
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fast and accurate computation of projected two-point
functions

Henry S. Grasshorn Gebhardt and Donghui Jeong
Phys. Rev. D 97, 023504 — Published 8 January 2018

DOI: 10.1103/PhysRevD.97.023504

http://dx.doi.org/10.1103/PhysRevD.97.023504

Fast and Accurate Computation of Projected Two-point Functions

Henry S. Grasshorn Gebhardt1, ∗ and Donghui Jeong1

1Department of Astronomy and Astrophysics, and Institute for Gravitation and the Cosmos,
The Pennsylvania State University, University Park, PA 16802, USA

We present the 2-FAST (2-point Function from Fast and Accurate Spherical Bessel Transforma-
tion) algorithma for a fast and accurate computation of integrals involving one or two spherical Bessel
functions. These types of integrals occur when projecting the galaxy power spectrum P (k) onto the
configuration space, ξν` (r), or spherical harmonic space, C`(χ, χ

′). First, we employ the FFTLog
transformation of the power spectrum to divide the calculation into P (k)-dependent coefficients
and P (k)-independent integrations of basis functions multiplied by spherical Bessel functions. We
find analytical expressions for the latter integrals in terms of special functions, for which recursion
provides a fast and accurate evaluation. The algorithm, therefore, circumvents direct integration of
highly oscillating spherical Bessel functions.

I. INTRODUCTION

In standard cosmology, the large-scale structure of
the Universe is statistically homogeneous and isotropic
and evolved from nearly Gaussian [1] primordial curva-
ture perturbations [2–5] generated during inflation [6–
11]. The statistics of large-scale structure, therefore, are
often predicted in terms of the power spectrum P (k) (the
two-point correlation function in Fourier space) that re-
flects the underlying spatial symmetry of the Universe,
and that connects directly with the primordial curvature
power spectrum. The predicted power spectrum at late
times responds sensitively to key cosmological parame-
ters such as the dark energy equation of state, primordial
non-Gaussianity parameters as well as the total mass of
neutrinos. This makes the power spectrum a powerful
cosmological probe [12–18].

The observed large-scale structure, however, does not
enjoy full spatial symmetry because all observations must
be done within our past light cone; at each cosmological
distance, we observe the large-scale structure at a differ-
ent time. As a result, the time evolution of large-scale
structure genuinely breaks the homogeneity along the ra-
dial direction, and we are left only with the spherical
symmetry on the two-dimensional sky.

On the sky, the equivalent of the power spectrum P (k)
is the angular power spectrum C`, which is the two-
point function in spherical harmonic space. The har-
monic space basis Y`m(x̂) is related to the Fourier basis
eik·x by Rayleigh’s formula:

eik·x = 4π
∑

`,m

i`j`(kx)Y`m(k̂)Y ∗`m(x̂), (1)

so that the angular power spectrum is related to the
power spectrum P (k) by integrals of the form

w``′(χ, χ
′) =

2

π

∫ ∞

0

dk k2 P (k) j`(kχ) j`′(kχ
′), (2)

∗ hsg113@psu.edu
a Our code is available at https://github.com/hsgg/twoFAST.

where χ and χ′ are the comoving angular diameter dis-
tances at two different epochs, and j`(z) are spherical
Bessel functions. Note that we consider the general case
of `′ 6= `, because the contribution from vector or ten-
sor quantities can couple adjacent `-modes. For exam-
ple, in order to account for the peculiar velocity effect
on redshift-space distortion to linear order, one needs up
to ` − `′ = ±4. We show an explicit expression of the
angular power spectrum C`(χ, χ

′) of galaxies in redshift
space in terms of w``′(χ, χ

′) in App. G. The brute-force
numerical integration of Eq. (2) is quite cumbersome and
time-consuming because it involves the evaluation of the
spherical Bessel functions with high degree ` and large
arguments kχ at which the j`(kχ) functions are highly
oscillatory. It is the oscillatory nature of the spherical
Bessel functions that delays the convergence of the nu-
merical integration. Additionally, these integrals are of-
ten needed to sample a large area in χ-χ′-space.

Although the spherical harmonic basis reflects the un-
derlying spherical symmetry and facilitates data analysis,
intuition often works better in configuration space. The
prediction for the configuration space galaxy two-point
correlation function that is valid on the spherical sky is
often called wide angle formula [19–21] in contrast to the
plane-parallel approximation [22] that works for small
sky coverage. The building blocks of the wide angle for-
mula are the configuration-space functions ξν` (r) defined
as

ξν` (r) ≡
∫ ∞

0

k2dk

2π2
P (k)

j`(kr)

(kr)ν
. (3)

Using this notation, the linear two-point correlation func-
tion becomes ξ(r) = ξ0

0(r), and calculation of the linear
redshift-space galaxy correlation function requires ξ0

2(r)
and ξ0

4(r) [23]. These functions also appear in calculat-
ing the higher-order correlation functions [24], the cor-
relation functions of peaks [25], and non-linear correla-
tion functions [26–29]. Note that, although not as cum-
bersome and time consuming as Eq. (2), the evaluation
of Eq. (3) also involves integrating over spherical Bessel
functions highly oscillatory in the k →∞ limit.

In this paper, we shall present a fast and accurate
method of calculating the integrations in Eqs. (2)–(3).

mailto:hsg113@psu.edu
https://github.com/hsgg/twoFAST

2

Specifically, we use the Fast Hankel transformation first
proposed by [30] and [31], and introduced to the cosmol-
ogy community in [32]. Following Ref. [32], hereafter,
we call it an FFTLog transformation. The idea in Tal-
man [30] is as follows. When changing the integration
variables to a logarithmic scale, the spherical Bessel in-
tegrations in Eqs. (2)–(3) become convolutions. We then
use the convolution theorem to perform the integration:
by first Fourier-transforming the convolving functions,
then multiplying, and inverse-Fourier-transforming back.
The method requires no explicit computation and inte-
gration of spherical Bessel functions. Instead, it requires
the computation of Gamma functions and the Gauss hy-
pergeometric function 2F1, which are the FFTLog trans-
formation of, respectively, one and two spherical Bessel
functions. Therefore, a fast and accurate calculation of
Eqs. (2)–(3) boils down to a fast and accurate computa-
tion of the Gamma function and Gauss hypergeometric
function for any ` and any ratio R = χ′/χ. We shall
achieve this goal by using a recursion.

A recent paper by Assassi et al. [33] has also proposed a
similar algorithm to efficiently calculate the angular two-
point function w``(χ, χ

′). Here, we have further extended
the algorithm by studying a fast and accurate method
to calculate the Gauss hypergeometric functions, and by
including the cases for ` 6= `′. We also study the choice of
parameters such as the biasing parameter q and the size
of the FFTLog transformation N in a systematic way.

This paper is organized as follows. In Sec. II we in-
troduce the FFTLog transformation. We present the
2-FAST algorithm for computing the real space corre-
lation functions ξν` (r) in Sec. III and the harmonic space
two-point correlation functions w``′(χ, χ

′) in Sec. IV. We
then apply the 2-FAST algorithm to the galaxy two-
point correlation function, to the angular power spectrum
of the lensing potential, and to the lensing-convergence-
galaxy cross-correlation functions in Sec. V. We conclude
in Sec. VI. In App. A we present discrete versions of the
equations that we use for the implementation. We study
the effect of choosing a different biasing parameter q,
sampling N , and integration interval G in App. B. In
App. C we compare to a traditional integration method.
We lay out the details of our method of calculating the
hypergeometric function in App. D, App. E, and App. F.
We show explicitly the relation between w``′ and the ob-
served galaxy correlation function C` in redshift space in
App. G. We summarize a high-accuracy numerical algo-
rithm (the Lucas algorithm [34]) that we use to bench-
mark our result in App. H. Finally, we derive the ex-
tended Limber approximation for ` 6= `′ cases in App. I.

Throughout, we use a flat ΛCDM universe with w =
−1, h = 0.6778, Ωbh

2 = 0.022307, Ωch
2 = 0.11865,

Ωνh
2 = 0.000638, TCMB = 2.7255 K, ns = 0.9672, and

As = 2.147× 10−9 as the reference cosmology, where
h ≡ H0/100 km s−1 Mpc−1.

All numerical implementations in this paper are done

10−11

10−6

10−1

104

109

1014

P
(k

)
in

[M
p

c/
h

]3

Input P (k)

Windowed P (k)

Transformed P (k)

10−13 10−9 10−5 10−1 103 107 1011

k in [h/Mpc]

−10−5
0

10−5

∆
P
/P

FIG. 1. The linear matter power spectrum, with q = 2, and
k0 = 10−5 hMpc−1. In gray is the power spectrum, in black
the windowed power spectrum (see Eq. (A4)), and in dashed
blue the Fourier transformed power spectrum as calculated
by the discrete form of Eq. (7). The lower panel shows the
relative difference to the input P (k). Here, the number of
sampling points between kmin = 10−5 hMpc−1 and kmax =
103 hMpc−1 was taken to be N = 1024.

in the high-level programming language Julia1, which is
a just-in-time compiled language developed specifically
for scientific numerical computations. We use Julia
version 0.6. We run the tests on a laptop with an
Intel(R) Core(TM) i7-4750HQ CPU, at 3.1 GHz with
11 GiB/s memory access, and a 360 MB/s SSD. We have
not yet parallelized the code, and all tests were run on
a single core. We make the code available publicly at
https://github.com/hsgg/twoFAST.

II. FFTLOG TRANSFORM OF THE POWER
SPECTRUM

The 2-FAST algorithm is based on the FFTLog trans-
formation [32] of the power spectrum P (k) which can be
implemented by a Fast Fourier Transform (FFT) of the
P (k) sampled at wavenumbers ki regularly sampled in
logarithmic space. In practice, we perform an FFTLog
transformation of the biased power spectrum

(
k

k0

)3−q
P (k) = e(3−q)κP (k0e

κ) , (4)

in order to reduce numerical artifacts such as aliasing.
Here, q is the biasing parameter and κ is the logarithmic
variable defined as

k = k0e
κ (5)

1 https://julialang.org

https://github.com/hsgg/twoFAST
https://julialang.org

3

100 101 102 103

t = 2πm/G

10−10

10−7

10−4

10−1

102

105

108

1011
|φ
q
(t

)|
q = 1.1

q = 2.0

FIG. 2. The absolute value |φq(t)| of the FFTLog transform
of the biased power spectrum k3−qP (k) for two values of the
biasing parameter q (colored lines). For comparison, we also
show the FFTLog transform of a power spectrum without the
Baryon Acoustic Oscillations (BAO) feature for each q (grey
dashed lines with same symbols as their BAO counterpart).
The grey vertical line shows the maximum t when using N =
512 sampling points in the interval kmin = 10−5 hMpc−1 to
kmax = 103 hMpc−1. Here, m is the mode of the Fourier
transform, and G = ln(kmax/kmin).

with some pivot wavenumber k0. By defining the inverse
Fourier transform of the biased power spectrum as φq(x),
we have the following Fourier pair:

φq(x) =

∫
dκ

2π
eiκx e(3−q)κ P (k0e

κ) (6)

P (k) = e−(3−q)κ
∫

dx e−iκx φq(x) (7)

We present a discrete version of these equations suitable
for numerical implementation in Eq. (A3).

Furthermore, in order to reduce ringing, we apply a
window function to the biased power spectrum before
and after the Fourier transformation. We use the same
window function as McEwen et al. [27] (their Eq. (C.1),
and Eq. (A4) here). This choice of the window function
ensures that the power spectrum vanishes smoothly at
each end of the integration interval, thus reducing ring-
ing.

We calculate the linear matter power spectrum by us-
ing CAMB [35]2. However, we have modified CAMB so that
the output power spectrum prints more significant dig-
its required for a more accurate FFTLog transformation.
Also, when the power spectrum is needed outside of the
range of the CAMB output, we extrapolate the linear power

2 http://camb.info/

spectrum by a power law for both high- and low-k regions

lim
k→0

P (k) = N1 k
n1 (8)

lim
k→∞

P (k) = N2 k
n2−4 , (9)

where the limits have been chosen so that both indices
are similar to the spectral index, i.e. n1 ' n2 ' ns.
However, we measure n1 and n2 to ensure that the ex-
trapolated linear power spectrum is smooth. Note that
the asymptotic behavior Eqs. (8)–(9) implies that the
FFTLog transform Eq. (6) only converges when

n2 − 1 < q < 3 + n1 . (10)

For our reference cosmology, n1 ' ns = 0.967 and n2 =
0.85, we find −0.15 < q < 3.967.

Fig. 1 shows the linear matter power spectrum for
our fiducial ΛCDM cosmology with the biasing parame-
ter q = 2. The blue dashed line (“Transformed P (k)”)
shows the result of Eq. (7), the solid grey line (“In-
put P (k)”) shows the input P (k), and the solid black
line (“Windowed input”) shows the input P (k) ampu-
tated by the window function Eq. (A4). In this plot,
the number of sample points is N = 1024 in the inter-
val kmin = 10−5 hMpc−1 to kmax = 103 hMpc−1. The
periodicity shown in the figure is due to the use of the
FFT. The global slope is due to the use of the biasing
parameter q = 2, since in Eq. (7) the integral is periodic,
and it is multiplied by k−1.

In Fig. 2 we show the FFTLog transformation φq(t) of
the linear matter power spectrum for two values of the
biasing parameter: q = 1.1 (blue line), and q = 2 (orange
line). In order to highlight the effect from the Baryon
Acoustic Oscillations (BAO), we also show φq(t) for a
linear power spectrum without BAO (grey, dashed lines)
that we have calculated from the fitting formula given in
Ref. [36]. The BAO appears in φq(t) as the “bump” to
the left of the grey vertical line (indicating the Nyquist
frequency for the case N = 512).

In principle, the choice of q within the limits of Eq. (10)
should not affect the result of the calculation. When im-
plementing Eqs. (6)–(7) as a finite sum, however, we can
reduce the aliasing effect by choosing a proper q value.
The rule of thumb is that the Fourier-transformed func-
tion will decay quickly (thus, yielding smaller aliasing)
when the original function has a broader width (say, mea-
sured by the full-width at half maximum). With our
parametrization in Eqs. (8)–(9), the slopes of the Fourier-
transformed function e(3−q)κP (k0e

κ) are, e3+n1−q and
en2−1−q, respectively, at low- and high-κ regions. A big-
ger q, therefore, would make the lower-κ side shallower
and higher-κ side steeper. In App. B, we study the alias-
ing effect for different biasing parameter q and the reso-
lution of FFTLog, N . It turns out that the aliasing ef-
fect is smaller when the slopes at both side of the power
spectrum are almost equal: q ' 1 + (n1 + n2)/2 ' 1.9
(see Fig. 15). This is the choice of the q value that we
shall use in Sec. III when we calculate the overlapping

4

of the power spectrum and one spherical Bessel function.
It turns out that, however, a smaller q-value is desired
when calculating w``′(χ, χ

′). We shall justify our choice
of the biasing parameter q in App. B.

Note that in the implementation of 2-FAST, we shall
use the ‘coefficients’ φq(x) of the FFTLog transformation
instead of the power spectrum; thus, φq(x) is the only
P (k)-dependent quantity of the integration.

III. PROJECTION ONTO REAL SPACE:
POWER SPECTRUM OVERLAPPING WITH

ONE SPHERICAL BESSEL FUNCTION

We start from the integration of the power spectrum
overlapping with one spherical Bessel function:

ξν` (r) ≡
∫ ∞

0

k2dk

2π2
P (k)

j`(kr)

(kr)ν
. (11)

Here, we briefly outline the method and present some
examples, including the calculation of the real-space cor-
relation function ξ(r) ≡ ξ0

0(r) and its first and second
derivatives.

The key observation is that, by introducing logarithmic
variables κ and ρ such that

k = k0e
κ r = r0e

ρ , (12)

with some pivot k0 and r0, the integration in Eq. (11)
can be expressed as a convolution:

ξν` (r) =
k3

0e
−(qν+ν)ρ

2π2αν

∫ ∞

−∞
dκ e(3−qν−ν)κP (k0e

κ)

× eqν(κ+ρ) j`(αe
κ+ρ) . (13)

Here, we define α = k0r0, and qν is the biasing parameter
that may depend on ν. That the convolution in real
space is multiplication in Fourier space motivates us to
introduce the Fourier transform of the spherical Bessel
function Mqν

` (t):

eqνσ j`(αe
σ) =

∫ ∞

−∞

dt

2π
eiσtMqν

` (t) . (14)

Together with φqν+ν(t) that we defined earlier in Eq. (6),
Eq. (11) becomes

ξν` (r) =
k3

0e
−(qν+ν)ρ

παν

∫ ∞

−∞

dt

2π
eiρt φqν+ν(t)Mqν

` (t) . (15)

Eq. (15) is the key equation for the 2-FAST algorithm.
The cosmology-dependent part φqν+ν(t) is calculated as
the FFTLog transformation of the power spectrum as
described in Sec. II. The cosmology-independent part
Mqν
` (t) is calculated analytically by inverting its defini-

tion Eq. (14). Defining a variable s = αeσ, the inverse

Fourier transformation may be written as

Mqν
` (t) =

∫ ∞

−∞
dσ e−itσ eqνσ j`(αe

σ)

= αit−qν
∫ ∞

0

ds sqν−1−it j`(s)

≡ αit−qν u`(qν − 1− it) . (16)

The integral u`(n) is given by

u`(n) ≡
∫ ∞

0

ds sn j`(s) = 2n−1
√
π

Γ
[

1
2 (1 + `+ n)

]

Γ
[

1
2 (2 + `− n)

]

(17)

when <(n − 1) < 0 and <(n + `) > −1. Hereafter, <(z)
denotes the real part of a complex number z. For our
case,

n = qν − 1− it . (18)

For r0 we recommend the choice r0 ∼ 1/kmax.

A. The biasing parameter q

How do we need to choose the biasing parameter q?
First, the integration Mqν

` (t) restricts the biasing param-
eter qν to the range

−` < qν < 2 . (19)

In addition, the FFTLog transformation exists when n2−
1 < qν + ν < 3 + n1 (Eq. (10)). Combining the two
conditions, we find

max(n2 − 1− ν,−`) < qν < min(3 + n1 − ν, 2) , (20)

or max(−0.15 − ν,−`) < qν < min(3.967 − ν, 2) for our
reference cosmology. Note that Eq. (20) implies that a
valid value of qν exists only if

n2 − 3 < ν < 3 + n1 + ` , (21)

or −2.15 < ν < ` + 3.967 for our reference cosmology,
and this is the condition of convergence for the integral
Eq. (11) when using the asymptotic behavior of the power
spectrum in Eqs. (8)–(9).

As we show in App. B, there is an aliasing effect from
the discrete implementation of the integration in Eq. (6).
We shall first choose a finer Fourier resolution N in order
to ensure that all the relevant Fourier modes are summed
over in Eq. (15). Then, our first choice for qν is qν =
1.9 − ν, because the aliasing effect in φq(t) is small for
q = qν + ν = 1.9. If 1.9 − ν falls outside the range in
Eq. (20), then we choose

qν =
1

3
(qν,min + 2qν,max) , (22)

where qν,min and qν,max are the boundaries given in
Eq. (20). Note that we weight slightly toward the higher-
qν values. We show that this choice of qν gives accurate
results for a wide range of (`, ν)-combinations in App. B.

5

B. Results: accuracy

We assess the accuracy of the 2-FAST algorithm by
comparing the result with a slow, but accurate bench-
mark algorithm. The quadosc [37] algorithm can in-
tegrate oscillatory functions accurately over an infinite
interval. The quadosc algorithm works by integrating
between successive zeros of the integrand using Gauss-
Kronrod quadrature, and then using a series convergence
acceleration to sum up the terms effectively out to infin-
ity. For the convergence acceleration we use the Levin
u-transform as described in [37]. In addition, we also ver-
ified that our results agree with the results from FFTLog
[32] to within the accuracy achievable with quadosc.

