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Abstract

The detection of gravitational waves (GWs) from black hole (BH)

mergers provides an inroad toward probing the interior of astrophysi-

cal BHs. The general-relativistic description of the BH interior is that

of empty spacetime with a (possibly) singular core. Recently, however,

the hypothesis that the BH interior does not exist has been gaining

traction, as it provides a means for resolving the BH information-loss

problem. Here, we propose a simple method for answering the follow-

ing question: Does the BH interior exist and, if so, does it contain some

distribution of matter or is it mostly empty? Our proposal is premised

on the idea that, similar to the case of relativistic, ultra-compact stars,

any BH-like object whose interior has some matter distribution should

support fluid modes in addition to the conventional spacetime modes.

In particular, the Coriolis-induced Rossby (r-) modes, whose spectrum

is mostly insensitive to the composition of the interior matter, should

be a universal feature of such BH-like objects. In fact, the frequency

and damping time of these modes are determined by only the object’s

mass and speed of rotation. The r-modes oscillate at a lower frequency,

decay at a slower rate and produce weaker GWs than do the space-

time modes. Hence, they imprint a model-insensitive signature of a

non-empty interior in the GW spectrum resulting from a BH merger.

We find that future GW detectors, such as Advanced LIGO with its

design sensitivity, have the potential of detecting such r-modes if the

amount of GWs leaking out quantum mechanically from the interior

of a BH-like object is sufficiently large.
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1. Introduction

The view in general relativity (GR) of a black hole (BH) as a region of empty

space except for a highly dense and classically singular core of matter has

recently been presented with a formidable challenge — it appears to be in

contradiction with the laws of quantum mechanics! The modern point of

view for diffusing this crisis is that the interior does not exist on account of

spacetime ending at the BH horizon. There is, however, some divergence of

views on how spacetime terminates. Some argue that it ends with a “firewall”

of high-energy particles surrounding the horizon [1] (also [2, 3, 4]). Others

argue that part of the geometry simply does not exist as in the fuzzball model

of BHs [5, 6, 7, 8] (also see [9] and, more recently, [10]).

But what if the BH interior does exist and is filled with some distribution

of matter? The first obvious obstacle is how to prevent the inevitable fate

of gravitational collapse that awaits any matter distribution whose size is

approaching its gravitational radius [11]. What is then required is some

exotic spacetime containing equally exotic matter which can be stored in an

ultra-compact object that is able to withstand gravitational collapse. This

object must, at the same time, exhibit all of the standard properties of BHs

when viewed from the outside. We will refer to such spacetimes collectively

as “BH-like objects”. One example for such an object is described by our

recent proposal that a BH should be modeled as a bound and metastable state

of highly energetic, interacting, long, closed strings; figuratively, a collapsed

polymer [13, 14]. (Here, we are using “collapsed” as it is meant in the polymer

literature, e.g. [15], and not gravitationally so.)

One can understand on a from a physics perspective how such a stringy
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object might evade gravitational collapse. A hot bath of closed strings will

entropically favor a state with just a few long loops. These long strings can

be effectively described as performing a random walk whose linear size, for

a fixed total length of the strings, scales in four dimensions with the square

root of the total length of the string. In the case of the polymer model, this

means that the linear size of the region occupied by the strings scales with

the Schwarzschild radius. We are then assuming that this effective and repul-

sive random-walk “force” is enough to overcome the would-be gravitational

collapse. We are also assuming that, like any other polymer, a fluid-like

description should be applicable, if only in a macroscopic, coarse-grained

sense.

Here the collapsed-polymer model is meant only as an illustrative example

of a possibly more general situation; namely, a BH proxy that is composed

of fluid-like matter. It will eventually become clear that the analysis applies

for this broader range of models.

Putting such claims to the test need no longer be limited to the purview

of thought experiments and computer simulations. Thanks to the recent ad-

vancement in gravitational wave (GW) astronomy, brought to the forefront

by the celebrated observation of GW150914 [16] and its companions [17, 18],

there are reasons to be optimistic about the prospects for future detections.

Indeed, the current observations have already proven their utility for con-

straining deviations from the GR model of BHs [19, 20].

Let us briefly review as to why GWs can be expected to carry informa-

tion about their BH sources. (A longer discussion appears in [21].) The

post-merger stage of a BH collision is that of a single BH settling down into
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a state of equilibrium. As is typical for partially open systems, the return

to equilibrium is associated with a set of ringdown modes whose characteris-

tic frequencies are determined by the system’s size, shape and composition.

