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Compensated isocurvature perturbations are opposite spatial fluctuations in the baryon and dark
matter (DM) densities. They arise in the curvaton model and some models of baryogenesis. While
the gravitational effects of baryon fluctuations are compensated by those of DM, leaving no observ-
able impacts on the cosmic microwave background (CMB) at first order, they modulate the sound
horizon at recombination, thereby correlating CMB anisotropies at different multipoles. As a result,
CIPs can be reconstructed using quadratic estimators similarly to CMB detection of gravitational
lensing. Because of these similarities, however, the CIP estimators are biased with lensing contri-
butions that must be subtracted. These lensing contributions for CMB polarization measurement
of CIPs are found to roughly triple the noise power of the total CIP estimator on large scales. In
addition, the cross power with temperature and E-mode polarization are contaminated by lensing-
ISW (integrated Sachs-Wolfe) correlations and reionization-lensing correlations respectively. For a
cosmic-variance-limited (CVL) temperature and polarization experiment measuring out to multi-
poles lmax = 2500, the lensing noise raises the detection threshold by a factor of 1.5, leaving a 2.7σ
detection possible for the maximal CIP signal in the curvaton model.

I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) have shown that the primordial perturbations in
the Universe are mainly adiabatic [1–3]. These adiabatic
perturbations are representative of single-field inflation,
which gives all particle species the same fractional spatial
fluctuations in their number density. On the other hand,
the isocurvature perturbations arise as the difference be-
tween the fractional perturbations of two species, indica-
tive of additional fields during inflation [4–9]. In partic-
ular, the effective matter to radiation isocurvature mode
has been highly constrained by the Planck mission to be
less than a few percent of the adiabatic mode [2]. Here
the effective matter refers to the combined effect of cold
dark matter (CDM) and baryon fluctuations weighted
according to their energy density.

There is, however, one special class of perturbations
that escapes the effective matter constraint, the com-
pensated isocurvature perturbations (CIPs). In the CIP
mode, the CDM and baryon density fluctuations are
opposite of each other, giving no net gravitational ef-
fects, and hence no effective matter or radiation pertur-
bations [3, 10–13]. CIPs are therefore orthogonal to the
effective matter isocurvature, and evade CMB constraints
on these modes.

CIPs naturally arise in the curvaton model, as well as
some models of baryogenesis [14]. In the curvaton model,
an additional scalar field during inflation – the curvaton
– generates most of the adiabatic perturbations in lieu
of the inflaton [15–17]. Depending on different scenar-
ios, i.e., the epochs when CDM and baryon number are
created relative to the curvaton decay, there would be
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different amounts of CIPs produced. Those CIPs from
the curvaton model would always be correlated with the
adiabatic perturbations [15, 18], and full correlation hap-
pens if the curvaton contribution to adiabatic perturba-
tions is dominant over the inflaton. In the fully correlated
case, the largest CIP has amplitude relative to the adi-
abatic perturbations A ≈ 16.5, within the reach of the
next generation of nearly cosmic-variance-limited (CVL)
CMB experiments [19].

CMB observations are a particularly clean probe for
CIPs as they are not dependent on particular assump-
tions such as galaxy physics. In particular, CIP can be
reconstructed using optimally weighted quadratic com-
binations of the CMB multipoles. Even though CIPs
leave no imprint in the CMB power spectra at first or-
der (with compensating gravitational effects from CDM
and baryons) [10, 17], the baryon density fluctuations still
cause a modulation in the damping scale and sound speed
of the baryon-photon fluid. As a result, the sound hori-
zon at recombination varies spatially, breaking the statis-
tical isotropy of the CMB. This variation correlates tem-
perature and polarization anisotropies of different multi-
pole moments, providing a way for us to reconstruct the
CIPs using quadratic estimators [20, 21]. Constraints
on scale-invariant CIPs from WMAP data were derived
in Ref. [22] using this approach. Other works such as
Refs. [23–25] have used another effect – the smoothing of
the CMB power spectra (second order) to obtain Planck
constraints. These limits are expected to be compara-
ble to quadratic estimator measurements with Planck
data, whereas for the next generation of nearly CVL po-
larization experiments, the quadratic estimator method
will provide the optimal signal-to-noise for constraining
CIPs [23].

Using the quadratic estimator technique, the authors
in Ref. [19] forecasted that a Stage-4 CMB experiment
would be able to detect the maximal CIP scenario of the
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curvaton model at 3σ. This sensitivity relies crucially on
the use of nearly CVL polarization measurements at two
steps: 1) in forming the total CIP estimator, by adding
four more E and B-mode based estimators to the TT
estimator, thereby reducing the estimator noise signifi-
cantly [20] and 2) in cross-correlating the reconstructed
CIP map with T and E-mode polarization, a crucial step
that improves the sensitivity to correlated CIPs by a fac-
tor of 2 to 3 [19].

The above forecast, however, does not include the ef-
fect of gravitational lensing which would also induce cor-
relations between the different CMB multipoles [26]. As
the CIP estimators are designed to be unbiased for Gaus-
sian CMB fields, the non-Gaussian CMB in the presence
of lensing introduces a bias to the CIP estimators that
must be removed with its error budget properly taken
into account. In fact, the lensing bias properties have
been simulated and studied for CIP measurements us-
ing CMB temperature alone, and was shown to degrade
CIP detectability by a factor of 1.3 [27]. A study of the
lensing bias to CMB polarization measurements of CIPs,
however, has yet to be performed.

