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We present a robust method to characterize the gravitational wave emission from the remnant of
a neutron star coalescence. Our approach makes only minimal assumptions about the morphology
of the signal and provides a full posterior probability distribution of the underlying waveform.
We apply our method on simulated data from a network of advanced ground-based detectors and
demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for
different binary configurations and equations of state for the colliding neutron stars. We show how
our method can be used to constrain the yet-uncertain equation of state of neutron star matter.
The constraints on the equation of state we derive are complimentary to measurements of the tidal
deformation of the colliding neutron stars during the late inspiral phase. In the case of a non-
detection of a post-merger signal following a binary neutron star inspiral we show that we can place
upper limits on the energy emitted.

I. INTRODUCTION

The coalescence of two neutron stars (NSs) emits grav-
itational and electromagnetic radiation (see [1–3] for re-
views), providing us with a powerful probe of the NS
equation of state (EoS), whose properties are still not
completely understood [4–6]. The first such event was
recently observed [7, 8]. The coalescence consists of a pre-
merger and a post-merger phase, both potentially observ-
able by the ground-based gravitational wave (GW) detec-
tors advanced LIGO (aLIGO) [9] and advanced VIRGO
(AdV) [10].

In the pre-merger phase the two NSs orbit around each
other gradually gradually losing orbital energy and an-
gular momentum through gravitational wave emission,
speeding up, tidally deforming their companions, and
eventually merging [11]. The NS tidal deformation dur-
ing this phase leaves an imprint on the GW emitted [12]
which depends on the EoS. This imprint has been studied
as a potential probe of the EoS [13–17] suggesting that
it is possible to measure the NS radius to within 1.3km
for a signal emitted at 300Mpc [18].

After the collision the remnant evolves to a quasi-
stable or stable state emitting additional gravitational
radiation. The nature of the merger remnant depends
on the component masses and on the NS EoS. Massive
systems likely undergo prompt-collapse to a black hole
(BH) immediately after the merger. The BH remnant
emits quasinormal-mode ringdown gravitational radia-
tion which lies at frequencies ∼ 6kHz, above the cali-
brated range of current and planned detectors [19, 20].
For most candidate EoSs a merger with typical binary
masses is expected to result in a quasi-stable hyper-
massive NS (HMNS) supported by differential rotation
and thermal effects [21]. The HMNS may survive for

tens to hundreds of milliseconds emitting GWs with fre-
quencies in (1.5, 4)kHz [19, 20, 22–44], a promising band-
width for aLIGO/AdV. For sufficiently low binary masses
and depending on the exact EoS the remnant may be a
supra-massive NS -in which case collapse will occur after
differential rotation has ceased- or a stable NS.

Systematic studies of numerical binary NS (BNS) sim-
ulations suggest that transient non-axisymmetric defor-
mations and quadrupolar oscillations of the HMNS yield
a short-duration high-frequency GW signal that can be
used to constrain the NS EoS, e.g. [19, 20, 22–44] in a way
that is complimentary to constraints obtained from the
pre-merger signal. In particular, it has been proposed to
employ the dominant oscillation frequency to determine
radii of NSs [29, 30]. Studying the post-merger phase is
complimentary in the sense that the post-merger phase
probes a density regime of the EoS that is higher than
typical densities in the merging stars. The central den-
sity of the merger remnant typically exceeds the central
density of the progenitor stars. Moreover, the merger
remnant may provide a way to study temperature effects
of high-density matter.

An example spectrum for the GW emitted from a
nonspinning, equal-mass BNS at the fiducial distance of
20Mpc is shown in Fig. 1. The binary merger was simu-
lated with a relativistic smooth particle hydrodynamics
code adopting a spatially conformally flat metric in [45]
and assuming NS matter is described by a moderate EoS,
DD2 [46, 47]. The spectrum of the full simulation data
is shown in green, while the spectrum of the post-merger
phase only is shown in red. Both spectra demonstrate a
characteristic peak at a frequency approximately equal to
the fundamental quadrupolar mode of the HMNS [27, 48],
showing that it is a true feature of the post-merger spec-
trum. For reference, we also plot the spectrum of the cor-
responding point-particle inspiral phase (blue) and the
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FIG. 1. Spectrum for a GW emitted during the coalescence
of two nonspinning NS with masses 1.35M� at a fiducial dis-
tance of 20Mpc, optimally oriented and with the DD2 EoS.
We show the pre-merger point-particle phase (blue), the full
simulation starting at 1kHz (green), the post-merger phase
only (red), and the expected detector sensitivity (black).
Both the full simulation and the post-merger spectrum exhibit
the characteristic dominant peak at about fpeak = 2586Hz.

sensitivity of the detectors (black).