These modes are necessarily damped and often called quasinormal modes

(QNMs). BHs are partially open in the sense that matter can enter but not

exit whereas, normally, the opposite is true. This makes BHs quite different

from other partially open systems because the modes are not escaping from

the BH itself, which is of course an impossibility. Rather, spacetime modes

propagating in from infinity are reflected back from the surrounding gravita-

tional potential barrier or, otherwise, transmitted through it. Whereas the

transmitted modes continue on past the horizon and are gone forever, some

of the reflected modes constitute the observed GWs.

The frequencies and damping times for the reflected modes are determined

by the properties of the gravitational potential barrier and, therefore, by only

a handful of BH parameters. Provided that the BH carries no net charges (nor

any exotic “hair”), the only relevant parameters are its mass M and angular

velocity Ω. For further reading, one can start with the excellent review

articles [22, 23, 24] and then, for example, [25, 26, 27, 28, 29, 30, 31, 32].

The arguments in the current paper are premised on the idea that a BH-

like object — which is assumed to contain a non-trivial matter distribution

rather than just a singular core — has some resemblance to a relativistic star.

As such, a BH-like object will have a collection of fluid modes in addition

to the previously described set of spacetime modes, just like a relativistic

star has both. In the relevant literature, the spacetime modes are called

w-modes. As for the fluid modes, there are many different classes, with each
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class representing a different restoring force acting on the star to return it to

equilibrium. An incomplete list includes pressure (p-) modes, buoyancy or

gravitational-restoring (g-) modes, shear (s-) modes and torsional (t-) modes.

For most of these cases, the frequencies and damping times of the modes are

sensitive to the precise composition of the stellar object.

Our current interest is the spectra of the so-called r-modes (e.g., [33,

34, 35]). These are non-radial modes whose amplitudes grow from zero at

the center of the star to a maximal value at the surface. Their leading-

order frequencies are insensitive to the interior composition and, just like the

spacetime modes of a BH, depend only on the mass and rotational speed of

the stellar body. So that, if one wants an answer to a simple binary question

— “does a BH-like object contain a non-trivial matter distribution or does

it not?” — these modes are just what is needed.

The r-modes are Rossby (planetary-like) waves that arise due to the ef-

fects of the Coriolis force; these being the dominant effects of rotation pro-

vided that the object’s radial velocity is smaller than the speed of light c.

This is because the Coriolis force is proportional to Ω, whereas the effects of

the centrifugal force are proportional to Ω2. As a consequence, a stellar body

that is rotating slower than the speed of light can be treated, approximately,

as a spherically symmetric rotator. In a case where the axis of rotation points

north, the Coriolis force induces counter-clockwise motion for fluid initially

flowing to the north pole from the equator and clockwise motion in the op-

posite case. One complete cycle defines the characteristic frequency of the

mode, which scales linearly with Ω.

One might wonder about the other types of fluid modes. These would also
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be interesting for the purposes of discriminating between different models.

But, as other types of internal modes do depend on the composition of the

object, they would not have the same type of universality that is being ex-

ploited here. One might also wonder about the spacetime modes. But these,

by definition, do not know about the details of the internal composition, as

they depend strictly on the exterior geometry and boundary conditions at

the outer surface. The former is the same for any BH-like object, whereas the

latter is a model-dependent consideration; for instance, some models are sup-

posed to produce “echoes” (see below). Nonetheless, a sufficiently compact

object can be expected to produce modes that are similar to the predominant

modes of a Kerr BH.

In the remainder of the paper, we review some basic facts about r-modes,

both in general and in the current context (Sec. 2), determine the characteris-

tic properties of the resulting GWs (Sec. 3), present a gravitational waveform

along with a plot of the associated spectrum (Sec. 4), discuss the prospects

for detecting r-modes in the near future (Sec. 5) and then conclude (Sec. 6).