In this paper, we simulate the lensing bias to the to-
tal CIP estimator, composed of five single estimators –
TT, TE,EE, TB and EB – and evaluate its impact on
the detectability of fully correlated CIPs for a CVL ex-
periment. We find that the B-estimators TB and EB
play a crucial role in reducing the lensing bias in the to-
tal estimator. They are the least contaminated and help
reduce the bias on scales where they dominate the to-
tal estimator. To further exploit this fact, new optimal
weights are derived directly from simulations, reducing
the total estimator noise on scales L & 40.

Despite the reduced bias on smaller scales, the noise
power of the total estimator on large scales is still a fac-
tor of three higher than without lensing contamination.
In the cross-spectrum with CMB E-mode polarization,
we find a contamination coming from the large-scale cor-
relation of reionization and lensing potential through the
TT, TE,EE estimators. In contrast, the B-estimators
TB and EB do not reconstruct a strong lensing sig-
nal as their CIP signal dominates over CMB multipole
pairs where the lensing signal is suppressed. Finally a
similar contribution from lensing to integrated Sachs-
Wolfe (ISW) correlation contaminates the total CIP-
temperature cross spectrum, as was found for the TT
estimator in Ref. [27]. As a result of the lensing bias in
all the CIP auto and cross spectra, the CVL detectability
of correlated CIPs is reduced by factor of 1.5.

More specifically, we simulate 4000 realizations of
lensed CMB temperature and polarization maps and
compute the CIP reconstruction in position space, us-
ing efficient estimator forms given in the Appendix A.
We include no CIP signal in the maps so as to study
the noise properties of the estimator. In order to iso-
late the non-Gaussian contributions of lensing, we also
perform the same reconstruction on 4000 realizations of
Gaussian CMB maps. We find that both with or without

lensing, the noise in the total estimator can be treated
to good approximation as Gaussian distributed, obeying
a χ2 and Wishart distribution respectively in its auto
power and cross power with other CMB fields. We also
find no evidence for correlations between the noise power
at different multipoles. The above properties guide the
construction of the Fisher matrix used to forecast the
final CIP detectability.

This paper is divided as follows. We begin by reviewing
the physics of CIPs and the relevant curvaton scenarios
in section II. In section III we describe the simulations
and the reconstruction pipeline, and study the lensing
contributions to the single and total CIP estimator noise
power spectra. In section IV, we use Fisher matrix tech-
nique to predict, for a CVL experiment, the degradation
of CIP detectability when lensing bias is included.

II. BACKGROUND

In this section we briefly review the physics of com-
pensated isocurvature perturbations - their observable
impacts on the CMB and how they originate from the
curvaton model. We refer the reader to Refs. [19, 21] for
more details.

A. Compensated isocurvature perturbations

Isocurvature perturbations are the differences between
the fractional number density perturbations of different
species. With respect to the photon perturbations, the
isocurvature mode of a species i ∈ {b, c, ν, γ} is defined
as

Siγ =
δni
ni
− δnγ

nγ
, (1)

where b stands for baryons, c for cold dark matter, ν for
neutrinos, and γ for photons.

Compensated isocurvature perturbations are a special
type of isocurvature mode in which the baryon and dark
matter density fluctuations cancel

Sbγ = ∆, Scγ = −ρb
ρc

∆, Sνγ = 0. (2)

As a result, the CIP mode does not contribute to the
effective matter isocurvature Smγ ≡ fbSbγ + (1− fb)Scγ ,
where fb = ρb/(ρb + ρc).

Because the gravitational effects of baryons and CDM
are compensated, the CIPs have no observable impacts
on the CMB power spectrum at first order. However, its
baryon perturbations lead to spatial fluctuations of the
sound speed, affecting CMB acoustic modes. Only CIPs
on scales larger than the sound horizon at recombination
leave a significant imprint, otherwise the spatially mod-
ulating speed would average out over one or more wave-
lengths as the sound waves travel until recombination.
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For CIPs larger than the sound horizon, the effects on
the CMB modes are modelled with a separate-universe
(SU) approach as perturbations in the background den-
sities

δΩb = Ωb∆, δΩc = −Ωb∆. (3)

At first order in CIP, there is no observable impact
on the CMB anisotropy angular power spectra. These
are calculated given the primordial curvature power spec-
trum Pζζ as

CXYl =
2

π

∫
k2dkTXl (k)TYl (k)Pζζ(k), (4)

where X,Y ∈ {T̃ , Ẽ} are the unlensed CMB temperature

and polarization fields, and CB̃B̃l = 0 as we assume no
primordial tensor perturbations.

We can Taylor expand to first order (as appropriate for
small CIPs) the transfer functions that encode the depen-
dence on background densities, and obtain the derivative
power spectra as

CX,dYl =
2

π

∫
k2dkT X̃l (k)

dT Ỹl
d∆

(k)Pζζ(k). (5)

where X,Y ∈ {T,E}. In the absence of tensors the B-
mode derivative power spectra start only at second or-
der. In this calculation, we expand upon the unlensed
rather than the lensed CMB because we are modelling
the CIP effects at the surface of last scattering, where
gravitational lensing by large scale structure have not
yet occurred.