The frequency of the peak of the post-merger spec-
trum fpeak has been found to correlate with quantities
that characterize the NS EoS such as NS radii [29, 30].
References [29, 30] showed that the peak frequency scales
with the radius. For instance, for a total binary mass of
2.7 M� a particularly tight relation between fpeak and the
radius of a 1.6M� non-rotating NS (R1.6) was found [29].
Similar relations hold for other binary masses [29, 48].
Moreover, it is possible to relate the dominant post-
merger oscillation frequency to other stellar properties
of NSs, which scale in a similar manner with fpeak

(e.g. [30, 35, 36]). All these empirical relations can be
used to translate a measurement of the peak frequency
to a measurement of a quantity that can directly con-
strain the EoS.

Despite this high potential for EoS constraints, GW
data analysis aspects of the post-merger signal remain
less well-studied compared to the pre-merger ones [49–
52]. The post-merger phase’s level of complexity would
require unreasonably high computational cost to model
efficiently, a pre-requisite for the standard GW informa-
tion extraction technique of matched filtering. Ideally, in
matched filtering one would use some physically param-
eterized and phase-coherent waveform model as a tem-
plate. Given the absence of such a physical model one
must resort to more approximate methods. An approach
would be to adopt a relatively simple phenomenological
model based on numerical simulations [50, 51]. While
such phenomenological models can offer considerable sen-
sitivity, they are inevitably reliant on state-of-the art sim-
ulations and are incapable of identifying unmodelled or

unexpected waveform phenomenology1.
In this paper we instead analyze the post-merger signal

making only minimal assumptions on the waveform mor-
phology. We use an existing Bayesian data analysis algo-
rithm, BayesWave [54, 55], and employ its morphology-
independent approach to reconstruct the post-merger
GW signal through a sum of appropriate basis functions.
As the basis function we use sine-gaussians wavelets,
known as Morlet-Gabor wavelets. Both the number and
the parameters of the wavelets are marginalized over us-
ing a reversible jump Markov Chain Monte Carlo trans-
dimensional sampler [56].

The advantage of using BayesWave to study the post-
merger signal is three-fold. First, the flexibility of the
signal model allows us to reconstruct signals of generic
morphology without relying on numerical simulations
which sparsely cover the parameter space. Second, the
use of a trans-dimensional sampler enables BayesWave to
marginalize over not only the parameters of the wavelets,
but also their number. As a consequence BayesWave
will not overfit the data. Finally, we use a broadly
tested data analysis algorithm that is a standard tool
for aLIGO/AdV data analysis. This enables us to study
information extraction from a post-merger signal using
tools that would be applied to such detections in the fu-
ture, making our results a realistic forecast.

We use numerical waveforms from [30, 37, 45, 48] to
simulate GW signals and employ BayesWave to recon-
struct the observed signal, extract its peak frequency, and
measure the NS radius. We find that the bounds on the
NS radius obtained by the post-merger signal are com-
petitive with their pre-merger counterparts with a GW
detector network operating at design sensitivity. We find
that statistical uncertainty leads to bounds on the NS ra-
dius of the order of 100m for a signal emitted at 20Mpc.
If, on the other hand, we marginalize over the system-
atic error of the relation between the peak frequency and
the radius we obtain a bound on the NS radius to within
(200− 500)m regardless of the strength of the signal, as-
suming BayesWave can reconstruct it in the first place.
Even though the exact projected bounds depend on the
EoS and the details of the numerical simulations that im-
pact the exact GW amplitude, we obtain radius bounds
which are of the same order of magnitude as bounds de-
rived from the pre-merger signal.

We stress that numerical simulations data are only
employed as representative signals and are not used to
specifically tune the reconstruction algorithm. The rest
of the paper describes the details of our analysis. In this

1 Alternatively one may use frequentist excess power methods such
as [53] designed to detect signals with no knowledge of waveform
morphology. Although such maximum-likelihood methods are
computationally cheap, we seek to construct the full posterior
distribution on the waveform and any derived quantities, and to
avoid heuristic thresholds implicit in the identification of excess
power.
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work the total binary mass refers to the sum of the gravi-
tational mass of the binary components at infinite orbital
separation.

II. ANALYSIS METHOD

The objective of GW inference is to determine the
properties of an incident signal. In the Bayesian frame-
work we calculate p(h|d), the posterior distribution func-
tion for the signal h in data d. Bayes’ theorem links the
posterior for the signal to a prior distribution function
p(h) and a likelihood function p(d|h) through

p(h|d) =
p(h)p(d|h)

p(d)
, (1)

where p(d) is the evidence, and the likelihood encodes all
new information we obtain from the data. The standard
assumption of stationary and gaussian data leads to a
well-studied and generally-accepted form for the likeli-
hood function [57]. The prior for the signal p(h) quanti-
fies our assumptions for the GW signal.

When studying GW signals for which accurate models
exist, the signal prior demands that the GW matches

the waveform model exactly; p(h) = δ[h − h(~θ)]p(~θ),

where h(~θ) is some parameterized GW model, and ~θ are
its parameters. Examples of such models are the phe-
nomenological inspiral-merger-ringdown models [58] or
the effective-one-body models [59] used for the analysis
of binary BH systems. These models are parameterized
in terms of the physical parameters of the underlying sys-
tem, such as the masses and the spins of the coalescing
bodies. These parameterizations encompass very restric-
tive prior assumptions, and hence deliver the most pre-
cise results but are only accurate in the restricted regime
where the assumptions about the source are reasonable.