Fig. 3 compares the result from 2-FAST with the re-
sult from quadosc. The left panel shows the configura-
tion space two-point correlation function (ξ(r) = ξ0

0(r),
blue thick dashed line) and its first (r1/2ξ′(r), orange
dashed lines) and second (rξ′′(r), green dashed line)
derivatives. Using the identities for the spherical Bessel
function, (2` + 1) j′`(x) = ` j`−1(x) − (` + 1) j`+1(x) and
(2` + 1)j`(x)/x = j`−1(x) + j`+1(x), the first and sec-
ond derivatives of ξ(r) can also be calculated using the
2-FAST algorithm:

ξ′(r) = −1

r
ξ−1
1 (r) (23)

ξ′′(r) =
1

r2

[
ξ−2
2 (r)− ξ−1

1 (r)
]

(24)

The right panel of Fig. 3 shows the results for ξ0
2(r)

(blue dashed line), ξ0
4(r) (orange dashed line), and ξ3

1(r)
(green dashed lines). For all cases, we show the corre-
sponding results of the quadosc algorithm as solid grey
lines. For the 2-FAST calculation, we used N = 1024,
kmin = 10−5 hMpc−1, kmax = 103 hMpc−1, and r0 =
10−3 h−1 Mpc.

To facilitate the comparison better, in the lower panels
of Fig. 3, we show the fractional difference between the
derivatives calculated from the two methods (quadosc
and its numerical derivatives and 2-FAST). For ξ0

0 , ξ0
2

and ξ0
4 , the difference between the two methods is smaller

than ∼0.05 %, and the accuracy improves when increas-
ing the sampling size N . The derivatives are less accu-
rate, in particular, at very small r, at zero-crossings, and
at r & 150h−1 Mpc. The accuracy of the ξ−2

2 (r) term is
worst, since more negative ν puts more weight on small
scale structure.

The residuals are particularly large for the second
derivative. We find that the oscillatory features in
the residuals of the second derivative on small scales
r < 100h−1 Mpc are improved when increasing the
sampling frequency N . However, on large-scales (r >
100h−1 Mpc) we find the discrepancies reflect limitations
of the quadosc algorithm. In Fig. 4 we show a zoom-in
of Fig. 3 for the second derivative ξ′′(r), where for the
2-FAST algorithm we used N = 16384 in order to get a
dense sampling in r-space. The grey curve, again, shows

the result from using the quadosc algorithm to calcu-
late ξ(r), taking a 5th-order spline, and then using the
second derivative of the spline function. The quadosc
curve shows unnatural erratic behavior. Since the sec-
ond derivative should be a smooth function, it is likely
that the differences between the 2-FAST and the quadosc
results are due to limitations of our implementation of
the quadosc algorithm, and are not a limitation of the
2-FAST method.

C. Results: performance

In Fig. 5 we show the performance of the 2-FAST al-
gorithm as a function of the number of sampling points
N . The figure shows that with the 2-FAST algorithm we
can calculate each curve in Fig. 3 in ∼1.3 ms on the test
laptop that we describe at the end of Sec. I. The major-
ity of the time is spent in the FFT, for which we use the
Fastest Fourier Transform in the West3 (FFTW) pack-
age. Note that the memory allocations time of Julia add
to the run time, so further optimization using a lower-
level language is still possible, if necessary. The FFTLog
software [32] has similar performance, though a different
feature set.

IV. PROJECTION ONTO SPHERICAL
HARMONIC SPACE

We now turn to the case with two spherical Bessel
functions, Eq. (2). With the biasing parameter q, Eq. (2)
becomes

w``′(χ, χ
′) =

2

π

∫ ∞

0

dk k2−q P (k) kqj`(kχ) j`′(kχ
′) .

(25)

As in Sec. III, we shall turn Eq. (25) into a convolution
integral by introducing logarithmic variables κ, ρ, and
the ratio R = χ′/χ which are defined as

k

k0
= eκ

χ

χ0
= eρ χ′ = Rχ = Rχ0e

ρ , (26)

for some pivot wavenumber k0 and pivot distance χ0.
Then, Eq. (25) becomes

w``′(χ,R) =
2k3

0

π
e−qρ

∫ ∞

−∞
dκ e(3−q)κ P (k0e

κ)

× eq(κ+ρ)j`(αe
κ+ρ) j`′(Rαe

κ+ρ) . (27)

where α = k0χ0. Parallel to Sec. III, we introduce the
Fourier transformation of the multiplication of two spher-
ical Bessel functions Mq

``′(t, R) as

eqσ j`(αe
σ) j`′(βe

σ) =

∫
dt

2π
eitσMq

``′(t, R) . (28)

3 http://fftw.org

http://fftw.org

6

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

r
n 2
ξ(
n

) (
r)

ξ(r)

r
1
2 ξ′(r)

r ξ′′(r)

0 50 100 150 200

r in [h−1 Mpc]

−0.00025
0.00000
0.00025

∆
ξ/
ξ

0.000

0.005

0.010

0.015

0.020

ξν `
(r

)

ξ0
2(r)

ξ0
4(r)

ξ3
1(r)

0 50 100 150 200

r in [h−1 Mpc]

−0.00001
0.00000
0.00001

∆
ξ/
ξ

FIG. 3. Accuracy comparison for different implementations of ξν` (r). Left: The upper panel shows the real-space correlation
function ξ0

0(r) and its first and second derivatives calculated with the 2-FAST algorithm (dashed colored lines) and with the
quadosc-algorithm (solid grey lines). To calculate the first and second derivatives with the 2-FAST algorithm we use Eqs. (23)–
(24). For the quadosc-algorithm we take the derivatives by creating a 5th-order spline of ξ0

0(r), and taking derivatives of the
spline. The lower panel shows the relative difference between the 2-FAST results and the quadosc results. The difference
is generally less than ∼0.05 %, except at zero-crossings, and at very small and large separations r. The differences at r &
150h−1 Mpc are likely due to pathologies in the quadosc-algorithm, as closer inspection reveals unnatural oscillations in the
quadosc-curve, see Fig. 4. Right: The same as on the left, except for ξ0

2(r), ξ0
4(r), and ξ3

1(r). For the 2-FAST algorithm we
used N = 1024, kmin = 10−5 hMpc−1, and kmax = 103 hMpc−1. Increasing N leads to better agreement between 2-FAST and
quadosc.

−0.0000054

−0.0000052

−0.0000050

−0.0000048

r
n 2
ξ(
n

) (
r)

r ξ′′(r)

168 170 172 174 176 178

r in [h−1 Mpc]

−0.001
0.000
0.001

∆
ξ/
ξ

FIG. 4. A zoom-in figure of Fig. 3 at large r. Here we chose
N = 16384 for the 2-FAST algorithm (green dashed) to get
a more dense sampling in r. The quadosc curve (solid grey)
shows unnatural erratic behavior. Since the second derivative
ξ′′(r) is expected to be smooth, it is likely that this erratic
behavior is due to limitations of the quadosc algorithm.

We can now rewrite Eq. (27) by using φq and Mq
``′ as

w``′(χ,R) = 4k3
0 e
−qρ

∫
dt

2π
eitρ φq(t)Mq

``′(t, R) , (29)

103 104

N

10−3

10−2

10−1

T
im

e
in

se
co

n
d

s

Run 1

Run 2

Run 3

FIG. 5. Performance of the 2-FAST algorithm as a function
of sampling points N . We show the timings of three runs
at each N , Run 1 to 3, each run having equal settings. The
algorithm achieves ∼1.3 ms performance for N = 1024.

where χ is related to ρ by Eq. (26). Eq. (29) is the core of
the 2-FAST algorithm for calculating the angular power
spectrum in harmonic space. We show the discrete ver-
sion of Eq. (29) that we use for the implementation in
App. A 3. We have already discussed the FFTLog trans-
formation in Sec. II, and the key to evaluate w``′(χ,R)
is computing Mq

``′(t, R) that we shall turn to next.

77

`

`′

`max

0,0

0,2

0,4

0,-2

0,-4

1,1

1,3

1,5

1,-1

1,-3

2,2

2,4

2,6

2,0

2,-2

3,3

3,5

3,7

3,1

3,-1

4,4

4,6

4,8

4,2

4,0

5,5

5,7

5,9

5,3

5,1

6,6

6,8

6,10

6,4

6,2

7,7

7,9

7,11

7,5

7,3

8,8

8,10

8,12

8,6

8,4

R ≤ 1

R > 1

FIG. 6. In order to calculate the Fourier transform of two
spherical Bessel functions Mq

``′(t, R), we employ recursions
along the paths in ``′-space shown in this figure for `max = 8.
Each node shows its (`, `′) coordinates. For R ≤ 1 we start
at `max with ∆` = `′ − ` = 4, and proceed down along the
path `′ = ` + 4 until ` = 0. At each `, we then proceed
with a recursion ∆` → ∆` − 2 until ∆` = −4. The gray
underlying squares centered on the white nodes indicate the
values of w`±2,`±2 which are needed to calculate the C` with
linear redshift-space distortion (see App. G). In gray we also
indicate the start of the recursion for R > 1, which is stable
along the paths `′ = `−4 and ∆`→ ∆`+2 (not shown). The
recurrence relations and their stability properties are derived
in App. E and App. F.

A. Fourier transform of two spherical Bessel
functions

The P (k)-independent part Mq
``′(t, R) is given by the

Fourier transformation of the product of two spherical
Bessel functions:

Mq
``′(t, R) =

∫
dσ e(q−it)σ j`(αe

σ) j`′(Rαe
σ)

= α−1

∫
ds
(s
α

)q−1−it
j`(s) j`′(Rs)

= αit−q
∫

ds sq−1−it j`(s) j`′(Rs)

= αit−q U``′(R, q − 1− it) , (30)

where s = αeσ, or σ = ln(s/α), and U``′(R,n) is given
in terms of the Gauss hypergeometric function 2F1 as

U``′(R,n)

= 2n−2R`
′
π

Γ
[
(1 + `+ `′ + n)/2

]

Γ
[
(2 + `− `′ − n)/2

]
Γ
[

3
2 + `′

]

× 2F1

(−`+ `′ + n

2
,

1 + `+ `′ + n

2
;

3

2
+ `′;R2

)
,

(31)

which we obtained from Mathematica [38]. Here, n =
q − 1 − it. Note that the general expression Eq. (31) is
valid for |R| < 1, <(n) < 2 and <(`+ `′ + n) > −1. Fur-
thermore, for R = 1, the Gauss hypergeometric function
converges only if <(1 − n) > 0. These conditions put
constraints on the choice of the biasing parameter q:

−`− `′ < q < 2 . (32)

The method for calculating the function U``′(R,n), how-
ever, may put further constraints on q. For example,
when evaluating U``′(R,n) by recursion (see below for
the details of the recursion), we need to know U``′ at
` = `′ = 0. In that case, the Gamma-function in the nu-
merator of Eq. (31) becomes infinite when n is a negative
odd integer, which happens for t = 0 and non-positive
even integer values of q. Hence, we have the further con-
straint

q 6= −2m for m = 0, 1, · · · . (33)

Furthermore, q 6= 1 is required for our implementation
of the case R = 1, see App. E 3 a. For the calculation
of w``′(χ, χ

′), we find that q < 1.5 is required to sup-
press the aliasing effect associated with the convolution
for χ, χ′ & 10h−1 Mpc (see App. B).

The R = χ′/χ > 1 cases can also be obtained from
Eq. (31) which is valid only for |R| < 1, because by sim-
ply changing the integration variable from s to s′ = Rs,
Eq. (30) becomes

Mq
``′(t, R) = (Rα)it−q

∫
ds′ s′q−1−it j`(R

−1s′) j`′(s
′)

= (Rα)it−q U`′`(R
−1, q − 1− it) . (34)

Note that M``′ is now proportional to U`′`. We use
Eq. (34) when calculating for R > 1 cases.

Now, the efficiency and accuracy of the 2-FAST al-
gorithm depends on our ability to calculate the Gauss
hypergeometric function 2F1 in Eq. (31). Here, we use a
set of recurrence relations based on contiguous relations
for the Gauss hypergeometric function that we list in
Eqs. (D2a)–(D2h). We describe the details of the recur-
sion in App. E and App. F, and outline the key procedure
here. In particular, our implementation is based upon
the following three properties of 2F1 in Eq. (31): (A)
The backward recursion `→ `− 1 is stable in all cases of
interest, (B) The recursion ∆` = 4→ ∆` = −4 is stable

FIG. 6. In order to calculate the Fourier transform of two
spherical Bessel functions Mq

``′(t, R), we employ recursions
along the paths in ``′-space shown in this figure for `max = 8.
Each node shows its (`, `′) coordinates. For R ≤ 1 we start
at `max with ∆` = `′ − ` = 4, and proceed down along the
path `′ = ` + 4 until ` = 0. At each `, we then proceed
with a recursion ∆` → ∆` − 2 until ∆` = −4. The gray
underlying squares centered on the white nodes indicate the
values of w`±2,`±2 which are needed to calculate the C` with
linear redshift-space distortion (see App. G). In gray we also
indicate the start of the recursion for R > 1, which is stable
along the paths `′ = `−4 and ∆`→ ∆`+2 (not shown). The
recurrence relations and their stability properties are derived
in App. E and App. F.

A. Fourier transform of two spherical Bessel
functions

The P (k)-independent part Mq
``′(t, R) is given by the

Fourier transformation of the product of two spherical
Bessel functions:

Mq
``′(t, R) =

∫
dσ e(q−it)σ j`(αe

σ) j`′(Rαe
σ)

= α−1

∫
ds
(s
α

)q−1−it
j`(s) j`′(Rs)

= αit−q
∫

ds sq−1−it j`(s) j`′(Rs)

= αit−q U``′(R, q − 1− it) , (30)

where s = αeσ, or σ = ln(s/α), and U``′(R,n) is given
in terms of the Gauss hypergeometric function 2F1 as

U``′(R,n)

= 2n−2R`
′
π

Γ
[
(1 + `+ `′ + n)/2

]

Γ
[
(2 + `− `′ − n)/2

]
Γ
[

3
2 + `′

]

× 2F1

(−`+ `′ + n

2
,

1 + `+ `′ + n

2
;

3

2
+ `′;R2

)
,

(31)

which we obtained from Mathematica [38]. Here, n =
q − 1 − it. Note that the general expression Eq. (31) is
valid for |R| < 1, <(n) < 2 and <(`+ `′ + n) > −1. Fur-
thermore, for R = 1, the Gauss hypergeometric function
converges only if <(1 − n) > 0. These conditions put
constraints on the choice of the biasing parameter q:

−`− `′ < q < 2 . (32)

The method for calculating the function U``′(R,n), how-
ever, may put further constraints on q. For example,
when evaluating U``′(R,n) by recursion (see below for
the details of the recursion), we need to know U``′ at
` = `′ = 0. In that case, the Gamma-function in the nu-
merator of Eq. (31) becomes infinite when n is a negative
odd integer, which happens for t = 0 and non-positive
even integer values of q. Hence, we have the further con-
straint

q 6= −2m for m = 0, 1, · · · . (33)

Furthermore, q 6= 1 is required for our implementation
of the case R = 1, see App. E 3 a. For the calculation
of w``′(χ, χ

′), we find that q < 1.5 is required to sup-
press the aliasing effect associated with the convolution
for χ, χ′ & 10h−1 Mpc (see App. B).

The R = χ′/χ > 1 cases can also be obtained from
Eq. (31) which is valid only for |R| < 1, because by sim-
ply changing the integration variable from s to s′ = Rs,
Eq. (30) becomes

Mq
``′(t, R) = (Rα)it−q

∫
ds′ s′q−1−it j`(R

−1s′) j`′(s
′)

= (Rα)it−q U`′`(R
−1, q − 1− it) . (34)

Note that M``′ is now proportional to U`′`. We use
Eq. (34) when calculating for R > 1 cases.

Now, the efficiency and accuracy of the 2-FAST al-
gorithm depends on our ability to calculate the Gauss
hypergeometric function 2F1 in Eq. (31). Here, we use a
set of recurrence relations based on contiguous relations
for the Gauss hypergeometric function that we list in
Eqs. (D2a)–(D2h). We describe the details of the recur-
sion in App. E and App. F, and outline the key procedure
here. In particular, our implementation is based upon
the following three properties of 2F1 in Eq. (31): (A)
The backward recursion `→ `− 1 is stable in all cases of
interest, (B) The recursion ∆` = 4→ ∆` = −4 is stable

88

Start

Compute
A`=0,∆`=±4

Eq. (F1)

Compute

2F1,`=0,∆`=±4

Eqs. (E9)–(E10)

×

Mq
`=0,∆`=±4(t, R)

Compute
Mq
`max,∆`=±4(t, R)

via App. E

Mq
`max,∆`=±4(t, R)

Mq
`,∆`=±4(t, R)

`→ `− 1
via Eq. (F2) and
Eqs. (E11)–(E12)

∆`→ +4

∆`→ +2

∆`→ 0

∆`→ −2

∆`→ −4

Mq
`,∆`=4(t, R)

Mq
`,∆`=2(t, R)

Mq
`,∆`=0(t, R)

Mq
`,∆`=−2(t, R)

Mq
`,∆`=−4(t, R) ×

×

×

×

×

φq(t)

FFTlogk→t

k3−qP (k)

FFTt→χ

FFTt→χ

FFTt→χ

FFTt→χ

FFTt→χ

×

×

×

×

×

4k3
0G
−1

(
χ

χ0

)−q

w`,`−4(χ,R)

w`,`−2(χ,R)

w`,`(χ,R)

w`,`+2(χ,R)

w`,`+4(χ,R)

FIG. 7. Overview of the 2-FAST algorithm of calculating w``′(χ, χ
′). Starting at the top-left, we start by calculating the

cosmology-independent part Mq
``(t, R) = A`,∆` 2F1,`,∆` at ` = 0 and ∆` = ±4. The plus sign is chosen for R ≤ 1, the negative

sign for R > 1. Following App. E the cosmology-independent part is calculated for `max from ` = 0. Then, the recursion from
`max → 0 is used, and at each step the products w`,`±(0,2,4)(χ,R) are calculated. Note that everything to the left of where the
Fourier transform φq(t) of the power spectrum enters is independent of the cosmology and can be pre-computed. Thick arrows
signify paths that need to be taken multiple times as the recursion over ` progresses. Furthermore, since the transformation
from w``′(χ, χ

′) to w`,jj′(χ, χ
′) is linear (see App. G), that can also be done before multiplying by φq(t). However, this does

not significantly change the method here.

for R < 1 cases, (C) The recursion ∆` = −4 → ∆` = 4
is stable for R > 1 cases, for ∆` ≡ `− `′. Note that from
Eq. (34), (B) implies (C). Here, we call a recursion stable
when the error decays as the recursion proceeds.

Miller’s algorithm [39] exploits the property (A) and
runs the recursion backwards for a fixed ∆`. Here, we
extend Miller’s algorithm by using all three properties
as follows. First, we calculate the backward recursion
from high `seed down to ` = 0 for fixed ∆` = 4 (when
R < 1) and ∆` = −4 (when R > 1) cases. We then
run recursions through the ∆` direction to complete the
calculation. The recursion paths in ``′-space are shown
in Fig. 6.

In order to run the recursion backward, we need to
set up the initial condition at some large multipole mo-
ment `seed. We then run the backward recursion down
to ` = 0 where we can fix the normalization by using the
analytical expression of 2F1 at ` = 0. Because the back-
ward recursion is stable, the only requirement is that we

must choose `seed sufficiently larger than `max (maximum
` desired) so that any inaccuracy in the initial condition
decays sufficiently at `max. We ensure that by requiring
that the 2F1 at `max for different starting `seed values con-
verge within a fractional error of 10−10 (see Eq. (E13)).
As the error decays throughout the backward recursion,
initial conditions do not have to be exact. The closer the
initial conditions are to the true 2F1, however, the more
efficient the algorithm is, since a smaller `seed would be
sufficient. For the R � 1 case, we use the asymptotic
behavior of the recurrence relation in the limit ` → ∞
to set the initial conditions. For R ∼ 1 case, it turns
out that, albeit noisy, the forward recursion provides a
reasonable initial condition at `seed. We, therefore, set
up the initial condition by running the forward recursion
to `seed, then apply the backward recursion.