As a three-dimensional field however, CIPs also af-
fect the process of reionization at a later redshift. If
we ignored reionization effects in the transfer functions
used to obtain the derivative power spectra, we would
be conflating, during the CIP reconstruction, different
k-modes contributions from the epochs of reionization
and recombination to the same reconstructed multipole
L. To avoid this problem, we roughly model the reion-
ization signal by fixing the optical depth τ , and allowing
the baryon density to modulate the redshift of reioniza-
tion. In reality, the spatial modulations of baryon and
DM densities would also impact the details of nonlinear
structure formation leading to reionization. However, a
complete modelling of such a reionization signal from a
three-dimensional CIP field is beyond the scope of this
paper, so we simply focus on the approximate effect in
the redshift of reionization.

Finally we decompose the CIPs at the surface of last
scattering as

∆(n̂) =
∑

LM

∆LMYLM , (6)

with L . 100 being the valid range of the SU approxi-
mation. We use quadratic reconstruction to recover each
∆LM mode, similarly to CMB measurements of gravita-
tional lensing. Because of these very similarities, the CIP
measurements will be contaminated by the lensing signal,
which we will study in detail throughout this paper.

B. Curvaton

One possible physical origin of CIPs is the curvaton
model. In this model, the curvaton – a spectator scalar
field during inflation – is responsible for seeding most
of the adiabatic perturbations in the Universe. It later
decays and seeds isocurvature perturbations correlated
with the adiabatic perturbations [18, 28–31]. In the dif-
ferent decay scenarios, baryon number and DM can be
generated either as a product of the curvaton decay, non-
thermally before the decay, or out of the thermal plasma
after the decay. Depending on the scenario, the fractional
perturbations in the species will be different, leading to
correlated isocurvature perturbations, and in particular,
to correlated CIPs.

If all of the adiabatic perturbations come from curva-
ton contributions, the resulting CIPs will be fully cor-
related. We use A to denote the relative amplitude to
adiabatic perturbations for the fully correlated CIPs

∆ = Aζ. (7)

Two scenarios have large enough CIPs measurable
with upcoming CMB polarization experiments: A ≈
3Ωc/Ωb ≈ 16.5 (baryon produced by curvaton decay and
CDM before decay) and A = −3 (CDM by decay, and
baryons before) [19].

For these fully correlated CIPs, we can exploit the ad-
ditional signal available in the cross-correlations with the
CMB anisotropies which are themselves evolved out of
the adiabatic perturbations according to Eq. 4. We cal-
culate the CIP power spectra CX∆

l with X ∈ T,E,∆
using Eq. 4 with TYl replaced by the CIP transfer func-
tion

T∆
l (k) = Ajl(kD∗), (8)

which is basically a projection onto a spherical shell at
the distance to recombination D∗ using Bessel functions
jl.

For the signal calculation, we now use the lensed CMB
fields T and E with reionization contributions included
as would be the case for real CMB observations. In the
relevant separate-universe limit on scales of l . 200, the
lensed and unlensed CMB differ negligibly. On the other
hand, reionization effects dominate the E-mode signal
for l . 20. Since the CIP transfer function is only a
projection at recombination and does not model reion-
ization signals of CIPs, the CE∆

L calculation here is free
of unwanted correlation from a reionization signal.

The large-scale reionization signal does correlate, how-
ever, between the CIP reconstruction (see section. II A)
and the observed E-mode. In particular, through en-

hanced responses in CT,dEl′ and CE,dEl′ , it lowers the TB
and EB estimator noise compared to the expected scale-
invariant spectrum at low-L. Since the unwanted correla-
tion from large-angle reionization signal does not reflect
the true correlation between CIPs and the adiabatic per-
turbations and would artificially enhance the detectabil-
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ity of correlated CIPs, we set CT,dEl′ and CE,dEl′ to zero
for l′ ≤ 20 in the CIP reconstruction of Sec. III.

III. SIMULATIONS

In this section, we simulate CIP reconstruction from
CMB temperature and polarization maps, and character-
ize the reconstruction noise properties with and without
non-Gaussian contributions from CMB lensing. We work
with a flat ΛCDM cosmology consistent with the Planck
2015 results [32] with baryon density Ωbh

2 = 0.02225,
cold dark matter density Ωch

2 = 0.1198, Hubble constant
h = 0.6727, scalar amplitude As = 2.207×10−9, spectral
index ns = 0.9645, reionization optical depth τ = 0.079,
one massive neutrino with mν ≈ 0.06eV, CMB temper-
ature Tcmb = 2.726K and no primordial tensor pertur-
bations. The lensing simulations are performed using
CAMB1[33], LensPix2 [34, 35], and HEALPix3 [36] and
a modified version of LensPix for the CIP reconstruction
that we now describe.

A. CIP reconstruction

To test our reconstruction pipeline, we start with the
case of Gaussian CMB fields, for which we can analyt-
ically predict the expected noise properties. Since we
are only interested in the reconstruction noise, we take
the amplitude of the CIP signal to be zero in all of our
simulations.

