This is the accepted manuscript made available via CHORUS. The article has been published as:

Effects of nonquadrupole modes in the detection and parameter estimation of black hole binaries with nonprecessing spins

Vijay Varma and Parameswaran Ajith

Phys. Rev. D **96**, 124024 — Published 20 December 2017

DOI: [10.1103/PhysRevD.96.124024](https://doi.org/10.1103/PhysRevD.96.124024)
Effects of non-quadrupole modes in the detection and parameter estimation of black hole binaries with nonprecessing spins

Vijay Varma
Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA

Parameswaran Ajith
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India and
Canadian Institute for Advanced Research, CIFAR Azrieli Global Scholar, MaRS Centre,
West Tower, 661 University Ave., Suite 505, Toronto, ON M5G 1M1, Canada

We study the effect of non-quadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from black-hole binaries with nonprecessing spins, using Advanced LIGO. We evaluate the loss of signal-to-noise ratio (SNR) and the systematic errors in the estimated parameters when a quadrupole-mode template family is used to detect GW signals with all the relevant modes. Target signals including non-quadrupole modes are constructed by matching numerical-relativity simulations of nonprecessing black hole binaries describing the late inspiral, merger and ringdown with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that, neglecting non-quadrupole modes will, in general, cause unacceptable loss in the detection rate and unacceptably large systematic errors in the estimated parameters, for the case of massive binaries with large mass ratios. For a given mass ratio, neglecting subdominant modes will result in a larger loss in the detection rate for binaries with aligned-spins. For binaries with anti-aligned spins, quadrupole-mode templates are more effectual in detection, at the cost of introducing a larger systematic bias in the parameter estimation. We provide a summary of the regions in the parameter space where neglecting non-quadrupole modes will cause unacceptable loss of detection rates and unacceptably large systematic biases in the estimated parameters.

1. INTRODUCTION AND SUMMARY

We are firmly into the era of gravitational wave (GW) astronomy, with LIGO having made two confident detections of binary black holes [1, 2] and many more expected in upcoming observing runs [3, 4]. Indeed, these first observations have already given us a glimpse of the unique capabilities of GW astronomy. Apart from providing the first direct evidence of the existence of GWs, these observations confirmed the existence of stellar mass black holes that are much more massive than commonly thought by astronomers [5, 6]. They also provided the first evidence of black hole binaries that inspiral under GW emission and merge within the age of the universe. These observations also enabled us to perform the first tests of GR in the highly relativistic and nonlinear regime of gravity – a regime inaccessible by other astronomical observations and laboratory tests [7].

The first LIGO event, termed GW150914, was produced by the merger of two massive black holes. The resultant signal in the detectors contained imprints of the late inspiral and merger of the two holes and the subsequent ringdown of the remnant black hole. The signal was first detected by two low-latency searches for generic transient signals that are coherent in multiple detectors [8–11]. The signal was later confirmed with higher confidence by matched-filter based searches that use relativistic models of expected signals from coalescing compact binaries [12–15]. The second signal was produced by the coalescence of two less massive black holes, and the resultant signal in the detector predominantly consisted of the long inspiral. Hence matched-filter based searches were essential for its detection [2].

Matched filtering is the most sensitive search method for extracting signals of known signal shape from noisy data, such as the GW signals from the coalescence (inspiral, merger and ringdown) of binary black holes. The source parameters are then extracted by comparing the data against theoretical templates by means of Bayesian inference [5, 16]. Our ability to optimally detect the signal using matched filtering and to estimate the source parameters using Bayesian inference depends crucially on how faithfully the theoretical templates model the signal present in the data. If the template is a poor representation of the true signal, this can reduce the matched filtering signal-to-noise ratio (SNR), potentially causing non-detection and/or cause unacceptable systematic biases in the estimated parameters. Good waveform templates should be not only effectual in the detection (small loss in the SNR), but also faithful in parameter estimation (small systematic biases) [17].

Matched-filter based searches for GWs performed to date, including the ones that resulted in detections, have employed templates that model only the leading (quadrupole, or \(\ell = 2\), \(m = \pm 2\)) spherical harmonic modes of the GWs radiated from the binary. The parameter estimation exercise also has largely employed quadrupole mode templates (with the notable exception of one that directly employed numerical relativity (NR) waveforms [19]). This choice is partly dictated by the unavailability of fast-to-evaluate, semi-analytical waveform templates describing the inspiral, merger and ringdown of binary black holes that model the subdominant (non-quadrupole) modes over a sufficiently wide region in the parameter space (e.g., spinning binaries). More importantly, several studies in the past have suggested that the contribution from subdominant modes are appreciable only for very massive binaries with large mass ratios [18, 20–22]. The effect of subdominant modes was thoroughly investigated in the context of GW150914, and the study concluded that the effect of subdominant modes is negligible in the detection and parameter estimation of this event [23, 24].
(a) For detection

