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We study the sensitivity of cosmological observables to the reheating phase following inflation
driven by many scalar fields. We describe a method which allows semi-analytic treatment of the
impact of perturbative reheating on cosmological perturbations using the sudden decay approxima-
tion. Focusing on N -quadratic inflation, we show how the scalar spectral index and tensor-to-scalar
ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain
choices of decay rates, reheating following multiple-field inflation can have a significant impact on
the prediction of cosmological observables.

I. INTRODUCTION

The inflationary paradigm [1–5] solves many of the
classical problems associated with the hot Big Bang sce-
nario, while providing a natural mechanism for generat-
ing primordial cosmological fluctuations [6–10]. Obser-
vations are currently consistent with the simplest single-
field, slow-roll models of inflation, e.g., the Planck obser-
vations of the cosmic microwave background (CMB) [11]
indicate a featureless power-law shape for the primordial
power spectrum of scalar fluctuations and no detectable
primordial non-Gaussianity or tensor fluctuations.

The predictions of single-field inflation are largely in-
sensitive to the details of reheating. Single-field inflation
models produce purely adiabatic curvature perturbations
ζk, which guarantees that the n-point correlation func-
tions, 〈ζn〉, do not evolve on scales exceeding the Hub-
ble radius k . aH during and after inflation [12–15].1

As a consequence, post-inflationary dynamics will not
cause the perturbation spectra to evolve on super-Hubble
scales, and only the integrated expansion following single-
field inflation affects the prediction of cosmological ob-
servables [16–21].

Despite the phenomenological success of single-field
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bation to any four-scalar in the system is proportional to the
rate of change of the scalar, with the same proportionality for all
scalars.

models, they lack the generality of more complex sce-
narios, representing only a limited class of possible mod-
els. Importantly, they are not always natural from a
theoretical point of view, e.g., string compactifications
often result in hundreds of scalar fields appearing in the
low energy effective action [22–25]. Models with multi-
ple fields naturally produce non-adiabatic fluctuations,
whose presence allows the curvature perturbation and
its correlation functions to evolve outside the Hubble ra-
dius. Therefore, in order to make predictions in multi-
field models, it is necessary to understand the evolution
of the correlation functions until either the curvature fluc-
tuations become adiabatic or they are directly observed.
Unless an ‘adiabatic limit’ [26–32] is established before
the onset of reheating, then the observable predictions of
multi-field models will be sensitive to post-inflationary
dynamics that must be accurately modeled before com-
paring the results to data.

Non-adiabatic fluctuations can become adiabatic if the
Universe passes through a phase of effectively single-field
inflation [26–32] or through a period of local thermal and
chemical equilibrium with no non-zero conserved quan-
tum numbers [33–35]. The latter conditions are often
established during the late stages of reheating, though
notable exceptions include models in which dark mat-
ter is not a thermal relic, or where baryon number was
produced before the end of inflation [36]. We will as-
sume throughout this work that the result of reheating
is a relativistic thermal plasma described entirely by its
temperature. In this paper we will focus on developing
a methodology for calculating the predictions of multi-
field inflation for the fully adiabatic power spectrum of
curvature perturbations after reheating.

For two-field inflation, numerical studies [29, 37, 38]
have demonstrated that observables such as the power

mailto:selim.hotinli14@imperial.ac.uk
mailto:jonathan.frazer@desy.de
mailto:a.jaffe@imperial.ac.uk
mailto:jmeyers@cita.utoronto.ca
mailto:laynep@andrew.cmu.edu
mailto:e.tarrant@sussex.ac.uk


2

spectrum P(k), and the local shape bispectrum param-
eter fNL can be very sensitive to the details of reheat-
ing. This sensitivity was quantified in Ref. [39], where
it was shown that the adiabatic observables take values
within finite ranges that are determined completely by
the details of the underlying inflationary model. The ef-
fect of reheating is to preferentially enhance or suppress
the initial fluctuations of some fields compared to oth-
ers, depending on the details of the reheating model.
This gives predictions that effectively interpolate be-
tween those obtained by projecting the non-adiabatic
perturbations along each of the two field direction φi
in isolation. If the projection into each direction is the
same, then the sensitivity to reheating for two-field infla-
tion models is minimal.

In this paper we extend the results of Ref. [39] and pro-
vide a general methodology for calculating the adiabatic
power spectrum of curvature perturbations after multi-
field inflation for any number of scalar fields. The regime
of many-field inflation (N & 10) typically yields a range
of predictions for curvature perturbations at the end of
inflation that is surprisingly easy to categorize in compar-
ison to the apparently large dimensionality of parameter
space (see e.g. Refs [40–48], though stochastic effects can
be important in the presence of many fields [49]). Sce-
narios with many fields also tend to predict an amount of
isocurvature perturbations at the end of inflation which
increases with the number of fields [42, 47], thereby ele-
vating the importance of studying the effects of reheating
for these models.