Using Lenspix, we draw independent unit Gaussian
variates that linearly combine to form CMB multipoles
T̂lm, Êlm, B̂lm for nsim = 4000 realizations. We use the
Cholesky decomposition of the covariance matrix [37]
so the correlations are consistent with the lensed power
spectra CTTl , CEEl , CBBl and CTEl (by parity CTBl =
CEBl = 0), and call these Gaussian CMB maps for
short. Note that in the absence of tensor perturbations
CBBl arises purely from the gravitational lensing of E-
modes. Furthermore, these maps do not contain any non-
Gaussian correlations that a proper lensing procedure of
pixel-remapping would produce. For these simulations,
we have chosen Nside = 2048 and lmax = 3900, and veri-
fied that these settings are sufficient for accurately eval-
uating estimators with modes to lest,max = 2500.

Next, we compute single CIP estimators using
quadratic pairs XZ of the CMB temperature and polar-
ization fields. The harmonic-space form of the minimum-
variance estimators is [19, 21]

∆̂XZ
LM = NXZ

L

∑

lml′m′

X∗l′m′Zlmg
XZ,mv
Lll′ ξLMlml′m′ , (9)

1 CAMB: http://camb.info
2 LensPix: http://cosmologist.info/lenspix/
3 HEALPix: http://healpix.sourceforge.net

TABLE I. The response function SL,XZll′ of the various two-
point observables in Eq. (14).

XZ SL,XZll′ l + l′ + L

TT (CT,dTl′ + CT,dTl ) 0H
L
ll′ even

TE CT,dEl′ 2H
L
ll′ + CE,dTl 0H

L
ll′ even

EE (CE,dEl′ + CE,dEl ) 2H
L
ll′ even

TB −iCT,dEl′ 2H
L
ll′ odd

EB −iCE,dEl′ 2H
L
ll′ odd

where XZ ∈ {TT, TE,EE, TB,EB},

[
NXZ
L

]−1
=
∑

ll′

Gll′S
L,XZ
ll′ gXZ,mv

Lll′ (10)

is the normalization required for an unbiased estimator
in the absence of lensing,

ξLMlml′m′ = (−1)m
√

(2L+ 1)(2l + 1)(2l′ + 1)

4π

×
(

l L l′

−m M m′

)
, (11)

Gll′ =
(2l + 1)(2l′ + 1)

4π
, (12)

SL,XZll′ are response functions given by Table I4,where

sH
L
ll′ ≡

(
l L l′

s 0 −s

)

(13)

are Wigner 3j coefficients.
The weight functions that minimize the single estima-

tor variance are given by

gXZ,mv
Lll′ =

SL,XZ∗ll′ CXXl CZZl′ − (−1)
l+l′+L

SL,XZ∗l′l CXZl CXZl′

CXXl′ CZZl CXXl CZZl′ −
(
CXZl CXZl′

)2 .

(14)
where we use the lensed CMB power spectra.

In practice, we compute efficiently the single estima-
tors as a product of two maps using the position space
expressions given in Appendix A. They are equivalent to
the harmonic space forms above for all except the TE
estimator. In the TE case, the position space form can
only be achieved if we dropped the second term in the

4 We note a sign flip in SL,EB
ll′ in front of the CB,dBl term in Table

II of Ref. [19]. This term does not enter our calculations here as
we do not consider tensors.

http://camb.info
http://cosmologist.info/lenspix/
http://healpix.sourceforge.net
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denominator of the minimum-variance weight function

gTE,mv
Lll′ , so that for TE only, we have instead

ḡXZLll′ =
SL,XZ∗ll′ CXXl CZZl′ − (−1)

l+l′+L
SL,XZ∗l′l CXZl CXZl′

CXXl′ CZZl CXXl CZZl′
(15)

in the sum as well as in the normalization for unbiased-
ness. As a result, the position space TE estimator no
longer has minimum variance. We show however, in Ap-
pendix A that the estimator normalization, variance and
covariances change negligibly.

The single estimators are then combined to form the
total CIP estimator

∆̂LM =
∑

α

wαL∆̂α
LM , (16)

with inverse-covariance weights given by

wαL = NL
∑

β

(
M−1

L

)α,β
, (17)

where

N−1
L ≡

∑

αβ

(
M−1

L

)α,β
(18)

is the normalization that is required the make the total
estimator unbiased. The variance of the total estimator
M∆∆
L is the same as the normalization

M∆∆
L = NL (19)

as long as we consistently use

gXZLll′ =

{
ḡXZLll′ , α = TE;

gXZ,mv
Lll′ , other

(20)

in the covariance matrix

ML
XZ,X′Z′

= NXZ
L NX′Z′

L

∑

ll′

Gll′g
XZ
Lll′ (21)

[
CXX

′

l′ CZZ
′

l gX
′Z′∗

Lll′ + (−1)
l+l′+L

CXZ
′

l′ CX
′Z

l gX
′Z′∗

Ll′l

]
.

This result of the covariance matrix follows from Eq. 9
where the CMB fields are taken to be built from Gaussian
variates as described above.