When the GW signal is not understood well-enough a
more flexible parameterization for the signal is needed.
One such prior can be obtained by expressing the signal
as a sum of functions wi(~y) with parameters ~y;

p(h) = δ

[
h−

N∑

i

wi(~y)

]
p(N, ~y). (2)

Despite demanding that the signal matches the model ex-
actly, this prior can be rendered very flexible depending
on the choice of basis functions. If, for example, we select
N = 1 and w(~y) to be a binary BH template we recover
the template-based analysis previously described. If, on
the other hand, N is allowed to vary and the wi(~y) are
chosen from some appropriate basis, the signal model is
flexible enough to describe signals of arbitrary morphol-
ogy.

The choice of basis functions is instrumental in con-
structing an analysis that is both flexible and efficient.
For this study we work with BayesWave, a Bayesian

algorithm that decomposes the GW signal in Morlet-
Gabor wavelets [54, 55], achieving robust identification
and reconstruction of morphologically uncertain GW sig-
nals [60–63]. GW signals are modeled at the geocenter
as an elliptically polarized superposition of an arbitrary
number of Morlet-Gabor wavelets

h+(t) =

Ns∑

i=0

Ψ(t;Ai, f0,i, Qi, t0,i, φi)

h×(t) = εh+(t)eiπ/2, (3)

where ε is the ellipticity parameter, Q ≡ 2πf0τ . Each
wavelet depends on five parameters: an overall amplitude
A, a quality factor Q, a central frequency f0, a central
time t0, and a phase offset φ0;

Ψ(t;A, f0, τ, t0, φ0) = Ae−(t−t0)2/τ2

cos [2πf0(t−t0)+φ0].
(4)

The frequency-domain strain induced in a given detector
is

h(f) =
[
F+(θ, φ, ψ)h+(f) + F×(θ, φ, ψ)h×(f)

]
e2πi∆t(θ,φ),

(5)
where F+, F× are detector antenna patterns given a sky
location (θ, φ) and polarization angle ψ, and ∆t(θ, φ) is
a sky-location dependent time shift relative to the time
of arrival at the geocenter.
BayesWave employs a reversible jump Markov Chain

Monte Carlo algorithm to sample the joint posterior
of the sky location, polarization angle, ellipticity, and
number Ns and parameters (Ai, f0,i, Qi, t0,i, φi) of the
wavelets. The samples are then used to produce draws
from the waveform posterior p(h|d) itself. Subsequently
using the waveform samples one can derive posteriors on
quantities that describe features of the waveform such as
the frequency of the peak of the spectrum.

The use of a trans-dimensional sampler to determine
the number of wavelets in the reconstructed signal en-
sures that BayesWave does not overfit the data. In prac-
tice, adding a wavelet to the signal reconstruction in-
creases the dimensionality of the model, incurring an
Occam-type reduction in the posterior probability. As
a result, the additional wavelet will only be retained in
the reconstruction if it improves the fit to the data con-
siderably so as to overcome the Occam penalty.

As can be seen from Eq. (2) the priors of the analy-
sis refer to the number and parameters of the individual
wavelets. We study 250ms of data in the (1024, 4096)Hz
frequency range. This range was chosen such that it in-
cludes most of the post-merger emission from both soft
and stiff EoSs. A consequence of this frequency range is
that most of the signals we are analyzing include both
the merger and post-merger phases, see Fig. 1. For this
reason we impose a minimum number of 2 wavelets used,
while the prior on the quality factor Q is flat between 1
and 200. We employ the prior proposed and discussed
in [54] for the wavelet amplitude. Finally, the prior on
the wavelet phase offset is uniform between 0 and 2π.
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The quality of the reconstruction is described through
the overlap between signal s and model h;

O ≡ 〈s, h〉√
〈s, s〉

√
〈h, h〉

, (6)

while the strength of the signal is quantified through the
signal-to-noise ratio (SNR);

SNR ≡ 〈s, s〉. (7)

In the above equations we have defined the inner-product

〈a, b〉 ≡ 4<
∫ fmax

fmin

a(f)b∗(f)

Sn(f)
df, (8)

where Sn(f) is the detectors noise spectral density and
(fmin, fmax) = (1024, 4096)Hz is the bandwidth of the
analysis.
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FIG. 2. Injected and reconstructed whitened time-domain
data (top) and spectrum (bottom) for a signal produced
by two nonspinning, (1.35, 1.35)M� NSs with the DD2
EoS [46, 47] at a post-merger SNR of 5 -corresponding roughly
to a distance of 20Mpc for an optimally oriented source- as ob-
served by the Hanford detector. The shaded region denotes
the 90% CI of the reconstruction. The dashed line in the
bottom panel is the detector sensitivity. The Bayeswave re-
construction is able to capture the main features of the signal
including the post-merger spectrum peak.