As in Ref. [39], we restrict ourselves to perturbative
reheating. This ignores interesting dynamics such as
preheating, which may non-perturbatively produce ra-
diation quanta through parametric resonance [50] po-
tentially leading to rich phenomena including primor-
dial non-Gaussianity [51–53] and perhaps the production
of primordial black holes [54–56]. However, perturba-
tive reheating is a generically good phenomenological de-
scription for inflationary models with many degrees of
freedom, as periods of exponential particle production
become much harder to realize when many fields must
conspire together to resonate [57–59], although single-
field attractor behavior is common for some multiple-
field models with non-minimal couplings to gravity [60].
Therefore, the methodology we develop here is quite
generic for inflation with many fields N � 2.

II. OVERVIEW

We begin here with a broad description of the meth-
ods that will be described in more detail in subsequent
sections. We are interested in calculating the two-point
statistics of the curvature perturbation after reheating
has completed following multiple-field inflation. We will
focus in particular on the scalar spectral index ns and
the tensor-to-scalar ratio r.

The δN formalism is a useful method for calculating

the superhorizon evolution of the curvature perturba-
tion in terms of the initial fluctuations of a set of scalar
fields [61–65]. In this method one calculates the expan-
sion from some initial time t? on a spatially-flat hyper-
surface gij(t?,x) = a2(t?)δij , to some final time tc on a
uniform density hypersurface ρ(tc,x) = ρ̄(tc). In prac-
tice we will take the initial hypersurface to be at horizon
exit and the uniform density hypersurface to be after the
conclusion of reheating when the universe is dominated
by a thermal bath of radiation. The number of e-folds of
expansion, defined as N = ln ac/a?, is given by

N(t?, tc) =

∫ tc

t?

H(t)dt . (1)

The perturbation to the number of e-foldings of expan-
sion is equal to the difference in the curvature perturba-
tion on these two hypersurfaces

ζ = δN =
∑
i

N,iδφ
?
i +

1

2

∑
ij

N,ijδφ
?
i δφ

?
j + . . . , (2)

where N,i refers to the derivative of the number of e-folds
of expansion with respect to the initial scalar field value
N,i = ∂N

∂φ?i
.

Using Eq. (2) we can then calculate the observables of
interest. Focusing on the two-point statistics, we find the
curvature power spectrum,

Pζ = P?
∑
i

N2
,i , (3)

the scalar spectral index,

ns − 1 = −2ε? −
2∑
iN

2
,i

1−
∑
ij

η?ijN,iN,j

 , (4)

and the tensor-to-scalar ratio

r =
8P?
Pζ

, (5)

where sums are carried out over all field indices. We
have introduced the initial spectrum of scalar field fluc-
tuations P? = H2

?/2k
3
?, and the slow-roll parameters

ε? = −(Ḣ/H2)? and η?ij = (V,ij/V )?, which are calcu-
lated at horizon crossing.

In order to calculate the expansion history and how
it depends on the initial scalar field configuration, one
in general needs to solve the perturbed field equations
from horizon exit all the way through reheating. This is
typically quite challenging due to the wide range of time
and energy scales involved in the problem. The methods
we will describe allow us to treat the post-inflationary
evolution in a simplified manner, thus greatly reducing
the computational cost of making predictions in multi-
field inflationary models.

We proceed by splitting the problem into two parts.
We first treat the evolution from horizon exit through
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inflation to a phase where the scalar fields are coherently
oscillating about the minima of their potentials. This
portion of the evolution is treated by numerically solving
the perturbed field equations and is described in detail
in Sec. IV. Next, we treat the process of reheating, when
the scalar fields decay into radiation. As described in de-
tail in Sec. III, this part of the evolution can be treated
semi-analytically by using a fluid approximation at very
low computational cost, thus allowing us to quickly cal-
culate how a wide range of reheating scenarios impacts
the observable predictions of a particular multi-field infla-
tionary model. For this part of the evolution, the unper-
turbed fluid equations are evaluated numerically, and the
sudden decay approximation is applied to determine the
impact of reheating on the cosmological perturbations.

As will be shown below, the impact of reheating fol-
lowing multiple field inflation is to mix together pertur-
bations present in individual scalar fields present at the
end of inflation into the final curvature perturbation with
weights determined by the reheating parameters. Ad-
ditionally, reheating impacts how the length scales we
observe today are related to the scales during inflation.
Even in single-field inflation, reheating affects how many
e-foldings N? before the end of inflation the observed
fluctuations have crossed the Hubble horizon. Predicting
this quantity requires matching the Hubble scale today
to the Hubble scale during inflation, hence the modeling
of the entire expansion history of the Universe. A simple
comparison (approximating transitions between different
epochs in the history of Universe as instantaneous and ig-
noring the recent phase of dark energy domination) can
be made by using the classical matching equation [17, 66]

k?
a0H0

= e−N?
aend

areh

areh

aeq

H?

Heq

aeqHeq

a0H0
, (6)

where the number of e-foldings between the end of infla-
tion and when the pivot scale crosses the Hubble horizon
k? = a?H? is defined as N? = ln aend/a?, and areh is the
scale factor at the the end of reheating, i.e. after all fields
have decayed into radiation. The remaining quantities in
the above expression are the Hubble horizon H0 and the
scale factor a0 today and at the time of matter-radiation
equality: Heq, aeq. The latter four quantities are well
known from the large-scale observations of the Universe.
The remaining quantities are predicted by the inflation-
ary model and the details of reheating, which fixes the
number of e-foldings of inflation after the pivot scale exits
the horizon N?.