Just like the single estimators, the total estimator is
unbiased for Gaussian CMB realizations. In the absence
of a true CIP signal, we expect 〈∆̂LM 〉 = 0 for the
reconstructed maps. The power spectra however, have
noise associated with the cosmic variance of the CMB
modes. We study the noise distribution by first building
the power spectrum estimators in each realization

M̂XY
L =

1

2L+ 1

∑

M

X̂∗LM ŶLM , (22)

where X,Y ∈ {∆, T, E,B}. Then we obtain the av-

erage 〈M̂XY
L 〉 over 4000 realizations, verifying that the
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FIG. 1. Total CIP estimator noise power M̂∆∆
L for Gaussian

CMB maps. Shown are the mean (middle solid line), 68%
and 95% confidence bands (shaded) of 4000 realizations of
the total estimator in the absence of a CIP signal. The mean
matches the theoretical expectation M∆∆

L (Eq. 18). The con-

fidence bands of M̂∆∆
L match those from a χ2 distribution

(solid lines) given the mean, expected for Gaussian estimator
noise. For reference we show a true correlated CIP signal with
A = 16.5 (dashed line).
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FIG. 2. Total CIP estimator noise cross power M̂T∆
L given

Gaussian CMB maps. Shown are the mean (middle solid line),
68% and 95% confidence bands (shaded) of 4000 realizations
of the estimator in the absence of a CIP signal. The mean
matches closely the expectation MT∆

L = 0 (dotted line). The
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tribution (solid lines) given the mean, expected for Gaussian
estimator noise. For reference we show a true correlated CIP
signal with A = 16.5 (dashed line).
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FIG. 3. Total CIP estimator noise cross power M̂E∆
L for Gaus-

sian CMB maps. Shown are the mean (middle solid line), 68%
and 95% confidence bands (shaded) of 4000 realizations of the
estimator in the absence of a CIP signal. The mean matches
closely the expectation ME∆

L = 0 (dotted line). The confi-

dence bands of M̂E∆
L match those of a Wishart distribution

(solid lines) given the mean, expected for Gaussian estimator
noise. For reference we show a true correlated CIP signal with
A = 16.5 (dashed line).

lensed spectra CXYL are recovered for CMB fields X,Y ∈
{T,E,B}.

For the CIP reconstruction, we plot the mean (middle
blue line), 68% and 95% confidence bands (shaded bands)

of the M̂∆∆
L , M̂T∆

L and M̂E∆
L distribution in Figs. 1, 2

and 3 respectively. The mean agrees well with the en-
semble average M∆∆

L of Eq. 18 and MT∆
L = ME∆

L = 0
(black dashed). In Fig. 1, the total estimator noise
power is dominated by white noise contributions from
TT, TE,EE at low-L and by scale-invariant noise de-
creasing as ∼ L−2 of the TB, EB estimators at high-L.
Note that the addition of the E-mode polarization con-
tributes to reducing the noise from TT alone by about a
factor of three. For the cross correlations, the improve-
ment from adding polarization estimators is reflected in
the relatively smaller width of the distribution.

At high-L, the relative scaling of L−2 for the B estima-
tors are key to improving the total estimator noise. This
scaling comes from the fact that the B and non-B esti-
mators respond to CMB multipoles pairs l, l′ with odd
and even l + l′ + L respectively. More specifically, the
response function is proportional to

HL
ll′ ∝

{
sin(2ϕll′), l + l′ + L odd,

cos(2ϕll′), l + l′ + L even,
(23)

where ϕll′ is the angle between the l and l′ sides of the
triangle, so in the squeezed limit l, l′ � L where the CIP
signal dominates, NXB

L ∼ (HL
ll′)
−2 ∼ L−2. In Fig. 4, we

plot the weights from the non-B vs B estimators in black
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FIG. 4. Inverse-covariance weights
∑
α w

α
L for the B-based

(α = TB,EB, red) and non-B based (α = TT, TE,EE,
black) estimators. For Gaussian CMB (solid lines), the to-
tal estimator is dominated by the TB,EB at high-L because
of their nearly scale-invariant noise ∼ L−2; at low-L, the non-
B estimators dominate with their white noise. The crossing
point happens at around L ∼ 50. For the properly lensed
CMB (shaded), the non-Gaussian contributions from lensing
to the estimator variance are more significant for the non-B
than for the B estimators, so the former stops dominating at
a small L . 25.

and red respectively. For the Gaussian CMB considered
here (solid lines), the total estimator becomes dominated
by B estimators for L & 50.

The total CIP estimator is a linear combination of the
single estimators, which are formed out of products of
Gaussian variates. Although the individual product pairs
are not Gaussian distributed, by the central limit theo-
rem the linear combination of many such pairs tends to
a Gaussian distribution given large enough numbers of
pairs. To test the Gaussian approximation, we follow
Ref. [27] to compute the expected χ2 and Wishart dis-
tributions for the auto and cross spectra respectively. In
Figs. 1, 2 and 3, we find that the confidence bands of the
actual distribution (shaded) agree well with the Gaus-
sian expectation (solid lines), indicating that the Gaus-
sian noise is indeed a good approximation for the total
estimator on Gaussian CMB maps. We have also verified
that the same conclusion holds for the single estimators.

B. Lensing noise

We now perform the same CIP reconstruction on a set
of properly lensed CMB maps containing non-Gaussian
lensing contributions, and study the resulting additional
contribution to the estimator noise spectra.

To do so, we first simulate 4000 correlated realiza-
tions of the unlensed T̃lm, Ẽlm and lensing potential

φlm consistent with C T̃ T̃l , CẼẼl and Cφφl , and the cross-
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FIG. 5. Absolute ratio rαL of non-Gaussian lensing to Gaus-
sian CMB contributions to the noise power spectrum of single
estimators. The TB, EB estimators (lower lines) are much
less contaminated (only at 1% and 10% level respectively) by
the non-Gaussian contributions of lensing. For the non-B es-
timators (upper lines), the lensing and Gaussian CMB noises
are of the same order for L . 100.

correlations C T̃ Ẽl , C T̃ φl and CẼφl as supplied by CAMB
using the method described in Section III A. Note that
B̃lm = 0 in the absence of tensor perturbations.