(b) For parameter estimation

FIG. 1: These plots summarize the region in the parameter space of nonprecessing black-hole binaries where contributions from subdominant modes are important for detection (left) and parameter estimation (right). In the left panel, the shaded areas show the regions in the parameter space where the loss of detection volume (for a fixed SNR threshold) due to neglecting subdominant modes is larger than 10%. In the right panel, shaded areas show the regions in the parameter space where the systematic errors in any of the estimated parameters \(M, \eta, \chi_{\text{eff}}\) are larger than the expected statistical errors for a sky and orientation-averaged SNR of 8 (corresponding to an optimal orientation SNR \(\approx 20\)). In each plot the three solid curves correspond to different effective spin values: blue for \(\chi_{\text{eff}} \sim 0.5\), green for \(\chi_{\text{eff}} \sim 0\) and red for \(\chi_{\text{eff}} \sim -0.5\). The left panel was made by computing the fitting factors of dominant-mode templates including non-precessing spins with hybrid waveforms including all the relevant modes, and the right panel was made making use of averaged systematic biases. The markers (triangles pointing up/down denoting binaries with aligned/anti-aligned spins and circles denoting nonspinning binaries) indicate the data points that are used to construct the shaded regions and curves. The legend shows the mass ratios and spins of the target signals featured in these plots. See Sec. I for a summary and Sec. III for a detailed discussion. For comparison, the dashed green lines show the same results for nonspinning binaries using a nonspinning template family from our previous work [18].

In a previous study [18], we investigated the effect of subdominant modes in the detection and parameter estimation of a population of nonspinning black hole binaries. Here, we extend our previous study to the case of black hole binaries with nonprecessing spins \(^1\). We construct target GW signals that include subdominant modes \((\ell \leq 4, m \neq 0)\) by matching nonprecessing numerical-relativity simulations describing the late inspiral, merger and ringdown with post-Newtonian/effective-one-body waveforms describing the early inspiral. We then compute the reduction in the detectable volume (for a fixed SNR threshold) and systematic bias in the estimated parameters when nonprecessing quadrupole-mode only templates are employed in the detection and parameter estimation of these target waveforms.

Fig. 1 summarizes the main results from this study. The left plot shows the region in the parameter space where neglecting subdominant modes will cause an unacceptable (more than 10%) loss in the detectable volume (appropriately averaged over all orientation and sky location angles) for a fixed SNR threshold. The right plot shows the region in the parameter space where neglecting subdominant modes will cause unacceptably large systematic bias in the parameter estimation (i.e., systematic errors larger than the expected statistical errors for a sky and orientation-averaged SNR of 8). Comparing these results with our previous study employing nonspinning templates (i.e., by comparing the dashed green curve with the solid green curve in the left plot of Fig. 1), we see that including spin effects in the dominant-mode templates enhances their effectiveness, thus reducing the region in the parameter space where subdominant mode templates are required for detection. However, this is achieved at the cost of introducing larger systematic

\(^1\)We note that, in a recent paper, Calderon-Bustillo et al [25] extended our previous study of nonspinning binaries to the case of spinning binaries with equal component spins. Our new study covers a larger region in the parameter space, by employing numerical relativity waveforms with larger mass ratios and spins. The template family that we use also can span a large spin range \((\chi_{1z}, \chi_{2z} \in [-1, 1])\) as opposed to \(\chi \in [-1, 0.6]\) employed in [25]; hence we see better fitting factors at the cost of a larger parameter bias.
errors in the estimated parameters, thus increasing the volume of the parameter space where subdominant mode templates should be used in the parameter estimation. This effect (better effectualness at the cost of larger systematic errors) is more pronounced in the case of binaries with spins anti-aligned with the orbital angular momentum. Thus, subdominant-mode templates are required for detection of binaries with anti-aligned spins only over a small region in the parameter space; but they are required for parameter estimation over a large region. This effect is reversed in the case of aligned spins.

The rest of this paper is organized as follows: Sec. II provides details of the methodology and figures of merit for this study. Sec. III discusses our results including how we arrive at Fig. 1. Finally, Sec. IV has some concluding remarks, limitations of this work and targets for future work. Appendix A presents a comparison of our estimates of the statistical and systematic errors with the same estimated from fully Bayesian parameter estimation for one sample case. Please note our notation for the rest of this article: \(M\) refers to the total mass of the binary, \(m_1\) and \(m_2\) (\(m_1 \geq m_2\)) refer to the component masses, \(x_1\) and \(x_2\) refer to the dimensionless spins of the larger and smaller black holes respectively, and \(M_{\text{orb}}\) is the orbital angular momentum. Thus, subdominant-mode templates are required for detection of anti-aligned binaries with spins only over a small region in the parameter space; but they are required for parameter estimation over a large region. This effect is reversed in the case of aligned spins.

II. METHODOLOGY

In a past study [18], we investigated the effects of non-quadrupole modes in the detection and parameter estimation of nonspinning binaries. Here we extend the earlier work to the case of nonprecessing binaries, covering a wide range of total masses (40\(M_\odot \leq M \leq 300M_\odot\)), mass ratios \((q \leq 10)\) and spins \((-0.5 \leq x_{\text{eff}} \leq 0.5\) for \(q \geq 2\) and \(-0.95 \leq x_{\text{eff}} \leq 0.98\) for \(q = 1\)). As our target signals, we use hybrid waveforms constructed by matching NR waveforms that describe the late inspiral, merger and ringdown of binary black holes with post-Newtonian (PN) / effective-one-body (EOB) waveforms modeling the early inspiral. These hybrids contain several non-quadrupolar modes \((h_{\ell m}(t)\) with \(\ell \leq 4, |m| \leq \ell, m \neq 0\)) of GW signals from binary black holes. The PN waveforms were generated using the 3PN amplitude given by [27–29], but using the phase evolution given by the SEOBNRv2 waveform family\(^2\) [30]. We match them with NR waveforms produced by the SpEC [31–47] code by the SXS collaboration that are available at the public SXS catalog of NR waveforms [31]. The parameters of the NR waveforms used in this study are shown in Table I and Fig. 2. Note that the \((\ell, m) = (4,1)\) mode in several of the NR waveforms has significant numerical noise. However, as the amplitude of this mode is several orders of magnitude smaller than that of the dominant mode, we do not expect this to impact our results.

