τend) = αMpl/
√
ξφ for some constant α, and working in the regime

α > 1/
√

6ξφ, we find

T →
4
√

3 ξφ
Mpl

[
π − arctan

(√
1 + 2α2

α2

)]
1 + α2

√
1 + 2α2

. (51)

Details of the derivation may be found in Appendix B. Using the best-fit value α = 0.8 (see Fig. 8)

yields T → 14.8 ξφ/Mpl in the limit ξφ � 1. Meanwhile, in the opposite limit, ξφ → 0, Eq. (49) may

be solved analytically as a Jacobian elliptic cosine, given the Jordan-frame potential of Eq. (20):

φ(t) = φ0 cn(φ0τ, 1/
√

2) [105–107]. The function cn (x, κ) is periodic with period 4K(κ), where

K(κ) is the complete elliptic integral of the first kind [108]. Given κ = 1/
√

2 and φ0 = 2.1Mpl for

ξφ = 0, we find T → 4K(1/
√

2)/φ0 = 3.9/Mpl, a good match to the ξφ � 1 behavior of Fig. 10.

More generally, the terms in Eq. (49) that arise from the nontrivial field-space metric produce

a richer structure for φ’s oscillations, with greater numbers of non-negligible harmonics, compared
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to the ξφ = 0 case. In Ref. [1] we study this nontrivial harmonic structure and analyze its impact

on the structure of the resonances for the coupled fluctuations.

IV. EVOLUTION OF THE FLUCTUATIONS

In order to study the evolution of the fluctuations QI during preheating, we expand the action

to second order in both field and metric perturbations, calculate the energy density, and perform

a (covariant) mode expansion. These steps enable us to relate the number density of particles

for each species to an adiabatic parameter, generalizing the usual single-field expression. The

adiabatic parameters may be used to identify regions of parameter space in which the system

departs strongly from adiabatic evolution, indicating explosive particle production. We identify

important differences in the behavior of the system for three distinct regimes: ξI < O(1), ξI ∼

O(1−10), and ξI ≥ O(100), which we explore further in Refs. [1, 2]. These three regimes correspond

to what one might expect, a priori, on perturbative grounds: ξI → 0 (semiclassical analysis), ξI ∼ 1

(nontrivial quantum corrections), and ξI →∞ (nonperturbative regime).

A. Mode Expansion and Adiabatic Parameters

Following the method of Ref. [84] applied to the action in Eq. (3), we may expand the action

to second order in the doubly-covariant fluctuation QI . We find (see also Refs. [44, 68, 82])

S
(Q)
2 =

∫
d3x dt a3(t)

[
−1

2
ḡµνGIJDµQIDνQJ −

1

2
MIJQ

IQJ
]
, (52)

where ḡµν is the background spacetime metric, MIJ is given in Eq. (18), and GIJ and MIJ

are evaluated to background order in the fields, ϕI . Next we rescale the fluctuations, QI(xµ) →

XI(xµ)/a(t) and introduce conformal time, dη = dt/a(t), so that the background spacetime line-

element may be written ds2 = a2(η) ηµνdx
µdxν , in terms of the Minkowski spacetime metric ηµν .

Upon integrating by parts, we may rewrite Eq. (52) in the form

S
(X)
2 =

∫
d3x dη

[
−1

2
ηµνGIJDµXIDνXJ − 1

2
MIJX

IXJ

]
(53)

where

MIJ ≡ a2

(
MIJ −

1

6
GIJR

)
(54)

and R is the spacetime Ricci scalar. We have used the relation R = 6a′′/a3, and in this section we

will use primes to denote d/dη. Note that for an equation of state wavg ' 0 then a(t) ∼ t2/3 and

a(η) ∼ η2, while for wavg = 1/3 then a(t) ∼ t1/2 and a(η) ∼ η.
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From Eq. (53) we may construct an energy-momentum tensor for the fluctuations,

T (X)
µν = GIJDµXIDνXJ − 1

2
ηµν

[
ηαβGIJDαXIDβXJ + MIJX

IXJ
]
. (55)

The energy density is given by the 00 component of T
(X)
µν . The background spacetime metric

is spatially flat, so we may easily perform a Fourier transform of a given quantity, F (xµ) =

(2π)−3/2
∫
d3k Fk(η)eik·x. The energy density of the fluctuations per Fourier mode then takes

the form

ρ
(X)
k =

1

2
GIJDηXI

kDηXJ
k +

1

2

[
ω2
k(η)

]
IJ
XI
kX

J
k +O(X3), (56)

where we have defined

[
ω2
k(η)

]
IJ
≡ k2GIJ + MIJ . (57)

Upon using the equation of motion for QI , Eq. (17), and the relation QI = XI/a, we may rewrite

Eq. (56) in the form

ρ
(X)
k =

1

2
GIJ

[(
DηXI

) (
DηXJ

)
−
(
D2
ηX

I
)
XJ
]
. (58)

Next we quantize the fluctuations, XI → X̂I , and expand them in a series of creation and

annihilation operators in a way that respects the nontrivial field-space manifold [24, 109],

X̂I(xµ) =

∫
d3k

(2π)3/2

∑
b

[
uIb(k, η) âkb e

ik·x + uI∗b (k, η) â†kb e
−ik·x

]
, (59)

where the index b = 1, 2, ..., N . The operators obey

âkb|0〉 = 0, 〈0|â†kb = 0 (60)

for all k and b, and [
âkb, âqc

]
=
[
â†kb, â

†
qc

]
= 0,[

âkb, â
†
qc

]
= δ(3)(k− q)δbc.