For the R = 1 case, we use an analytical expression for

FIG. 7. Overview of the 2-FAST algorithm of calculating w``′(χ, χ
′). Starting at the top-left, we start by calculating the

cosmology-independent part Mq
``(t, R) = A`,∆` 2F1,`,∆` at ` = 0 and ∆` = ±4. The plus sign is chosen for R ≤ 1, the negative

sign for R > 1. Following App. E the cosmology-independent part is calculated for `max from ` = 0. Then, the recursion from
`max → 0 is used, and at each step the products w`,`±(0,2,4)(χ,R) are calculated. Note that everything to the left of where the
Fourier transform φq(t) of the power spectrum enters is independent of the cosmology and can be pre-computed. Thick arrows
signify paths that need to be taken multiple times as the recursion over ` progresses. Furthermore, since the transformation
from w``′(χ, χ

′) to w`,jj′(χ, χ
′) is linear (see App. G), that can also be done before multiplying by φq(t). However, this does

not significantly change the method here.

for R < 1 cases, (C) The recursion ∆` = −4 → ∆` = 4
is stable for R > 1 cases, for ∆` ≡ `− `′. Note that from
Eq. (34), (B) implies (C). Here, we call a recursion stable
when the error decays as the recursion proceeds.

Miller’s algorithm [39] exploits the property (A) and
runs the recursion backwards for a fixed ∆`. Here, we
extend Miller’s algorithm by using all three properties
as follows. First, we calculate the backward recursion
from high `seed down to ` = 0 for fixed ∆` = 4 (when
R < 1) and ∆` = −4 (when R > 1) cases. We then
run recursions through the ∆` direction to complete the
calculation. The recursion paths in ``′-space are shown
in Fig. 6.

In order to run the recursion backward, we need to
set up the initial condition at some large multipole mo-
ment `seed. We then run the backward recursion down
to ` = 0 where we can fix the normalization by using the
analytical expression of 2F1 at ` = 0. Because the back-

ward recursion is stable, the only requirement is that we
must choose `seed sufficiently larger than `max (maximum
` desired) so that any inaccuracy in the initial condition
decays sufficiently at `max. We ensure that by requiring
that the 2F1 at `max for different starting `seed values con-
verge within a fractional error of 10−10 (see Eq. (E13)).
As the error decays throughout the backward recursion,
initial conditions do not have to be exact. The closer the
initial conditions are to the true 2F1, however, the more
efficient the algorithm is, since a smaller `seed would be
sufficient. For the R � 1 case, we use the asymptotic
behavior of the recurrence relation in the limit ` → ∞
to set the initial conditions. For R ∼ 1 case, it turns
out that, albeit noisy, the forward recursion provides a
reasonable initial condition at `seed. We, therefore, set
up the initial condition by running the forward recursion
to `seed, then apply the backward recursion.

For the R = 1 case, we use an analytical expression for

9

the hypergeometric function 2F1,

2F1

(−`+ `′ + n

2
,

1 + `+ `′ + n

2
;

3

2
+ `′; 1

)

=
Γ
(

3
2 + `′

)
Γ
(
1− n

)

Γ
[

1
2

(
3 + `′ + `− n

)]
Γ
[

1
2

(
2 + `′ − `− n

)] , (35)

which we use to initialize the recursion at `max.

B. From Mq
``′(t, R) to angular power spectra

Eq. (29), Eq. (30) and Eq. (31) describe our method
of computing an integral over two spherical Bessel func-
tions. A discrete version is given in App. A 3. We give
an overview of the method in Fig. 7.

In linear theory, all harmonic space power spectra are
linear in P (k), and they can be calculated as a linear
combination of w``′(χ, χ

′). One such example is the lin-
ear, redshift-space, galaxy power spectrum C` that we
present in App. G. For these cases, we can carry out the
P (k)-independent part of the calculation with Mq

``′ be-
fore the power spectrum enters the calculation. That is,
for a given set of spherical observables that are linearly
related to P (k), the 2-FAST method naturally breaks
down the calculation into the P (k)-dependent φq and the
P (k)-independent part which can be pre-calculated.

As an example, consider cross-correlating two linear
galaxy density fields spread over redshift ranges centered
around, respectively, z1 and z2 with the survey radial
window functions, respectively, W1(χ) and W2(χ). The
angular power spectrum in this case is given by

C` = b21

∫
dχ1

∫
dχ2 W1(χ1)W2(χ2)w``(χ1, χ2), (36)

which can be calculated by using Eq. (29)

C` = 4k3
0b

2
1

∫
dχ1

∫
dχ2 W1(χ1)W2(χ2)

× e−qρ
∫

dt

2π
eitρφq(t)Mq

``′(t, R)

= 8k3
0χ

2
0b

2
1

∫
dt

2π
φq(t)

×
∫

dρ

∫ 1

0

dRe(2−q+it)ρW1(eρ)W2(Reρ)Mq
``′(t, R) .

(37)

The second line of the integration is independent from
the power spectrum, and could be calculated for given
radial window functions. Since the radial window func-
tionsWi(χ) are cosmology-dependent, encompassing lin-
ear growth factor, the redshift-distance relation and so
on, we do not further investigate this approach in this pa-
per. Upon the quantification of these radial dependences,
then rearranging the integrals as in Eq. (37) should result
in a fast and accurate calculation.

Alternatively, we can also define the transformation
matrix between the Fourier-space power spectrum P (k)
and angular power spectrum w``′ . We write Eq. (29)
with Eq. (6) as

w``′(χ,R) =

∫
dk

k
P (k)

[
2

π
k3e−q(κ+ρ)

×
∫

dt

2π
eit(κ+ρ)Mq

``′(t, R)

]
, (38)

If we evaluate the integrals as written using the definition
of Mq

``′(t, R) in Eq. (28), we recover Eq. (2). However,
for implementation on a computer, the integrals are ap-
proximated as sums over discrete kn and tm. Using the
discrete versions of our algorithm in App. A, the term in
brackets as well as the measure becomes

T `
′,q
`n (χn′ , R) =

2

π
k3
n

(
knχn′

k0χ0

)−q
W1(kn)

× 1

N

∑

m

ei2π(n+n′)m/N W2(tm)

×Mq
``′(tm, R) , (39)

where we included the Fourier-space window functions
Wi(x) defined in Eq. (A4) to reduce ringing, and tm is
defined in Eq. (A8). Then, we can calculate the harmonic
space power spectrum w``′ by a matrix multiplication:

w``′(χn′ , R) =
∑

n

T `
′,q
`n (χn′ , R)P (kn) . (40)

In Fig. 8, we show the transformation matrix

T `
′,q
`n (χn′ , R) for χn′ = 2303h−1 Mpc, ∆` = 0, integra-

tion limits kmin = 10−4 hMpc−1, kmax = 104 hMpc−1,
and q = 1.1 for R = 0.75 and R = 1. The figure
shows that most of the power comes from a narrow band
around kn '

√
`(`+ 1)/χn′ ' (`+ 0.5)/χn′ (grey dotted

line in the figure), which gets narrower towards higher `.
This trend is consistent with the Limber approximation
that maps the Fourier-space and the harmonic space by
k ' (`+ 0.5)/χ [40] and R = 1. As shown in Fig. 8, the
Limber approximation is accurate only at large `. While
the transformation matrix is non-negative for R = 1 (it
is proportional to the square of the spherical Bessel func-
tion), the R = 0.75 case shows the beat between the two
Bessel functions with different frequencies.

To understand the 2-FAST algorithm better, we com-
pare with a more traditional approximation of Eq. (2):

w``′(χ,R) =
∑

n

[
2

π
∆kn k

2
n j`(knχ) j`′(knRχ)

]
P (kn) .

(41)
To use this traditional method, the sampling of kn needs
to be very dense at high k so as to capture the oscillations
of the spherical Bessel functions. The 2-FAST method
avoids the need for a dense sampling in k by calculating
Mq
``′(t, R) analytically. Then, the linear transformation

matrix between P (k) and w``′(χ,R) effectively averages

10

10−3 10−2 10−1 100

kn in [hMpc−1]

101

102

103
`

k−1
n T`n (2-FAST)

R = 0.75

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

10−3 10−2 10−1 100

kn in [hMpc−1]

101

102

103

`

k−1
n T`n (2-FAST)

R = 1.0

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

FIG. 8. The transformation matrix T`n given in Eq. (39) multiplied by k−1
n for a Dirac-delta window function centered around

χn′ = 2370h−1 Mpc for R = 0.75 (left) and R = 1 (right). The color bar shows the value of k−1
n T`n on a non-linear sinh−1-scale.

The minor tick marks in the color bars are linearly spaced. At high k, the transformation matrix is smooth, since for each kn,
T`n represents an integral over multiple oscillations of the spherical Bessel functions. At high `, the transformation matrix is
significant only along kn ∼

√
`(`+ 1)/χn′ (grey dotted line), which shows that Limber’s approximation should work well in

this regime.

out the high-k oscillation of the spherical Bessel func-
tions.

Using the transformation matrix Eq. (39) is useful to
gain some insight into the spherical harmonic projec-
tion of the power spectrum. For example, we can easily
see the response of the angular power spectrum (observ-
ables) to the changing cosmological parameters that alter
the three-dimensional power spectrum. That calculation
is particularly useful for a Fisher matrix analysis. For
calculating the harmonic space power spectrum in prac-
tice, however, following the 2-FAST algorithm Eq. (29)
is faster. This is because, from a given set of Mq

``′(t, R),
the matrix multiplication operation in Eq. (40) takes
O(N`NRN

2) time, where N` is the number of `-values,
NR the number of R-values, and N the number of k and
χ values, while the 2-FAST algorithm in Eq. (29) only
takes O(N`NRN logN) time thanks to the Fast Fourier
Transformation.

C. Results: Accuracy

We test the accuracy of our implementation of the 2-
FAST algorithm by calculating

w`,jj′(χ, χ
′) =

2

π

∫ ∞

0

dk k2 P (k) j
(j)
` (kχ) j

(j′)
` (kχ′) ,

(42)

where j and j′ denote the number of derivatives on the
spherical Bessel functions. The functions w`,jj′ appear in
the calculation of the angular power spectrum of galax-
ies in redshift space. In App. G we present the full ex-
pression for the angular power spectrum of the redshift-

space galaxy distribution, and derive w`,jj′ in terms of
w``′(χ, χ

′). We then compare the 2-FAST result with
a slow, but accurate computation using the Lucas algo-
rithm [34] that we summarize in App. H.

In Fig. 9 we show the comparison with the Lucas al-
gorithm for all values of (j, j′) needed for linear redshift-
space distortion for the R = 1 (χ′ = χ, right panel)
and R = 0.9 (χ′ = 0.9χ, left panel) cases. The two
algorithms agree well and the curves (color curves for 2-
FAST, grey curves for Lucas) lie on top of each other
at all ` shown here. The bottom panels of Fig. 9 show
that the fractional residuals are . 10−6 in the case of
R = 1 and . 10−4 in the case of R = 0.9 for all (j, j′)
pairs relevant for calculating the linear redshift-space
galaxy power spectrum. The one exception is for the
(j, j′) = (2, 2) case at the multipole ` = 2, where the
error is as large as 0.1 %. A larger sampling number N
results in a better match. The differences at small ` are
due to aliasing, and can be reduced by choosing a wider
integration interval or choosing different biasing param-
eter q (see App. B). In Fig. 9 we show the effect of a
larger N and a wider integration interval on the resid-
uals as colored solid lines. Some of the glitches in the
residuals are likely due to inaccuracy in our implementa-
tion of the Lucas algorithm, which we discuss briefly in
App. H.

We show a comparison for w`=42,jj′(χ,Rχ) as a func-
tion of the comoving distance (χ) for different values of
R = 1, 0.9, 0.8, 0.7, 0.6 in Fig. 10. The curves for
the Lucas-algorithm are in solid grey for positive val-
ues, and dashed grey for negative values. The 2-FAST
curves are positive for colored dashed lines, and nega-
tive for colored dotted lines. The left plot shows the

11

`

−4

−2

0

2

4
w
`,
jj
′

×10−6

(j,j’)=(0,0)

(j,j’)=(0,2)

(j,j’)=(2,0)

(j,j’)=(2,2)

0 20 40 60 80 100
`

−10−4
0

10−4

∆
w
`,
jj
′ /
w
`,
jj
′

R = 0.9

`

−1.0

−0.5

0.0

0.5

1.0

w
`,
jj
′

×10−4

(j,j’)=(0,0)

(j,j’)=(0,2)

(j,j’)=(2,0)

(j,j’)=(2,2)

0 200 400 600 800 1000 1200
`

−10−6
0

10−6

∆
w
`,
jj
′ /
w
`,
jj
′

R = 1.0

FIG. 9. Comparison between the 2-FAST algorithm and the [34] algorithm for the quantity w`,jj′ (see Eq. (42)). Left: The top
panel shows the value of w`,jj′ for R = 0.9. By eye, no differences between the two algorithms are apparent. The bottom panel
shows the relative difference. Typical differences are on the order of one part in 104. Right: The same for R = 1.0. Differences
are on the order of one part in 106, except for ` = 2 and (j, j′) = (2, 2). In that case the relative difference is ∼ 10−4. Here
we chose N = 1600, kmin = 10−5 hMpc−1, kmax = 105 hMpc−1, χ = 2370h−1 Mpc, q = 1.1. The glitches in the residuals for
R = 1 are likely due to inaccuracies in our implementation of the Lucas-algorithm. For R = 0.9, the differences at large ` can
be reduced by increasing the number of sample points on the power spectrum, e.g. to N = 4096. The differences at small `
are due to aliasing, and are reduced by increasing the width of the integration interval, e.g. by decreasing the lower bound to
kmin = 10−6 hMpc−1. The bottom residual panels show the result of both these changes as the colored solid lines.

result for (j, j′) = (0, 0) and the right plot shows it for
(j, j′) = (0, 2). For both plots, we show corresponding
residuals between the 2-FAST and Lucas algorithms in
the lower panels. Note that here we show the absolute
error instead of the relative error because the function
w`=42,jj′ frequently crosses zero when R 6= 1. The abso-
lute error is generally less than 10−8. The exception is
when R = 1.0 (blue dashed line). However, in that case
the relative error is still <10−5. This can be improved
by choosing a wider integration interval G or adopting a
smaller biasing parameter q (see App. B).

D. Results: Performance

We test the performance of our implementation of the
2-FAST algorithm by measuring the time it takes to cal-
culate the angular power spectra in Fig. 9 and Fig. 10,
and variations thereof. The result is summarized in
Tab. I for computing 4 different scenarios. In the ta-
ble, N is the number of sampling points on the power
spectrum. It defines the size of the FFT (Fast Fourier
Transform) array. Nχ is the number of redshifts (comov-
ing radii) we are interested in, NR the number of ratios
R = χ′/χ, and `max the maximum multipole moment.

The first two scenarios show that the performance
scales roughly proportional to `max, which is the total
number of multipole moments. The second and third sce-
narios show that the performance is almost independent
of the number of redshifts Nχ. The 2-FAST algorithm
always calculates the w``′(χ,Rχ) at different comoving

radii, even when only one redshift is desired, and the
FFT takes only a marginal fraction of the total time.
This is one of the strengths of the 2-FAST algorithm:
one automatically gets w``′(χ,Rχ) for all χ at once.

Finally, the last test scenario demonstrates that the
time scales proportionally to the number NR of ratios R
and roughly proportionally to the number N of sampling
points. Hence, it is feasible to create a dense grid of R-
values to cover a large fraction of the χ-χ′ plane. This
will be useful, for example, when calculating the angular
power spectrum for surveys with a broad radial window
function or for weak gravitational lensing convergence.

Note that when we need to calculate the angular har-
monic projections of several different power spectra, then
the cosmology-independent 2F1,`max and Mq

``′ can be pre-
calculated and cached as described in Sec. IV B. In that
case, only the timing from the “C`” column is relevant.

The 2-FAST method scales with the number of sample
points N , the number of ratios NR, and the number of
multipole moments N` desired, which we here set as `max

(i.e. no binning in multipoles). That is, the time T to
take for the calculation scales as

T ∝ N` ·NR ·N · logN . (43)

In our tests, the time for the FFT is negligible compared
to other operations that scale with N .

We recommend caching the initial value of 2F1,`max
at

`max. While caching Mq
``′ may make sense in some cases,

the Mq
``′ cache may demand very large disk space.

12

χ = χ′/R in h−1 Mpc

10−12

10−10

10−8

10−6

10−4

10−2

w
`

fo
r
`

=
42

(j, j′) = (0, 0)

R = 1.0

R = 0.9

R = 0.8

R = 0.7

R = 0.6

101 102 103 104

χ = χ′/R in h−1 Mpc

−10−8

0

10−8

∆
w
`

fo
r
`

=
42

χ = χ′/R in h−1 Mpc

10−12

10−10

10−8

10−6

10−4

10−2

w
`

fo
r
`

=
42

(j, j′) = (0, 2)

R = 1.0

R = 0.9

R = 0.8

R = 0.7

R = 0.6

101 102 103 104

χ = χ′/R in h−1 Mpc

−10−8

0

10−8

∆
w
`

fo
r
`

=
42

FIG. 10. Comparison of the 2-FAST algorithm (dashed lines) with the Lucas-algorithm (grey solid lines) for ` = 42 and
(j, j′) = (0, 0) on the top and (j, j′) = (0, 2) on the bottom for a range of ratios R = χ′/χ. The top panel in each plot shows the
value of w`,jj′ (defined in Eq. (42)). Dotted colored lines for the 2-FAST agorithm and dashed grey lines for the Lucas-algorithm
indicate negative values. The bottom panels show the difference to the Lucas-algorithm. The largest differences occur for the
R = 1 lines at χ . 102 h−1 Mpc. Closer inspection reveals that the relative differences in these cases is less than 1 part in 105

throughout the figure. This difference can be reduced by sampling denser, and decreasing kmin and increasing kmax. For this
plot we used N = 4096, and kmin = 10−5 hMpc−1, kmax = 105 hMpc−1, q = 1.1, χ0 = 1h−1 Mpc.

13

TABLE I. Performance results.

Na Nχ
b NR

c `max 2F1,`max Mq
``′ C` Totald IOe

1600 1 1 500 326 ms 215 ms 28 ms 569 ms 68 ms
1600 1 1 1200 393 ms 446 ms 60 ms 899 ms 142 ms
1600 1600 1 1200 404 ms 453 ms 69 ms 926 ms 163 msf

3200 3200 5 1200 3.85 s 3.44 s 0.45 s 7.74 s 1.10 s
a Number of sample points on the power spectrum P (k)
b Number of redshifts, or number of χ
c Number of ratios R = χ′/χ
d Sum of the three preceding times
e Time spent reading and writing to disk
f Since we are only interested in compute times here, we did

not save all 1600 values to disk in this case.

14

V. APPLICATIONS

In this section we consider three applications of the 2-
FAST algorithm. First, we study the radial BAO signal,
then the lensing potential power spectrum, and finally
the lensing-convergence–galaxy cross-correlation. These
three test cases demonstrate that we can apply the 2-
FAST algorithm for calculating the cross-correlation be-
tween two widely-separated redshift bins as well as an-
gular auto- and cross-correlation of widely spread out
density fields.