As described in detail in our past study [18], to construct

<table>
<thead>
<tr>
<th>Simulation ID</th>
<th>(q)</th>
<th>(x_{12})</th>
<th>(x_{22})</th>
<th>(M_{\text{orb}})</th>
<th># orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXS:BBH:0172</td>
<td>1</td>
<td>0.98</td>
<td>0.98</td>
<td>0.015</td>
<td>25.4</td>
</tr>
<tr>
<td>SXS:BBH:0160</td>
<td>1</td>
<td>0.90</td>
<td>0.90</td>
<td>0.015</td>
<td>24.8</td>
</tr>
<tr>
<td>SXS:BBH:0155</td>
<td>1</td>
<td>0.80</td>
<td>0.80</td>
<td>0.015</td>
<td>24.1</td>
</tr>
<tr>
<td>SXS:BBH:0152</td>
<td>1</td>
<td>0.60</td>
<td>0.60</td>
<td>0.016</td>
<td>22.6</td>
</tr>
<tr>
<td>SXS:BBH:0090</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.011</td>
<td>32.4</td>
</tr>
<tr>
<td>SXS:BBH:0151</td>
<td>1</td>
<td>-0.60</td>
<td>-0.60</td>
<td>0.016</td>
<td>14.5</td>
</tr>
<tr>
<td>SXS:BBH:0154</td>
<td>1</td>
<td>-0.80</td>
<td>-0.80</td>
<td>0.016</td>
<td>13.2</td>
</tr>
<tr>
<td>SXS:BBH:0159</td>
<td>1</td>
<td>-0.90</td>
<td>-0.90</td>
<td>0.016</td>
<td>12.7</td>
</tr>
<tr>
<td>SXS:BBH:0156</td>
<td>1</td>
<td>-0.95</td>
<td>-0.95</td>
<td>0.016</td>
<td>12.4</td>
</tr>
<tr>
<td>SXS:BBH:0253</td>
<td>2</td>
<td>0.50</td>
<td>0.50</td>
<td>0.014</td>
<td>28.8</td>
</tr>
<tr>
<td>SXS:BBH:0047</td>
<td>3</td>
<td>0.50</td>
<td>0.50</td>
<td>0.017</td>
<td>22.7</td>
</tr>
<tr>
<td>SXS:BBH:0174</td>
<td>3</td>
<td>0.50</td>
<td>0.50</td>
<td>0.013</td>
<td>35.5</td>
</tr>
<tr>
<td>SXS:BBH:0110</td>
<td>5</td>
<td>0.50</td>
<td>0.50</td>
<td>0.019</td>
<td>24.2</td>
</tr>
<tr>
<td>SXS:BBH:0202</td>
<td>7</td>
<td>0.60</td>
<td>0.60</td>
<td>0.013</td>
<td>62.1</td>
</tr>
<tr>
<td>SXS:BBH:0203</td>
<td>7</td>
<td>0.40</td>
<td>0.40</td>
<td>0.013</td>
<td>58.5</td>
</tr>
<tr>
<td>SXS:BBH:0065</td>
<td>8</td>
<td>0.50</td>
<td>0.50</td>
<td>0.019</td>
<td>34.0</td>
</tr>
<tr>
<td>SXS:BBH:0184</td>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.018</td>
<td>15.6</td>
</tr>
<tr>
<td>SXS:BBH:0183</td>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.020</td>
<td>15.6</td>
</tr>
<tr>
<td>SXS:BBH:0167</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.021</td>
<td>15.6</td>
</tr>
<tr>
<td>SXS:BBH:0056</td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.016</td>
<td>28.8</td>
</tr>
<tr>
<td>SXS:BBH:0181</td>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.018</td>
<td>26.5</td>
</tr>
<tr>
<td>SXS:BBH:0298</td>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.021</td>
<td>19.7</td>
</tr>
<tr>
<td>SXS:BBH:0063</td>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.019</td>
<td>25.8</td>
</tr>
<tr>
<td>SXS:BBH:0189</td>
<td>9.2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.021</td>
<td>25.2</td>
</tr>
<tr>
<td>SXS:BBH:0185</td>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.021</td>
<td>24.9</td>
</tr>
<tr>
<td>SXS:BBH:0238</td>
<td>2</td>
<td>-0.50</td>
<td>-0.50</td>
<td>0.011</td>
<td>32.0</td>
</tr>
<tr>
<td>SXS:BBH:0036</td>
<td>3</td>
<td>-0.50</td>
<td>-0.50</td>
<td>0.012</td>
<td>31.7</td>
</tr>
<tr>
<td>SXS:BBH:0046</td>
<td>3</td>
<td>-0.50</td>
<td>-0.50</td>
<td>0.018</td>
<td>14.4</td>
</tr>
<tr>
<td>SXS:BBH:0109</td>
<td>5</td>
<td>-0.50</td>
<td>-0.50</td>
<td>0.020</td>
<td>14.7</td>
</tr>
<tr>
<td>SXS:BBH:0205</td>
<td>7</td>
<td>-0.40</td>
<td>-0.40</td>
<td>0.013</td>
<td>44.9</td>
</tr>
<tr>
<td>SXS:BBH:0207</td>
<td>7</td>
<td>-0.60</td>
<td>-0.60</td>
<td>0.014</td>
<td>36.1</td>
</tr>
<tr>
<td>SXS:BBH:0064</td>
<td>8</td>
<td>-0.50</td>
<td>-0.50</td>
<td>0.020</td>
<td>19.2</td>
</tr>
</tbody>
</table>