III. REHEATING

Regardless of the inflationary model, or how many
scalar fields were present during inflation, the universe
must eventually evolve to the radiation-dominated era
of the standard Big Bang model. This can be achieved
by coupling the fields φi to relativistic particle species.
As the fields approach, overshoot, and begin to oscillate

about the minimum of their potentials, interactions with
lighter particles lead to dissipation which drains energy
from the φi zero-mode and excites relativistic particles.
We refer to these collective processes as reheating (see
e.g., [67–69] for reviews).

The relativistic energy densities gain energy at a rate

ρ̇γi + 4Hργi = Γiρi (7)

whilst damping of the inflaton zero mode due to this
decay process can be approximated by

φ̈i + (3H + Γi)φ̇i +m2
iφi = 0 , (8)

and the energy density stored in the oscillating field is
ρi = 1

2 (φ̇2
i + m2

iφ
2
i ). Perturbative decay of the oscillat-

ing fields relies on the assumption that the decay rates
can be calculated by standard methods in perturbative
quantum field theory. If, however, the amplitude of the
field oscillations, and the couplings to gauge fields are
sufficiently large, perturbation theory breaks down and
reheating proceeds in a different way, through parametric
resonance [70–72].

The impact of reheating on cosmological observables
is well captured by appealing to the sudden decay ap-
proximation [73–75]. This approximation has been used
frequently in the past to calculate the statistics of the
primordial curvature perturbation for various models of
inflation [74–78], the most widely known example with
multiple fields being the curvaton scenario [73, 79–82].
Furthermore, numerical studies have shown that for the
curvaton scenario, and general models of two–field infla-
tion, sudden decay reproduces the gradual decay result
obtained by solving Eqs. (7) and (8) (together with the
Friedmann constraint) remarkably well [39, 75].

We will focus on fields φi rolling in potentials with
quadratic minima. During the phase of coherent oscil-
lations, we will treat these fields as perfect fluids with
vanishing pressure. In this approximation, these matter
fluids scale as a−3 and do not interact with their de-
cay products until they instantly decay at some time ti.
These dynamics are schematically illustrated in Fig. 1 for
the specific example of N = 5 fields. We are interested
in the statistics of the curvature perturbation ζ(t,x) at
the final time t = tf , when reheating has completed (all
fields have decayed). Field φi (represented in Fig. 1 by its
energy density ρi) is labelled according to its decay time
ti, where i = 1, 2, . . . ,N and t1 < t2 < . . . < tN . With
this notation, the final time tf = tN . Our derivation in
this section is a generalization of the methods described
in Refs. [39, 75, 83].

The underlying assumption of the sudden decay ap-
proximation is that the fields decay instantly into radi-
ation when the Hubble rate becomes equal to the decay
rate H(ti) = Γi, which defines the decay time ti. Further-
more, the decay hypersurfaces are taken to be surfaces of
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uniform energy density, upon which

ρ̄tot(t1) = ρ̄φ(t1) =

N∑
i=1

ρi(t1,x) , (9)

ρ̄tot(tj) = ργ(tj ,x) + ρφ(tj ,x)

=

j−1∑
i=1

ργi (tj ,x) +

N∑
i=j

ρi(tj ,x) , j ≥ 2 , (10)

where ρi(tj ,x) = ρ̄i(tj) + δρi(tj ,x) and ργi (tj ,x) =
ρ̄γi (tj)+δργi (tj ,x). Here, ρφ denotes the total energy den-
sity stored in the oscillating scalar fields, and ργ denotes
the total energy density stored in the decay products

ρφ =
∑
i

ρi , ργ =
∑
i

ργi . (11)

Our first task is to determine how the individual cur-
vature perturbation, ζi, associated with field φi, passes
its fluctuation over to its decay product, ζγi . Within the
confines of the sudden decay approximation this conver-
sion is instantaneous. In the absence of interactions, flu-
ids with barotropic equation of state, such as dust–like
oscillating scalar fields and their radiation fluid decay
products, have an individually conserved curvature per-
turbation [65, 75]

ζi = δN +
1

3

∫ ρi(t,x)

ρ̄i(t)

dρ̃i
ρ̃i + Pi(ρ̃i)

. (12)

Here, δN is the perturbed amount of expansion, which
working within the separate universe assumption [64, 65],
is equivalent to the difference in curvature perturbations
measured from an initial flat hypersurface, up to one of
constant energy density: δN = ζ. In this notation, fluc-
tuations are purely adiabatic if ζi = ζ for all constituents
of the Universe.