As a demonstration of the Bayeswave analysis we con-
sider the post-merger GW emission of an equal mass BNS

coalescence simulated in [45]. Each binary component
has a mass of 1.35M� and the DD2 EoS [46, 47] was
employed in the simulation. The signal is scaled to a
post-merger2 SNR of 5, assuming the design sensitivity
of aLIGO [64] and AdV [10]. The short duration ∼ 10ms
of the GW signal makes it ideal for model-agnostic al-
gorithms whose performance deteriorates as the time-
frequency volume of the search space increases3.

We use this numerical waveform to simulate data [65]
and inject it in a network of 2 aLIGO detectors and
AdV at design sensitivity and reconstruct the signal
with BayesWave. Figure 2 shows the posteriors for the
whitened time-domain (top panel) and spectrum (bot-
tom panel) reconstructions. Both plots show the injected
signal (black), and the 90% credible interval (CI) of the
reconstruction posterior (magenta). Figure 3 shows a
histogram of the number of wavelets used for this recon-
struction; BayesWave used ∼ (2− 3) wavelets to achieve
the reconstruction of Fig. 2.

These plots demonstrate how Bayeswave is capable of
reconstructing the dominant features of the injected sig-
nal, including the dominant post-merger frequency with
only minimal assumptions about the signal morphology.
On the other had, the absence of a matched-filter means
that BayesWave does not reconstruct the entire signal,
but only its most prominent features. We study the re-
construction performance and its relation to the strength
of the signal in the following section.
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FIG. 3. Histogram of the number of wavelets BayesWave

used for the signal reconstructions of Fig. 2. BayesWave uses
model selection to determine the most probable number of
wavelets.

2 We define “post-merger” as all times after the time of peak am-
plitude, and the post-merger SNR is computed by truncating and
windowing the waveform in the time-domain.

3 In principle, the longer duration signals emitted from rem-
nants that survive for hundreds of milliseconds before collapse
could also be analysed with Bayeswave depending on their time-
frequency signature. We plan to explore more types of signals in
the future.
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III. RECONSTRUCTION PERFORMANCE

In this section we systematically study the recon-
struction performance of BayesWave for signals of dif-
ferent strengths and EoSs. We select 3 representative
EoSs (NL3 [46, 66] for stiff, DD2 [46, 47] for moderate,
and SFHO [67] for soft) and use numerical waveforms
from [45, 48] to simulate signals in a network of 2 aLI-
GOs and AdV at design sensitivity4. All simulated sig-
nals in this section have the same intrinsic and extrinsic
parameters but the EoS and the distance/SNR. The sys-
tem parameters were chosen such that they lead to re-
sults similar to a typical binary system, as demonstrated
by the Monte Carlo analysis of Sec. IV. We consider the
results of this section as ‘representative’ of a larger pop-
ulation. The injections do not contain a specific noise
realization, as this has been shown to be equivalent to
averaging over noise realizations [71].

For reference, a BNS with the moderate DD2 EoS at
20Mpc in a network of 2 aLIGOs and AdV at design
sensitivity has a maximum post-merger SNR of about 5
and an orientation-averaged SNR of about 1. These SNR
values are higher (lower) for stiff (soft) EoSs. Recall that
SNR scales inversely with the distance and the current
aLIGO/VIRGO sensitivity is expected to be a factor of a
few below the design one [72]. More detailed calculations
for the correspondence between distance and SNR are
presented in Table II of [50].

A. Overlap

The injected signals are analyzed with BayesWave and
Fig. 4 shows the posterior distribution of the overlap be-
tween the injected and the reconstructed signal for each
EoS. Recall that the overlap quantifies how faithful the
reconstructed signal is to the true injected one, with an
overlap of 1 denoting perfect reconstruction.

As the post-merger SNR of the injected signal increases
the overlaps BayesWave achieves increase too, signaling
more accurate reconstructions. This is a demonstration
of the inherent trade-off between goodness of fit and sim-
plicity of Bayesian Inference: In order for BayesWave to
improve the overlap and the reconstruction, it needs to
use more wavelets. Since the addition of each wavelet
increases the dimensionality of the model, the resulting
Occam penalty can only be overcome if the wavelet helps
improve the fit considerably. On the other hand, if the
extra wavelet does not help improve the fit enough, the
reconstruction will be disfavored. This process shields
BayesWave from overfitting the data.

4 Alternative networks with better sensitivity such us tuned config-
urations [64], squeezing [68], or 3rd generation detectors [69, 70]
would yield better results than the ones presented here and are
left for future work.
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FIG. 4. Overlap posterior density function for NL3 (top),
DD2 (middle), and SFHO (bottom) for different post-merger
SNR values. As the SNR of the injected signal increases,
BayesWave achieves more faithful reconstructions of the sig-
nal.