Using Lenspix, the pixel positions in the unlensed tem-
perature maps and polarization tensor maps P̃ij (formed
from its EB decomposition [26]) are deflected according
to the gradient of the lensing potential [26, 38, 39]

T̂ (n̂) = T̃ (n̂ +∇φ), (24)

P̂ij(n̂) = P̃ij(n̂ +∇φ), (25)

yielding the lensed maps T̂lm, Êlm and B̂lm 6= 0.
Like CIPs in the SU approximation, the large-scale

lenses also correlate the CMB anisotropies of different
multipoles, albeit through a different mechanism remap-
ping the angular positions of the CMB. As a result the
CIP estimators pick up extra lensing signal and are no
longer unbiased when averaged over CMB realizations
with a fixed lensing potential

〈∆̂α
LM 〉

∣∣
φ
6= 0, 〈∆̂LM 〉

∣∣
φ
6= 0. (26)

Once averaged over random realizations of the lensing
potentials we still recover 〈∆̂α

LM 〉 = 〈∆̂LM 〉 = 0. The
estimator power spectra, however, will retain the non-
Gaussian lensing contributions through the connected
part of the trispectrum

〈M̂∆α∆α

L 〉 =Mα,α
L + T α,αL (27)

In Fig. 5, we plot in absolute ratio of non-Gaussian
lensing contributions to those expected from Gaussian
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M̂∆∆
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FIG. 6. Total CIP estimator noise power M̂∆∆
L for lensed

CMB maps. Shown are the mean (middle solid line), 68% and
95% confidence bands (shaded) of 4000 realizations of the to-
tal estimator in the absence of a CIP signal. On large scales
L . 40, the mean is about three times larger with lensing
effects than without (dotted line). The lensing bias is smaller
for smaller scales because there the total estimator starts to
be dominated by the less biased B estimators. Despite the
non-Gaussian contributions of lensing to CMB fields, the dis-
tribution of the CIP estimator noise power match closely the
χ2 expectation for Gaussian estimator noise (solid lines) even
out to the 95% tail. For reference we show a true correlated
CIP signal with A = 16.5 (dashed line).

CMB for the noise power of single estimators

rαL =
T α,αL

Mα,α
L

(28)

The ratio is roughly flat for each single estimator on
scales relevant for the SU limit L . 100, meaning that
the lensing induced noise has a similar spectrum shape
to the Gaussian CMB contributions. Just like TT , the
lensing contamination in TE and EE are about the same
level as the Gaussian CMB part. In contrast, the lensing
noise in TB and EB are only the percent level and 10%
level respectively of the Gaussian CMB contributions.

Given that TB and EB have significantly less lens-
ing noise, it is desirable to weigh the single estimators
accordingly to lensing-included covariance derived from
simulations in lieu of Eq. 22. These weights are shown as
shaded regions in Fig. 4. We see that the B-estimators
now have slightly higher weight at low-L, and start dom-
inating the total at a smaller L ∼ 25.

Using these weights, we form the total estimator and
plot the mean (middle blue line), 68% and 95% confi-

dence bands (shaded bands) of its noise power M̂∆∆
L ,

M̂T∆
L and M̂E∆

L in Figs 6, 7 and 8 respectively. At
L . 40, the total noise power is about three times larger
with non-Gaussian lensing contributions than without.
Beyond this range, the lensing contributions to the mean
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FIG. 7. Total CIP estimator noise cross power M̂T∆
L for lensed

CMB maps. Shown are the mean (middle solid line), 68%
and 95% confidence bands (shaded) of 4000 realizations of
the total estimator in the absence of a CIP signal. The con-
tamination to the zero expectation of Gaussian CMB (dotted
line) comes from the lensing-ISW correlation [37, 40–42]. The
confidence bands again match the expectations for Gaussian
estimator noise (solid lines), i.e. those of a Wishart distri-
bution for the cross power given the mean. For reference we
show a true correlated CIP signal with A = 16.5 (dashed line).
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FIG. 8. Total CIP estimator noise cross power M̂E∆
L for lensed

CMB maps. Shown are the mean (middle solid line), 68% and
95% confidence bands (shaded) of 4000 realizations of the
estimator in the absence of a CIP signal. The contamination
to the zero expectation from Gaussian CMB (dotted line) is
dominated by large-scale correlation between E-polarization
and the lensing potential [37]. The confidence bands again
match the expectations for Gaussian estimator noise (solid
lines), i.e. those of a Wishart distribution for the cross power
given the mean. For reference we show a true correlated CIP
signal with A = 16.5 (dashed line).

becomes comparable or smaller than the Gaussian CMB
contributions as the B-estimators dominate the weight.
Note that for L & 100 the bias reduces significantly, but
this is also beyond the SU limit where little CIP signal
exists.

Compared to the zero expectation for Gaussian CMB,
the cross-spectra M̂T∆

L here acquires a lensing-ISW [37,
40–42] contamination on large scales. This is because in
the absence of a CIP signal, the estimator is basically re-
constructing a lensing signal. Similarly, M̂E∆

L mean now

oscillates with a similar shape to CEφL , which is domi-
nated by the correlation between large-scale reionization
signal in E and low-z matter density fluctuations con-
tributing to the lensing potential [37].