(61)

Each of the mode functions satisfies the equation of motion,

D2
ηu

I
b +

[
ω2
k(η)

]I
J
uJb = 0. (62)

As discussed in Ref. [24], we have N linear, second-order differential equations (one for each

X̂I), which yield 2N linearly independent solutions. By parameterizing the fluctuations as in Eq.

(59), we have introduced N2 complex mode functions u Ib (k, η), and hence 2N2 real-valued scalar
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functions, u Ib = Re
[
u Ib
]

+ Im
[
u Ib
]
. But N -tuples of the complex mode functions are coupled to

each other by Eq. (62), which yields 2N(N−1) constraints, leaving exactly 2N2−2N(N−1) = 2N

independent solutions.

We parameterize the mode functions as [24, 109]

uIb(k, η) = h(b,I)(k, η) e Ib (η), (63)

where the h(b,I) are complex scalar functions and the e Ib (η) are vielbeins of the field-space metric,

δbce Ib (η)e Jc (η) = GIJ(η). (64)

Note that the components of the vielbeins are purely real, and, unlike the unit vectors σ̂I , ŝI defined

in Eq. (30), the e Ib are well-behaved during preheating. (Explicit expressions for the e Ib for our

two-field model may be found in Appendix A.) The subscripts (b, I) on h are labels only, not vector

indices. We then find

〈0|X̂I(x)X̂J(x)|0〉 =

∫
d3k

(2π)3
δbcu Ib u

J∗
c , (65)

upon using Eqs. (60), (61), and (64). As emphasized in Refs. [24, 29], the cross products, with

I 6= J , need not vanish.

The vielbeins “absorb” most of the added structure from the nontrivial field-space manifold,

enabling us to manipulate (mostly) ordinary scalar functions. As usual, we raise and lower field-

space indices I, J with GIJ , and we raise and lower internal indices b, c with δbc. We may also use

the vielbeins to “trade” between field-space indices and internal indices. For an arbitrary vector

AI we may write

Ab = ebIA
I , AI = e Ib A

b, (66)

while Eq. (64) implies

ebIe
I
c = δbc,

e Ib e
b
J = δIJ .

(67)

The covariant derivative of the vielbein with respect to GIJ is given in terms of the spin connection,

ωbcI ,

DIebJ = −ωbcIecJ , (68)

where ωbcI is antisymmetric in its internal indices, ωbcI = −ωcbI [110]. Because of the antisymme-

try of the spin connection, the (covariant) directional derivative with respect to conformal time
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vanishes,

DηebJ = 0 (69)

for all b and J [109].

For our two-field model, with {I, J} = {1, 2}, we may write out the mode expansions more

explicitly. We assign the field-space indices 1 = φ and 2 = χ and write âkb = b̂k for b = 1, âkb = ĉk

for b = 2. We also label h(1,φ) = vk(η), h(2,φ) = wk(η), h(1,χ) = yk(η), and h(2,χ) = zk(η), so that

Eq. (59) becomes

X̂φ(xµ) =

∫
d3k

(2π)3/2

[(
vke

φ
1 b̂k + wke

φ
2 ĉk

)
eik·x +

(
v∗ke

φ
1 b̂
†
k + w∗ke

φ
2 ĉ
†
k

)
e−ik·x

]
,

X̂χ(xµ) =

∫
d3k

(2π)3/2

[(
yke

χ
1 b̂k + zke

χ
2 ĉk

)
eik·x +

(
y∗ke

χ
1 b̂
†
k + z∗ke

χ
2 ĉ
†
k

)
e−ik·x

]
.

(70)

Eq. (62) couples vk with yk and wk with zk:(
v′′k + Ω2

(φ)vk

)
eφ1 = −a2Mφ

χyke
χ
1 ,(

w′′k + Ω2
(φ)wk

)
eφ2 = −a2Mφ

χzke
χ
2 ,(

y′′k + Ω2
(χ)yk

)
eχ1 = −a2Mχ

φvke
φ
1 ,(

z′′k + Ω2
(χ)zk

)
eχ2 = −a2Mχ

φwke
φ
2 ,

(71)

where for convenience we have labeled the diagonal components of [ω2
k(η)]IJ as

Ω2
(φ)(k, η) ≡ k2 + a2m2

eff,φ(η),

Ω2
(χ)(k, η) ≡ k2 + a2m2

effχ(η),
(72)

in terms of the effective masses

m2
eff,φ ≡M

φ
φ −

1

6
R,

m2
eff,χ ≡Mχ

χ −
1

6
R.

(73)