The overlap does not reach its nominal maximum
value of 1 (perfect reconstruction), which means that
BayesWave does not fully reconstruct the injected sig-
nal. However, the overlap values achieved are above
90% for post-merger SNRs above ∼ 5, making this anal-
ysis at least competitive to existing phenomenological
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models [51, 52] without suffering from systematic uncer-
tainties from over-relying on uncertain numerical simula-
tions.

B. Peak Frequency

The posterior for the reconstructed signal (see for ex-
ample Fig. 2) can be used to calculate the posterior for
the dominant post-merger frequency fpeak. For each sam-
ple in the posterior for the reconstructed signal we sup-
press the inspiral and merger phases by applying a win-
dow at the measured maximum time-domain amplitude.
We then define fpeak as the frequency of the maximum of
the post-merger spectrum in the range [1500, 4000]Hz5. If
a certain reconstruction sample does not possess a max-
imum, then instead we draw a sample from fpeak’s prior
distribution function. Overall the posterior distribution
function for fpeak is

p(fpeak|d) = (n− 1)p(fpeak) + n s(fpeak|d), (9)

where n is the relative number of samples that possessed
a peak, p(fpeak) is the prior, and s(fpeak|d) is the distri-
bution of the fpeak samples calculated from the recon-
structed spectrum.

Figure 5 shows the posterior for fpeak for different EoSs
and signal strengths. At low SNR values the posterior is
equal to the prior, i.e. most reconstructed spectra do
not exhibit a peak. As the SNR increases the data be-
come more informative and the posterior peaks around
the correct fpeak value. From this plot we conclude that
we can measure fpeak to within about 36(27)[45]Hz at
the 90% credible level for a stiff(moderate)[soft] EoS at
a post-merger SNR of 5.

Comparing the posterior distributions for the peak fre-
quency to the true injected value for fpeak (vertical black
line) reveals that there is a systematic shift between the
two even for the relatively high SNR of 10. The rea-
son for this has to do with the exact shape of the peak
of the spectrum. Figure 2 shows that the dominant
post-merger frequency in not strictly constant in time.
As a result, the peak of the spectrum is not symmet-
ric about its maximum, something that is visible in the
bottom panel of Fig. 2. As a consequence, the shape of
the peak does not exactly match the basis function used
by BayesWave: the frequency domain representation of
Morlet-Gabor wavelets is symmetric about its maximum.
This mismatch results in BayesWave shifting the wavelet
that reconstructs the spectrum peak in frequency in an
effort to maximize the recovered signal, resulting in the
bias seen in Fig. 5.

The time evolution of the peak frequency suggests that
the constant-frequency Morlet-Gabor wavelets might not

5 Despite expecting post-merger power as low as ∼ 1kHz, the peak
frequency is expected in the (1500 − 4000)Hz range.
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FIG. 5. Peak frequency posterior density function for NL3
(top), DD2 (middle), and SFHO (bottom) for different post-
merger SNR values. The vertical line denote the correct (in-
jected) value. At low SNR the posterior for the peak fre-
quency is uninformative and similar to the prior. As the SNR
increases BayesWave achieves a more accurate reconstruction
of the signal and the posterior peaks at the correct value for
fpeak.

be the ideal basis function for post-merger signals. As
an alternative, we studied the ‘chirplets’ of [73], which
are Morlet-Gabor wavelets whose frequency is allowed to
vary. This variation is encoded in an extra parameter
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that gives the constant time derivative of the frequency.
The additional parameter increases the dimensionality of
the model making it harder for BayesWave to use many
chirplets. Indeed we find that chirplets tend to recon-
struct the signal less well than Morlet-Gabor wavelets:
the extra parameter per chirplet forces the code to use
fewer chirplets than wavelets, resulting in poorer recon-
structions. We leave further exploration of other basis
functions for future work.

Comparing the posteriors in the three panels of Fig. 5
shows that the softer the EoS the easier to measure the
peak frequency for signals of constant SNR. This is be-
cause soft EoSs have larger values of fpeak and hence ac-
cumulate more radians of GW phase at the same amount
of time, making it easier to measure the frequency. In-
deed, the fpeak posterior becomes marginally informative
at SNR 3, (3), [4] for the soft, (moderate), [stiff] EoS.
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FIG. 6. EoS-independent relation between the frequency of
the post-merger spectrum peak and the radius of a 1.6M�
nonrotating NS for different total masses. The symbols are
data calculated from numerical simulations of merging NSs
with different total masses; each color represents the fit for
data of the same total mass, the black line is the median
of each fit, while the shaded regions denote the 50% (dark
colored) and 90% (light colored) CIs of the fit.