A. Radial Baryon Acoustic Oscillations

With an accurate and efficient implementation of the
2-FAST algorithm, we study the radial BAO (Baryon
Acoustic Oscillations) appearing in the harmonic space
correlation function, w`(χ,Rχ):

w`(χ,R) =
2

π

∫ ∞

0

dkk2P (k)j`(kχ)j`(kRχ) . (44)

Here we study the harmonic space correlation function
by itself. Summing w`(χ, χ

′) over ` corresponds to the
real-space 2-point correlation function [41] with the wide
angle formula.

In order to highlight the BAO feature, we compare the
angular power spectrum w` with the P (k) from the CAMB
output (with BAO) to the w` with the P (k) from the no-
BAO fitting formula given in Eisenstein and Hu [36]. We
study the radial BAO signature by fixing the multipole
moments ` and the ratio R and plotting w`(χ,Rχ) as a
function of comoving radial distance χ.

Fig. 11 shows the comparison for w`=40 (left panel)
and w`=500 (right panel) cases. In both panels, the
black curves and the red curves show, respectively, the
power spectrum with BAO and without BAO. The ra-
dial BAO feature is most prominent for R 6= 1 cases.
Because the acoustic scale of dBAO ' 106h−1 Mpc is
fixed, when fixing the ratio R between two radii, the
radial BAO features appear at larger (smaller) radius for
larger (smaller) multipole moments that correspond to
the smaller (larger) angular scales. That is, for a stan-
dard ruler of size dBAO where radial distance to each
end is χ, χ′ = Rχ, the angle subtended by the ruler
is cos θ = [1 + R2 − (dBAO/χ)2]/(2R). For small an-
gles one can approximate θ ' π/`, so that χBAO '
dBAO/

√
(1−R)2 +R(π/`)2.

For a randomly oriented ruler of BAO size, the viewing-
angle-average projected length is (π/4)dBAO, from which
we estimate the characteristic radius at which the radial
BAO appears as

χBAO '
`

4
dBAO. (45)

The corresponding R is

RBAO ∼ 1±
√

16− π2

`
' 1± 2.48

`
(46)

to first order in 1/`. For a fiducial ΛCDM cosmology,
we find χBAO = 1060h−1 Mpc, RBAO = 0.938 for ` = 40
and χBAO = 13 250h−1 Mpc, RBAO = 0.995 for ` = 500,
which are consistent with Fig. 11.

The result shows that the BAO feature in the angular
power spectrum is spread over many multipole moments
and distance ratios R. As we have shown before, this is
because the BAO is a sharp feature defined in the con-
figuration space with a fixed distance scale. Therefore,
although we show the radial BAO here as a performance
test for the 2-FAST algorithm, the best method of de-
tecting BAO would be detecting in configuration space.
After all, one does not need a spherical projection for the
BAO, as long as the BAO scale is much smaller than the
radial distances to the survey.

B. Lensing Potential Power Spectrum

We now turn to the case for the angular power spec-
trum of a widely spread density distribution using the
2-FAST algorithm. As an example, we calculate the lens-

ing potential power spectrum Cψψ` for the CMB lensing,
where the source plane is at the CMB’s last-scattering
surface (z? ' 1089). We denote the comoving angu-
lar diameter distance to the surface of last scattering as
χ? ≡ χ(z?).

The lensing potential for the CMB lensing is [42]

ψ(n̂) = −2

∫ χ?

0

dχ
χ? − χ
χ?χ

Φ(χn̂) , (47)

where the gravitational potential Φ(χn̂) is related to the
density contrast by Poisson’s equation:

k2Φ(k, a) = 4πGa2ρ̄m(a) δm(k, a)

=
3

2
a2H2Ωm(a) δm(k, a) . (48)

The angular power spectrum of the lensing potential is
then given by

Cψψ` =

∫ χ?

0

dχϕ(χ)

∫ χ?

0

dχ′ ϕ(χ′)

× 2

π

∫ ∞

0

dk k−2 P (k) j`(kχ) j`(kχ
′) (49)

=

∫ χ?

0

dχϕ(χ)

∫ χ?

0

dχ′ ϕ(χ′)wp``(χ, χ
′) , (50)

where the index p = −4 reminds us that in order to
utilize the 2-FAST algorithm as described in Sec. IV, we
need to replace the function P (k) → k−4P (k) ∝ Pψ(k).
We also defined the radial weighting function ϕ(χ) as

ϕ(χ) =
χ? − χ
χ?χ

(1 + z)D(χ) , (51)

15

101 102 103 104

χ = χ′/R

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

w
`

R = 1.0
R = 0.938

R = 0.9

R = 0.8

R = 0.7

` = 40

no BAO

BAO

101 102 103 104

χ = χ′/R

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

w
`

R = 1.0

R = 0.995

R = 0.99

R = 0.98

` = 500

no BAO

BAO

FIG. 11. Projected power spectra with and without BAO. Left: For ` = 40. Right: For ` = 500. In grey is the BAO power
spectrum, in red the power spectrum without BAO, dashed lines indicate negative values. The BAO appears as wiggles for
R 6= 1, which for larger ` begin at larger distances.

where D(χ) is the linear growth factor. Furthermore,
we introduce R = χ′/χ, and we use the symmetry
w``′(χ, χ

′) = w`′`(χ
′, χ) to find that

Cψψ` =

∫ 1

0

dR

∫ χ?

0

d lnχ
[
2χ2 ϕ(χ)ϕ(Rχ)

]
wp``(χ,R) .

(52)

We first calculate wp``(χ,R) by using the 2-FAST algo-
rithm and perform the integration over lnχ and R us-
ing the trapezoidal method [37]. The sampling in lnχ is
given by N that we use for FFT in 2-FAST. As shown
in Fig. 9, for ` . 100 the w``(χ,R) are a slowly vary-
ing function of R, whereas for high ` they are narrowly
peaked around R ∼ 1. Hence, for R we choose differ-
ent samplings for ` ≤ 100 and ` > 100. Specifically, we
choose 51 evenly-spaced sampling points between R = 1
and R = 0.9 for ` > 100, and 51 sampling points between
R = 1 and R = 0 for ` ≤ 100. Finally, because the power
spectrum is divided by k4 compared to the matter den-
sity power spectrum, the biasing parameter q also needs
to be adjusted to q ∼ −2.5 (see App. B).

The resulting lensing potential power spectrum is
shown in Fig. 12 as solid green line, which lies on top
of the CAMB output (black solid line).

1. Limber’s Approximation

We compare the result with Limber’s approximation
(see, for example [40]), where the spherical Bessel inte-
gration is approximated as

w``(χ, χ
′) =

2

π

∫
dk k2 P (k) j`(χk) j`(χ

′k) (53)

≈ δD(χ− χ′)
χ2

P

(
ν

χ

)
, (54)

100 101 102 103

`

10−8

10−7
(`

(`
+

1)
)2

2
π

C
ψ
ψ

`

CAMB

Limber `

Limber `+ 0.5

Limber
√
`(`+ 1)

2-FAST

FIG. 12. The lensing potential angular power spectrum Cψψ` .
In solid black is the result from CAMB, in dash-dotted the Lim-
ber approximation with ν = ` (see Eq. (55)), in black dashed
the Limber approximation with ν = ` + 0.5, in grey dashed
Limber’s approximation with ν =

√
`(`+ 1), and in solid

green the 2-FAST method presented in this paper. The mul-
tiplication by [`(`+1)]2 amplifies the error of the ν = ` Limber
approximation. Our 2-FAST result is too close to the result
from CAMB to be distinguished in this graph.

with ν = `+ 1
2 . Using Limber’s approximation, the lens-

ing potential C` become

Cψψ` ≈
∫ χ?

0

dχ
ϕ2(χ)

χ2
P

(
ν

χ

)
, (55)

which we integrate using Gauss-Kronrod integration. In
the literature, the numerator in the argument to the
power spectrum is often approximated as ν = ` instead
of ν = `+ 0.5. In Fig. 12 we show both for comparison,

16

as well as the exact calculation from 2-FAST algorithm.
We note that the Limber approximation reproduces

the exact calculation for larger multipole moments ` &
100, but the result deviates from the exact calculation
for larger angular scales. In particular, the “old” Limber
approximation with ν = ` shows the largest deviation,
whereas the proper Limber approximation with ν = ` +
0.5 as derived in [40] follows the correct value to the larger
scales ` ' 10. We note that a further improvement can
be achieved by using ν =

√
`(`+ 1) (grey dashed line),

which was already hinted at in [40].

C. Lensing convergence-galaxy cross correlation

As a final test case, we calculate the cross-correlation
Cκg` between foreground galaxies at comoving distance
χ′ (redshift z′) and the lensing convergence field κ re-
constructed from the source galaxies at distance χ? (red-
shift z?). Such a cross correlation dominates the cross-
correlation between galaxies widely separated in redshift,
because the lensing magnification traces the line-of-sight
directional convergence.

Besides the relativistic corrections (see [43] for a re-
view), the dominant components of the observed galaxy
density contrast δg of galaxies are given by

δg(k) = [bg + f(n̂ · k̂)2] δm(k) + 2(Q− 1)κ , (56)

where bg is the galaxy bias, f the linear growth rate f ≡
d lnD/d ln a, δm(k) the matter density contrast, Q the
slope of the luminosity function at the survey limit, and
κ is the lensing convergence. Here, we neglect the factor
2(Q− 1) and we set bg = 1, as those factors are specific
to the galaxies and survey.

The lensing convergence is given by

κ(χn̂) = − 1
2∇2

θψ(n̂) , (57)

where the lensing potential ψ(n̂) is given in Eq. (47).
Then, the cross-correlation between lensing convergence
for the sources at distance χ? and galaxies at distance χ′

is given by [44]

Cκg` (χ?, χ
′) = 3

2ΩmH
2
0 `(`+ 1)

∫ χ?

0

dχ

χ

χ? − χ
χ?

× D(z)D(z′)
a

×
[
b′wp`,00(χ, χ′)− f ′wp`,02(χ, χ′)

]
,

(58)

where we attach the suffix p = −2 to w`,jj′ to signify that
the biased power spectrum k−2P (k) is to be used. To
use the 2-FAST algorithm, it is advantageous to exploit
the symmetry w`,jj′(χ, χ

′) = w`,j′j(χ
′, χ), and introduce

R′ = χ/χ′. That is,

wp`,jj′(χ, χ
′) = wp`,j′j(χ

′, R′χ′) . (59)

This way we can keep χ′ = const while performing the
integral over R′. With lnχ = lnR′ + lnχ′ we get

Cκg` (χ?, χ
′) = 3

2ΩmH
2
0 `(`+ 1)

∫ χ?/χ
′

0

d lnR′
χ? − χ
χ?

× D(z)D(z′)
a

×
[
b′wp`,00(χ′, R′χ′)− f ′wp`,20(χ′, R′χ′)

]
.

(60)

We partition the range in ` into four intervals. In each
interval we choose a different sampling for lnR′. This is
needed, since the integrand is broad at low `, but becomes
a narrowly peaked function at high `. Specifically, for
our test case z′ = 0.3 (χ′ = 835h−1 Mpc), z? = 2.2
(χ? = 3796h−1 Mpc) we found the following choices to
work well for the integer values m:

`-interval R′ m
500→ 1000 e0.0001m −400, . . . , 400
200→ 499 e0.0005m −200, . . . , 200
30→ 199 e0.002m −400, . . . , 200
2→ 29 e0.01m −300, . . . , 151

These choices ensure an accurate calculation of all the
terms in Eq. (60). However, since Eq. (60) is dominated
by the (j, j′) = (0, 0) term, a less dense grid in R′ may be
sufficient for many applications. We then integrate using
the trapezoidal method. Here, we use q = 0.5 (App. B).

When either z′ or z? differ from their values investi-
gated here, then the values for R in the table above may
be used as a starting point, and for each `-region one
may increase the interval in R, as well as the number of
sampling points in R until convergence is reached.

Alternatively, one can avoid the somewhat ad hoc
choice of R-sampling by integrating M``′(t, R) over the
radial window function as shown in Eq. (37). While we
have not further investigated here, Assassi et al. [33] have
shown that the integration can be done with the hyperge-
ometric function 3F2 if the radial function can be approx-
imated by sum of polynomials. We shall further study
this in future publications.

1. Comparison

In this section we compare our results with several ver-
sions of Limber’s approximation. To be applicable to the
w`,02-term in Eq. (58), we extend Limber’s approxima-
tion to include the cases ` 6= `′ by using the results from
LoVerde and Afshordi [40]. We defer the details of this
derivation to App. I.

Fig. 13 and Fig. 14 show the comparison of the 2-FAST
calculation with three versions of Limber’s approxima-
tion. Fig. 13 shows the two terms in Eq. (58) separately
in the left and right panels, whereas Fig. 14 shows the full
lensing-convergence–galaxy cross-correlation power spec-
trum. In both figures the estimated error due to dis-
cretization of the R′-integral is shown as a grey band

17

10−8

10−7

10−6

C
κ
g

`
jj′ = 00

Limber `

Limber `+ 0.5

Limber
√
`(`+ 1)

2-FAST

101 102 103

`

−0.05

0.00

0.05

10−14

10−12

10−10

10−8

C
κ
g

`

jj′ = 02

Limber `

Limber `+ 0.5

Limber
√
`(`+ 1)

2-FAST

101 102 103

`

−0.05

0.00

0.05

FIG. 13. The two terms contributing to Eq. (58): jj′ = 00 on the left, and jj′ = 02 on the right. In addition to our 2-FAST
method, we show three versions of the Limber approximation, which are defined as in Fig. 12. The grey bands show the
estimated error due to the discrete sampling of R′ = χ/χ′. For large `, the Limber approximation agrees well with the more
exact 2-FAST calculation. However, at ` . 10, none of the Limber approximations achieve better than percent-level precision.

10−8

10−7

10−6

C
κ
g

`

Limber `

Limber `+ 0.5

Limber
√
`(`+ 1)

2-FAST

101 102 103

`

−0.05

0.00

0.05

FIG. 14. The lensing-convergence-galaxy cross-correlation
Eq. (58), the sum of the two plots in Fig. 13. All labels
have the same meaning as in that figure. The jj′ = 00 term
dominates the cross-correlation.

around the 2-FAST line. Also shown in the lower panels
of the figures is the relative difference of Limber’s ap-
proximation to the 2-FAST algorithm calculation.

Again, Limber’s approximation is accurate for larger
multipole moments, but deviates from the exact calcu-
lation from 2-FAST on small multipoles (larger angu-
lar scales). However, we note that as in Sec. V B 1, the

ν =
√
`(`+ 1) version of Limber’s approximation agrees

quite well with the 2-FAST results. Percent-level preci-
sion is achieved with this version of Limber’s approxima-
tion for ` & 10.

VI. CONCLUSION

In this paper, we have presented the 2-FAST algo-
rithm for projecting the three-dimensional power spec-
trum onto two-point correlation functions in configura-
tion space as well as in spherical harmonic space. Based
on the FFTLog method by [30–32], we generalize to the
case ` 6= `′.

By decomposing the power spectrum with FFTLog ba-
sis functions and the coefficients φq, the infinite-range in-
tegrations in the 2-FAST algorithm are done as gamma
functions and Gauss hypergeometric functions 2F1 for,
respectively, calculating ξν` (r) and w``′(χ, χ

′). Therefore,
2-FAST bypasses the difficulties in dealing with oscilla-
tory spherical Bessel functions with large arguments. At
the core of the 2-FAST algorithm is a recursion algo-
rithm for computing the Gauss hypergeometric function.
In particular, the stable backward recursion enables a
fast, high precision calculation of w``′(χ, χ

′).
Using the fast Fourier transformation, the 2-FAST al-

gorithm calculates the w``′(χ,Rχ) for multiple values of
χ (regularly spaced in the logarithmic interval) by one op-
eration of FFT. In addition, an efficient recursion along
the `-direction provides w``′(χ,Rχ) essentially to arbi-
trary ` and `′ values (although the current implemen-
tation is done for ∆` = ±4, the extension is trivial, if
necessary). Furthermore, we can then easily map out
w``′(χ, χ

′) in the χ-χ′-plane by repeating the procedure
for different values of R.

From the transformation matrix from P (k) to C` in
Sec. IV B and the two examples in Sec. V B and Sec. V C,
we have demonstrated that Limber’s approximation with
the identification k =

√
`(`+ 1)/χ performs far bet-

ter than the traditional prescription of k = `/χ or
k = (` + 1

2)/χ, and it reaches down to ` = 10 for

18

the convergence-galaxy cross correlation power spectrum.
For small-angle galaxy surveys, using this improved Lim-
ber approximation may suffice. For the future galaxy
surveys with large angular footprints, however, we need
to use the full calculation, and the 2-FAST algorithm will
make it fast and accurate.

There are two directions that we can extend the 2-
FAST algorithm. First, we can boost the speed of in-
tegration over the survey radial window function by ap-
proximating the window function as a sum over polyno-
mials. In this case, the integration over a polynomial win-
dow function can be done as a Hypergeometric function

3F2 [33], and a detailed study of recursion can accelerate
the calculation faster than the current 2-FAST method
that integrates over the pre-calculated w``′(χ, χ

′) on the
χ−χ′ space. Second, for the n-th order angular polyspec-
tra, we need to calculate the overlapping integration of

n spherical Bessel functions with some polynomial. We
surmise that the Fourier based method that we presented
here can aid greatly for this type of calculation as well.
These two issues must be addressed to fully exploit the
large angular scale galaxy clustering signatures from fu-
ture galaxy surveys.

The Julia version of the 2-FAST implementation can
be obtained from https://github.com/hsgg/twoFAST.
The authors have a plan to implement the FORTRAN and
C versions in the future.

ACKNOWLEDGMENTS

The authors would like to thank Zachary Slepian and
the anonymous referee for helpful comments in improving
the paper. H. G. and D. J. acknowledge support from the
National Science Foundation grant AST-1517363.

[1] J. Maldacena, Journal of High Energy Physics 05, 013
(2003).

[2] V. F. Mukhanov and G. V. Chibisov, Journal of Experi-
mental and Theoretical Physics Letters 33, 532 (1981).

[3] S. W. Hawking, 115, 295 (1982).
[4] A. H. Guth and S. Y. Pi, Physical Review Letters 49,

1110 (1982).
[5] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys-

ical Review D (Particles and Fields) 28, 679 (1983).
[6] A. A. Starobinskǐı, Journal of Experimental and Theo-

retical Physics Letters 30, 682 (1979).
[7] A. A. Starobinsky, 117, 175 (1982).
[8] A. H. Guth, Physical Review D (Particles and Fields) 23,

347 (1981).
[9] K. Sato, Monthly Notices of the Royal Astronomical So-

ciety 195, 467 (1981).
[10] A. D. Linde, 108, 389 (1982).
[11] A. Albrecht and P. J. Steinhardt, Physical Review Letters

48, 1220 (1982).
[12] W. J. Percival, C. M. Baugh, J. Bland-Hawthorn,

T. Bridges, R. Cannon, S. Cole, M. Colless, C. Collins,
W. Couch, G. Dalton, R. De Propris, S. P. Driver,
G. Efstathiou, R. S. Ellis, C. S. Frenk, K. Glazebrook,
C. Jackson, O. Lahav, I. Lewis, S. Lumsden, S. Maddox,
S. Moody, P. Norberg, J. A. Peacock, B. A. Peterson,
W. Sutherland, and K. Taylor, Monthly Notices of the
Royal Astronomical Society 327, 1297 (2001).