We are interested in the energy density per mode k of the quantized fluctuations, which we

parameterize as

〈ρ̂(X)(xµ)〉 =

∫
d3k

(2π)3
ρ

(X)vev
k (η). (74)

Upon using Eqs. (58), (65), and (69) we find

ρ
(X)vev
k =

1

2
GIJ

∑
b

∑
c

{
δbc
[
h′(b,I)h

∗′
(c,J) − h

′′
(b,I)h

∗
(c,J)

]
e Ib e

J
c

}
= ρ

(φ)
k + ρ

(χ)
k + ρ

(int)
k ,

(75)
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with

ρ
(φ)
k =

1

2
Gφφ
{(
|v′k|2 − v′′kv∗k

)
eφ1e

φ
1 +

(
|w′k|2 − w′′kw∗k

)
eφ2e

χ
2

}
,

ρ
(χ)
k =

1

2
Gχχ

{(
|y′k|2 − y′′ky∗k

)
eχ1e

χ
1 +

(
|z′k|2 − z′′kz∗k

)
eχ2e

χ
2

}
ρ

(int)
k = Gφχ

{(
v′ky
∗′
k − v′′ky∗k

)
eφ1e

χ
1 +

(
y′kv
∗′
k − y′′kv∗k

)
eχ1e

φ
1

+
(
w′kz

∗′
k − w′′kz∗k

)
eφ2e

χ
2 +

(
z′kw

∗′
k − z′′kw∗k

)
eχ2e

φ
2

}
.

(76)

One may use the equations of motion in Eq. (71) to demonstrate that the expressions in Eq. (76)

are purely real. The number density per mode of quanta of a given field I (φ or χ) may be related

to the energy density by

n
(I)
k =

ρ
(I)
k

Ω(I)
− 1

2
. (77)

The number density per mode for each species I = φ, χ will be well-defined in the limit ρ
(int)
k � ρ

(I)
k .

We noted in Section III A that within a single-field attractor (along the direction χ = 0), the

cross-terms in both GIJ and MI
J vanish. In that case, the vielbeins also become diagonal,

eIb →

 eφ1 0

0 eχ2

 , (78)

with eφ2 ∼ eχ1 ∼ 0, eφ1e
φ
1 ' Gφφ, eχ2e

χ
2 ' Gχχ, and GφφGφφ = GχχGχχ = 1 + O(χ2). Then the

fluctuations X̂I simplify considerably: X̂φ is expanded only in the b̂k, b̂
†
k operators, and X̂χ only

in the ĉk, ĉ
†
k operators. Given both Mφ

χ ∼Mχ
φ ∼ 0 and eφ2 ∼ eχ1 ∼ 0, moreover, the scalar mode

functions decouple: the functions vk(η) and zk(η) satisfy source-free equations of motion, while

wk(η) ∼ yk(η) ∼ 0. Within the attractor, the expressions in Eq. (76) simplify as well:

ρ
(φ)
k → 1

2

(
|v′k|2 − v′′kv∗k

)
+O(χ2),

ρ
(χ)
k → 1

2

(
|z′k|2 − z′′kz∗k

)
+O(χ2),

ρ
(int)
k → O(χ2) ∼ 0.

(79)

Since ρ
(int)
k remains subdominant within the single-field attractor, the notion of particle number

for each species is well-defined in that limit, and we may relate ρ
(φ)
k and ρ

(χ)
k to the corresponding

number densities of produced particles.

To calculate the number density of created particles and relate those expressions to adiabatic

parameters, we generalize the familiar result from studies of single-field models with minimal
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couplings. (See also Refs. [66, 111–113].) Within the single-field attractor, the coupled equations

of motion in Eq. (71) reduce to

v′′k + Ω2
(φ)(k, η) vk ' 0,

z′′k + Ω2
(χ)(k, η) zk ' 0.

(80)

We are interested in how efficiently the background fields ϕI transfer energy to the fluctuations

after the end of inflation, so we quantize the fluctuations with respect to the adiabatic vacuum

|0(tend)〉, that is, the state that instantaneously minimizes the system’s energy density at tend

[24, 37, 39]. We then posit solutions to Eq. (80) of the form

vk(η) =
1√

2W(φ)(k, η)
exp

[
−i
∫ η

dη′W(φ)(k, η
′)

]
,

zk(η) =
1√

2W(χ)(k, η)
exp

[
−i
∫ η

dη′W(χ)(k, η
′)

]
,

(81)

in terms of the (as yet unspecified) real-valued functions W(I)(k, η). The choice of adiabatic vac-

uum corresponds to the boundary conditions W(φ)(k, ηend) = Ω(φ)(k, ηend) and W(χ)(k, ηend) =

Ω(φ)(k, ηend). Given the ansatz in Eq. (81), the expressions in Eq. (76) for the energy density per

mode take the form

ρ
(φ)
k =

1

2

[
W(φ) +

W ′′(φ)

4W 2
(φ)

−
W ′2(φ)

4W 3
(φ)

]
+O(χ2), (82)

and likewise for ρ
(χ)
k in terms of W(χ) and its derivatives.