From this point on, all unbarred quantities will have an
implicit dependence on position, while barred quantities
have no spatial dependence. With Pi = 0 (relevant for
the dust–like oscillating scalar fields before they decay),
and P γi = ργi /3 (for the radiation decay products) we can
easily perform the integral in Eq. (12) to find:

ρi(tj) = ρ̄i(tj)e
3(ζ1(t1)−ζ(t1)) , i ≥ j , (13)

ργi (tj) = ρ̄γi (tj)e
4(ζγ1 (t1)−ζ(t1)) , i ≤ j . (14)

The i ≥ j and i ≤ j conditions reflect the fact that the
decay products do not exist until the field has decayed.
We have retained the explicit tj dependence for the in-
dividual ζi for clarity, but it is to be understood that ζi
is conserved between tosc

i ≤ t ≤ ti, where tosc
i is the time

then the field φi begins to oscillate.
Making use of Eqs. (9) and (13), we have on the first

decay hypersurface:

1 =

N∑
i=1

Ωi(t1)e3(ζ1(t1)−ζ(t1)) , Ωi(t1) ≡ ρ̄i
ρ̄φ

∣∣∣∣∣
t1

. (15)

Slow Roll

φ3
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φ2

φ5
φ1

t4t3t2 t5

ργ
φi
µ a-4

ρφi
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g 

[ρ
i] 
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 u
ni

ts
)
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FIG. 1. A typical “sudden decay” energy diagram illustrating
the decay of N = 5 fields. After the fields leave slow roll
(blue sold lines) they begin to oscillate about their quadratic
minima, their energy density scaling as a−3 (back sold lines).
When H(ti) = Γi field φi decays instantly into radiation (red
dashed lines) which scales as a−4.

Since decay is instantaneous, ργ1(t1,x) = ρ1(t1,x), which
making use of Eq. (14), is equivalent to

ρ̄γ1(t1)e4(ζγ1 (t1)−ζ(t1)) = ρ̄1(t1)e3(ζ1(t1)−ζ(t1)) . (16)

This must hold true even in the absence of fluctuations
(where ρ̄γ1(t1) = ρ̄1(t1)) and so

ζγ1 (t1) =
3

4
ζ1(t1) +

1

4
ζ(t1) . (17)

This expression provides the matching condition for the
curvature perturbation on surfaces of uniform ρ1 and uni-
form ργ1 either side of the decay time t1, and straightfor-
wardly generalises to all subsequent decay times:

ζγi (ti) =
3

4
ζi(ti) +

1

4
ζ(ti) . (18)

Having determined these matching conditions, we seek
an expression for the total curvature perturbation at time
tN . This is straightforward to obtain by repeating the
above calculation for all subsequent decay times. Using
Eqs. (14) and (10), we find, for j ≥ 2:

1 =

j−1∑
i=1

Ωγi (tj)e
4(ζγi (tj)−ζ(tj)) +

N∑
i=j

Ωi(tj)e
3(ζi(tj)−ζ(tj)) ,

(19)
where

Ωi(tj) =
ρ̄i

ρ̄γ + ρ̄φ

∣∣∣∣∣
tj

, Ωγi (tj) =
ρ̄γi

ρ̄γ + ρ̄φ

∣∣∣∣∣
tj

. (20)

Eq. (19) constitutes a non–linear expression for ζ(tN ,x)
if one takes j = N . In order to solve Eq. (19) for ζ(tN ,x),
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we proceed perturbatively. Expanding to first order and
rearranging slightly:

ζ(tj) =
4

3

j−1∑
i=1

rijζ
γ
i (tj) +

N∑
i=j

rijζi(tj) , j ≥ 2 , (21)

where we have defined the ‘sudden decay parameters’

rij ≡ ri(tj) ≡


3ρ̄i

4ρ̄γ+3ρ̄φ

∣∣∣
tj

for i ≥ j
3ρ̄γi

4ρ̄γ+3ρ̄φ

∣∣∣
tj

for i < j .
(22)

Since the ζγi are conserved for t ≥ ti, we may write
ζγi (tj) = ζγi (ti) for i ≤ j, and use Eq. (18) in Eq. (21)
to substitute for ζγi (ti). Similarly, we may write ζi(tj) =
ζi(t

osc
i ) for i ≥ j. Making these two replacements, we

find:

ζ(tj) =
1

3

j−1∑
i=1

rijζ(ti) +
N∑
i=1

rijζi(t
osc
i ) . (23)

Evaluating this expression for j = N gives us a recur-
sive expression for curvature perturbation at the end of
reheating. After some straightforward manipulation, the
expression for ζ(tN ) can be put into a slightly more con-
venient form:

ζ(tN ,x) =

N∑
i=1

Wi ζi(t
osc
i ,x) , (24)

where

Wi =

N−1∑
j=0

Aj ri(N−j) , (25)

and we have defined

Aj =
1

3

j−1∑
k=0

Ak r(N−j)(N−k) , (26)

and A0 = 1. Eq. (24) is our final expression for the pri-
mordial curvature perturbation at the completion of re-
heating. It is the statistics 〈ζn(tN ,x)〉 of this fluctuation
that are relevant for observation. It is clear from Eq. (24)
that the effect of reheating (captured by the weights Wi)
is to re–scale the ζi(t

osc
i ,x). The Wi are functions of the

sudden decay parameters rij , which can be directly re-
lated to the physical decay rates Γi within the confines
of the sudden decay approximation. As discussed in [39],
this is one area where the sudden decay approximation
falls short and for this reason we compute the mapping
from Γi to rij numerically.