TABLE I: Summary of the parameters of the NR waveforms used in this paper: \(q \equiv m_1/m_2\) is the mass ratio of the binary, \(x_{12}\) and \(x_{22}\) are the dimensionless spins of the larger and smaller black holes respectively, and \(M_{\text{orb}}\) is the orbital frequency after the junk radiation. All of these waveforms have residual eccentricity, \(e < 4 \times 10^{-3}\) (typically significantly smaller).

\(^2\)This was done in order to make the phase evolution of the hybrids very similar to that of the templates, so that a mismatch between the hybrid and the template due to the different phase evolution will not be mistaken as due to the effect of subdominant modes.
hybrids, we match the PN modes $h_{lm}^{\text{PN}}(t)$ with NR modes $h_{lm}^{\text{NR}}(t)$ by a least square fit over two rotations (ψ_0, ψ) on the NR mode and the time-difference between NR and PN modes:

$$
\Delta = \min_{\psi_0, \psi} \int_{t_1}^{t_2} dt \sum_{\ell, m} \left| h_{lm}^{\text{NR}}(t - t_0) e^{i(m\psi_0 + \psi)} - h_{lm}^{\text{PN}}(t) \right|^2 .
$$

The hybrid modes are constructed by combining the NR modes with the “best matched” PN modes:

$$
h_{lm}^{\text{hyb}}(t) \equiv \tau(t) h_{lm}^{\text{NR}}(t - t_0) e^{i(m\psi_0 + \psi)} + (1 - \tau(t)) h_{lm}^{\text{PN}}(t),
$$

where t_0, ψ_0, and ψ are the values of t_0, ψ_0, and ψ that minimizes the difference Δ between NR and PN modes, and, $\tau(t)$ is a suitable weighting function that smoothly goes from 0 to 1 during the interval $t_1 \leq t \leq t_2$. We refer the reader to [18] for details about construction of hybrid waveforms. An example of hybrid waveform modes is shown in Fig. 3. It can be seen that higher modes are excited only during the very late inspiral, merger and ringdown. The effect of higher modes will be appreciable only in the mass range where the SNR contributed by the merger-ringdown is a significant fraction of the total SNR. This is the reason we restrict our study to the mass range $40M_\odot \leq M \leq 300M_\odot$: we do not see any evidence of significant impact of higher modes for binaries with lower masses. Since the NR waveforms we use include 10s of cycles in the inspiral, we do not expect hybridization errors to impact our results, particularly for high masses. For a detailed study on hybridization errors we refer the reader to [48–52].

The template family used is IMRPhenomD [53, 54], which is a quadrupole-only ($\ell = 2, m = \pm 2$) inspiral, merger and ringdown waveform family described by two mass parameters and two nonprecessing spin parameters. These waveforms are calibrated to NR waveforms with $q \leq 18$, $|\chi_{1z} \leq 0.85$ (0.98 for $q = 1$) and we find that they have a very good agreement with the quadrupole modes of the hybrid waveforms discussed above (cf. the dashed lines in Fig. 6). The waveforms are generated in the Fourier-domain using the LALSimulation [55] software package.

We compute fitting factors [56] by maximizing the overlap (noise weighted inner product) of the template family against the target hybrid signals and infer the systematic errors by comparing the best match parameters with the true parameters. The overlaps are maximized over the extrinsic parameters (time of arrival t_0 and the reference phase ψ_0) using the standard techniques in GW data analysis (see, e.g., [57]), while the overlaps are maximized over the intrinsic parameters (M, η, χ_{1z} and χ_{2z}) of the templates using a Nelder-Mead downhill simplex algorithm [58], with additional enhancements described in [18].

As the model of the noise power spectrum, we use the “zero-detuned, high-power” design noise PSD [59] of Advanced LIGO with a low frequency cut-off of 20 Hz.

The contribution of subdominant modes in the observed signal depends on the relative orientation of the binary and the detector. The SNR (and hence the volume in the local universe where the binary can be confidently detected) is also a strong function of this relative orientation. For e.g., binaries that are face-on produce the largest SNR in the detector; however, the contribution from subdominant modes is minimal for this orientation. This effect is reversed for the case of edge-on orientations. Thus, if we want to calculate the effect of subdominant modes on detection and parameter estimation of a population of binary black holes, the effect has to be averaged over all orientations after appropriately weighting each orientation.

We evaluate the effective volume [18] of a search, defined as the fraction of the volume that is accessible by an optimal search (corresponding to a fixed SNR threshold), by averaging over all the relative orientations in the following way:

$$
V_{\text{eff}} (m_1, m_2, \chi_{1z}, \chi_{2z}) = \frac{p^3_{\text{opt}} \cdot \text{FF}^3}{p^3_{\text{opt}}},
$$

where p_{opt} is the optimal SNR of the full signal, FF is the fitting factor of the dominant mode template, and the bars indicate averages over all (isotropically distributed) orientations. The dominant-mode template family is deemed effectual for detection when the effective volume is greater than 90%; or when the effective fitting factor $\text{FF}_{\text{eff}} := V^{1/3}_{\text{eff}}$ is greater than 0.965.