Numerical simulations of NS coalescences have sug-
gested that a measurement of the peak frequency can
be used to constrain the NS EoS. Specifically, Ref. [30]
showed that the peak frequency of (1.35−1.35)M� merg-
ers is correlated with the radius of a 1.6M� non-rotating
NS (R1.6) in a way that does not depend on the under-
lying EoS. Therefore, a potential measurement of fpeak

from the post-merger signal can be used to obtain an
estimate on R1.6, a quantity that can be used to di-
rectly constrain the EoS. Choosing R1.6 to characterize
the post-merger GW emission and the underlying EoS,
respectively, is guided by the empirical finding that for
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FIG. 7. Radius posterior density function for NL3 (top),
DD2 (middle), and SFHO (bottom) for different post-merger
SNR values. The shaded posteriors are calculated with the
maximum likelihood fit to the fpeak/M −R1.6 relation shown
in Fig. 6. The non-filled dashed posteriors are obtained by
marginalizing over the uncertainty in the fpeak/M − R1.6 re-
lation including the total mass uncertainty (red dashed) and
fixing the total mass to its injected value (blue dashed).

this binary mass the frequency-radius relation shows a
relatively small scatter. Other choices are possible, e.g.
R1.35 or R1.8, yielding similar empirical relations with a
potentially larger scatter. Moreover, similar relations are
found for other binary masses [30, 48], see Fig. 6.
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Empirical relations are not exact but exhibit an intrin-
sic scatter. If the deviation from exact universality is not
taken into account an additional systematic error enters
the analysis. In the Bayesian framework such systematic
uncertainties are dealt with by modeling and marginal-
ization. An example of this procedure is presented in
Figs. 6 and 7 where we convert our posteriors for the
peak frequency to posteriors for R1.6.

Figure 6 describes the relation between fpeak and R1.6

for different values of the total mass6. Symbols in the plot
denote the results from numerical simulations of BNS
coalescences of different total masses [30, 45, 48]. We
divide each set of data by the total mass and fit them
with a linear model and plot the best-fit and median
models as well as 50% and 90% CIs. The extent of these
intervals quantifies the deviation from universality in the
fpeak/M −R1.6 relation.

With this result in hand we can estimate the poste-
rior distribution function for R1.6, given in Fig. 7. The
shaded posteriors are calculated using the best-fit model
from Fig. 6 as well as perfect knowledge of the total mass
to convert the posteriors for the peak frequency of Fig. 5
into posteriors for R1.6. This method ignores any sys-
tematic uncertainties in the fpeak/M − R1.6 relation. As
expected, a precise measurement of fpeak leads to a tight
measurement of R1.6 to within 100(75)[120]m at the 90%
credible level for a stiff(moderate)[soft] EoS at a post-
merger SNR of 5.

Despite its high precision, such an R1.6 measurement
is not accurate. Ignoring the spread in the fpeak/M−R1.6

relation has resulted in a large systematic error that sur-
passes the statistical measurement uncertainty. The re-
sult is that the posterior measurement does not agree
with the injected true value inducing a large measure-
ment bias. If we instead marginalize over the uncertainty
in the fpeak/M − R1.6 we obtain more broad posteriors
that do include the injected value of R1.6. The marginal-
ized posteriors are included in Fig. 6 and are similar ir-
respective of the SNR of the signal; in red-dashed we
show the resulting posterior from marginalizing over the
uncertainty of the fpeak/M −R1.6 relation while keeping
the total mass fixed to its injected value; in blue-dashed
we show the resulting posterior from marginalizing both
over fpeak/M − R1.6 relation uncertainty and the total
mass measurement uncertainty. For projections of the
total mass measurement uncertainty we use the estimates
derived in Ref. [74]. We find that the total mass is de-
termined extremely accurately from the inspiral phase
(measurement error of the order of 10−2−10−3) and has
little effect on the resulting posterior. Despite the fact
that the marginalized posteriors are significantly broader

6 We restrict this analysis to equal-mass binaries and leave the ex-
ploration of the exact impact of the mass ratio to future work.
Adopting equal-mass systems may be an acceptable approxima-
tion if the measurement of the inspiral phase can verify a suffi-
ciently symmetric binary configuration.

than the ones derived with the best-fit fpeak/M−R1.6 re-
lation, we still arrive at a measurement of R1.6 of the
order of (300− 700)m, independently of the SNR as long
as BayesWave can detect the signal.

In order to compare this measurement accuracy to con-
straints on the NS radius obtained from the pre-merger
phase, we need to estimate the pre-merger SNR for these
signals. Doing so will inevitably make use of the numeri-
cal simulation data at hand, we therefore stress that this
calculation is only meant as a back-of-the-envelop esti-
mate. Keeping this caveat in mind, we estimate that a
post-merger SNR of 5 can be obtained for a system at
∼ 20Mpc, assuming the DD2 EoS. Reference [18] esti-
mated that the NS radius can be measured to ∼ 1.3km
at a distance of 300Mpc using information from the pre-
merger signal. Measurement accuracy scales proportion-
ally to the distance, so a radius measurement to within
85m is expected at a distance of 20Mpc, which is compa-
rable to the post-merger bound obtained here. We stress
that both the pre-merger and the post-merger estimate
ignore systematic uncertainties in the waveform models
and the fpeak/M − R1.6 relation respectively; this calcu-
lation is meant as a comparison of the statistical errors
only.