[13] M. Tegmark, M. R. Blanton, M. A. Strauss, F. Hoyle,
D. Schlegel, R. Scoccimarro, M. S. Vogeley, D. H. Wein-
berg, I. Zehavi, A. Berlind, T. Budavari, A. Connolly,
D. J. Eisenstein, D. Finkbeiner, J. A. Frieman, J. E.
Gunn, A. J. S. Hamilton, L. Hui, B. Jain, D. Johnston,
S. Kent, H. Lin, R. Nakajima, R. C. Nichol, J. P. Os-
triker, A. Pope, R. Scranton, U. Seljak, R. K. Sheth,
A. Stebbins, A. S. Szalay, I. Szapudi, L. Verde, Y. Xu,
J. Annis, N. A. Bahcall, J. Brinkmann, S. Burles, F. J.
Castander, I. Csabai, J. Loveday, M. Doi, M. Fukugita,
J. R. I. Gott, G. Hennessy, D. W. Hogg, Z. Ivezic, G. R.
Knapp, D. Q. Lamb, B. C. Lee, R. H. Lupton, T. A.
McKay, P. Kunszt, J. A. Munn, L. O’Connell, J. Peo-

ples, J. R. Pier, M. Richmond, C. Rockosi, D. P. Schnei-
der, C. Stoughton, D. L. Tucker, D. E. Vanden Berk,
B. Yanny, D. G. York, and S. Collaboration, The Astro-
physical Journal 606, 702 (2004).

[14] M. Tegmark, D. J. Eisenstein, M. A. Strauss, D. H. Wein-
berg, M. R. Blanton, J. A. Frieman, M. Fukugita, J. E.
Gunn, A. J. S. Hamilton, G. R. Knapp, R. C. Nichol,
J. P. Ostriker, N. Padmanabhan, W. J. Percival, D. J.
Schlegel, D. P. Schneider, R. Scoccimarro, U. Seljak, H.-
J. Seo, M. Swanson, A. S. Szalay, M. S. Vogeley, J. Yoo,
I. Zehavi, K. Abazajian, S. F. Anderson, J. Annis, N. A.
Bahcall, B. Bassett, A. Berlind, J. Brinkmann, T. Bu-
davari, F. Castander, A. Connolly, I. Csabai, M. Doi,
D. P. Finkbeiner, B. Gillespie, K. Glazebrook, G. S.
Hennessy, D. W. Hogg, Ž. Ivezić, B. Jain, D. Johnston,
S. Kent, D. Q. Lamb, B. C. Lee, H. Lin, J. Loveday, R. H.
Lupton, J. A. Munn, K. Pan, C. Park, J. Peoples, J. R.
Pier, A. Pope, M. Richmond, C. Rockosi, R. Scranton,
R. K. Sheth, A. Stebbins, C. Stoughton, I. Szapudi, D. L.
Tucker, D. E. vanden Berk, B. Yanny, and D. G. York,
Phys. Rev. D 74, 123507 (2006), astro-ph/0608632.

[15] W. J. Percival, R. C. Nichol, D. J. Eisenstein, J. A. Frie-
man, M. Fukugita, J. Loveday, A. C. Pope, D. P. Schnei-
der, A. S. Szalay, M. Tegmark, M. S. Vogeley, D. H.
Weinberg, I. Zehavi, N. A. Bahcall, J. Brinkmann, A. J.
Connolly, and A. Meiksin, The Astrophysical Journal
657, 645 (2007).

[16] C. Blake, E. A. Kazin, F. Beutler, T. M. Davis,
D. Parkinson, S. Brough, M. Colless, C. Contreras,
W. Couch, S. Croom, D. Croton, M. J. Drinkwater,
K. Forster, D. Gilbank, M. Gladders, K. Glazebrook,
B. Jelliffe, R. J. Jurek, I. h. Li, B. Madore, D. C. Martin,
K. Pimbblet, G. B. Poole, M. Pracy, R. Sharp, E. Wis-
nioski, D. Woods, T. K. Wyder, and H. K. C. Yee,
Monthly Notices of the Royal Astronomical Society 418,
1707 (2011).

[17] F. Beutler, S. Saito, H. J. Seo, J. Brinkmann, K. S.
Dawson, D. J. Eisenstein, A. Font-Ribera, S. Ho, C. K.
McBride, F. Montesano, W. J. Percival, A. J. Ross, N. P.
Ross, L. Samushia, D. J. Schlegel, A. G. Sanchez, J. L.

https://github.com/hsgg/twoFAST
http://dx.doi.org/ 10.1103/PhysRevD.74.123507
http://arxiv.org/abs/astro-ph/0608632

19

Tinker, and B. A. Weaver, Monthly Notices of the Royal
Astronomical Society 443, 1065 (2014).

[18] S. Rota, B. R. Granett, J. Bel, L. Guzzo, J. A.
Peacock, M. J. Wilson, A. Pezzotta, S. de la Torre,
B. Garilli, M. Bolzonella, M. Scodeggio, U. Abbas,
C. Adami, D. Bottini, A. Cappi, O. Cucciati, I. Davidzon,
P. Franzetti, A. Fritz, A. Iovino, J. Krywult, V. Le Brun,
O. Le Fèvre, D. Maccagni, K. Ma lek, F. Marulli, W. J.
Percival, M. Polletta, A. Pollo, L. A. M. Tasca, R. To-
jeiro, D. Vergani, A. Zanichelli, S. Arnouts, E. Bran-
chini, J. Coupon, G. De Lucia, O. Ilbert, L. Moscardini,
and T. Moutard, Astronomy and Astrophysics 601, A144
(2017).

[19] A. S. Szalay, T. Matsubara, and S. D. Landy, The As-
trophysical Journal 498, L1 (1998).

[20] I. Szapudi, The Astrophysical Journal 614, 51 (2004).
[21] P. Papai and I. Szapudi, Monthly Notices of the Royal

Astronomical Society 389, 292 (2008).
[22] N. Kaiser, Monthly Notices of the Royal Astronomical

Society (ISSN 0035-8711) 227, 1 (1987).
[23] A. J. S. Hamilton, Astrophysical Journal 385, L5 (1992).
[24] Z. Slepian and D. J. Eisenstein, MNRAS 469, 2059

(2017), arXiv:1607.03109.
[25] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay,

The Astrophysical Journal 304, 15 (1986).
[26] N. McCullagh and A. S. Szalay, arXiv.org , 137 (2014),

1411.1249v1.
[27] J. E. McEwen, X. Fang, C. M. Hirata, and J. A. Blazek,

Journal of Cosmology and Astroparticle Physics 2016,
015 (2016).

[28] M. Schmittfull, Z. Vlah, and P. McDonald, Physical Re-
view D 93, 103528 (2016).

[29] X. Fang, J. A. Blazek, J. E. McEwen, and C. M. Hirata,
JCAP 2, 030 (2017), arXiv:1609.05978.

[30] J. D. Talman, Journal of Computational Physics 29, 35
(1978).

[31] A. E. Siegman, Optics Letters 1, 13 (1977).

[32] A. J. S. Hamilton, Monthly Notices of the Royal Astro-
nomical Society 312, 257 (2000).

[33] V. Assassi, M. Simonovic, and M. Zaldarriaga, eprint
arXiv:1705.05022 (2017), 1705.05022.

[34] S. K. Lucas, J. Comput. Appl. Math. 64, 269 (1995).
[35] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J.

538, 473 (2000), arXiv:astro-ph/9911177 [astro-ph].
[36] D. J. Eisenstein and W. Hu, The Astrophysical Journal

496, 605 (1998).
[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

B. P. Flannery, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, 3rd ed. (Cambridge University
Press, 2007).

[38] Wolfram Research, Inc., “Mathematica 11,” .
[39] W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler,

and A. J. Thompson, Bessel Functions. Part II: Func-
tions of Positive Integer Order, British Association for
the Advancement of Science, Mathematical Tables, Vol-
ume 10 (Cambridge University Press, Cambridge, 1952).

[40] M. LoVerde and N. Afshordi, Monthly Notices of the
Royal Astronomical Society 78, 123506 (2008).

[41] F. Lepori, E. Di Dio, M. Viel, C. Baccigalupi, and
R. Durrer, JCAP 2, 020 (2017), arXiv:1606.03114.

[42] A. Lewis and A. Challinor, Phys. Rep. 429, 1 (2006),
astro-ph/0601594.

[43] D. Jeong and F. Schmidt, Classical and Quantum Grav-
ity 32, 044001 (2015).

[44] D. Jeong, E. Komatsu, and B. Jain, arXiv.org , 123527
(2009), 0910.1361v1.

[45] A. B. O. D. D. W. L. B. I. S. R. F. B. C. W. C. B. R. M.
F W J Olver and e. B V Saunders, NIST Digital Library
of Mathematical Functions, Tech. Rep.

[46] N. Michel and M. V. Stoitsov, Monthly Notices of the
Royal Astronomical Society 178, 535 (2008).

[47] F. Johansson, Monthly Notices of the Royal Astronomi-
cal Society cs.MS (2016).

[48] F. Johansson, ACM Communications in Computer Alge-
bra 47, 166 (2013).

Appendix A: Discrete versions of the Algorithm

In the main text, we discuss the 2-FAST algorithm based on the integration of continuous functions over an infinite
range. In this appendix, we shall give discrete versions of the relevant equations that we used when implementing
the algorithm. First, we present the equations for the FFTLog transformation of the biased power spectrum that we
have implemented through the Fast Fourier Transformation of the array spaced with a constant logarithmic interval
(App. A 1). We then show the discrete version for calculation of ξν` (r) (App. A 2) and w``′(χ, χ

′) (App. A 3). Finally,
we shall present some basic equations appearing commonly for all cases and clarify the relation between variables.

1. FFT of Biased Power Spectrum

Here we derive the discrete version of Eq. (6). We define

xm = m
L

N
κn = n

2π

L
(A1)

http://dx.doi.org/10.1093/mnras/stx490
http://dx.doi.org/10.1093/mnras/stx490
http://arxiv.org/abs/1607.03109
http://arxiv.org/abs/1411.1249v1
http://dx.doi.org/10.1088/1475-7516/2017/02/030
http://arxiv.org/abs/1609.05978
http://dx.doi.org/10.1364/OL.1.000013
http://arxiv.org/abs/1705.05022
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
http://arxiv.org/abs/astro-ph/9911177
https://www.wolfram.com
http://dx.doi.org/ 10.1088/1475-7516/2017/02/020
http://arxiv.org/abs/1606.03114
http://dx.doi.org/10.1016/j.physrep.2006.03.002
http://arxiv.org/abs/astro-ph/0601594
http://arxiv.org/abs/0910.1361v1

20

where N is the number of sample points, L is the size of the interval, and n,m = 0, . . . , N − 1. Then Eq. (6) becomes

φq(xm) =
1

L

∑

n

ei2πnm/N e(3−q)κn P (k0e
κn) (A2)

=
1

L

{
RFFT

[
e(3−q)κn P (k0e

κn)
]}∗

(A3)

where “RFFT” denotes the Fast Fourier Transform specialized for a real function, and ‘∗’ denotes complex conjugation.
To reduce ringing we avoid sharp edges at the interval boundaries by applying the same window function as Eq. (C.1)

in [27]. We repeat it here for completeness:

W (x) =





x−xmin

xleft−xmin
− 1

2π sin
(

2π x−xmin

xleft−xmin

)
, x < xleft

1, xleft < x < xright

xmax−x
xmax−xright

− 1
2π sin

(
2π xmax−x

xmax−xright

)
, x > xright

(A4)

We apply this window function to the biased power spectrum both before and after Fourier-transforming.

2. Discrete version of single Bessel function transform

Here we give a discrete version of Eq. (15). Let G be the size of the logarithmic integration interval, and N the
number of sample points. Eq. (15) with tm = 2πm/G and ρn = nG/N then becomes

ξν` (rn) =
k3

0e
−(qν+ν)ρn

πανG

∑

m

ei2πmn/N φqν+ν(tm)Mqν
` (tm) (A5)

=
k3

0e
−(qν+ν)ρn

πανG
BRFFT

[
φqν+ν(tm)Mqν

` (tm)
]

(A6)

where BRFFT[f̃(xm)] = G× IRFFT[f̃(xm)] is the inverse transform of a real function f(x) without dividing by G.

3. Discrete version of two Bessel function transform

Here we give a discrete version of Eq. (29). With tm = 2πm/G for N samples over an interval G, and ρn = nG/N
we get

w``′(χn, R) = 4k3
0

(
χn
χ0

)−q
1

G

∑

m

ei2πnm/M φq(tm)Mq
``′(tm, R)

=
4k3

0

G

(
χn
χ0

)−q
BRFFT

[
φq(tm)Mq

``′(tm, R)
]

(A7)

where BRFFT[f̃(xm)] = G× IRFFT[f̃(xm)] is the inverse transform of a real function f(x) without dividing by G.

4. Relation between variables

Since the tm argument to φq and Mν,q
` (Eq. (15)), or φq and Mq

``′ (Eq. (29)) is identical, we have

xm = m
L

N
= tm = m

2π

G
(A8)

Thus,

G =
2πN

L
= ln

(
kmax

kmin

)
(A9)

21

where the last equality follows from the choice k0 = kmin, using the second of Eq. (A1), and by writing the first of
Eq. (26) (or Eq. (12)) for kmax as

kmax

kmin
= e2πN/L (A10)

Finally, from our discretization of ρn above, Eq. (26) becomes

χn = χ0 e
nG/N (A11)

This also holds for Eq. (12) when χ→ r.

Appendix B: On the choice of N , G, and the biasing parameter q

In this appendix, we study the effect of different biasing parameters q and the resolution N and interval G of the
FFTLog transformation. For the continuous FFTLog transformation, q is only constrained by Eq. (10), Eq. (20)
and Eq. (32), which are the requirement that the integrals converge. When implementing as a discrete Fourier
transformation, however, numerical artifacts affect the accuracy of the result, and the error depends sensitively on
different choices of the parameters q, N and G. There are three types of numerical error involved in the Fourier
transformation: (A) ringing, which is the loss of high-frequency modes, is minimized by avoiding sharp edges in the
power spectrum, (B) aliasing, due to limited sampling, can be reduced by increasing the number of sampling points
N , (C) wrap-around, due to the FFT assuming periodic data so that the high-k modes influence the low-k modes,
and it is mitigated via zero-padding.

In particular, it turns out that the accuracy of the 2-FAST algorithm depends sensitively on the choice of the
biasing parameter q. We used q = 1.9 for calculating ξν` (r), and q = 1.1 for calculating w``′(χ, χ

′). When integrating
the overlapping of two spherical Bessel functions with k−2P (k) (galaxy-lensing cross power spectrum, Sec. V C) and
k−4P (k) (lensing potential power spectrum, Sec. V B), we used, respectively, q = 0.5 and q = −2.5. In this section,
we systematically study these choices of the parameter q.

We implement Eq. (15) and Eq. (29) by the 2-FAST algorithm as follows: we first calculate φq(t) by using the
discrete FFTLog, then multiply it by analytically calculated Mqν

` (t, R) or Mq
``′(t, R). We then apply FFTLog again

to calculate ξν` (r) or w``′(χ,R). In this procedure, there are two aliasing effects that worsen the accuracy of the
2-FAST algorithm: the aliasing effect associated with the calculation of φq(t), and the aliasing effect associated with
the backward-FFTLog for the convolution. Of course, we can remedy the aliasing effects by reducing the sampling
intervals ∆k = G/N and ∆t = 2π/G, respectively, in the wavenumber space and its dual space. We find that, however,
it is more efficient to reduce the aliasing effect by choosing an appropriate biasing parameter q. We study the two
aliasing effects in the following subsections.

1. Aliasing effect in FFTLog of P (k)

In Fig. 15 we show the dependence of φq(t) on the biasing parameter q and the number of sampling points N for
a given integration interval kmin = 10−5 hMpc−1 and kmax = 103 hMpc−1. For all four biasing parameters (q = 0,
1, 2, and 3 from top left to bottom right), we calculate φq(t) with four different resolutions (N = 1024, N = 512,
N = 256, and N = 128) to compare with the benchmark case with N = 10000 (grey line). As all the other conditions
are the same, any differences from the benchmark case must be due to aliasing. As expected, the aliasing effects show
up near the Nyquist frequency (tNy ' Nπ/G, corresponding to the cutoff) at each case. Among the cases that we
study here, the aliasing effect is largest for q = 0 case and smaller for cases with larger q (q = 2 and q = 3), where the
biasing makes the lower-k slope (wavenumber smaller than the turn-over wavenumber kto ∼ 0.01hMpc−1) shallower.

As for N , we need to choose the grid size N large enough so that the FFTLog sampling captures the BAO features
correctly. In Fig. 16, we show the dependence of ξ(r) and its second derivative on N . Since the second derivative
depends on smaller scale structure in the function P (k), it weights larger t in Fourier space (φq(t)) more heavily, and
a higher sampling number N is needed to achieve the same precision as for ξ(r). We also show the dependence of
w``(χ, χ) on N in Fig. 17 for a power spectrum with BAO (left) and a power spectrum without BAO (right). As
shown from the BAO-less calculation (right panel), the broad shape is well-reproduced even for very small sampling
number N ∼ 32. The BAO feature, however, is not completely recovered for the sparse sampling (N < 512) cases.
(see, for example, Fig. 2).

The top two panels of Fig. 18 show the functions Mqν
` (t) (left) and Mq

``′(t, R) (right). In each graph the top panel
shows the absolute values, and the bottom panel shows the phase angle of the complex number. The absolute value

22

101 102

t = 2πm
G

1010

1011

1012

1013

1014

1015

1016
|φ
q
(t

)|
q = 0.0

N = 10000

N = 128

N = 256

N = 512

N = 1024

101 103
105

1010

1015

101 102

t = 2πm
G

103

104

105

106

107

108

109

1010

|φ
q
(t

)|

q = 1.0

N = 10000

N = 128

N = 256

N = 512

N = 1024

101 103
10−1

103

107

1011

101 102

t = 2πm
G

10−2

10−1

100

101

102

103

104

105

106

|φ
q
(t

)|

q = 2.0

N = 10000

N = 128

N = 256

N = 512

N = 1024

101 103
10−5

100

105

101 102

t = 2πm
G

10−7

10−5

10−3

10−1

101

|φ
q
(t

)|

q = 3.0

N = 10000

N = 128

N = 256

N = 512

N = 1024

101 103
10−8

10−3

102

FIG. 15. The Fourier-space function |φq(t)| for five different number of samplings N = 128, 256, 512, 1024, 10000 for each
biasing paramter q = 0, 1, 2, 3. The insets show the full spectrum, the outsets are zoom-ins. The drop-off of the respective
maximum t for each N is due to the application of the window function after the FFTLog transform. Aliasing is strongest for
the q = 0 case. The features in the spectrum are captured by N & 512, though we choose N = 1024. Here we used the interval
kmin = 10−5 hMpc−1 to kmax = 103 hMpc−1.

rises or falls monotonically depending on the value of q, as shown in the figure. The bottom two panels of Fig. 18
show the full integrands of the integrals in Eq. (15) (left) and Eq. (29) (right). Note that for the right figure (for two
spherical Bessel functions), we used the biased power spectrum kp P (k) as introduced in the main text. Note that in
all cases the full integrand decreases rapidly with t for the choices of q shown.

Finally, we checked the prescription that we have adopted in Sec. III: As a default, we choose qν = 1.9− ν as long
as it is within the allowed range given in Eq. (20). If the mean results in a qν outside the range, then we use instead

qν =
1

3
(qν,min + 2qν,max) , (B1)

where qν,min and qν,max are the boundaries given in Eq. (20). In Fig. 19 we verify that the resulting ξν` (r) from this
choice of qν matches well with the benchmark results from the quadosc calculation.

23

0.000

0.001

0.002

0.003

0.004

0.005
ξ(
r)

N=128

N=256

N=512

N=1024

0 50 100 150 200

r in [h−1 Mpc]

−0.01

0.00

0.01

∆
ξ/
ξ

−0.002

0.000

0.002

0.004

r
ξ′
′ (
r)

N=128

N=256

N=512

N=1024

0 50 100 150 200

r in [h−1 Mpc]

−0.01

0.00

0.01

∆
ξ/
ξ

FIG. 16. The result of the 2-FAST algorithm for ξ(r) (left) and its second derivative (right) for several choices of the sampling
number N . For ξ(r) itself, percent-level precision is achieved with N ≥ 256. The second derivative is noisier as it depends
on smaller structure in the power spectrum, and so it achieves percent-level precision with N ≥ 512. (The differences at
r & 150h−1 Mpc are likely due to pathologies in the quadosc algorithm as shown in Fig. 4.)