3This corresponds to uniform distributions in the phase angle $\psi_0 \in [0, 2\pi)$, polarization angle $\psi \in [0, 2\pi)$, and the cosine of the inclination angle $\cos i \in [-1, 1]$. Note that we assume that the binaries are optimally located (i.e., the angles θ, ϕ describing the location of the binary in the detector frame on the sky are set to zero). The error introduced by this restriction is very small ($\sim 0.1\%$) due to the weak dependence of the matches on (θ, ϕ) and the strong selection bias towards binaries with $\theta = 0, \pi$, where the antenna pattern function peaks [18].
FIG. 3: Example of hybrid waveform modes constructed by matching NR and PN modes. These hybrid waveforms are constructed by matching $q = 8, \chi_{1z} = 0.5, \chi_{2z} = 0$ NR waveforms computed using the SpEC code with PN/EOB waveforms describing the early inspiral. The horizontal axes show the time (with origin at the start of the NR waveforms) and the vertical axes show the GW modes $h_{\ell m}(t)$. The matching region (1000M, 2000M) is marked by vertical green lines.

Similarly, we define the effective bias [18] in estimating an intrinsic parameter λ as

$$\Delta \lambda_{\text{eff}}(m_1, m_2, \chi_{1z}, \chi_{2z}) = \frac{|\Delta \lambda| \rho_{\text{opt}}^3 \text{FF}^3}{\rho_{\text{opt}}^3 \text{FF}^3},$$

(2.4)
where $\Delta \lambda$ is the systematic bias in estimating the parameter λ for one orientation, FF is the corresponding fitting factor, and ρ_{opt} the corresponding optimal SNR. Here also the bars indicate averages over all orientations. The effective bias provides an estimate of the bias averaged over a population of detectable binaries with isotropic orientations. We compare them against the sky and orientation averaged statistical errors. Statistical errors are computed using the Fisher matrix formalism employing quadrupole-only templates. The quadrupole-mode template family is deemed faithful for parameter estimation when the effective biases in all of the three intrinsic parameters $M, \eta, \chi_{\text{eff}}$ are smaller than the 1σ statistical errors in measuring the same parameter for an orientation-averaged SNR of 8.

III. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the quadrupole-mode inspiral-merger-ringdown template family IMRPhenomD, against the “full” hybrid waveforms by computing the fitting factor of the template and inferring the parameter biases from the best matched parameters. Figure 4 shows the optimal SNR of the hybrid waveforms and fitting factor of the quadrupole-mode templates at different values of ι and φ_0 (averaged over the polarization angle ψ). Figure 5 shows the systematic bias in estimating parameters total mass M, symmetric mass ratio η and effective spin χ_{eff}, using the quadrupole-mode template family. It is clear that for the $q = 1$ case (left column) the fitting factor is close to 1 and the systematic errors are negligible for all orientations, indicating the weak contribution of subdominant modes. For mass ratio 8, the fitting factor can be as low as ~ 0.84 for binaries that are highly inclined ($\iota \approx \pi/2$) with the detector, where the contribution from non-quadrupole modes is the highest. However, these are the orientations where the SNR is the minimum (see Fig. 4).

Similarly, the systematic biases are typically the largest (smallest) for the face-on (edge-on) configurations where the SNR is the largest (smallest). Hence GW observations are intrinsically biased towards orientations where the effect of non-quadrupole modes is minimum. This effect, in general, reduces the importance of non-quadrupole modes for a population of binaries that are oriented isotropically [18, 20–22].

Figure 6 shows the ineffectualness $(1 - \text{FF}_{\text{eff}})$ and effective biases in estimated parameters as a function of the total mass of the binary for different mass ratios and spins. For total mass M and symmetric mass ratio η, fractional biases are shown while for χ_{eff} absolute biases are shown. Solid (dashed) lines correspond to the case where “full” (quadrupole-only) hybrid waveforms are used as target waveforms. The template family in both cases contains only the quadrupole mode. The difference between the solid and dashed lines indicates the effect

Note that this is an artifact of the limited horizon distance of the second-generation GW detectors. For the case of third generation GW detectors, binaries with practically all orientations will be detected, thus eliminating this selection bias; see, e.g., [60].

In the case of anti-symmetric spin parameter χ_{eff}, the biases are dominated by the bias in the quadrupole mode itself. This is expected as previous studies have shown that LIGO can only estimate χ_{eff} to a good accuracy. Therefore we do not consider biases in χ_{eff} in this study.
FIG. 5: Systematic bias in the estimation of total mass M (top panel), symmetric mass ratio η (middle panel), and effective spin χ_{eff} (bottom panel), averaged over polarization angle ψ for binaries with total mass $M = 100 \, M_\odot$. For M and η, relative biases are shown, while for χ_{eff} absolute biases are shown. The y-axis shows the inclination angle ι in radians and the x-axis shows the initial phase of the binary φ_0 in radians. Different columns correspond to different mass ratios and spins of the larger black hole (the spin on the smaller black hole is 0 in all three cases).

of ignoring sub-dominant modes for detection and parameter estimation. Note that many of the dashed lines lie below the scale of these plots and are not displayed.