Within the single-field attractor, when ρ
(int)
k ∼ 0 and ρ

(φ)
k and ρ

(χ)
k assume the simple forms in

Eq. (79), the number densities in Eq. (77) likewise simplify. We may also use Eq. (80) to relate

W(φ)(k, η) to Ω(φ)(k, η), which yields

W 2
(φ) = Ω2

(φ) −
1

2

[
W ′′(φ)

W(φ)
− 3

2

W ′(φ)

W 2
(φ)

]
. (83)

Away from resonance bands we expect the modes to evolve adiabatically, for which W(φ)(k, η) →

Ω(φ)(k, η) +O(A2
(φ)), where

A(φ)(k, η) ≡
Ω′(φ)(k, η)

Ω2
(φ)(k, η)

. (84)

As in Ref. [37], we may then solve Eq. (83) iteratively, in increasing powers of A(φ). Combining

Eqs. (82) - (84), we find

n
(φ)
k =

1

16
A2

(φ) +O(χ2) +O(A3
(φ)), (85)
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with a comparable expression for n
(χ)
k . Much as in familiar cases with minimally coupled fields [24,

66, 111, 112], regions of parameter space in which A(I)(k, η)� 1 correspond to strong departures

from adiabatic evolution, and hence to bursts of particle production.

B. Resonant Amplification within the Attractor

The behavior of the adiabatic parameters, A(I)(k, η), depends upon the effective frequencies,

Ω(I)(k, η), which in turn depend upon the effective masses, m2
eff,I , defined in Eq. (73). After the

end of inflation, as ϕI(t) oscillates, one or more of the m2
eff,I will oscillate as well, which can drive

resonant amplification of the coupled fluctuations, Q̂I . We may rewrite Eq. (84) in terms of cosmic

time rather than conformal time,

A(I) =
H−3∂tm

2
eff,I + 2(meff,I/H)2

2 [`2 + (meff,I/H)2]3/2
, (86)

where ` ≡ kphys/H = k/(aH). In the limit `� 1, we find

A(I) =
∂tm

2
eff,I

2m3
eff,I

+
H

meff,I
+O(`2). (87)

In the limit k � aH, we expect |A(I)| � 1 whenever ∂tm
2
eff,I spikes and/or m2

eff,I passes through

zero.

Given the form of Eq. (73), we may distinguish four separate contributions to m2
eff,φ:

m2
eff,φ = m2

1,φ +m2
2,φ +m3

3,φ +m2
4,φ, (88)

where

m2
1,φ ≡ GφK (DφDKV ) ,

m2
2,φ ≡ −R

φ
LMφϕ̇

Lϕ̇M ,

m2
3,φ ≡ −

1

M2
pla

3
δφIδ

J
φDt

(
a3

H
ϕ̇I ϕ̇J

)
,

m2
4,φ ≡ −

1

6
R,

(89)

with comparable expressions for the contributions to m2
eff,χ. Note that m2

1,I arises from the gra-

dient of the potential; m2
2,I from the nontrivial field-space manifold; m2

3,I from the coupled metric

perturbations; and m2
4,I from the expansion of the background spacetime. The term m2

2,I , in par-

ticular, has no analogue in models with minimally coupled fields and canonical kinetic terms, and

can play important roles in the dynamics during and after inflation [44–47, 80–85, 114, 115].
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We first note that

m2
4,I = −1

6
R = −

(
Ḣ + 2H2

)
= (ε− 2)H2. (90)

We observed in Section III B that ε = 3σ̇2/(σ̇2 + 2V ), so 0 ≤ ε ≤ 3, and hence m2
4,I/H

2 = O(1)

regardless of the couplings and of the motion of the background fields ϕI . Within the single-field

attractor (with χ ∼ χ̇ ∼ 0), many of the other terms in Eq. (89) also become negligible. In

particular,

Gφχ ∼ Gφχ ∼ O(χ) ∼ 0,

Γφφχ ∼ Γχφφ ∼ Γχχχ ∼ O(χ) ∼ 0,

V,χ ∼ V,φχ ∼ O(χ) ∼ 0.

(91)

Upon using the expressions for GIJ , ΓIJK , and RILMJ in Appendix A, we then find

m2
1,φ = Gφφ

[
V,φφ − ΓφφφV,φ

]
+O(χ2),

m2
2,φ = O(χχ̇) ∼ 0,

m2
3,φ = −

Gφφ
M2

pl

[
(3 + ε)φ̇2 +

2

H
φ̇φ̈

]
+O(χχ̇),

m2
1,χ = Gχχ

[
V,χχ − ΓφχχV,φ

]
+O(χ2),

m2
2,χ =

1

2
R Gφφφ̇2 +O(χχ̇),

m2
3,χ = O(χχ̇) ∼ 0.

(92)

The R in m2
2,χ is the Ricci curvature scalar of the field-space manifold, an explicit expression for

which may be found in Eq. (110) in Appendix A.