Even with the non-Gaussian lensing contributions, the
approximation that the total estimator noise is Gaussian
still holds. We find good agreement between the 68%
and 95% confidence bands of the distribution and the
Gaussian noise expectations (solid lines). We have also
verified that the same is true for the single estimators.

To further test the Gaussian noise properties, we ver-
ify that the covariance of the noise power have negligible
off-diagonal correlations. We start by building the co-
variance matrix

Cij ≡ 〈M̂∆∆
Li M̂

∆∆
Lj 〉 − 〈M̂∆∆

Li 〉〈M̂∆∆
Lj 〉 (29)

and plot the correlation matrix

Rij =
Cij√
CiiCjj

(30)

in Fig. 9 where the off-diagonal elements in the range
L ∈ [2, 200] do not exceed 0.065. They fluctuate around
a negligible mean of R = 3.5 × 10−4 with a root-mean-
square (r.m.s.) of σR = 0.016. The scaling of the r.m.s.
is consistent with what is expected from a finite size of

realizations, i.e. σR ∼ n1/2
sim as shown in Fig. 10.

IV. FORECASTS

We have seen previously that for CVL measurements of
CMB temperature and polarization out to lmax = 2500,
the noise power of the total CIP estimator noise is nearly
three times larger with than without lensing contribu-
tions for at least up to L ∼ 40. In this section, we eval-
uate the impact of this additional lensing noise on CIP
detectability by means of Fisher matrix techniques.

We have shown that the CIP estimator noise, even with
non-Gaussian effects from lensing, can still be treated
as nearly Gaussian distributed and with no correlation
between different multipoles of the noise power. Un-
der these approximations, we construct the Fisher matrix
with a single entry to evaluate the error σA in the CIP
correlation amplitude A from the observed CIP power
spectra

σ−2
A =

Lmax∑

L=2

∑

X∆,X′∆

∂CX∆
L

∂A

(
C−1
L

)
X∆,X′∆

∂CX
′∆

L

∂A
, (31)
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fluctuation σR = 0.016 consistent with the finite sample size.
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FIG. 10. The r.m.s fluctuations σR (solid) in the off-diagonal
correlations Rij of CIP estimator noise power vs the number
of simulations nsim for multipoles L ∈ [2, 200]. The scaling of

σR agrees well with that expected from finite sampling n
−1/2
sim

(dotted), again showing no hints of significant deviations from
Gaussian estimator noise.

where X,X ′ ∈ {∆, T, E} and CL is the covariance matrix

CX∆,X′∆
L =

C̃XX
′

L C̃∆∆
L + C̃X∆

L C̃X
′∆

L

2L+ 1
. (32)

The covariance here includes both the CIP sample vari-
ance and the reconstruction noise from Gaussian or

lensed CMB simulations of section III, i.e.

C̃∆∆
L = C∆∆

L + 〈M̂∆∆
L 〉, (33)

C̃X∆
L = CX∆

L + 〈M̂X∆
L 〉, (34)

C̃XX
′

L = CXX
′

L , (35)

where X,X ′ ∈ {T,E}. Note that σA depends on the
strength of the signal through the CIP sample variance,
so we evaluate the detection threshold at A = 2σA.

Taking Lmax = 100 as appropriate for the separate-
universe approximation, we obtain 2σA = 12.2 for the
total estimator with CVL measurements of temperature
and polarizations. This is a factor of 1.5 higher than
the 2σA = 8.3 threshold if lensing was not accounted for.
For comparison, if the less optimal weighting for the total
estimator with Eq. 22 would have given a threshold that
is 1.8 times higher. Note also that if we were to look
for uncorrelated CIPs with CT∆

L = CE∆
L = 0 and the

same C∆∆
L , lensing noise would raise the 2σ threshold by

a slightly worse factor of 1.8, from 24 to 44. Finally, with
lensing noise accounted for in the total CIP estimator, the
4σ projection for the maximal CIP A ≈ 16.5 scenario of
the curvaton model reduces to 2.7σ for a cosmic-variance-
limited experiment.

Taking Lmax = 200, we find that a smaller degradation
with lensing, a factor of 1.2 from 2σA = 6.2 to 7.5, due to
decreasing lensing bias after Lmax ∼ 100. In addition, be-
cause precisely measuring the large-angle E-modes could
be difficult with ground-based experiments, we evaluate
the detection threshold dropping all the correlations at
L < 30. With Lmin = 30, we find that the maximal CIP
case would still be detected at 2.3σ with 2σA = 14.4 for
the CVL experiment.

V. CONCLUSION

In this paper, we evaluated for the first time the lensing
bias to measurements of CIPs using CMB polarization
and quantified the impact of lensing on CIP detectability
for a cosmic-variance-limited experiment.

We found that the polarization-included total CIP es-
timator has a noise power that is about three times larger
with than without lensing contamination on L . 40.
In the cross-correlations of CIPs with temperature and
E mode polarization, lensing contamination follows the
shape of ISW-lensing and reionization-lensing correla-
tions on large scales. In addition, we found that TB
and EB estimators are much less biased by lensing (only
at the 1% and 10% level respectively in the auto noise
power), even though they have larger noise from the cos-
mic variance of the CMB modes alone. So measuring the
cross-spectra with B-estimators individually could pro-
vide a consistency test for determining the sign of corre-
lated CIPs.