`

0.0

0.5

1.0

w
`,
jj
′

×10−4

N = 16

N = 32

N = 64

N = 128

N = 256

0 200 400 600 800 1000 1200
`

−0.02

0.00

∆
w
`,
jj
′ /
w
`,
jj
′

R = 1.0, (j, j′) = (0, 0)

`

0.0

0.5

1.0

1.5

w
`,
jj
′

×10−4

N = 16

N = 32

N = 64

N = 128

N = 256

0 200 400 600 800 1000 1200
`

−0.02

0.00

∆
w
`,
jj
′ /
w
`,
jj
′

R = 1.0, (j, j′) = (0, 0)

FIG. 17. Here we show the behavior of the method as it depends on the number of sample points N in the interval
kmin = 10−5 hMpc−1 to kmax = 105 hMpc−1 for a power spectrum with BAO (left), and a power spectrum without BAO
(right) at χ = χ′ = 2370h−1 Mpc. In each graph, the top panel shows the power spectrum, and the bottom panel shows the
residual to the 2-FAST method with N = 2048. Left: Using a power spectrum with BAO. If the number of sampling points
is below N ∼ 128, nearly all of the BAO features are missed, and show up in the residuals. At N = 128, the BAO feature is
missed only at ` & 500. This is due to the logarithmic spacing of the sample points kn of the power spectrum P (kn), since
for larger `, most of the power comes from larger k, where the sample points are more sparse. Right: For a power spectrum
without BAO. In this case even N = 32 sampling points capture much of the structure of the power spectrum.

2. Aliasing effect in backward FFTLog

When implementing the 2-FAST algorithm, we calculate the convolution between the power spectrum P (k) and one
or two spherical Bessel functions by the backward discrete FFTLog transformation of φq(t)Mqν

` (t) or φq(t)Mq
``′(t, R),

which are, respectively, the analytically calculated Fourier transformations of one or two spherical Bessel functions.
In this section, we study yet another aliasing effect associated with the discrete sampling in t space, and justify our
choice of the biasing parameter q.

24

105

107

109

1011

|M
q ν `

(t
)| ` = 0, qν = 2.0

` = 0, qν = 1.1

` = 1, qν = 2.0

100 101 102 103

t = 2πm
G

−π
0

π

p
h

as
e

an
gl

e

10−25

10−20

10−15

10−10

10−5

100

105

|M
q ``
′(
t,
R

)|

` = 100

q = 1.1

q = 0.5

q = -2.5

100 101 102 103

t = 2πm
G

−π
0

π

p
h

as
e

an
gl

e

105

107

109

1011

1013

1015

1017

|ei
ρ
t
φ
q ν

+
ν
(t

)
M

q ν `
(t

)|

` = 0, qν = 2.0

` = 0, qν = 1.1

` = 1, qν = 2.0

100 101 102 103

t = 2πm
G

−π
0

π

p
h

as
e

an
gl

e

10−8

10−4

100

104

108

1012

1016

|ei
ρ
t
φ
q
(t

)
M

q ``
′(
t,
R

)|

` = 100

(q, p) = (1.1, 0)

(q, p) = (0.5,−2)

(q, p) = (−2.5,−4)

100 101 102 103

t = 2πm
G

−π
0

π

p
h

as
e

an
gl

e

FIG. 18. Top left: The absolute value (top panel) and the complex phase angle (bottom panel) of Mqν
` (t) as a function of the

integration parameter t. Note that the absolute value is quite featureless, and merely rises or decays somewhat. Top right: The
same but for Mq

``′(t, R) as needed for the integral over two spherical Bessel functions. Bottom left: Here we show the absolute
value and the complex phase angle of the full integrand in Eq. (15) for ν = 0. Bottom right: The same but for two spherical
Bessel functions Eq. (29), using the biased power spectrum kp P (k).

To avoid clutter, let us consider calculating the following convolution integral:

f(x) =

∫ ∞

−∞
dy g(y)h(x+ y) =

∫ ∞

−∞

dq

2π
g̃(−q) h̃(q) eiqx, (B2)

where g̃(q) and h̃(q) are the functions in Fourier space. In order to mock the 2-FAST implementation, we discretize
the later integration as well as the calculation of g̃ by using N sampling points within the x-range of G. First, the
Fourier transformation of g(x) is

g̃(qm) = ∆x

N−1∑

k=0

g(xk) e−ixkqm =
G

N

N−1∑

k=0

g(xk) e−i2πmxk/G, (B3)

where qm = m∆q and xk = k∆x with the intervals ∆x ≡ G/N and ∆q ≡ 2π/G in x-space and q-space. On the other

hand, the function h̃(q) is calculated from the Fourier transformation:

h̃(q) =

∫ ∞

−∞
dxh(x) e−iqx . (B4)

25

0.000

0.005

0.010

0.015

0.020

ξν `
(r

)
ξ0

0(r)

ξ1
0(r)

ξ2
0(r)

ξ3
0(r)

0 50 100 150 200

r in [h−1 Mpc]

−0.0001
0.0000
0.0001

∆
ξ/
ξ

0.000

0.005

0.010

0.015

0.020

ξν `
(r

)

ξ0
1(r)

ξ1
1(r)

ξ2
1(r)

ξ3
1(r)

0 50 100 150 200

r in [h−1 Mpc]

−0.0001
0.0000
0.0001

∆
ξ/
ξ

0.000

0.005

0.010

0.015

0.020

ξν `
(r

)

ξ0
2(r)

ξ1
2(r)

ξ2
2(r)

ξ3
2(r)

0 50 100 150 200

r in [h−1 Mpc]

−0.0001
0.0000
0.0001

∆
ξ/
ξ

0.000

0.005

0.010

0.015

0.020

ξν `
(r

)

ξ0
4(r)

ξ1
4(r)

ξ2
4(r)

ξ3
4(r)

0 50 100 150 200

r in [h−1 Mpc]

−0.0001
0.0000
0.0001

∆
ξ/
ξ

FIG. 19. The function ξν` (r) for ν = 0, 1, 2, 3 and for ` = 0 (top left), ` = 1 (top right), ` = 2 (bottom left), and ` = 4 (bottom
right) as calculated using qν described in App. B. We also show the relative residuals to the quadosc algorithm.

Combining the two, we find that the implementation actually calculates

f(xn) =
1

G

N−1∑

m=0

eiqmxn g̃(−qm) h̃(qm) =

N−1∑

k=0

g(xk)

∫ ∞

−∞
dxh(x)

[
1

N

N−1∑

m=0

ei2πm(xn+xk−x)/G

]
. (B5)

Here, the function in square brackets

W (x) ≡ 1

N

N−1∑

m=0

ei2πmx/G = eiπ
N−1
G x sin(Nπx/G)

N sin(πx/G)
, (B6)

can be approximated as

W (x) ' G

N

∞∑

s=−∞
δD(x+ sG) , (B7)

which is exact in the N →∞ limit. With this approximation, we find that the convolution integral Eq. (B5) becomes

f(xn) ' ∆x

N−1∑

k=0

g(xk)

∞∑

s=−∞
h(xn + xk + sG) , (B8)

26

101 102 103 104

χ in h−1 Mpc

10−5

10−4

10−3

10−2

10−1

w
`

G
N = const

q = 1.9

G = ln(108)

G = ln(1016)

G = ln(1024)

FIG. 20. Here we exemplify the dependence of the result of the 2-FAST algorithm for w``(χ, χ) on the integration interval G
for ` = 42 and q = 1.9. The ratio G/N is kept constant so that the same sampling points on the power spectrum are used in
all cases. The black line is the result from the Lucas algorithm. While the error goes down for larger G, even extremely large
ranges G lead to significant error for χ < 100h−1 Mpc. The error here is dominated by the s > 0 terms. To get correct results
it is more efficient to adjust q.

10−2 100 102 104

χ in h−1 Mpc

10−6

10−3

100

103

106

w
`

` = 42, R = 1.0

q = 0.3

q = 0.7

q = 1.1

q = 1.5

q = 1.9

10−2 100 102 104

χ in h−1 Mpc

10−14

10−11

10−8

10−5

10−2

w
`

` = 42, R = 0.8

q = 0.3

q = 0.7

q = 1.1

q = 1.5

q = 1.9

FIG. 21. The dependence of the 2-FAST result for w``(χ,Rχ) on the choice of q for ` = 42 and R = 1 (left) and 0.8 (right). For
R = 1, choosing q . 1.5 is required to get an accurate result for cosmologically relevant range χ & 100h−1 Mpc. In contrast,
for R = 0.8, aliasing effect in relevant scales is small for all values of q shown here.

where ∆x = G/N , xn = n∆x, and xk = k∆x. Comparing Eq. (B2) with Eq. (B8), we see that the desired convolution
corresponds to the s = 0 case, and all the other s values cause aliasing. Note that the s 6= 0 peaks are separated
by 2π/∆q = G, that is, the total duration of discrete sampling in x-space. In order to suppress this effect, we need
to employ a function h(x) that decays fast so that the aliasing contribution is far smaller than the desired result at
s = 0.

For the case at hand, g(κ) = e(3−q)κP (k0e
κ) is the biased power spectrum, and h(κ) = eqνκj`(αe

κ), Eq. (13),
and h(κ) = eqκj`(αe

κ)j`′(Rαe
κ), Eq. (27), for calculating, respectively, ξν` (r) and w``′(χ, χ

′). The outcomes of the

27

10−2 100 102 104

χ in h−1 Mpc

10−11

10−8

10−5

10−2

101

104

107

w
`

` = 1000, R = 1.0

q = 0.3

q = 0.7

q = 1.1

q = 1.5

q = 1.9

10−2 100 102 104

χ in h−1 Mpc

10−15

10−12

10−9

10−6

10−3

100

w
`

` = 1000, R = 0.99

q = 0.3

q = 0.7

q = 1.1

q = 1.5

q = 1.9

FIG. 22. Same as Fig. 21, except that ` = 1000 and R = 1, 0.99. Once again, for R = 1, q = 1.1 results in small aliasing
effect. For R = 0.99, any value q . 1.5 gives small aliasing effect over the cosmologically relevenat scale.

2-FAST implementation are then

ξν` (r) =
k3

0e
−(qν+ν)ρ

2π2(k0r0)ν
∆κ

∑

k

e(3−qν−ν)κP (k)

∞∑

s=−∞
eqν(κ+ρ+sG) j`(kre

sG) (B9)

=
∆κ

2π2

∑

k

k3P (k)

(kr)ν

∞∑

s=−∞
eqνsG j`(kre

sG) , (B10)

and

w``′(χ, χ
′) =

2

π
∆κ

∑

k

k3P (k)

∞∑

s=−∞
eqsG j`(kχe

sG) j`′(kχ
′esG) . (B11)

If the s = 0 term in the sum dominates over all other terms, then we recover the desired convolution integral. How
big is the aliasing effect? We estimate the aliasing effect by using a simple approximation of replacing the spherical
Bessel functions by their envelopes. Using the asymptotic behavior of the spherical Bessel functions,

lim
x→0

j`(x) =
x`

(2`+ 1)!!
=

√
π x`

2`+1 Γ(`+ 3
2)

(B12)

lim
x→∞

j`(x) = x−1 sin
(
x− π

2 `
)
, (B13)

we estimate the aliasing effect (denoting E that stands for the error) as

E[ξν` (r)] ' ∆κ

2π2

∑

k

k3P (k)

(kr)ν

[∑

s<0

(kr)`e(qν+`)sG

(2`+ 1)!!
+
∑

s>0

e(qν−1)sG

kr

]
, (B14)

E[w``′(χ, χ
′)] ' 2

π
∆κ

∑

k

k3P (k)

[∑

s<0

(kχ)`(kχ′)`
′
e(q+`+`′)sG

(2`+ 1)!!(2`′ + 1)!!
+
∑

s>0

e(q−2)sG

k2χχ′

]
. (B15)

That is, we expect that the aliasing effects from s < 0 peaks affect larger separations (large r or χ) with r` or χ`χ′`
′

dependence, and aliasing effects from s > 0 peaks affect smaller separations with 1/r or 1/(χχ′) dependence.
Although the r and χ, χ′ dependences are the same as what we estimated, it turns out, however, that the actual

aliasing effect is far smaller than the estimation above, which is based on the envelope of the spherical Bessel functions
and the approximation Eq. (B7). By examining our implementation of ξν` (r) and w``′(χ, χ

′), we find that the spherical
Bessel functions oscillate many times over the width of a peak in W (x) so that the aliasing for these cases has left
only a small residual as an error. One exception is when calculating w``′(χ, χ) (or R = 1), where such a cancellation

28

10−3 10−2 10−1 100

kn in [hMpc−1]

101

102

103
`

2
π∆kn k

2
n j`(knχ) j`(knRχ)

R = 0.75

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

10−3 10−2 10−1 100

kn in [hMpc−1]

101

102

103

`

2
π∆kn k

2
n j`(knχ) j`(knRχ)

R = 1.0

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

10−3 10−2 10−1 100

kn in [hMpc−1]

101

102

103

`

2
π∆kn k

2
n j`(knχ) j`(knRχ)

−k−1
n T`n

R = 0.75

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

10−3 10−2 10−1 100

kn in [hMpc−1]

101

102

103

`

2
π∆kn k

2
n j`(knχ) j`(knRχ)

−k−1
n T`n

R = 1.0

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

−1.0× 10−8

−4.7× 10−9

−2.1× 10−9

−8.2× 10−10

0.0

8.2× 10−10

2.1× 10−9

4.7× 10−9

1.0× 10−8

FIG. 23. Top panels: Same as Fig. 8, except using the traditional method Eq. (41). The graph is much more noisy than the
2-FAST method, due to undersampling of the oscillations of the Bessel functions, which is avoided by the 2-FAST method.
Bottom panels: To facilitate comparison, we here show the difference between the top and center panels. At small kn, the
differences are small, whereas at large kn the differences are biggest.

does not happen because the aliasing contribution from spherical Bessel functions is positive definite. We, therefore,
choose the biasing parameter q that diminishes the aliasing effect for the R = 1 case.

In Fig. 20 we show the w`=`′=42(χ, χ) with three different values of G, the size of the integration interval. For the
same biasing parameter q = 1.9. With width G = ln(108) that we adopted when calculating ξν` (r), the aliasing effect
is clearly visible on all χ values that we show here. The aliasing effect does get milder as we increase the interval
G. In order to get a reliable result for χ > 102 h−1 Mpc, however, we need to choose the interval over 24 orders of
magnitude in k-space.

We find that biasing the convolved integrand provides a more efficient way of reducing the aliasing effect. That is,
when adopting a smaller q value, the integrand decays faster enough to suppress the aliasing effect. For example, we
show the w`=`′=42(χ, χ) for five values of q between 0.3 and 1.9 in the left panel of Fig. 21. It turns out that one
must take q . 1.5 in order to suppress the aliasing effect on cosmologically relevant scales χ & 100h−1 Mpc. On the
other hand, the right panel of Fig. 21 shows that all values of q yield accurate calculation of w`=`′=42(χ, χ) on all
cosmologically relevant scales χ & 100h−1 Mpc. Finally, Fig. 22 shows the same for ` = 1000, and R = 1, 0.99. Here,
too, q . 1.1 results in small error at χ > 100h−1 Mpc.

29

Appendix C: Transformation matrix from 2-FAST and Trapezoidal method

Fig. 23 shows the transformation matrix for the case of two spherical Bessel functions using the traditional method
Eq. (41) (left) as well as the difference to the 2-FAST algorithm (right). The two matrices agree on large scales

(k '
√
`(`+ 1)), but show quite different behaviors on small scales (larger k). This is because the traditional

trapezoidal method directly samples the multiplication of two spherical Bessel functions which are very oscillatory,
while the 2-FAST transformation matrix effectively averages over these high-k oscillations. An accurate integration,
therefore, demands much denser sampling for the trapezoidal method than the 2-FAST method.

Appendix D: Contiguous relations for the Gauss hypergeometric function

The Gauss hypergeometric function 2F1(a, b, c, z) is defined by the Gauss series:

2F1(a, b, c, z) =

∞∑

s=0

(a)s(b)s
(c)s

zs

s!
= 1 +

ab

c
z +

a(a+ 1) b(b+ 1)

c(c+ 1)

z2

2
+ · · · (D1)

where the Pochhammer symbol is defined as (a)s = a(a + 1) · · · (a + s − 1). We find that the key to calculating the
Gauss hypergeometric function is to exploit its contiguous relations:

(c− a)F (a− 1, b, c, z) + (2a− c+ (b− a)z)F (a, b, c, z) + a(z − 1)F (a+ 1, b, c, z) = 0 (D2a)

(b− a)F (a, b, c, z) + aF (a+ 1, b, c, z)− bF (a, b+ 1, c, z) = 0 (D2b)

(c− a− b)F (a, b, c, z) + a(1− z)F (a+ 1, b, c, z)− (c− b)F (a, b− 1, c, z) = 0 (D2c)

c(a+ (b− c)z)F (a, b, c, z)− ac(1− z)F (a+ 1, b, c, z) + (c− a)(c− b)zF (a, b, c+ 1, z) = 0 (D2d)

(c− a− 1)F (a, b, c, z) + aF (a+ 1, b, c, z)− (c− 1)F (a, b, c− 1, z) = 0 (D2e)

c(1− z)F (a, b, c, z)− cF (a− 1, b, c, z) + (c− b)zF (a, b, c+ 1, z) = 0 (D2f)

(a− 1 + (b+ 1− c)z)F (a, b, c, z) + (c− a)F (a− 1, b, c, z)− (c− 1)(1− z)F (a, b, c− 1, z) = 0 (D2g)

c(c− 1)(z − 1)F (a, b, c− 1, z) + c(c− 1− (2c− a− b− 1)z)F (a, b, c, z) + (c− a)(c− b)zF (a, b, c+ 1, z) = 0 , (D2h)

that one can find, for example, in [45]. Note that we can generate more relations by using the symmetry between a
and b

2F1(a, b, c, z) = 2F1(b, a, c, z) (D3)

which follows from the series definition in Eq. (D1).

Appendix E: Computing the Gauss Hypergeometric Function

Computing the Gauss hypergeometric function 2F1(a, b, c, z) with the parameters that we need in Eq. (31) is a
challenge. In particular, the first parameter a = 1

2 (−` + `′ + n) typically contains a large imaginary component, for
which case we cannot apply the general methods of calculating 2F1 in the literature [46, 47]. The method we present
here fills this gap for the special case that we face in computing Eq. (31). We accomplish this by using analytical
solutions when ` = 0 and recurrence relations that we construct from the Hypergeometric function’s contigous relations
Eqs. (D2a)–(D2h).

In this section, we focus on the recurrence relation along `→ `+ 1 (thick black arrows in Fig. 6). The recurrence
relations along ∆`→ ∆`± 2 are needed for a few iterations only, and so are not as critical. Hence, we only consider
∆` = const here. We shall present the details of the full calculation of Mq

``′ for general cases with ∆` = `′− ` 6= const
in App. F. In this section we only consider ∆` = 4 when a specific ∆` is needed.

Furthermore, for simplicity, we only treat the hypergeometric function 2F1, without the `-dependent prefactors in
Eqs. (30)–(31). Nevertheless, the method presented in this section is the core of evaluating Mq

``′ because the prefactor
merely scales the recurrence relations, without changing the stability properties.