As shown in Fig. 11, there exist three distinct regimes of interest, depending on whether ξI <

O(1), ξI ∼ O(1− 10), or ξI ≥ O(100). Both m2
eff,φ and m2

eff,χ develop increasingly sharp features

with increasing ξI , an effect studied in Ref. [56] and futher explored in Refs. [1, 2]. These sharp

features lead to spikes in ∂tm
2
eff,I (and hence in A(I)) for both adiabatic and isocurvature modes for

ξI ≥ O(100), yielding efficient particle production in that limit. Other effects are notable in Fig. 11.

For example, for the adiabatic modes, the term arising from the coupled metric perturbations,

m2
3,φ, becomes increasingly important as ξI becomes large, periodically driving m2

eff,φ < 0 and

hence yielding brief, tachyonic bursts of particle production, an effect we study in more detail in

Ref. [2].

On the other hand, for intermediate values of the nonminimal couplings, ξI ∼ O(10), we see

that m2
eff,χ neither becomes sharply peaked nor oscillates to zero. In the intermediate regime,



30

���×��� ���×��� ���×��� ���×��� ���×���
�

����

����

����

����

����

�����ϕ
�/��

���×��� ���×��� ���×��� ���×��� ���×���
�

���

����

����

����

����

����

�����χ
�/��

������ ������ ������ ������
�

����

����

����

����

����

�����ϕ
�/��

������ ������ ������ ������
�

����

����

����

����

�����χ
�/��

������ ������ ������ ������ ������ ������
�

-����

����

����

�����ϕ
�/��

������ ������ ������ ������ ������ ������
�

�����

������

������

������

������

������

�����χ
�/��

FIG. 11: The contributions to m2
eff,φ (left) and m2

eff,χ (right) as functions of t; inflation ends and

preheating begins at t = 0. In each plot, we show the individual contributions to m2
eff,I : m

2
1,I (blue) arising

from the potential; m2
2,I (gold) arising from the curved field-space manifold; m2

3,I (green) arising from the

coupled metric perturbations. The contribution m2
4,I is not plotted (since it remains so small), though it is

included numerically in our solutions for m2
eff,I/H

2 (red dashed). For each plot, we fix
√
λφ/ξφ = 10−4,

ξχ/ξφ = 0.8, λχ/λφ = 1.25, and g/λφ = 2, and vary ξφ: ξφ = 0.1 (top); ξφ = 10 (middle); ξφ = 100
(bottom). The quantity m2

eff,I/H
2 grows over time because H(t) falls after the end of inflation.

therefore, we expect suppressed amplification of the isocurvature modes. We may understand this

suppression analytically. Along the isocurvature direction, m2
2,χ ∝ φ̇2 may become comparable in

magnitude, but opposite in phase, to m2
1,χ ∝ φ2 depending on the magnitude of ξI . For ξI < 1, we
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may expand

m2
1,χ =

gM2
pl

ξφ
δ2

[
1− δ2

(
1 +

λφ
g

(2− ε)
)]

+O(ξ2
I ), (93)

where δ2 is defined in Eq. (24) and the eccentricity ε is defined in Eq. (27). In the same limit, we

have

m2
2,χ =

(
φ̇2

M4
pl

)
[ξφ + ξχ] +O(ξ2

I ). (94)

For an order-of-magnitude estimate in this limit, we may approximate φ̇2 ∼ ω2φ2 and use our

results from Section III C. For ξI ∼ 0.1, we have ω = 2π/T → (2π/3.9)
√
λφMpl and hence

m2
2,χ

m2
1,χ

∼
λφ
g

(ξφ + ξχ) +O(ξ2
I ). (95)

For ξI < 1, we therefore find a clear separation of scales, m2
2,χ � m2

1,χ. In that limit, m2
eff,χ passes

near zero as the background field φ(t) oscillates, as shown in Fig. 11b. For ξI ∼ 10, however, we

find

m2
1,χ = −

Λφ
ξ2
φ

M2
pl

(
δ2

1 + δ2

)
+O(ξ−2

I ), (96)

where Λφ is defined in Eq. (27). For ξI ∼ 10, the parameter δ2 ∼ O(1) at the end of inflation.

Upon using Eq. (110), we find

m2
2,χ =

6ξφξχ

M2
pl

φ̇2 +O(ξI). (97)

Again making use of our results in Section III C to replace φ̇2 ∼ ω2φ2, now with ξI ∼ 10, we have

ω = 2π/T → (2π/14.8)
√
λφMpl/ξφ, which yields

m2
2,χ

m2
1,χ

∼
λφξχ
|Λφ|

∼ O(1). (98)

Therefore we do indeed expect m2
1,χ and m2

2,χ to remain comparable in magnitude but opposite

in phase for ξI ∼ O(10). In that case, m2
eff,χ never passes through zero, as shown in Fig. 11d.