Previous studies [18, 20–22, 25] have shown that the effects of subdominant modes become important for binaries with high masses and large mass ratios. At large mass ratios, subdominant modes are excited by a larger extent due to higher asymmetry. For high masses, the observed signal is dominated by the merger, during which sub-dominant modes are excited prominently. Consistent with our expectation, in Fig. 6, the solid lines show that, in general, the ineffectualness and effective biases increase with increasing mass ratio and with increasing mass. We also see a clear separation of the solid and dashed lines for large mass ratios and high masses, illustrating the effect of neglecting non-quadrupole modes.

Figure 6 also reveals an interesting dependence of the effect of non-quadrupole modes on the spins. For binaries with aligned, zero, and anti-aligned spins, the ineffectualness peaks at total mass of $M \sim 300 M_\odot$, $M \sim 150 M_\odot$, $M \sim 100 M_\odot$, respectively. This is roughly the mass range where the observed

signal is dominated by the late inspiral and merger – the phase where the higher modes are excited most prominently. For binaries with anti-aligned spins, merger happens at relatively lower frequencies, while, for the case of aligned spins, merger happens at relatively higher frequencies, owing to the “orbital hangup” [61, 62] effect. Since frequencies are scaled inversely to the total mass of the system, this creates the mass dependence of the ineffectualness that we describe above. For very high masses, the observed signal will contain only the ringdown phase. Due to the smaller bandwidth and the relatively simpler structure of the ringdown signal, the quadrupole-only templates are likely to be able to mimic the full ringdown signal relatively well, at the cost of considerable systematic errors (see Fig. 7 for an example). Hence, we anticipate the effectualness of the quadrupole-mode templates to go up at very high masses. This effect should start dominating the effectualness patterns at relatively lower masses for binaries with anti-aligned spins. Consistent with our expectation, we see in Fig. 6 (top left panel) that for a given mass ratio, at low masses, binaries with negative spins have higher ineffectualness but

mismatches are quite small $\sim 10^{-3}$, several competing effects are playing out.

\footnote{Note that this is not true for the $q = 1$ cases. For these, since the}
as the mass increases there is a crossover point beyond which binaries with positive spins have higher ineffectualness. While for positive spins, the ineffectualness continues to increase with total mass, for zero spins the ineffectualness plateaus and for negative spins it reaches a maximum value and starts decreasing beyond that point. We see from Fig. 6 that this trend of larger (smaller) ineffectualness for negative (positive) spins at high masses ($M \gtrsim 100M_\odot$) is achieved at the cost of larger (smaller) systematic biases in the estimated parameters.

We set $FF_{\text{eff}} \gtrsim 0.965$ (which corresponds to a $\sim 10\%$ loss in detection volume for a fixed SNR threshold) as the benchmark for the relative importance of non-quadrupole modes in detection. This is shown by the dashed black line in the top-left subplot of Fig. 6. Fig. 1a summarizes the region in the parameter space where the loss of detectable volume (at a fixed SNR threshold) due to neglecting non-quadrupole modes is greater than 10%. For the case of negative spins, even at large mass ratios, we see that subdominant modes are important for detection only over a range of masses ($M \sim 75 - 150M_\odot$). For binaries with positive and zero spins, we anticipate that the upper limit of total mass where the higher modes are important decreases with increasing spin.

Figure 1a also shows the region in the parameter space (marked by the green dashed line) where subdominant modes become important for detection. This is shown by the dashed black line in the top-left subplot of Fig. 6. Fig. 1a summarizes the region in the parameter space where the loss of detectable volume (at a fixed SNR threshold) due to neglecting non-quadrupole modes is greater than 10%. For the case of negative spins, even at large mass ratios, we see that subdominant modes are important for detection only over a range of masses ($M \sim 75 - 150M_\odot$). For binaries with positive and zero spins, we anticipate that the upper limit of total mass where the higher modes are important decreases with increasing spin.
mode templates with nonprecessing spins has helped us to reduce the region in the parameter space where subdominant modes cause unacceptable loss in the detection volume. This is consistent with our expectation, as two additional parameters (spins) in the templates allow them to achieve higher fitting factors with the target signals, at the cost of a larger bias in the best matched template parameters.

In order to gauge the relative importance of the systematic errors shown in Fig. 6, we compare them against the expected statistical errors from the quadrupole-mode template family IMRPhenomD (computed using Fisher matrix formalism). Figure 8 shows the minimum SNR (orientation-averaged) at which the 1σ statistical errors become low enough to equal the systematic errors. (Note that statistical errors are inversely proportional to the SNR.) We see that, at high masses, the systematic errors start to dominate the error budget for orientation-averaged SNRs as low as 3. In this study, whenever the systematic errors are less than the statistical error for an orientation-averaged SNR of 8 (horizontal black dashed line in Fig. 8), we regard the quadrupole-mode templates to be faithful for parameter estimation 7.

Figure 1b summarizes the region in the parameter space where this minimum orientation-averaged SNR is less than or equal to 8 for estimation of any of M, η or χ_{eff}. We exclude any cases where the systematic biases are dominated by the biases in the quadrupole mode itself. We note that the region in which subdominant modes become important for parameter estimation is smallest (largest) for positive (negative) spins. This trend is opposite to what we see in Fig. 1a for detection. This is because, at high masses negative spin binaries have higher effectualness than positive spin binaries, which is achieved at the cost of higher systematic biases. We remind the reader that, for spins of higher magnitude than considered in this study (i.e., $|\chi_{\text{eff}}| > 0.5$ for $q \geq 2$), we expect the shaded regions in Fig. 1 to expand or reduce depending on the spin; the contours that we draw are indicative demarcations only. For greater aligned spins, the shaded region for detection should expand and the shaded region for parameter estimation should reduce. The opposite trend is expected for greater anti-aligned spins. Figure 1b also compares these results with the results obtained in our previous study [18] (dashed green line) using nonspinning quadrupole-only templates against nonspinning “full” target waveforms. We see that the use of spinning templates essentially increases the region where the parameter estimation bias is dominated by systematic errors.