D. Signal Energy
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FIG. 8. SED posterior for the same system as Fig. 2 as a
function of the frequency. The shaded regions denote 50%
and 90% CIs of the posterior.

Besides quantities associated with the peak of the spec-
trum, the reconstructed spectrum can also be used to
estimate the energy emitted in GWs and the spectral
energy density (SED). The GW flux is7

FGW =
1

16π
〈ḣ2

+(t) + ḣ2
×〉, (10)

7 Throughout this section we use units where G = c = 1.
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FIG. 9. Energy posterior density function for NL3 (top),
DD2 (middle), and SFHO (bottom) for different post-merger
SNR values. The vertical black line denotes the true injected
energy. When the SNR is low and the signal is not recon-
structed by BayesWave the energy posterior can be used to
place upper bounds on the energy emitted.

where angle brackets indicate time averaging over the
duration of the waveform and h+(t) and h× are the plus
and cross polarizations respectively. For a signal with
effectively finite duration . T , the time-averaged flux
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FIG. 10. Energy posterior density function for NL3. We
plot the energy posteriors for injections for which the signal
was not reconstructed. The solid vertical line is the value
of the injected energy, while the dotted vertical lines are the
95% Bayesian UL obtained from from each injection. This UL
can be used to place astrophysically interesting bounds on the
energy emitted in the case of a non-detection of a post-merger
signal from a confirmed BNS inspiral.

is [75]

FGW =
π

4

1

T

∫ ∞

−∞
df f2

(
|h̃+(f)|2 + |h̃×(f)|2

)
, (11)

and the total GW energy emitted is obtained by inte-
grating over a sphere with a radius D, the distance to
the source

EGW =
π

4
D2

∫
dΩ

∫ ∞

−∞
df f2

(
|h̃+(f)|2 + |h̃×(f)|2

)
.

(12)
For BNS coalescences the GW emission is dominated by
the ` = |m| = 2 mode so that the polarizations depend
on the angle between the line of sight of the observer
and the rotation axis ι as h+(t) ∼ (1+cos2 ι)/2hι(t) and
h×(t) ∼ cos ι hι(t). Integrating equation 12 over the solid
angle Ω gives

EGW =
π

4
D2

∫ 1

−1

d cos ι

[
(1 + cos2 ι)2

4
+ cos2 ι

] ∫ 2π

0

dφ

×
∫ ∞

−∞
df f2|h̃ι(f)|2

=
4

5
π2D2

∫ ∞

−∞
df f2|h̃ι(f)|2, (13)

where h̃ι(f) is the fourier-transform of hι(t) and the SED
is

dEGW

df
=

4

5
π2D2f2|h̃ι(f)|2. (14)

An example SED posterior is shown in Fig. 8. We use the
same injected system as for Fig. 2 and plot the median,
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50%, and 90% CIs. As expected, most of the energy is
accumulated in the region of the spectrum peak.

Figure 9 shows the posterior for the signal energy emit-
ted in (1024, 4096)Hz for our 3 EoSs at different in-
jected post-merger SNRs. When the SNR is too low
and BayesWave does not reconstruct the injected signal
(for example SNR 3 case with NL3) the energy posterior
peaks at low energy values. Despite not leading to defini-
tive detection of post-merger emission, such a measure-
ment could still be of astrophysical interest as it places an
upper limit (UL) on the energy emitted. On the contrary,
for high SNR signals, the post-merger signal is faithfully
reconstructed and the energy posterior peaks more and
more sharply at the expected injected value. Note, how-
ever, that BayesWave tends to underestimate the median
energy of the signal. This is because BayesWave does not
use an exact model for the signal but a decomposition in
wavelets. This decomposition inevitably leads to imper-
fect signal reconstruction, as also demonstrated from the
overlap not reaching the maximum value of 1 in Fig. 4.
However, the injected value for EGW is always included
in the 90% region of the full posterior, showing that we
can still obtain a reliable estimate on the energy.
BayesWave’s ability to provide astrophysical interest-

ing and robust Bayesian ULs for the energy emitted is
further demonstrated in Fig. 10. In this plot we show
the energy posterior density for NL3 for 3 injections for
which the signal was not reconstructed (overlaps consis-
tent with 0 in Fig. 4. The dotted vertical lines denote
the 95% Bayesian UL obtained from each injection. In
the case of a non-detection of a post-merger signal fol-
lowing a known and detected BNS inspiral, this bound
can provide an astrophysically interesting Bayesian UL
on the energy emitted in the (1024, 4096)Hz bandwidth.

IV. MONTE CARLO VALIDATION

In the previous section we described in detail the full
analysis of selected systems and discussed the reconstruc-
tion quality for different EoSs and SNRs. In this sec-
tion we study statistical ensembles of systems in order to
quantify the expected average results from a future BNS
detection. Through Monte Carlo methods we create 504
signals with DD2 and m1 = m2 = 1.35M� with different
SNRs and use BayesWave to reconstruct their signal in
a network of advanced detectors without a noise realiza-
tion.