Meanwhile, for ξI ≥ O(100), the oscillations of φ(t) become sufficiently different from the near-

harmonic case that φ̇2 � ω2φ2 [1, 2, 56], and we find that m2
2,χ � m2

1,χ, as shown in Fig. 11f. The

intermediate-ξI regime is thus characterized by efficient growth of adiabatic perturbations, with

|A(φ)| > 1, but suppression of isocurvature perturbations, with |A(χ)| < 1, as shown in Fig. 12.
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FIG. 12: The adiabatic parameters A(φ) (blue) and A(χ) (gold) for k � aH and ξφ = 10, with the ratios
of couplings as in Fig. 11. In the intermediate regime, with ξI ∼ O(10), adiabatic perturbations are

amplified while isocurvature modes are suppressed.

C. Rotating the Field-Space Coordinates

Now consider what happens when we change the couplings so that the single-field attractor lies

along some distinct direction in field space. For example, we may select the couplings

λχ
λφ

= 1.25,
g

λφ
= −1/2,

ξχ
ξφ

= 0.8. (99)

For minimally coupled models, g < 0 leads to an explosive “negative coupling instability” for

long-wavelength modes [116, 117]. In the presence of nonminimal couplings, however, at least for

|g| ∼ O(λφ), the effect of the negative coupling is to rotate the orientation of the valley of the

potential away from the direction χ = 0. See Fig. 13. With the fields’ motion “misaligned”

with respect to the original axes of our field-space coordinate system, we find suppression of the

resonances along both of the original axes, since in this case m2
2,I remains comparable in magnitude

(but opposite in phase) with m2
1,I for both m2

eff,φ and m2
eff,χ. See Fig. 14. Therefore both A(φ) and

A(χ) remain O(1), as shown in Fig. 15.

However, as Fig. 13 makes clear, in this case the fields still evolve within a single-field attractor.

We may parameterize the motion by a single angle, θ ≡ arctan(χ/φ), which, following an initial

transient, does not vary over time (even after the end of inflation). That is, when plotted in the

original coordinate system, the background fields’ motion obeys

φ(t) = r(t) cos θ, χ(t) = r(t) sin θ. (100)

We may then perform a rotation of our coordinates in field space so that the single-field attractor

lies along the χ̄ direction, with all motion of the background fields along the φ̄ axis. (In this
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FIG. 13: For some choices of the coupling constants, the background fields evolve along a single-field
trajectory at some angle θ that does not coincide with either the φ or χ axes. Shown here is the case for

ξχ/ξφ = 0.8, λχ/λφ = 1.25, g/λφ = −1/2, with ξφ = 10, λφ = 10−6. The angle, θ = arctan(χ/φ), is
independent of time during as well as after inflation.
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FIG. 14: (Left) The terms m2
1,φ (blue) and m2

2,φ (gold) compared to m2
eff,φ (red dashed) for ξφ = 10,

g = −1/2, and the other couplings as in Eq. (99). When plotted with respect to the original coordinate
bases, m2

eff,φ no longer oscillates through zero. (Right) The terms m2
1,χ (blue) and m2

2,χ (gold) compared to

m2
eff,χ (red dashed) for ξφ = 10, g = −1/2, and the other couplings as in Eq. (99).

subsection we denote the rotated coordinate system with an overbar rather than a prime, to avoid

confusion with derivatives, d/dη.) Hence we may write

φ̄ = φ cos θ + χ sin θ,

χ̄ = χ cos θ − φ sin θ.
(101)

Components of the tensor [ω2
k]
I
J transform in the usual way under this coordinate transformation:

[
ω̄2
k

]I
J

=

(
∂ϕ̄I

∂ϕK

)(
∂ϕL

∂ϕ̄J

)[
ω2
k

]K
L
. (102)
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FIG. 15: The adiabatic parameters A(φ) and A(χ) for the original coordinate bases, with ξφ = 10,

g = −1/2, and the other couplings as in Eq. (99). Because m2
2,I remains comparable in magnitude but

opposite in phase to m2
1,I , neither A(φ) nor A(χ) grows much larger than 1.

In particular, we find

[
ω̄2
k

]φ
φ

= cos2 θ
[
ω2
k

]φ
φ

+ sin θ cos θ
([
ω2
k

]χ
φ

+
[
ω2
k

]φ
χ

)
+ sin2 θ

[
ω2
k

]χ
χ
,[

ω̄2
k

]χ
χ

= cos2 θ
[
ω2
k

]χ
χ
− sin θ cos θ

([
ω2
k

]φ
χ

+
[
ω2
k

]χ
φ

)
+ sin2 θ

[
ω2
k

]φ
φ
.