IV. CONCLUSION

We studied the effects of sub-dominant modes in the detection and parameter estimation of GWs from black hole binaries with nonprecessing spins using Advanced LIGO detectors. The effect of sub-dominant modes on detection is quantified in terms of the effective detection volume (fraction of the optimal detection volume that the suboptimal search is sensitive to, for a given SNR threshold) and the effect on parameter estimation in terms of the effective bias (weighted average of the systematic errors for different orientations) in the estimated

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.16, \Delta \eta = 0.14, \Delta \chi_{\text{eff}} = 0.22 \]

\[q = 8, \chi_1z = 0.5 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.31, \Delta \eta = 0.65, \Delta \chi_{\text{eff}} = 0.43 \]

\[q = 8, \chi_1z = 0.0 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.37, \Delta \eta = 0.54, \Delta \chi_{\text{eff}} = 0.90 \]

\[q = 8, \chi_1z = -0.5 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.91, \Delta \eta = 0.14, \Delta \chi_{\text{eff}} = 0.22 \]

\[q = 8, \chi_1z = 0.0 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.95, \Delta \eta = 0.54, \Delta \chi_{\text{eff}} = 0.43 \]

\[q = 8, \chi_1z = -0.5 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.96, \Delta \eta = 0.65, \Delta \chi_{\text{eff}} = 0.43 \]

\[q = 8, \chi_1z = -0.5 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.96, \Delta \eta = 0.54, \Delta \chi_{\text{eff}} = 0.90 \]

\[q = 8, \chi_1z = 0.0 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.91, \Delta \eta = 0.14, \Delta \chi_{\text{eff}} = 0.22 \]

\[q = 8, \chi_1z = 0.5 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.95, \Delta \eta = 0.54, \Delta \chi_{\text{eff}} = 0.90 \]

\[q = 8, \chi_1z = 0.0 \]

\[\Delta f = \frac{\pi}{4}, \Delta \varphi = \pi, \Delta \psi = \pi/3 \]

\[\Delta M = 0.96, \Delta \eta = 0.65, \Delta \chi_{\text{eff}} = 0.43 \]

\[q = 8, \chi_1z = -0.5 \]
parameters. We compared quadrupole-mode templates with
target signals (hybrid waveforms constructed by matching NR
simulations describing the late inspiral, merger and ringdown
with PN/EOB waveforms describing the early inspiral). These
signals contained contributions from all the spherical harmonic
modes up to \(\ell = 4 \) and \(-\ell \leq m \leq \ell \) except the \(m = 0 \) modes.

Our study considered black hole binaries with total masses
\(40M_\odot \leq M \leq 300M_\odot \), mass ratios \(1 \leq q \leq 10 \), various spins
including \(\chi_{\text{eff}} \sim -0.5, 0, 0.5 \) (\(|\chi_{\text{eff}}| \leq 0.98 \) for \(q = 1 \)). The
results are appropriately averaged over all angles describing
the orientation of the binary (the results are not explicitly av-
eraged over the sky location because both the fitting factors
and systematic biases are only weakly dependent on the sky
location \(^3\)). Fig. 1 shows the regions in the parameter space
where the contribution from non-quadrupole modes is impor-
tant for GW detection and parameter estimation. In general,
neglecting subdominant modes can cause unacceptable loss

of SNR and unacceptably large systematic errors for binaries
with high masses and large mass ratios. For a given mass ratio,
subdominant modes are more important for positive (negative)
spins for detection (parameter estimation). As compared to our
previous study restricted to the case of nonspinning binaries,
we see that the use of quadrupole mode templates with non-
spinning spins, enhances the effectiveness for detection, but
extends the region where systematic errors dominate.

Note that the scope of our study was rather restricted – while
we conclude that subdominant mode templates are likely to
improve the detection rates of binary black holes in certain
regions in the parameter space (high mass and large mass ratios),
a proper characterization of this will require character-
zizing the associated increase in the false alarm rate also (see,
e.g., [22]). Also, we did not study the effect of neglecting
nonquadrupole modes on signal-based vetoes such as the "chi-
square" veto [64]. Similarly, we have only investigated the

FIG. 8: Lowest SNR (orientation-averaged) at which the statistical errors are low enough to equal the effective systematic bias in
parameters \(M, \eta \) and \(\chi_{\text{eff}} \), when using quadrupole mode templates to estimate the parameters of hybrid waveforms including all
modes. A dashed black line is used to denote minimum orientation-averaged SNR of 8 (optimal orientation SNR of 20).
region in the parameter space where the use of quadrupole-only
template would introduce systematic errors that are larger than
the expected statistical errors. However, the use of full-mode
templates in parameter estimation is likely to reduce the statisti-
cal errors, owing to the increased information content in the
waveform. We have not explored this aspect of the problem
here. The expected statistical errors were estimated using the
Fisher matrix formalism. Since these error bounds are lower
limits, our estimates on the region of the parameter space where
the systematic errors are negligible should be treated as con-
servative estimates. We conclude that subdominant modes are
important for parameter estimation when the systematic errors
are greater than 1σ statistical errors at a sky and orientation
averaged SNR of 8. If a more stringent criteria is applied, our
shaded regions in Fig. 1b would widen. Also, note that we
restricted our study to the case of binaries with nonprecessing
spins. Astrophysical black hole binaries may have generic spin
orientations. It is not clear how our conclusions hold in the
case of precessing spins (see [65] for some recent work in this
direction). We leave some of these investigations as future
work.