Before proceeding any further, it is important to emphasize that our com-

pact objects of interest are those whose outer surfaces act (at least effectively)

as BH horizons in that they inhibit the leakage of matter from inside to out-

side when only the effects of general relativity are considered. Our collapsed

polymer model has just such a “quantum horizon”; its outer surface does not

permit matter to escape by classical means but is otherwise only partially

opaque for finite ~ [14]. This is because matter can only escape as a result

of string interactions, which is controlled by the string coupling, a strictly

quantum parameter. More generally, a quantum horizon refers to the outer
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surface of a BH-like object for which the escape of matter is a quantum

process — quantum in the sense that it can be parametrized by a small,

dimensionless parameter which would not be present for the BHs of general

relativity. We commonly refer to this small parameter as a “dimensionless ~”,

which is simply the square of the string coupling for the collapsed-polymer

model. (It is also assumed that the fundamental spacetime modes of the

object are close enough to those of a Kerr BH so as to not yet be ruled out

by the observational data.) And it is this quantum transparency that will

allow for the internal modes to couple to external GWs; albeit with an ap-

propriate suppression. This point is discussed further in Section 3, although

a full explanation will be deferred until a later article [36], where the same

picture is considered from the perspective of both an internal and external

observer.

Let us also take note of a different approach [37, 38, 39] (also [40, 41])

which argues that, for “exotic compact objects” without horizons, there is a

new class of modes that are absent in the classical-GR BH case and analo-

gous to echoes (i.e., modes trapped between the object’s outer surface and

potential barrier for a finite time). The basic idea is to model the interior of

the object as a wormhole, as the inner light ring of a wormhole captures the

essence of an echo chamber. Given this setup, one finds that the damping

times of the trapped modes depend on a certain power of the log of the throat

location relative to the Schwarzschild radius [42]. Due to this large power,

such a deviation in the damping times from the BH case effectively enters

as a power-law deviation [39]. As shown in a companion article [21], the

collapsed-polymer model also predicts power-law deviation to the damping
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times, albeit with a much different expansion parameter.

2. The r-modes of a rotating black hole-like object

A rotating BH-like object can be treated, approximately and to leading order

in Ω, as a spherically symmetric rotator with a constant angular velocity.

Such a rotator naturally supports r-modes. Corrections to the leading order

in Ω are expected to be of order Ω2. We will argue later that for the cases of

interest, such corrections are small and therefore justify this approximation.

Since our goal is to demonstrate how one could discriminate a fluid-filled

interior from others in simple terms, we will confine ourselves to the non-

relativistic approximation that allows us to obtain closed form expressions

for the frequency and life-time of the r-modes. A more precise analysis may

be required for the purpose of making definitive quantitative predictions.

Closely following [34], let us now review how these r-modes come about.

The starting point is the hydrodynamic momentum equation in the co-

rotating frame of reference (e.g., [43]). To leading order in the angular ve-
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locity ~Ω, this can be written as 1

∂~u

∂t
= −~∇δΦ− 1

ρ
~∇δp+

δρ

ρ2
~∇p− 2~Ω× ~u , (1)

where δΦ represents a perturbation of the gravitational potential, p and δp

are the pressure and its perturbation, ρ and δρ are the energy density and

its perturbation, and ~u is the velocity of the fluid. It will be assumed that

~Ω = Ω ẑ with Ω > 0 .

Let us now consider the radial component of the curl of Eq. (1). With

the approximations that non-radial motion dominates over radial motion,

ur � u⊥, and that ~∇·~u is at least linear order in Ω (in fact, it scales as Ω3 for

the r-modes [34]), the resulting equation is ∂Z
∂t

= −2
(
~u⊥ · ~∇⊥

)
~Ωr , where

Z =
(
~∇× ~u

)
r

is the radial component of the vorticity and a subscript ⊥

stands for the non-radial components of the vector. We also used the fact

that p for the background only acts radially. Since ~Ω does not depend on

time explicitly,
d

dt
(Z + 2Ωr) = 0 , (2)

to linear perturbative order. The quantity in the brackets is the radial com-

ponent of the vorticity in an inertial frame, and so Eq. (2) makes it clear

1We are taking some liberty in using a non-relativistic (Newtonian) equation to calcu-

late the r-mode spectrum of BH-like objects. Our justification being that the production

of r-modes is, at leading order, a surface effect and thus insensitive to what lies inside.

For reference, relativistic corrections only affect the r-mode frequency of a neutron star

by 8–20% [44, 45], although these corrections would be enhanced for the case of a BH.

Ultimately, one would have to resort to the numerical analysis of the relativistic equations

to make definitive predictions. Such a study is outside the scope of the current paper,

which is meant to convey the basic idea of using GWs to discriminate between fluid-filled

interiors and other models.
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that this component is conserved.