(103)

When plotted with respect to the rotated coordinate system, we recover the type of behavior

we had found in Section IV B for a single-field attractor along the direction χ = 0. Fig. 16

shows the dominant contributions to m̄2
eff,φ, revealing that in the rotated coordinate system, the

contributions from the field-space manifold become negligible, just as they do for m2
eff,φ when the

single-field attractor lies along the χ = 0 direction (as in Fig. 11). On the other hand, in the

rotated coordinate basis, m̄2
2,χ remains comparable in magnitude to m̄2

1,χ but with opposite phase,

so that m̄2
eff,χ never oscillates through zero (again like the behavior in Fig. 11). Moreover, if we

compute

Ā(I) =
∂tm̄

2
eff,I

2
(
m̄2

eff,I

)3/2
+

H

m̄eff,I
, (104)

we find behavior akin to the original analysis for the χ = 0 attractor, as shown in Fig. 17. Thus we

surmise that within any single-field attractor, in the intermediate regime with ξI ∼ O(10), we find

suppression of the resonances for the isocurvature direction and amplification of the fluctuations

along the adiabatic direction. This general result holds even though the models we consider do not

obey an O(N) symmetry.
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FIG. 16: (Left) The contributions m̄2
1,φ (blue) and m̄2

2,φ (gold) to m̄2
eff,φ (red dashed), upon making the

rotation in field space, for ξφ = 10, g = −1/2, and the other couplings as in Eq. (99). Unlike in Fig. 14,
here we find the contribution from the field-space manifold, m̄2

2,φ, negligible, and hence m̄2
eff,φ ∼ m̄2

1,φ

oscillates through zero. (Right) The contributions m̄2
1,χ (blue) and m̄2

2,χ (gold) to m̄2
eff,χ (red dashed),

upon making the rotation in field space, for ξφ = 10, g = −1/2, and the other couplings as in Eq. (99).
Just as in the case when the single-field attractor lay along the direction χ = 0, in this case we find

m̄2
1,χ ∼ m̄2

2,χ but out of phase with each other, so that m̄2
eff,χ never oscillates through zero.
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FIG. 17: The adiabatic parameters Ā(φ) (blue) and Ā(χ) (gold) with ξφ = 10, g = −1/2, and the other
couplings as in Eq. (99), upon performing the rotation in field space. Here we recover behavior akin to the

original example, when the single-field attractor lay along the direction χ = 0: fluctuations along the
adiabatic direction become strongly amplified, but those in the isocurvature direction do not.

V. CONCLUSIONS

Realistic models of high-energy physics typically include multiple scalar fields, each with its own

nonminimal coupling. In this paper we have demonstrated that preheating after inflation in such

models introduces unique features that are distinct from other well-studied models of preheating.

In particular, nonminimally coupled fields yield a conformally stretched effective potential in

the Einstein frame. In previous work we had highlighted a generic feature that arises from such

conformal stretching, namely, the existence of strong single-field attractor behavior across a wide
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range of couplings and initial conditions [44–47]. Here we have found two main effects related

to the conformal stretching and attractor behavior: the effectively single-field evolution of the

background fields ϕI(t) persists during the oscillatory phase — thereby avoiding the “de-phasing”

that is typical of preheating with minimally coupled scalar fields — and the conformal stretching

of the potential alters the time-evolution of ϕI(t) as the background field(s) oscillate around the

global minimum of the potential.

The persistence of the single-field attractor during the preheating phase leads to efficient transfer

of energy from the background fields to coupled fluctuations. The balance of the transfer to

fluctuations in the adiabatic versus isocurvature directions depends on the nonminimal coupling

constants. We identify here, and study further in Refs. [1, 2], three distinct regimes, depending on

whether ξI < O(1), ξI ∼ O(1− 10), or ξI ≥ O(100). The growth of long-wavelength isocurvature

modes is suppressed for intermediate couplings, ξI ∼ O(10) — a new effect arising entirely from the

nontrivial field-space manifold, which has no analogue in models with minimally coupled fields. In

the large-ξI regime, however, appropriate to such models as Higgs inflation [48], the amplification

of isocurvature modes becomes very efficient [1, 2, 56]. (Naturally, the efficient amplification of

isocurvature perturbations after the end of inflation is quite distinct from the amplification of

isocurvature perturbations during inflation, which is generically suppressed in these models [47].

Modes amplified during inflation would have length-scales today of tens to thousands of Mpc, due

to their exponential stretching during inflation; modes amplified after the end of inflation would

have exponentially shorter length-scales, and would not affect observables such as βiso.)

The efficiency of the reheating stage can have observational consequences, both for the CMB

and for the particle content of the universe. The values of the CMB observables ns and r may

be related to the time N∗, where N∗ is the number of efolds before the end of inflation when

perturbations on CMB-relevant length-scales crossed outside the Hubble radius. For models in the

family we consider here, these relations are given by ns ' 1 − 2/N∗ − 3/N2
∗ and r ' 12/N2

∗ (see,

e.g., Ref. [46]). Depending on how quickly the universe transitions to a radiation-dominated phase

after the end of inflation, the observationally relevant N∗ may vary by as much as 10 efolds (see,

e.g., Ref. [24]), shifting the predictions for r by as much as 30% and for ns − 1 by as much as

10%. Furthermore, different reheating scenarios can yield different reheat temperatures, which can

have other implications, such as washing out lepton or baryon asymmetries that might have been

generated at the end of inflation. Such possibilities make it critical to gain an understanding of

the reheating process following inflation.