Appendix A: Comparison with Bayesian parameter estimation

In this paper, we tried to quantify the loss of detection ef-
ciency due to neglecting subdominant modes by computing
the fitting factors of the dominant-mode templates with target
signals including the effect of subdominant modes. Systematic
errors in parameter estimation were computed by comparing
the parameters of the “best-matched” subdominant-mode tem-
plates with the true parameters of the target signals, while
statistical errors are computed from the Fisher information
matrix. Since these calculations are computationally inexpen-
sive, this allows us to study the impact of subdominant modes
over the entire parameter space of interest, after averaging
over extrinsic parameters such as the orientation angles. How-
ever, we know that the inverse of the Fisher matrix provides a
lower bound of the statistical errors in the parameter estima-
tion [66, 67]. In order to verify that our simplified estimates of
the statistical and systematic errors give a good approximation
to the true errors, we compare our estimates of the systematic
and statistical errors with those derived from full Bayesian
parameter estimation for one sample case.

We create a simulated data stream by injecting a numerical-
relativity waveform from the SXS waveform catalog [31, 33,
68] into colored Gaussian noise with the power spectrum of
Advanced LIGO. The injected waveform (SXS:BBH:0307)
has the mass ratio $m_1/m_2 = 1.228$, aligned spins $\chi_1 = 0.32$,$\chi_2 = -0.5798$ and has an SNR of ~ 25. We estimate the
posterior distributions of of the masses and spins using the
LALINFERENCENest code [16, 69] that is part of the LSC Algo-
rithms Library [70]. We compare the maximum a posteriori
probability (MAP) estimates with the true parameters, which
provides us an estimate of the systematic bias. Similarly, the
width of the 68% credible regions provide us an estimate of
the statistical errors. These estimates are compared with the
same estimated using the methods that we use in the paper.

Table II provides a comparison between these independent
estimates. We see that, for the parameters that we consider,
the two different estimates are in reasonable agreement. Al-
though this provides some confidence in our results, extensive
comparisons with Bayesian estimates over the full parameters
space are required to confidently establish the accuracy of our
approximate results. We leave this as future work.

Acknowledgments

We are indebted to the SXS collaboration for making a
public catalog of numerical-relativity waveforms, and to Chandra
Kant Mishra for sharing a notebook of post-Newtonian
waveforms. We thank Abhirup Ghosh, Chandra Kant Mishra,
Sascha Husa, Mark Hannam, Michael Purrer and Patricia
Schmidt for useful discussions. We also thank Richard
O’Shaughnessy, B. S. Sathyaprakash, Prayush Kumar and
the anonymous referee for several useful comments on the
manuscript. P. A.’s research was supported by the AIRBUS
Group Corporate Foundation through a chair in “Mathematics
of Complex Systems” at the International Centre for Theoret-
ical Sciences (ICTS), by a Ramanujan Fellowship from the
Science and Engineering Research Board (SERB), India, by
the SERB FastTrack fellowship SR/FTP/PS-191/2012, by Indo-
US Centre for the Exploration of Extreme Gravity funded by the
Indo-US Science and Technology Forum, and by the Max
Planck Society and the Department of Science and Technology,
India through a Max Planck Partner Group at ICTS. V. V.’s re-
search was supported by NSF Grant PHY-1404569 to Caltech
and the Sherman Fairchild Foundation. Computations were
performed at the ICTS clusters Mowgli, Dogmatix, and Alice.
This document has LIGO preprint number LIGO-P1600332-
v2.
TABLE II: Comparison of systematic and statistical biases as predicted by a full Bayesian parameter estimation (top row) study with a fitting factor/Fisher matrix study that is used in this paper (bottom row). The first three columns show the absolute systematic biases and the next three columns show the statistical errors in the estimation of total mass M, symmetric mass ratio η and effective spin χ_{eff}. For the Bayesian study (top row), systematic biases are inferred from the peaks of the posterior distributions and the statistical biases are given by the widths of 68% credible intervals. In the bottom row, the systematic biases are inferred from the best match parameters and the statistical biases are given by 1σ errors from a Fisher matrix study.

<table>
<thead>
<tr>
<th>Method</th>
<th>M_{bias}</th>
<th>η_{bias}</th>
<th>χ_{bias}</th>
<th>δM</th>
<th>$\delta \eta$</th>
<th>$\delta \chi_{\text{eff}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian</td>
<td>$7.6 \times 10^{-4} , M_\odot$</td>
<td>2.2×10^{-3}</td>
<td>4.3×10^{-2}</td>
<td>$2.8 , M_\odot$</td>
<td>2.4×10^{-3}</td>
<td>1.3×10^{-1}</td>
</tr>
<tr>
<td>FF/Fisher</td>
<td>$2.6 \times 10^{-3} , M_\odot$</td>
<td>2.7×10^{-3}</td>
<td>5.4×10^{-2}</td>
<td>$1.9 , M_\odot$</td>
<td>9.5×10^{-3}</td>
<td>7.0×10^{-2}</td>
</tr>
</tbody>
</table>