The individual curvature fluctuations ζi(t
osc
i ,x) are de-

termined completely by the details of inflation (the form
of the potential and the field values at horizon crossing),
and do not depend in any way upon reheating. As can be
seen from Eqs. (24)-(26) once the curvature fluctuations

are known, the effect of reheating on the cosmological
perturbations can be calculated using only unperturbed
energy densities evaluated at various times during the
reheating phase. In the following section we discuss the
calculation of the curvature fluctuations resulting from
inflation.

IV. INFLATIONARY PERTURBATIONS

Generically, ζi(t,x) will evolve during multi-field infla-
tion until an adiabatic limit is reached, at which point
they become equal and conserved [26, 27, 29]. Whether
conservation is achieved before the end of inflation de-
pends upon the specifics of the inflationary model. Re-
gardless of these specifics however, it is guaranteed that
the ζi(t,x) will (to a very good approximation) be con-
served quantities during the period when field φi is oscil-
lating and before it has decayed appreciably into radia-
tion. It is therefore sufficient to compute these quantities
at t = tosc

i .
We use the publicly available MultiModeCode in-

flation solver [20, 84–86] to evaluate the first-order mode
equations for each scalar field, without using the slow-
roll approximation. Following the convention of Ref. [87]
we expand each of the first-order field perturbations in
terms of a complex valued matrix qij as

δφi(t,~k) = qij(t, k)âj(~k) + q∗ij(t, k)â†,j(−~k) , (27)

where the creation and annihilation operators satisfy

(âj(~k))† = â†,j(−~k). The transformed variable ψij =
qij/a satisfies the Mukhanov-Sasaki equation of motion
with a “mixed” mass matrix Mij

d2ψij
dN2

+(1−ε)dψij
dN

+

(
k2

a2H2
− 2− ε

)
ψij+Mimψ

m
j = 0

(28)
where

Mij ≡
∂i∂jV

H2
+

1

H2

(
dφi
dN

∂jV +
dφj
dN

∂iV

)
+ (3− ε)dφi

dN

dφj
dN

,

(29)

with ∂i ≡ ∂/∂φi and N is the number of e-folds. We
use the Bunch-Davies initial condition [88] for the trans-
formed variable ψij ∼ δij .

The components of curvature perturbation are defined
in the spatially-flat gauge as

ζi(t,~k) ≡ H
˙̄ρi
δρi(t,~k) . (30)

The density perturbations δρi(t,~k) are given by

δρi(t,~k) = φ̇i(t) ˙δφi(t,
~k)

− φ̇i(t)
2

2H

∑
m

φ̇m(t)δφm(t,~k) + V,iδφi(t,~k) .

(31)
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Similar to the field perturbations, we expand each of
the curvature perturbation components in the same basis
by defining a new complex valued matrix ξij as

ζi(t,~k) ≡ ξij(t, k)âj(~k) + ξ∗ij(t, k)â†,j(−~k) , (32)

and similarly for δρi(t,
~k), which is related to δφi(t,

~k) and
its derivatives. Substituting qij(t, k) and its derivative
into Eq. (30) gives

ξij(t, k) =
q′ij(t, k)

3φ′i(t)
− 1

6

∑
m

φ′m(t)qmj(t, k)

+

(
V,i(t)

3H2(t)φ′2i (t)

)
qij(t, k) .

(33)

where (′) is a derivative with respect to e-folds N . A sim-
ilar expression is available for ξ∗ij(t, k), which is linearly
independent of ξij . We evaluate this quantity by evolving
the qij (or ψij) and background quantities numerically as
a function of t for a given k.2

We expand ζi(t
osc
i ,x) in terms of field fluctuations at

horizon exit,

ζi(t
osc
i ,x) =

N∑
j=1

Cijδφj(t?,x) , (34)

where Cij is a real matrix. Substituting our δφi(t,
~k)

from Eq. (27) into Eq. (34) gives

ξij(t, k) =
∑
m

Cim(t)qmj(t?, k) . (35)

While Eq. (35) is not invertible for general qmj , we match
to the slow-roll approximation above by first discarding
the off-diagonal elements of the perturbation matrix qij
at horizon crossing and define a vector vj(t?, k) as

qij(t?, k) ≡ diag(v1(t?, k), . . . , vN (t?, k)) . (36)

Since qij is complex and Cij is real, we take

Cij ≈ −sgn (Re[qij ])
|ξij(t, k)|
|vj |

, (37)

where the overall sign is chosen to match the two-field
results of Ref. [39].

With this, we have all the ingredients to relate the cur-
vature fluctuations at the end of reheating to the quan-
tum fluctuations during inflation as in Eq. (2) where us-
ing Eqs. (24) and (34), the derivative of the number of
e-folds of expansion can now be written as

N,i =
∑
j

WjCji . (38)

2 For more details of the numerical methodology see Ref. [86].

V. NUMERICAL IMPLEMENTATION

While the recursive definition of the reheating param-
eters introduced in Sec. III require solving numerically
the homogeneous background equations until the end of
reheating, it is sufficient to evolve the field fluctuations
only until a few e-folds into the phase of coherent os-
cillations, after which the curvature perturbations of the
fields ζi(t

osc
i ,x) are individually conserved. The prescrip-

tion for solving such a system of equations will typically
involve evolving first the background equations in order
to determine the number of e-foldings N? at which the
pivot scale (which we take to be kpiv = 0.05 Mpc−1)
leaves the horizon during inflation, and then the first or-
der fluctuations for each field from deep inside the hori-
zon until the time where the curvature perturbations are
conserved. Note that since we mainly want to explore the
impact of reheating on inflationary observables, we will
sample from many different Γi distributions while keep-
ing the parameters describing the inflationary model un-
changed. Hence this approach is quite inefficient for our
purposes, as it requires solving for the inflationary dy-
namics as well as reheating for each assignment of decay
parameters Γi. Instead in this work we have chosen to
solve the inflationary fluctuations on a grid of N? values
in the range N? ∈ (40−60) and perform a local linear fit
to determine3 the individual elements of the Cij matrix
in Eq. (37) for a given N?.