Although the lensing contributions to the CMB fields
are non-Gaussian, we showed that their effect on the
quadratic estimators is to good approximation Gaussian
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noise in the total as well as the single estimators. We
further tested the Gaussian noise assumption by showing
that the different multipoles of the noise power are neg-
ligibly correlated at < 0.065 over the range L ∈ [2, 200].
The off-diagonal elements in the correlation matrix fluc-
tuate around a mean of R = 3.5 × 10−4 with r.m.s con-
sistent with the finite size of simulations.

While the use of polarization dramatically increases
the CIP detectability compared to temperature only
measurements, there is still a relative degradation for po-
larization measurements once lensing noise is included.
Treating the estimator noise as Gaussian independent
noise for each multipole of the noise power, we found
that the detection threshold of a CVL experiment in-
creased a factor of 1.5 from 2σA = 8.3 to 12.2 because of
lensing, corresponding to 2.7σ detection for the maximal
CIP A ≈ 16.5 scenario of the curvaton model. Taking
Lmin = 30 gives 2σA = 14.4 which is still a 2.3σ for the
A ≈ 16.5 scenario. Here we have used CVL measure-
ments of temperature and polarization out to l = 2500
and fixed all other cosmological parameters.

The next step in assessing the CIP detectability for a
realistic CMB experiment would be to simulate the lens-
ing bias dependence on instrument noise and sky masks.
For a nearly CVL experiment like CMB Stage-4, one
might expect a similar factor of degradation to the CVL
experiment, bringing down the 3σ projection to about
2σ for the largest CIP signal A ≈ 16.5 in the curvaton
model. In addition, while we conservatively considered
CMB multipoles up to l = 2500, future CMB measure-
ments of E-mode polarization have the potential of reach-
ing out to l = 4000. It would be interesting to study the
impact on quadratic estimators with non-uniform lmax

for T , E and B observations as well as its implications
for lensing contamination.

An alternative route for removing lensing contamina-
tion to CIPs may be to use delensed CMB maps [43–45].
One concern while using internally delensed maps with
a lensing template reconstructed from the CMB itself is
the partial removal of the CIP signal during the delens-
ing process. As the B-estimators for lensing would also
be the least contaminated by CIPs, one may use the EB
estimator with optimized weights to construct the lens-
ing template. The prospect of the delensing method for
CMB measurements of CIPs still remains to be evaluated
in comparison to the debiasing method presented in this
paper.
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Appendix A: Efficient CIP Estimator in Position
Space

The harmonic-space forms for the CIP estimators are
computational costly O(l3max). For CIP reconstruction in
this paper, we adopt the more efficient O(l2max) position-
space forms listed below:

∆̂TT
LM = NTT

L

∫
dn̂Y ∗LM (n̂) 0ATT 0A

TdT
TT , (A1)

∆̂EE
LM =

1

2
NEE
L

∫
dn̂Y ∗LM (n̂) (+2AEE −2A

EdE
EE + c.c.),

(A2)

∆̂TE
LM = NTE

L

∫
dn̂Y ∗LM (n̂)×

(
1

2

[
(+2AEE −2A

TdE
TT −+2 ATE −2A

TdE
ET ) + c.c.

]

+
[

0ATT 0A
EdT
EE − 0AET 0A

EdT
TE

])
, (A3)

∆̂TB
LM =

1

2
NTB
L

∫
dn̂Y ∗LM (n̂) (i+2ABB −2A

TdE
TT + c.c.),

(A4)

∆̂EB
LM =

1

2
NEB
L

∫
dn̂Y ∗LM (n̂) (i+2ABB −2A

EdE
EE + c.c.),

(A5)
where

±sAXX′ =
∑

lm

CXX
′

l

CXXl CX
′X′

l

Xlm ±sYlm, (A6)

±sA
Y dZ
XX′ =

∑

lm

CXX
′

l

CXXl CX
′X′

l

CY,dZl Xlm ±sYlm, (A7)

[
NXZ
L

]−1
=
∑

ll′

Gll′S
L,XZ
ll′ gXZ,Lll′ , (A8)

and

gXZLll′ =

{
ḡXZLll′ , α = TE;

gXZ,mv
Lll′ , other.

(A9)
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These expressions are mathematically equivalent to the
harmonic-space forms except for the TE estimator, which
cannot be written as a product of maps unless we drop

the second term in the denominator of gTE,mv
Lll′

gTE,mv
Lll′ ∝ 1

CTTl′ CEEl CTTl CEEl′ − (CTEl CTEl′ )2

→ ḡTELll′ ∝
1

CTTl′ CEEl CTTl CEEl′
. (A10)

This approximation leads to only percent level differ-
ences in the estimator normalization and its covariance
with other estimators (< 1.1% and < 0.3% respectively),
and to a vanishing fractional difference < 0.03% in the
TE estimator variance.
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[21] D. Grin, O. Doré, and M. Kamionkowski, Phys.Rev.
D84, 123003 (2011), arXiv:1107.5047.

[22] D. Grin, D. Hanson, G. Holder, O. Doré, and
M. Kamionkowski, Phys.Rev. D89, 023006 (2014),
arXiv:1306.4319.
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