30

Comparing with Eq. (31), we identify a, b, c, and z as

a =
1

2
n+

1

2
∆` =

1

2
(q − 1− it+ ∆`) (E1)

b = `+
1

2
+

1

2
n+

1

2
∆` = c+ a− 1−∆` (E2)

c = `+
3

2
+ ∆` (E3)

z =R2 , (E4)

and we introduce a shorthand notation

F`[i, j, k] = 2F1(a+ i, b+ j, c+ k, z) (E5)

to avoid clutter.
Finally, in order to test the accuracy of our results, we have checked out several software implementations of the

Gauss hypergeometric function. One of the best we have found is the Arb library [48]4. Arb is an arbitrary precision
floating point library with automatic rigorous error bounds. Bindings for the Julia language exist in the package
Nemo5.

1. Recurrence relation for the `-ladder

We have calculated 2F1 based on the recurrence relation that relates F`[0, 0, 0] = 2F1(a, b, c; z) to F`+1[0, 0, 0] =

2F1(a, b+1, c+1; z) = F`[0, 1, 1]. The key is to exploit the contiguous relations of the Gauss Hypergeometric functions
given in App. D. Among many possible relations, we choose a recurrence relation using F`[0, 0, 0] and F`[0, 1, 0]. That
is, we use

Eq. (D2f) with (a, b, c)→ (b+ 1, a, c)
Eq. (D2e) with (a, b, c)→ (b+ 1, a, c+ 1)

to find

(c− a)zF`[0, 1, 1] = cF`[0, 0, 0]− c(1− z)F`[0, 1, 0] (E6)

(b+ 1)F`[0, 2, 1] = −(c− b− 1)F`[0, 1, 1] + cF`[0, 1, 0] . (E7)

This way we can compute F`+1[0, 0, 0] = F`[0, 1, 1] and F`+1[0, 1, 0] = F`[0, 2, 1] from F`[0, 0, 0] and F`[0, 1, 0].
We then combine the recurrence relations Eqs. (E6)–(E7) with analytical solutions at ` = 0. We define the function

g±(n,R) = (1 +R)n ± (1−R)n (E8)

Then, for ∆` = 4 this gives the following analytical solution:

F0,4[0, 0, 0] =
945

2m
(
576− 820m2 + 273m4 − 30m6 +m8

)
R9

×
[
− 5mR

[
21 + (−11 + 2m2)R2

]
g+(m,R)

+
[
105 + 45(−2 +m2)R2 + (9− 10m2 +m4)R4

]
g−(m,R)

]
(E9)

F0,4[0, 1, 0] =
945

2(−5 + n)(−3 + n)(−2 + n)(−1 + n)n(1 + n)(2 + n)(3 + n)(5 + n)R9

×
[[

105 + 15(−5 + 3n2)R2 + n2(−4 + n2)R4
]
g−(−n,−R)

− nR
[
105 + (−4 + n2)R2(10 +R2)

]
g+(−n,−R)

]
(E10)

4 http://fredrikj.net/arb/ 5 https://github.com/Nemocas/Nemo.jl

http://fredrikj.net/arb/
https://github.com/Nemocas/Nemo.jl

31

where m = 1−n. These expressions are numerically unstable for R ∼ 0. For simplicity one may use 256-bit arbitrary
precision floating point arithmetic to evaluate these. Since these expressions are cosmology-independent and only
need to be evaluated once, the performance is not very critical here.

It turns out that, however, unless z = R2 ' 1, the forward-directional recurrence relation Eqs. (E6)–(E7) is unstable
under injection of small noise (which happens, for example, due to the numerical round-off error at each recursion
step).

Instead, we find that the reverse, backward-directional recurrence relation

F`[0, 1, 0] = c−1(c− b− 1)F`[0, 1, 1] + c−1(b+ 1)F`[0, 2, 1] (E11)

F`[0, 0, 0] = c−1(c− a)zF`[0, 1, 1] + (1− z)F`[0, 1, 0], (E12)

is quite stable so that the noise decays while the recursion proceeds along the backward direction of ` → ` − 1.
This is the basis of Miller’s algorithm [39] that we have implemented here. Fig. 24 shows the performance and error
propagation for the backward recursion.

On the other hand, for the backward recursion, we do not have the luxury of an analytical expression for the initial
condition at large ` values. The challenge now is, therefore, to find suitable values to start the recursion with. Again,
the key fact is that the backward recursion is so stable that any deviation from the true value (noise) decays quickly.
The general strategy we adopt, therefore, is to start the recursion from some large `seed, which is sufficiently larger
than the maximum multipole `max that we want to calculate the F`[0, 0, 0] for. Specifically, we increase `seed until
convergence is reached for the resulting F`max

[0, 0, 0] and F`max
[0, 1, 0] within 10−10 accuracy. That is, we require

||~F (new `seed)
`max

− ~F
(old `seed)
`max

||
||~F (new `seed)

`max
||

< 10−10 (E13)

where we define ~F` = (F`[0, 0, 0], F`[0, 1, 0]), and we define the norm as the Euclidean distance: ||~x|| ≡√
<(x1)2 + =(x1)2 + <(x2)2 + =(x2)2, with x1 = F [0, 0, 0] and x2 = F [0, 1, 0], and =(z) is the imaginary part of

z.
In principle, any initial guess for F`seed [0, 0, 0] should work. When choosing a value close to the true value, however,

the recursion chain converges to the true F`[0, 0, 0] value much faster. In the remainder of this section, we shall present
our implementation of setting up the initial conditions.

2. Setting up the initial condition for the backward recursion for z � 1

Here we show the method by which we set up the initial condition at some large `seed for z = R2 � 1 case, exploiting
that the error in the initial values will die out when stepping down the ` ladder. First, we define

~F` =

(
F`[0, 0, 0]
F`[0, 1, 0]

)
, (E14)

so that we can represent the recursion relation in matrix form ~F`+1 = A` · ~F` with

A` =

(c
c−a

1
z − c

c−a
1−z
z

c
c−a

a−∆`
c+a−∆`

1
z

c
c+a−∆`

[
1 + ∆`

c−a
1−z
z

]
)

(E15)

which follows from Eqs. (E6)–(E7), and we used b = c+ a− 1−∆`. The inverse transformation is then given as

A−1
` =

(
z − a

c + ∆`
c (1− z)

[
1 + a

c − ∆`
c

]
(1− z)

−ac + ∆`
c 1 + a

c − ∆`
c

)
. (E16)

Applying the recursion multiple times, we can relate ~F` to ~F`+m as

~F`+m = A
[m]
`

~F` (E17)

~F` = A
[−m]
`

~F`+m , (E18)

where we introduce the notation for the matrix

A
[m]
` = A`+m−1 · · ·A` (E19)

A
[−m]
` = A−1

` · · ·A−1
`+m−1 . (E20)

32

0 200 400 600 800 1000 1200 1400
`

10−41

10−36

10−31

10−26

10−21

10−16

10−11

|F
|

|<(F000)|
|=(F000)|
|<(F010)|
|=(F010)|
|<(F000)Arb|
|=(F000)Arb|
|<(F010)Arb|
|=(F010)Arb|

Absolute value of 2F1(R = 0.9,m = 500, q = 1.0,∆` = 4)

0 200 400 600 800 1000 1200 1400
`

10−16

10−13

10−10

10−7

10−4

10−1

|∆
F
|/|
F
|

<(∆F000)	/	F
=(∆F000)	/	F
<(∆F010)	/	F
=(∆F010)	/	F

Relative Error in 2F1(R = 0.9,m = 500, q = 1.0,∆` = 4)

0 200 400 600 800 1000 1200 1400
`

10−19

10−16

10−13

10−10

10−7

10−4

10−1

|M
|

|<(M000)|
|=(M000)|
|<(M010)|
|=(M010)|
|<(M000)Arb|
|=(M000)Arb|
|<(M010)Arb|
|=(M010)Arb|

Absolute value of M``′(R = 0.9,m = 500, q = 1.0,∆` = 4)

0 200 400 600 800 1000 1200 1400
`

10−16

10−13

10−10

10−7

10−4

10−1

|∆
M
|/|
M
|

<(∆M000)	/	M
=(∆M000)	/	M
<(∆M010)	/	M
=(∆M010)	/	M

Relative Error in M``′(R = 0.9,m = 500, q = 1.0,∆` = 4)

FIG. 24. Demonstration of Miller’s algorithm. Top Left: The absolute value of the real and imaginary parts of the hyperge-
ometric function calculated via recurrence relations is compared with the arbitrary precision library Arb[48]. Top Right: The
relative difference between the recurrence relation method and Arb is shown. As shown, large errors die out before our target
`max = 1200 indicated by the grey vertical line is reached. Bottom Panels: Same as the top two panels, but for Mq

``′ instead
of 2F1.

Note that A
[−m]
` A

[m]
` = 1. The matrix A

[m]
` raises the ` to `+m, whereas the matrix A

[−m]
` lowers `+m down to `.

Just to show the point directly, let us analyze the stability properties in the `→∞ limit, where the lowering matrix
becomes

A−1
∞ =

(
z 1− z
0 1

)
, (E21)

whose eigenvalues are λ1 = 1 and λ2 = z, with eigenvectors ~x1 = 1/
√

2(1, 1) and ~x2 = (1, 0). That is, the ~x2-
component of the solution will be suppressed by a factor zn when lowering ` by n steps, whereas the x1-component
is the dominant solution in the backwards direction. This motivates us to define the initial value of the recursion at
`seed as

~F`seed =
λ√
2

(
1
1

)
(E22)

with a complex constant λ that we fix so that ~F seeded
0 = A

[−`seed]
0

~F`seed matches the analytical solution Eqs. (E9)–(E10).

33

3. Extension to general z

The method we have described in App. E 2 works best for small z because the error in the initial condition decays
as zn. For the z = R2 ∼ 1 cases, therefore, the error in the initial condition decays slowly so that one needs to set
`seed much larger than `max. In the extreme case of z = 1, the initial error does not die at all. In this section, we
summarize our method of generating the initial condition at `seed for these cases.

For z ∼ 1 cases, we use that the forward recursion is more stable than the z < 1 cases. For that, we first attempt

to invert the matrix A
[−`seed]
0 to find the matrix for the forward recursion. Because the matrices A−1

` are invertible,

in principle, the final matrix A
[−`seed]
0 must be invertible as well. If the forward recursion is stable enough that

A
[−`seed]
0 is numerically invertible, we find ~F`seed from ~F0 and the matrix A

[`seed]
0 for the forward recursion; we then

run the backward recursion in order to clean any possible error caused by numerical round-off error. Often there are
cases, however, where, as a result of accumulated numerical round-off error at each step of the matrix multiplication,

the resulting A
[−`seed]
0 ends up singular (non-invertible), or, for the same reason, numerical infinities appear in the

inverted matrix. In that case, we use the seeding value in Eq. (E22), and then we choose λ ∈ C such that we match
the analytical solution Eqs. (E9)–(E10) at ` = 0:

~F0 = A
[−`seed]
0

λ√
2

(
1
1

)
. (E23)

Whether the inversion of the matrix is successful (R ∼ 1 cases) or not (R � 1 cases), any error introduced by
numerical round-off will be corrected both by the choice of λ as well as by running the backward recursion from `seed

down to `max. Hence, this approach works for all values of z.

a. Special cases

The special cases m = 0 (the DC-mode), z = R2 = 1, and z = R2 = 0 need to be handled separately.

• The DC-mode: With the above approach, we may run into division-by-zero problems when the mode m = 0.
Then for some choice of q and ∆` it may happen that n+ ∆` = 0, which implies a = 0. In this case, however,
we have the trivial solution

F`[0, 0, 0] = 1 (E24)

F`[0, 1, 0] = 1 (E25)

for any `. This follows from Eq. (D1).

• z = 1: For the case R2 = 1, we can speed up the computation by using the analytical expression for the initial
condition at any `

F`[0, 0, 0] =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b) . (E26)

For F`[0, 1, 0] Eq. (E26) does not give a finite answer when q = 1 and t = 0. Hence, it is best to require q 6= 1.

• z = 0: For the case R = 0, the w``′(χ, χ
′) = 0 for all `′ > 0 due to the vanishing of the spherical Bessel function

at the origin. Thus no calculation is required.

4. Underflow protection

The hypergeometric function values (and Mq
``′ as well) may under some circumstances (especially when the number

of sample points N of the power spectrum is large, e.g. R = 0.99, q = 0.5, m = 4100, G = 23.6, `max = 1200) suffer
from underflow error when represented as a double precision number. That is, starting at ` = 0, which can generally
be represented in doubles, |2F1| gets smaller and smaller going towards higher `, and eventually hits the underflow
value for double precision numbers |2F1| < 10−308.

We must, therefore, take care of the case where the seeding value becomes ~F`seed = 0 as a result of the underflow.

We detect this when one or more of the elements in A
[−`seed]
0 becomes ±∞ as represented by double precision. The

solution we adopt here is to store the largest `finite < `max where no underflow occurs, and approximate 2F1 ≈ 0 for
` > `finite.

34

Appendix F: Recursion for the full kernel

In this appendix we derive the recurrence relations that are valid not just for the hypergeometric function, but for
the full kernel Mq

``′(t, R) in Eq. (30). We also detail the recursions to move towards any even ∆` ≡ `′ − ` (thick
gray arrows in Fig. 6), for the two cases R ≤ 1 and R > 1. These two cases need to be treated separately due to
Eq. (34). Note, however, that due to the symmetry w``′(χ, χ

′) = w`′`(χ
′, χ), only one of the two cases is actually

needed, although for some computations (e.g. lensing-galaxy cross-correlation, see Sec. V C) it is convenient to be
able to compute both cases explicitly.

As in Eqs. (E1)–(E4) a, b, c, and z will be the parameters to the hypergeometric function 2F1(a, b; c; z) in Eq. (31).
To get the full kernel Mq

``′(t, R), the hypergeometric function needs to be multiplied by the prefactors in Eqs. (30)–
(31). The prefactor is

A`,∆` = (k0χ0)it−q 2n−2 π R`+∆` Γ
[
`+ 1

2 + 1
2n+ 1

2∆`
]

Γ
[
1− 1

2n− 1
2∆`

]
Γ
(
`+ 3

2 + ∆`
) (F1)

where ∆` = `′ − `. We get

A`+1,∆` = A`,∆`R
`+ 1

2 + 1
2n+ 1

2∆`

`+ 3
2 + ∆`

= A`,∆`
bR

c
(F2)

which adds another factor to our recursion relations Eqs. (E11)–(E12). Since this multiplies all elements in the
recursion matrix by the same number, the ratio of the eigenvalues is the same as without the prefactor, and hence
this does not change the stability properties of the relation discussed in App. E.

Our recursion relations along `→ `+ 1 are stable in the backward direction for any ∆` = 0,±2,±4 (which are all
we have tested). The recursion relations detailed below to change ∆` are stable in the ∆` → ∆` − 2 direction for
R < 1, and they are stable in the ∆`→ ∆`+ 2 direction for R > 1. Thus, we perform the ∆` = const recursions with
∆` = 4 for R < 1, and with ∆` = −4 for R > 1. Note, however, that due to the symmetry Eq. (34), the initialization
with ∆` = 4 as described in App. E is also valid for the R > 1 case.

The relations to move towards ∆` 6= 0 are determined by Eqs. (E1)–(E4). Our recursion relations along `→ `− 1
give us F`[0, 1, 0] along with F`[0, 0, 0] (or their Mq

`` equivalent). However, in the sections below we derive the recursions
using the values F [0, 0, 0] and F [0,−1, 0]. To go from F [0, 1, 0] we use Eq. (D2a) with a↔ b to get

(c− b)F [0,−1, 0] = b(1− z)F [0, 1, 0]−
(
2b− c+ (a− b)z

)
F [0, 0, 0] (F3)

In this section we will generally drop the subscript `, and sometimes use ∆` = `− `′ as a subscript instead. a, b, and
c, which are functions of ` and ∆`, are understood to take on their values at F [0, 0, 0] in any given equation. In the
remainder of this appendix, we derive the ∆` 6= 0 relations.

1. Towards ∆` = −2 when R < 1

To calculate ∆` = −2 we need F [−1,−1,−2]. We start with Eq. (D2e) with (a, b, c)→ (a− 1, b− 1, c− 1) to get

F [−1,−1,−2] =
c− 1− a
c− 2

F [−1,−1,−1] +
a− 1

c− 2
F [0,−1,−1] (F4)

Eq. (D2f) with (a, b, c)→ (a, b− 1, c− 1) gives

F [−1,−1,−1] = (1− z)F [0,−1,−1] +
c− b
c− 1

z F [0,−1, 0] (F5)

and Eq. (D2e) with a↔ b and(a, b, c)→ (a, b− 1, c) gives

F [0,−1,−1] =
c− b
c− 1

F [0,−1, 0] +
b− 1

c− 1
F [0, 0, 0] (F6)

Putting the last three together, one at a time, we get

F [−1,−1,−2] =
(c− 1− a)(1− z) + a− 1

c− 2
F [0,−1,−1] +

c− 1− a
c− 2

c− b
c− 1

z F [0,−1, 0] (F7)

=
c− b
c− 1

F [0,−1, 0] +
c− 2− (c− 1− a)z

(c− 2)(c− 1)
(b− 1)F [0, 0, 0] (F8)

35

From Eq. (F1) we see that

A`,∆`−2 = A`,∆`R
−2

(
`− 1

2 + ∆`
)(
`+ 1

2 + ∆`
)

(
`− 1

2 + 1
2∆`+ 1

2n
)(

1− 1
2∆`− 1

2n
) (F9)

= A`,∆`R
−2 (c− 2)(c− 1)

(b− 1)(1− a)
(F10)

where a, b, and c are evaluated at ∆`. Hence, writing F̃∆` = A`,∆` F we get

F̃−2[−1,−1,−2] =
(c− b)(c− 2)

(b− 1)(1− a)R2
F̃0[0,−1, 0] +

c− 2− (c− 1− a)z

(b− 1)(1− a)R2
(b− 1) F̃0[0, 0, 0] (F11)

F̃−2[0, 0, 0] =
(c− 2)(c− 1)

(b− 1)(1− a)R2
F̃0[0, 0, 0] (F12)

which keeps the factor A`,∆` the same for the two hypergeometric function values, and allows us to use these as the
starting values for a recursion towards ∆` = −4.