Following the methods outlined in MultiMode-
Code [20, 84–86], we first solve the Klein-Gordon equa-
tions for the homogeneous background fields with initial
conditions φi,0 which determines the field-space positions
at the end of the inflation defined by ε = 1. We then con-
tinue evolving the background fields after the end of infla-
tion, well into the oscillatory phase. For the simulations
in this paper, we have evolved the field equations until
each field φi has crossed its minimum 5 times, although
the exact number does not effect the results significantly
after each field has oscillated a few times. Knowing the
times for the end of inflation and the onset of coherent
oscillations, the Cij matrix can be calculated by evolving
the mode equations as described in Sec. IV for a given
value of N?. We calculate the Cij matrix during the
oscillatory period and evaluate the average of the maxi-
mum and minimum values for each Cij matrix entry. We
use this averaged Cij matrix in calculating the observ-
ables. For the reasons explained above, we repeat this
step multiple times while varying the quantity N?.

Since the exact value of N? and the normalization of
the potential V? will depend on the details of reheat-
ing, we first solve the post-inflationary dynamics for some
fiducial values V fid

? and Nfid
? . We calculate the Wi array

3 In order to smooth the small round-off error in our simulations,
and to capture the underlying scaling with N?, we linearly fit
the Cij matrix elements from the elements of the calculated grid
within ±1 e-fold of the desired N?.
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FIG. 2. Timeline of inflation and reheating. The method we describe numerically evolves the perturbed scalar field equations
until all fields have begun oscillating, after which we switch to evolving unperturbed fluid equations.

by solving the scalar field equations for the background
solution, using the end-of-inflation values φi,end as the
new initial conditions. Once a field φi has crossed the
minimum of its potential, we turn on the decay term in
its equation of motion, which sources the corresponding
radiation fluid ργi for that field. After all the fields have
passed through their potential minima and started de-
caying into radiation, we stop evolving the Klein-Gordon
equations and switch to a fluid description with equations
of motion

ρ̇i + 3Hρi = −Γiρi

ρ̇γi + 4Hργi = Γiρi , (39)

with the Hubble rate given by the Friedmann equation

3H2 =
∑
i

(ρi + ργi ) . (40)

Note that the fluid densities have a mild dependence on
when this transition is implemented, but the change to
observables is negligible compared to the full range of
predictions. We allow this fluid simulation run until all
matter fluids have decayed into radiation. From the re-
sults of this numerical evolution, we are able to read off
the quantities we need to apply the sudden decay approx-
imation and determine the final curvature perturbation
in the adiabatic limit at the end of reheating. Each time
a decay rate becomes equal to the Hubble rate Γi = H,
we evaluate the sudden decay parameters rij described in
Sec. III. After all the fields have decayed into radiation,
we assume that all decay products quickly come to ther-
mal and chemical equilibrium. The solutions will then
rapidly approach the adiabatic limit, and we can calcu-
late the curvature perturbation and its power spectrum
as described in Eq. (2) and Eq. (3). This calculation re-
sults in a scalar amplitude given by Pfid

ζ which then needs
to be rescaled to match observations.

The amplitude of the scalar fluctuations is fixed by
the observations of the CMB anisotropies to be PCMB

ζ ≈
2.142 × 10−9 [89]. We rescale the inflationary potential
in order to set the power spectrum calculated in Eq. (3)
equal to this value. The relative quantities transform
under the rescaling of the potential as V → αV follows:

ρ→ αρ , H → α
1
2H , Pζ → αPζ , ζ → α

1
2 ζ , (41)

where the scaling for our purposes is α = PCMB

ζ /Pfid
ζ .

Having solved the dynamics of reheating, we also know

from Eq. (6) the quantity

ln
areh

aend
= Nreheat . (42)

Rescaling the potential in order to match the CMB obser-
vations in turn fixes the remaining quantities in Eq. (6)
where N? (for a given k?) takes now an exact value. We
then fit the Cij matrix elements corresponding to the
calculated N? from the grid of Cij matrices we already
calculated. This rescaling step after solving the dynam-
ics of reheating is repeated for all simulations. Having
determined the value N?, the corresponding Cij matrix
and the Wi array, we calculate the power spectrum and
the cosmological observables as described in Sec. II.