In Refs. [1, 2] we exploit the covariant formalism developed here to more thoroughly explore
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the resonance structure in this family of models as functions of wavenumber, k, as well as coupling

constants, ξI , λI , and g. Other effects also deserve further attention. In particular, the conformal

stretching of the potential in the Einstein frame could produce metastable oscillons after inflation.

The formation of such long-lived, topologically metastable objects could become important after

the earliest stages of preheating, impacting the rate at which the system ultimately reaches thermal

equilibrium. These and related nonlinear effects could therefore affect the final reheat temperature

and the expansion history of the universe after inflation [118–121]. These possibilities remain the

subject of further research.

APPENDIX A: FIELD-SPACE METRIC AND RELATED QUANTITIES

Given f(φI) in Eq. (19) for a two-field model, the field-space metric in the Einstein frame, Eq.

(5), takes the form

Gφφ =

(
M2

pl

2f

)[
1 +

3ξ2
φφ

2

f

]
,

Gφχ = Gχφ =

(
M2

pl

2f

)[
3ξφξχφχ

f

]
,

Gχχ =

(
M2

pl

2f

)[
1 +

3ξ2
χχ

2

f

]
.

(105)

The components of the inverse metric are

Gφφ =

(
2f

M2
pl

)[
2f + 6ξ2

χχ
2

C

]
,

Gφχ = Gχφ = −

(
2f

M2
pl

)[
6ξφξχφχ

C

]
,

Gχχ =

(
2f

M2
pl

)[
2f + 6ξ2

φφ
2

C

]
,

(106)

where C(φI) is defined as

C(φ, χ) ≡M2
pl + ξφ(1 + 6ξφ)φ2 + ξχ(1 + 6ξχ)χ2

= 2f + 6ξ2
φφ

2 + 6ξ2
χχ

2.
(107)
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The Christoffel symbols for our field space take the form

Γφφφ =
ξφ(1 + 6ξφ)φ

C
−
ξφφ

f
,

Γφχφ = Γφφχ = −ξχχ
2f

,

Γφχχ =
ξφ(1 + 6ξχ)φ

C
,

Γχφφ =
ξχ(1 + 6ξφ)χ

C
,

Γχφχ = Γχχφ = −
ξφφ

2f
,

Γχχχ =
ξχ(1 + 6ξχ)χ

C
− ξχχ

f

(108)

For two-dimensional manifolds we may always write the Riemann tensor in the form

RABCD =
1

2
R(φI) [GACGBD − GADGBC ] , (109)

where R(φI) is the Ricci scalar. Given the field-space metric of Eq. (105), we find

R(φI) =
1

3M2
plC

2

[
(1 + 6ξφ)(1 + 6ξχ)(4f2)− C2

]
. (110)

For the two-field model, we may also solve explicitly for the vielbeins, eIb , of Eq. (64). Defining

A ≡ C − 6ξ2
φφ

2,

B ≡ C − 6ξ2
χχ

2,

E ≡ C − 3ξ2
φφ

2 − 3ξ2
χχ

2,

F ≡
√

2fC
√
E −

√
2fC

3
√

2Mpl(ξ2
χχ

2 + ξ2
φφ

2)C
,

(111)

then we may satisfy Eq. (64) with

eφ1 = F
(
A+

√
2fC

)
,

eχ1 = −6Fξφξφφχ,

eφ2 = eχ1 ,

eχ2 = F
(
B +

√
2fC

)
.

(112)

We note that within the single-field attractor along the direction χ = 0, eφ2 ∼ eχ1 ∼ 0, eφ1e
φ
1 →

Gφφ +O(χ2), and eχ2e
χ
2 → Gχχ +O(χ2).
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FIG. 18: Period of oscillation, T , rescaled by the nonminimal coupling, in units of (
√
λφMpl)

−1, as a

function of α =
√
ξφ φ0/Mpl for ξ = 10, 102, 103, 104 (from top to bottom). The solid black line shows the

approximate analytic result of Eq. (51), which is derived under the assumption that 6ξφα
2 � 1.

APPENDIX B: PERIOD OF SINGLE-FIELD BACKGROUND OSCILLATIONS

Starting from Eq. (50) and inserting the values of Gφφ and V (φ) the period becomes

T = 4
√

2ξφ

∫ α

0
du

√
1 + 6ξφu2

(1 + u2)

1√
α4

(1+α2)2
− u4

(1+u2)2

(113)

where we made a change of variables u =
√
ξφ φ, and parameterized the maximum field amplitude

as φmax = αMpl/
√
ξφ. By assuming a maximum field amplitude such that 1 < 6ξφα

2 and approx-

imating 1 + 6ξφu
2 ≈ 6ξφu

2, the integral can be performed analytically and the resulting Eq. (51)

shows the linear scaling of the period with ξφ. The limit of this approximation is shown in Fig.

18, where it can be seen that the agreement between Eq. (51) and the exact result is excellent in

the large-ξI limit for α not very small. The region of validity in terms of α increases for larger

values of ξφ, as expected from the condition α > 1/
√

6ξφ used in the derivation of Eq. (51). Fig.

18 shows the period of oscillation for different values of ξI and α.
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