2. Towards ∆` = −4 when R < 1

We also need to go towards ∆` = −4, or F [−2,−2,−4]. We do this by building a recursion from F [0, 0, 0] and
F [−1,−1,−2]. We use the following 7 relations:

Eq. (D2e) with (a, b, c)→ (b− 1, a, c)
Eq. (D2h) with (a, b, c)→ (a, b− 1, c− 1)
Eq. (D2f) with (a, b, c)→ (a, b− 1, c− 2)
Eq. (D2c) with (a, b, c)→ (a− 1, b− 1, c− 2)
Eq. (D2e) with (a, b, c)→ (b− 2, a− 1, c− 2)
Eq. (D2h) with (a, b, c)→ (a− 1, b− 2, c− 3)
Eq. (D2f) with (a, b, c)→ (a− 1, b− 2, c− 4)

which result in the following equations:

(c− 1)F [0,−1,−1] = (c− b)F [0,−1, 0] + (b− 1)F [0, 0, 0] (F13)

(c− 1)(c− 2)(1− z)F [0,−1,−2] = (c− 1)(c− 2− (2c− 2− b− a)z)F [0,−1,−1]

+ (c− b)(c− 1− a)zF [0,−1, 0] (F14)

(c− 2)(1− z)F [0,−1,−2] = (c− 2)F [−1,−1,−2]− (c− 1− b)zF [0,−1,−1] (F15)

(c− 1− b)F [−1,−2,−2] = (c− a− b)F [−1,−1,−2] + (a− 1)(1− z)F [0,−1,−2] (F16)

(c− 3)F [−1,−2,−3] = (c− b− 1)F [−1,−2,−2] + (b− 2)F [−1,−1,−2] (F17)

(c− 3)(c− 4)(1− z)F [−1,−2,−4] = (c− 3)(c− 4− (2c− 4− a− b)z)F [−1,−2,−3]

+ (c− 2− a)(c− 1− b)zF [−1,−2,−2] (F18)

(c− 4)F [−2,−2,−4] = (c− 4)(1− z)F [−1,−2,−4] + (c− 2− b)zF [−1,−2,−3] (F19)

The first three can be solved for (1− z)F [0,−1,−2]. Inserting the first into the second and third we get

(c− 1)(c− 2)(1− z)F [0,−1,−2] = (c− 2− (c− 1− b)z)(c− b)F [0,−1, 0]

+ (c− 2− (2c− 2− b− a)z)(b− 1)F [0, 0, 0] (F20)

(c− 1)(c− 2)(1− z)F [0,−1,−2] = (c− 1)(c− 2)F [−1,−1,−2]− (c− b)(c− 1− b)zF [0,−1, 0]

− (c− 1− b)z(b− 1)F [0, 0, 0] (F21)

and then solving the second for F [0,−1, 0] and inserting into the third, we get

(1− z)F [0,−1,−2] =
c− 2− (c− 1− b)z

c− 2
F [−1,−1,−2]− (c− 1− a)z(c− 1− b)z b− 1

(c− 1)(c− 2)2
F [0, 0, 0] (F22)

36

To get F [−2,−2,−4] we start with the last of Eqs. (F13)–(F19) and then continue using each upwards in succession.
We get

F [−2,−2,−4] =
c− 4− (c− 2− a)z

c− 4
F [−1,−2,−3] +

(c− 2− a)(c− 1− b)z
(c− 3)(c− 4)

F [−1,−2,−2] (F23)

=
c− b− 1

c− 3
F [−1,−2,−2] +

(c− 4− (c− 2− a)z)(b− 2)

(c− 3)(c− 4)
F [−1,−1,−2] (F24)

=
(c− a− 2)(c− 4− (b− 2)z)

(c− 3)(c− 4)
F [−1,−1,−2] +

(a− 1)(1− z)
c− 3

F [0,−1,−2] (F25)

=
(c− a− 2)(c− 4− (b− 2)z)(c− 2) + (c− 2− (c− 1− b)z)(a− 1)(c− 4)

(c− 2)(c− 3)(c− 4)
F [−1,−1,−2]

− (c− 1− a)z(c− 1− b)z (a− 1)(b− 1)

(c− 1)(c− 2)2(c− 3)
F [0, 0, 0] (F26)

=
(c− 2)(c− 4)−

[
a(c− b) + b(c− a)− 3c+ 4

]
z

(c− 2)(c− 4)
F [−1,−1,−2]

− (c− 1− a)z(c− 1− b)z (a− 1)(b− 1)

(c− 1)(c− 2)2(c− 3)
F [0, 0, 0] (F27)

The factor A`,∆` can be adjusted according to Eq. (F10), where now a, b, and c are evaluated at ∆` = −2.

3. Towards ∆` = 2 when R < 1

We need F [1, 1, 2] in terms of F [0, 0, 0] and F [0,−1, 0]. To get F [1, 1, 2] we use Eq. (D2b) with (a, b, c) → (a, b +
1, c+ 2) to reduce a. That is,

F [1, 1, 2] =
b+ 1

a
F [0, 2, 2]− b− a+ 1

a
F [0, 1, 2] (F28)

We get F [0, 2, 2] from Eq. (D2e) with a↔ b and (a, b, c)→ (a, b+ 1, c+ 2):

F [0, 2, 2] =
c+ 1

b+ 1
F [0, 1, 1]− c− b

b+ 1
F [0, 1, 2] (F29)

F [0, 1, 1] and F [0, 1, 2] we can get from

Eq. (D2e) with (a, b, c)→ (b, a, c+ 1)
Eq. (D2f) with (a, b, c)→ (b, a, c)

which are

F [0, 1, 1] = −1

b

[
(c− b)F [0, 0, 1]− cF [0, 0, 0]

]
(F30)

F [0, 0, 1] = − c

(c− a)z

[
(1− z)F [0, 0, 0]− F [0,−1, 0]

]
(F31)

By applying Eqs. (F30)–(F31) multiple times we get

F [1, 1, 2] =
c+ 1

a
F [0, 1, 1]− c+ 1− a

a
F [0, 1, 2] (F32)

=
c+ 1

a

1

z

[
F [0, 1, 1]− F [0, 0, 1]

]
(F33)

=
c+ 1

a

c

b

1

z

[
F [0, 0, 0]− F [0, 0, 1]

]
(F34)

=
c+ 1

a(c− a)

c

b

1

z2

[
(c− az)F [0, 0, 0]− cF [0,−1, 0]

]
(F35)

37

where a, b, and c are evaluated with the ∆` that corresponds to F [0, 0, 0]. For the full recursion we need to see how
Eq. (F1) changes. It is

A`,∆`+2 = A`,∆`R
2

(
`+ 1

2 + 1
2∆`+ 1

2n
)(
− 1

2∆`− 1
2n
)

(
`+ 3

2 + ∆`+ 1
)(
`+ 3

2 + ∆`
) (F36)

= −A`,∆`R2 ab

c(c+ 1)
(F37)

Combining with Eq. (F35) we get

F̃ [1, 1, 2] =
1

(c− a)z

[
cF̃ [0,−1, 0]− (c− az)F̃ [0, 0, 0]

]
(F38)

4. Towards ∆` = 4 when R < 1

All we need here, is to reverse the relations in Sec. F 2. That is, we are given F [−2,−2,−4] and F [−1,−1,−2], and
want to calculate F [0, 0, 0]. We can then shift the result to get the relation for F [2, 2, 4] instead. Solving Eq. (F27)
for F [0, 0, 0] we get

F [0, 0, 0] =
(c− 1)(c− 2)(c− 3)

(a− 1)(b− 1)(c− 4)(c− 1− a)z(c− 1− b)z

[

(
(c− 2)(c− 4)−

[
a(c− b) + b(c− a)− 3c+ 4

]
z
)
F [−1,−1,−2]

− (c− 2)(c− 4)F [−2,−2,−4]

]
(F39)

Applying the transformation (a, b, c)→ (a+ 2, b+ 2, c+ 4) we get

F [2, 2, 4] =
(c+ 3)(c+ 2)(c+ 1)

(a+ 1)(b+ 1)c(c+ 1− a)z(c+ 1− b)z

[

(
(c+ 2)c−

[
(a+ 2)(c+ 2− b) + (b+ 2)(c+ 2− a)− 3c− 8

]
z
)
F [1, 1, 2]

− (c+ 2)cF [0, 0, 0]

]
(F40)

5. Towards ∆` = −2 when R > 1

We use Eq. (34) to avoid arguments of the hypergeometric function R2 > 1. That means that ` and `′ get swapped,
and we need to derive new recurrence relations. The swapping may be done by first writing ∆` in terms of ` and `′,
then swapping `↔ `′, and replacing `′ = `+ ∆`. Then we get,

a = 1
2n− 1

2∆` (F41)

b = `+ 1
2 + 1

2n+ 1
2∆` = c+ a− 1 + ∆` (F42)

c = `+ 3
2 (F43)

In other words,

(a, b, c)→ (a+ 1, b− 1, c) for ∆` = −2 (F44)

(a, b, c)→ (a− 1, b+ 1, c) for ∆` = 2 (F45)

Hence, we need F [1,−1, 0] and F [−1, 1, 0] in terms of F [0, 0, 0] and F [0,−1, 0].
For ∆` = −2 we use Eq. (D2b) with b→ b− 1 to get

F [1,−1, 0] =
b− 1

a
F [0, 0, 0]− b− 1− a

a
F [0,−1, 0] (F46)

38

To use Eq. (F1) for the full kernel recursion in the case R > 1, we need to exchange ` and `′. Furthermore, Eq. (34)
says that we need to let

α→ Rα (F47)

R→ R−1 (F48)

Then,

AR>1
`,∆` = αit−q 2n−2 π R`

Γ
[
`+ 1

2 + 1
2∆`+ 1

2n
]

Γ
[
1 + 1

2∆`− 1
2n
]

Γ
(
`+ 3

2

) (F49)

Thus,

AR>1
`,∆`−2 = AR>1

`,∆`

1
2∆`− 1

2n

`− 1
2 + 1

2∆`+ 1
2n

(F50)

= − a

b− 1
AR>1
`,∆` (F51)

6. Towards ∆` = −4 when R > 1

For this recursion we need F [2,−2, 0] in terms of F [0, 0, 0] and F [1,−1, 0]. We use

Eq. (D2b) with (a, b, c)→ (a, b− 1, c)
Eq. (D2c) with (a, b, c)→ (a, b− 1, c)
Eq. (D2c) with (a, b, c)→ (b− 2, a+ 1, c)
Eq. (D2b) with (a, b, c)→ (a+ 1, b− 2, c)

which results in

(b− 1− a)F [0,−1, 0] = (b− 1)F [0, 0, 0]− aF [1,−1, 0] (F52)

(c− b+ 1)F [0,−2, 0] = (c− a− b+ 1)F [0,−1, 0] + a(1− z)F [1,−1, 0] (F53)

(c− b+ 1− a)F [1,−2, 0] = (c− a− 1)F [0,−2, 0]− (b− 2)(1− z)F [1,−1, 0] (F54)

(a+ 1)F [2,−2, 0] = (b− 2)F [1,−1, 0]− (b− a− 3)F [1,−2, 0] (F55)

7. Towards ∆` = 2 when R > 1

We want F [−1, 1, 0] from F [0, 0, 0] and F [0,−1, 0]. We use

Eq. (D2a) with (a, b, c)→ (b, a, c)
Eq. (D2c) with (a, b, c)→ (b, a, c)
Eq. (D2c) with (a, b, c)→ (a− 1, b+ 1, c)

which results in

b(1− z)F [0, 1, 0] = (c− b)F [0,−1, 0] + (2b− c+ (a− b)z)F [0, 0, 0] (F56)

(c− a)F [−1, 0, 0] = (c− b− a)F [0, 0, 0] + b(1− z)F [0, 1, 0] (F57)

(c− a− b)F [−1, 1, 0] = (c− b− 1)F [−1, 0, 0]− (a− 1)(1− z)F [0, 1, 0] (F58)

From Eq. (F49) we get

AR>1
`,∆`+2 = AR>1

`,∆`

`+ 1
2 + 1

2∆`+ 1
2n

1 + 1
2∆`− 1

2n
(F59)

= AR>1
`,∆`

b

1− a (F60)

39

8. Towards ∆` = 4 when R > 1

For this recursion we need F [−2, 2, 0] in terms of F [0, 0, 0] and F [−1, 1, 0]. We use

Eq. (D2b) with (a, b, c)→ (a− 1, b, c)
Eq. (D2c) with (a, b, c)→ (b, a− 1, c)
Eq. (D2c) with (a, b, c)→ (a− 2, b+ 1, c)
Eq. (D2b) with (a, b, c)→ (a− 2, b+ 1, c)

which results in

(b− a+ 1)F [−1, 0, 0] = bF [−1, 1, 0]− (a− 1)F [0, 0, 0] (F61)

(c− a+ 1)F [−2, 0, 0] = (c− a− b+ 1)F [−1, 0, 0] + b(1− z)F [−1, 1, 0] (F62)

(c− b− a+ 1)F [−2, 1, 0] = (c− b− 1)F [−2, 0, 0]− (a− 2)(1− z)F [−1, 1, 0] (F63)

(b+ 1)F [−2, 2, 0] = (b− a+ 3)F [−2, 1, 0] + (a− 2)F [−1, 1, 0] (F64)

Appendix G: Angular Power Spectrum with Redshift-Space Distortion

To calculate redshift-space distortion (RSD) we use the well-known equation

C` =

∫
dzW (z)D(z)

∫
dz′W ′(z′)D(z′)

[
bb′w`,00 − bf ′w`,02 − fb′w`,20 + ff ′w`,22

]
(G1)

where W (z) and W ′(z′) are window functions, D(z) and D(z′) are growth factors, b and b′ are linear biases, and f
and f ′ dimensionless linear growth rates, and w`,jj′(χ, χ

′) were defined in Eq. (42). Using the recurrence relation for
spherical Bessel-j functions

j′`(x) =
`

2`+ 1
j`−1(x)− `+ 1

2`+ 1
j`+1(x) (G2)

which results in

j′′` (x) = f−2 j`−2(x) + f0 j`(x) + f2 j`+2(x) (G3)

where

f−2 =
`(`− 1)

(2`− 1)(2`+ 1)
f0 = − 2`2 + 2`− 1

(2`− 1)(2`+ 3)
f2 =

(`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
(G4)

we can express the terms in Eq. (G1) in terms of w``′(χ, χ
′) in the following way:

w`,00(χ, χ′) = w`,`(χ, χ
′) (G5)

w`,02(χ, χ′) =
(
f−2 f0 f2

)


w`,`−2(χ, χ′)
w`,`(χ, χ

′)
w`,`+2(χ, χ′)


 (G6)

w`,20(χ, χ′) =
(
f−2 f0 f2

)


w`−2,`(χ, χ

′)
w`,`(χ, χ

′)
w`+2,`(χ, χ

′)


 (G7)

w`,22(χ, χ′) =
(
f−2 f0 f2

)


w`−2,`−2 w`−2,` w`−2,`+2

w`,`−2 w`,` w`,`+2

w`+2,`−2 w`+2,` w`+2,`+2





f−2

f0

f2


 (G8)

where the w``′(χ, χ
′) are given by Eq. (2).

Finally, note that

w`=i+j,`′=i+k = w`=i+j,∆`=k−j (G9)

for any integers i, j, k. This means that we can calculate all w`±2,`±2(χ, χ′) from w`,`±(0,2,4)(χ, χ
′) with ` ± 2, as

indicated in Fig. 6 by the grey squares.

40

Appendix H: The Lucas 1995 algorithm

As a benchmark calculation of the integrals over two Bessel functions, we use the algorithm proposed by Lucas [34].
We use it because it takes into account the entire integration range from k = 0 to k =∞ to high accuracy. Here, we
summarize the algorithm applied to two spherical Bessel functions.

The idea in Lucas [34] is to add and subtract a product of Bessel-Y functions such that the product of Bessel-J
functions splits into two summands, each of which is asymptotically proportional to a sine function. That is,

j`(kχ) j`′(kχ
′) = h1(k; `, `′, χ, χ′) + h2(k; `, `′, χ, χ′) (H1)

where

h1(k; `, `′, χ, χ′) = 1
2

[
j`(kχ) j`′(kχ

′)− y`(kχ) y`′(kχ
′)
]

(H2)

h2(k; `, `′, χ, χ′) = 1
2

[
j`(kχ) j`′(kχ

′) + y`(kχ) y`′(kχ
′)
]

(H3)

The functions h1 and h2 behave asymptotically like sine functions. That is, for k � 1

h1(k; `, `′, χ, χ′) ∼ 1

2χχ′k2
cos
[
(χ+ χ′)k − π

2 (`+ `′ + 1)
]

(H4)

h2(k; `, `′, χ, χ′) ∼ 1

2χχ′k2
cos
[
(χ− χ′)k + π

2 (`− `′)
]

(H5)

Then for large k, the h1 and h2 terms are integrated between successive zeros, and the resulting alternating series
is summed via a series acceleration. The series acceleration effectively integrates to k = ∞. We use the Levin u-
transform as described in [37], which is also our algorithm of choice in Sec. III B. We use the same quadosc algorithm
as summarized there.

The case χ = χ′ makes the function h2 non-oscillatory for large k. This case is thus treated specially, by integrating
the h2-term to infinity via Gauss-Kronrod integration, and applying the quadosc algorithm to the h1-term only.

For the evaluation of the spherical Bessel j and y functions we use the Bessel function implementations included in
the Julia programming language version 0.5.

For small k, the spherical Bessel-y functions tend towards infinity, which can lead to catastrophic cancellation in the
summation of the series. Hence, for the first few zeros, the integral is calculated directly via adaptive Gauss-Kronrod
integration without the splitting into h1 and h2. We found that doing this for the first `2 approximate zeros works
fairly well, although for large ` that puts the burden of the calculation on the Gauss-Kronrod integration.

This procedure works well when ` is small. For large ` & 200 the adaptive Gauss-Kronrod integration needs to
integrate over many oscillations, making the integration slow, and possibly fail. Further investigation may reveal the
exact nature of the problem. However, we find that reducing the relative error tolerance to 10−10 seems to work very
well, and is our choice in this paper.

Appendix I: Generalized Limber Approximation

In order to be applicable to the lensing-convergence–galaxy cross-correlation Eq. (58), we must extend the Limber
approximation as written in Sec. V B 1 to the cases ` 6= `′.

From the result of Ref. [40]:
∫ ∞

0

dr f(r) Jν(kr) = k−1 f
(
ν
k

)
+O

(
f ′′
(
ν
k

))
, (I1)

where ν = `+ 1
2 , and Jν(kr) are Bessel functions. Defining c′1 = b′g and c′2 = f ′, and

A = 3
2ΩmH

2
0 `(`+ 1) (I2)

ϕi(χ, χ
′) =

1

χ

χ? − χ
χ?

(1 + z)D(z)D(z′) c′i
1√
χχ′

(I3)

j`(kχ) =

√
π

2kχ
J`+ 1

2
(kχ) (I4)

ν = `+ 1
2 (I5)

ν′ = `′ + 1
2 (I6)

41

and using the approach in App. G, we see that Eq. (58) contains terms of the form

Ci``′(χ?, χ
′) = A

∫ ∞

0

dk k−1 P (k) Jν′(kχ
′)
∫ χ?

0

dχϕi(χ, χ
′)Jν(kχ) (I7)

Applying Eq. (I1) twice, we get

Ci``′(χ?, χ
′) = A

∫ ∞

0

dk k−2 ϕi

(ν
k
χ′, χ′

)
P (k) Jν′(kχ

′)

=
Aχ′

ν′2
ϕi

(ν
ν′
χ′, χ′

)
P

(
ν′

χ′

)
(I8)

Then to get the full power spectrum, we use the same approach as in App. G.

	Fast and Accurate Computation of Projected Two-point Functions
	Abstract
	Introduction
	FFTLog transform of the power spectrum
	Projection onto real space: power spectrum overlapping with one spherical Bessel function
	The biasing parameter q
	Results: accuracy
	Results: performance

	Projection onto spherical harmonic space
	Fourier transform of two spherical Bessel functions
	From Mll(t,R) to angular power spectra
	Results: Accuracy
	Results: Performance

	Applications
	Radial Baryon Acoustic Oscillations
	Lensing Potential Power Spectrum
	Limber's Approximation

	Lensing convergence-galaxy cross correlation
	Comparison

	Conclusion
	Acknowledgments
	References
	Discrete versions of the Algorithm
	FFT of Biased Power Spectrum
	Discrete version of single Bessel function transform
	Discrete version of two Bessel function transform
	Relation between variables

	On the choice of N, G, and the biasing parameter q
	Aliasing effect in FFTLog of P(k)
	Aliasing effect in backward FFTLog

	Transformation matrix from 2-FAST and Trapezoidal method
	Contiguous relations for the Gauss hypergeometric function
	Computing the Gauss Hypergeometric Function
	Recurrence relation for the l-ladder
	Setting up the initial condition for the backward recursion for z<<1
	Extension to general z
	Special cases

	Underflow protection

	Recursion for the full kernel
	Towards dl=-2 when R<1
	Towards dl=-4 when R<1
	Towards dl=2 when R<1
	Towards dl=4 when R<1
	Towards dl=-2 when R>1
	Towards dl=-4 when R>1
	Towards dl=2 when R>1
	Towards dl=4 when R>1

	Angular Power Spectrum with Redshift-Space Distortion
	The Lucas 1995 algorithm
	Generalized Limber Approximation