VI. A CASE STUDY

We consider inflation with canonical kinetic terms, a
minimal coupling to Einstein gravity and N -quadratic
potential,

S =

∫
d4x
√−g

(
R

2
−
∑
i

1

2
gµν∂µφi∂νφi −

∑
i

m2
iφ

2
i

)
,

(43)
a model which has been studied extensively elsewhere,
e.g. [90–98]. We study the regime where one (or a few)
field(s) dominates the energy density during inflation
while the rest remain sub-dominant. We achieve this by
setting the field masses mi and initial field positions φi,0
to be distributed linearly in log-space with equal spac-
ing and the same ordering. In this regime the impact
of reheating on the inflationary predictions is maximized
when the sub-dominant fields get assigned smaller decay
parameters, hence scaling like matter for a longer period,
dominating the contributions to the curvature perturba-
tion at the end of reheating. In our simulations we kept
the ratio between the maximum and minimum masses
constant and equal to mmax/mmin = 103 and fixed the
initial field positions to be in the range [10−3, 20] Mpl.

We are interested in determining how reheating im-
pacts two-point statistics for a wide range of decay rates,
and so we sample the very large parameter space as fol-
lows. First, we take the decay rates to be determined by
the mass hierarchy as

Γi := 10−4Hend

(
mi

mmax

)α
, (44)
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where Hend is the Hubble parameter at the end of in-
flation, for some choice of the parameter α. Next, we
perform a permutation σi on this first set of decay rates
randomly chosen from the N ! possible permutations in
order to generate another set Γi = σi(Γ). We perform
this same procedure for several choices of the parame-
ter α which allows us to adjust the hierarchy between
the decay parameters. In all cases, the minimum decay
rate is bounded from below by Big Bang nucleosynthesis
which constrains the energy scale at the end of reheat-
ing to be larger than about 4 MeV, and perhaps higher
if fields decay into hadrons [99, 100], and the maximum
decay rate is constrained by the validity of sudden decay
approximation to be less than the Hubble parameter at
the end of inflation Γmax < Hend. Note that increasing
(decreasing) the value of the maximum decay constant
Γmax will in turn increase (decrease) the value of N? that
satisfies Eq. (6). The results shown in this paper have
values of N? lower than the instant reheating case, in the
range N? ∈ (45− 55).

Fig. 3 demonstrates the effect of reheating on the two-
point observables, the spectral index ns and the tensor-
to-scalar ratio r. The results from numerical simulations
described in Sec. V are plotted with colored circles. Each
line (in gray) connects the results from simulations with
the decay rates assigned with the same permutation while
the parameter α is varied in the range α ∈ [0, 22

3 ]. The
colors of the circles indicate the field with the largest
measured N,i for that simulation. As shown in Eq (24),
this parameter depends on two quantities, the Cij matrix
and the Wi array which operates on this matrix.

For the N -quadratic case study, Cij matrix has a sim-
ple structure where its diagonal elements are significantly
larger than its off-diagonal elements. Since fluctuations
grow larger in the less massive field directions, the values
of the diagonal elements associated with these fields are
also larger. Hence, for this study, the subset of simula-
tions where reheating has a significant impact on observ-
ables are ones with particular Γi assignments resulting
in the corresponding Wi arrays to preferentially dampen
contributions from the heavier fields, while enhancing
those from the lighter fields. These simulations are shown
with varying colors in Fig. 3 where a large impact on ob-
servables is obtained when contributions from the lighter
fields φC,D,E are enhanced.

For most choices of decay rates, the predictions for ns
and r lie very close to the predictions of a model with
a single scalar field in a quadratic potential. The pre-
dictions that deviate from this result essentially inter-
polate between a single field regime and a curvaton-like
scenario where a given sub-dominant field dominates the
effect on observables, resulting in predictions to asymp-
totically converge on narrow lines of ns and r predictions,
as can be seen in Fig. 3. The values of the observables
corresponding to these lines depend on the masses and
values of the fields at horizon crossing, or in other words,
on the details of the inflationary model. The total range
of predictions in these scenarios therefore depends on the

102 106 1010 1014 1018 1022

�max/�min

0.955

0.960

0.965

0.970

0.975

0.980

n
s

102 106 1010 1014 1018 1022

�max/�min

10�4

10�3

10�2

10�1

r

FIG. 3. The effect of reheating on the scalar spectral index
ns and tensor-to-scalar ratio r for the case study in Sec. VI
with N = 5 fields with kpiv = 0.05 Mpc−1. Colored circles
show the results from simulations for a particular choice of
decay rates Γi, chosen as described in text following Eq. (44).
Each line (in gray) connects the results from simulations with
an identical ordering of Γi values while the parameter α which
determines their spacing is varied in the range α ∈ [0, 22

3
] in 50

steps. We plot the results from all possible 120 permutations
of Γi. The colors mark the field that has the largest N,i at
the end of reheating, for a particular simulation (except for
the circles with lighter color, which highlight the simulations
with the most energetic φA field still having the largest N,i,
although a second field is within 50% of N,φA). The labeling
of the fields is ordered with respect to their energy densities
at the end of inflation ρi(tosc) where φA has the largest energy
density and φE has the smallest.