Figure 11 shows the median 90% CI and median over-
lap (top) and error in the peak frequency (bottom) as
a function of the SNR. As expected from the discussion
of Sec. III A the overlap values increase as the SNR in-
creases. At low SNRs the signal reconstruction is not
accurate and the recovered overlaps cluster around zero.
As the SNR increases, so do the overlap values, reaching
∼ 0.9 at a post-merger SNR of 5.

Similar conclusions can be drawn from the bottom
panel of Fig. 11 where we plot the median over the
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FIG. 11. Median over the population median and 90%
CIs for the overlap (left) and the error in the peak frequency
(right) as a function of the SNR for 504 injections with DD2.
The inset in the right panel demonstrates the peak frequency
uncertainty at high SNR values where the data are informa-
tive.

504 injections median and 90% CIs for fpeak. At low
SNR values BayesWave does not reconstruct the signal,
hence the measurement is uninformative. At approxi-
mately SNR∼ 4 the signal becomes strong enough that
the fpeak posterior starts deviating from the prior, achiev-
ing a measurement of fpeak to about 27Hz at the 90% level
at a post-merger SNR of 5. This measurement accuracy
is similar to the one obtained for the system extensively
studied in Sec. III.

Figure 12 quantitatively studies the relation between
the median 90% CIs for the peak frequency and the SNR.
For low values of SNR BayesWave does not reconstruct
the signal and the 90% posterior CI is equal to the 90%
prior CI. At high SNRs though, the width of the CI is
proportional to 1/SNR, the expected scaling for matched-
filter analyses.

We demonstrated in Sec. III C that the systematic un-
certainty of the fpeak/M−R1.6 universal relation is always
larger than our statistical measurement error, assuming
BayesWave can reconstruct the signal. We therefore do
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FIG. 12. Median 90% CIs for the peak frequency as a func-
tion or the SNR. For SNR . 4 BayesWave does not reconstruct
the signal and the posterior CI is equal to the prior CI. For
SNR & 4 BayesWave reconstructs the signal and achieves the
usual 1/SNR performance of matched-filtering analyses.

not present a plot the radius CI as a function of the
SNR, but note that the error is around 500m regardless
of the SNR& 4, and the error budget is dominated by
the systematic uncertainty. i.e. the intrinsic scatter in
the frequency-radius relation.

V. CONCLUSIONS

We presented and studied a model-agnostic approach
to extract information from the post-merger GW signal
emitted during a BNS coalescence. Our method is fully
generic, making only minimal assumptions about the un-
derlying signal morphology. Despite this, we demon-
strated that it is capable of reconstructing the post-
merger signal. We described in detail how the recon-
struction achieved can be used to measure the frequency
of the peak of the post-merger spectrum. This measure-
ment, in turn, can be used to place bounds on the NS ra-
dius by means of an existing EoS-independent universal
relation. We showed that our analysis error is dominated
by the intrinsic scatter in the universal relation, rather
than the statistical error of the reconstruction. We leave
detailed exploration of other existing universal relations
for future work [36, 39].

We argued that information from the post-merger sig-
nal can lead to constraints on the NS EoS that are com-
petitive to constraints originating from the pre-merger
phase. However, the post-merger constraints studied
here assume the existence of a loud-enough signal for
BayesWave to unambiguously detect. Even though it is
unlikely that current ground-based based detectors will

be fortunate enough to observe such a loud event, simi-
lar constraints can be achieved by combining information
from a large number of dimmer signals [13, 51, 52]. De-
tailed exploration of constraints obtainable from realistic
populations of BNS coalescences are the subject of ongo-
ing investigations.

We stressed that our approach makes only minimal as-
sumptions about the signal morphology and reduces sys-
tematic uncertainties. In parallel, BayesWave has the
flexibility to incorporate available information from BNS
simulations in the form of Bayesian priors, should that in-
formation be deemed reliable. The more well-grounded
prior information we can safely incorporate, the more
sensitive the final analysis becomes. We plan to explore
such targeted analyses that fall between general model-
agnostic analyses and full matched-filtering in the future.
This approach will enable BayesWave to more efficiently
extract information about the EoS as well as analyze
longer duration signals.

As a final note we highlight our main result, namely
that the statistical error in the NS radius measurement
from the post-merger signal is comparable to the corre-
sponding error from the pre-merger signal. We empha-
size that these conclusions concern the statistical errors
only. Future BNS simulations have to quantify the sys-
tematic uncertainties of the simulation data that form
the basis for the empirical relations employed to invert
frequency measurements to EoS properties. We antici-
pate that the intrinsic scatter in the empirical relations
may be reduced by means of a better understanding of
these relations including a physically motivated selection
of candidate EoSs.
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F. Ohme, G. Pratten, and M. Prrer, Phys. Rev. Lett.
113, 151101 (2014), arXiv:1308.3271 [gr-qc].
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