choice of the inflationary model parameters.
Fig. 4 summarizes our results for the N -quadratic in-

flation case study with perturbative reheating and sud-
den decay approximation. Obtained values for the spec-
tral index ns and tensor-to-scalar ratio r for simula-
tions with N = 5, 15, 35, 65 fields are plotted with
the Planck 2015 contours [11] with the pivot choice
kpiv = 0.05 Mpc−1 and the theory predictions for the
single-field quadratic inflationary potential. In populat-
ing the ns − r plane, we show results for the Γi chosen
from all 120 permutations for the models with 5 fields,
and for N ≥ 15 we show only the results where the Γi
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φ2
ΛCDM Planck TT+lowP

+lensing+ext

0.94 0.95 0.96 0.97 0.98 0.99
ns

10−4

10−3

10−2

10−1

100

r

N?=50

N?=60

N = 5 N = 15 N = 35 N = 65N = 5 N = 15 N = 35 N = 65

FIG. 4. The predictions of the N -quadratic inflation case study described in Sec. VI for the scalar spectral index ns and tensor-
to-scalar ratio r from the sudden decay approximation, plotted with the Planck 2015 constraints using kpiv = 0.05 Mpl−1 and
assuming zero running. Dashed lines show the predictions from single-field inflation models with monomial potentials where the
pivot scale exits the horizon 50 or 60 e-folds before the end of inflation (denoted by N?). The thick black line is the prediction
of single-field quadratic inflation. The colored points are the results from our simulations with N = 5, 15, 35 and 65 fields.
See Sec. VI for the details of how the decay rates are chosen. Note that only a small subset of possible choices of the decay
rates leads to predictions which differ significantly from the single-field case. In particular, for simulations with a large number
of fields N ≥ 15, only scenarios in which the decay rates share nearly the same hierarchy as the masses lead to predictions with
very low r.

are ordered similarly to the field masses.4 The density of
points in this figure does not represent a simple measure
on the input mi and Γi parameter space, but are cho-
sen to highlight the wide range of observable parameter
values accessible in these scenarios. Most of the possible
permutations, which are outside this set, fall near the
quadratic inflation predictions (solid black line).

VII. DISCUSSION

We have developed a method to treat the impact of re-
heating on observables following multiple-field inflation.
We have shown how to treat the effects of reheating semi-
analytically, greatly reducing the computational cost to
make definite predictions with multiple-field models.

Our results focused on one specific form for the in-
flationary potential, although our method applies much

4 This is a exceedingly small subset of all possible permutations
for a model with many fields N � 2.

more broadly. Multiple-field models of inflation have a
very rich parameter space which remains largely unex-
plored. The techniques described in this work allow for
a thorough exploration of this space, including the po-
tentially very important impact of reheating following
multiple-field inflation, as has recently been done for a
set of two-field models [101–103]. We restricted numeri-
cal results to N -quadratic inflation with specific choices
for both the hierarchy of masses and the initial condi-
tions. We showed that reheating can have an effect on
the predictions of multiple-field inflation. For the sce-
narios we studied, reheating has a significant impact on
observables only when the lightest fields are assigned very
low decay rates (this is the case that realizes curvaton-like
behavior). For choices of parameters where this relation
is not present we found almost no sensitivity of the pri-
mordial curvature perturbation to the physics of reheat-
ing (apart from the dependence on N? which is present
even in single-field models). At large N we therefore
found only a very small fraction of the tested scenar-
ios exhibited sensitivity to reheating. Different choices
of parameters would lead to a different set of perturba-
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tions predicted at the end of inflation, and also a different
range of predictions for observables following reheating.
Our focus has been on exploring a restricted set of initial
conditions and model parameters but it would be inter-
esting to perform a statistical analysis of the model as
described in [45].

Looking beyond N -quadratic inflation, our method re-
quires only that scalar fields oscillate about quadratic
minima, but there is nothing about our technique that re-
stricts the form of the potential away from the minimum,
and in fact a straightforward extension of the methods
presented here would allow treatment of non-quadratic
minima as well. The effects of reheating are expected to
be greater than those shown here for more general choices
of potential [39, 102].

While the need to include a detailed model of reheating
makes multiple-field models of inflation inherently more
complicated, the dependence of observables on the re-
heating phase also presents an opportunity. Very little is
known about how reheating took place, though the sensi-
tivity of observables to reheating following multiple-field
inflation may allow more information to be gleaned about
this weakly constrained phase of the cosmic history than
is possible for single-field models [21, 103–106].

We focused here on the two-point statistics of curva-
ture perturbations, though it would be very interesting to
extend our results to include the study of primordial non-
Gaussianity [107]. Unlike single-field inflation models,
multiple-field inflation models are capable of producing
detectable levels of local-type non-Gaussianity [108, 109],
therefore making calculation of higher-order statistics a
natural next step for the tools we have developed here.

Treatment of non-Gaussianity would require carrying out
calculations to the next order of perturbation theory,
but the general techniques spelled out here should ap-
ply without much modification.

Reheating is a necessary component of any successful
inflationary model. For single-field inflation the predic-
tions of observables are sensitive only to the integrated
expansion history during reheating. However, the details
of reheating following multiple-field inflation have an im-
portant and direct impact on the evolution of cosmologi-
cal perturbations, and therefore must be treated carefully
when predicting the observable outcomes of these mod-
els. We presented here a method to make this treatment
tractable.
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