One can deduce from Eq. (2) the nature of the induced oscillations. Work-

ing in the co-rotating frame, let us suppose that a fluid element starts out

at the equator (θ = π/2) where it is moving north. Then, initially, Z is a

constant because Ωr = Ω cos θ = 0 and we choose Z = 0 for simplicity.

Now, as the fluid element proceeds upwards, Ωr increases because of the

factor of cos θ. From Eq. (2), it follows that a negative vorticity is generated,

corresponding to a clockwise rotation of the fluid element. The element then

rotates in such a way that it eventually returns to the equator and continues

its motion downwards, only to come back up to the equator and so on. This

type of motion is described in several nice movies [46].

A more formal approach allows one to deduce the actual relationship be-

tween the r-mode frequency and Ω. As an r-mode is toroidal at leading order,

its velocity vector in the co-rotating frame can be approximately decomposed

as [47]

~u ' iωrK`m

(
0,

1

sin θ

∂Y m
`

∂φ
,−∂Y

m
`

∂θ

)
eiωt , (3)

where `, m are the angular-momentum quantum numbers, the Y ’s are spher-

ical harmonics and K`m is some smooth function of r which is not relevant

to our purposes. When substituting Eq. (3) into Eq. (2), one finds that the

leading-order frequency of the r-modes in the co-rotating frame is ω = 2mΩ
`(`+1)

.

In an inertial frame, the frequency translates into ω = Ω
(
−m+ 2m

`(`+1)

)
.

Our main interest is the case of ` = 2 , m = 2 , for which

ωr−mode = −4

3
Ω . (4)

The fact that the frequency is negative is significant and may, under some

circumstances, result in an instability which amplifies the r-modes [48]. This
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possibility will not be discussed any further and the negative sign will be left

off.

To determine the value of Ω for rotating BH-like objects, we may borrow

some of the standard results for Kerr BHs (e.g., [49]). This is because, as

far as their external properties are concerned, BH-like objects and the BHs

of GR should — by our previous assumptions and definition for the compact

objects of interest — be similar and, in some cases like the collapsed-polymer

model, indistinguishable. In what follows, v is the rotational speed of the

object and u indicates the speed of a mode.

For spinning BHs, the frequency of rotation is parametrized by the mea-

sure of spin a = 2 v/c (a is the dimensionless Kerr parameter),

MΩ =
a

2
(
1 +
√

1− a2
) . (5)

Then, for the r-modes (with ` = m = 2),

Mωr−mode =
2

3

a(
1 +
√

1− a2
) . (6)

In merger events for which the masses of the two colliding BHs are approx-

imately equal and their initial (total) spin is small compared to their angular

momentum, the final spin parameter is a ≈ 0.7 and depends weakly on

the ratio of the masses (see [50] for details). Also, as reported in [17], this

value of a is approximately what was measured in the three recently detected

events assuming classical-GR BHs. Then, with this choice,

MΩ = 0.20 (7)

for the BH-like object and

Mωr−mode = 0.27 (8)
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for the frequency of the r-modes with ` = m = 2 (cf, Eq. (4)).

For such cases, the relativistic corrections due to the centrifugal force or

to any additional relativistic corrections are governed by the small number

v2

c2
= a2

4
= 0.12

(
a

0.7

)2
. The velocity of an r-mode is somewhat larger than

the rotational velocity of the object but still quite non-relativistic,
u2r−mode

c2
=

ω2
r−mode

Ω2
v2

c2
= 16

9
v2

c2
' 0.22

(
a

0.7

)2
. This means that the expected relativistic

corrections are less than about 25% of the non-relativistic values. At the level

of accuracy of this paper, this is sufficient. To obtain more precise results

one has to resort to better analytic and numerical analysis that will take into

account also the relativistic corrections.

We now want to compare the frequency of the r-modes in Eq. (8) to

that of the slowest-oscillating spacetime modes ωst. The value of the latter

frequency for the case of a = 0.7 can be found in (e.g.) Table II of [51],

Mωst = 0.53 . (9)

It follows that the frequency of an r-mode is about half that of the lowest-

frequency spacetime modes in the a = 0.7 case,

ωr−mode
ωst

' 0.5 , (10)

up to a small (known) dependence on the ratio of the masses of the colliding

BHs.

3. Frequency, decay time and amplitude of the emitted

gravitational waves

We would now like to determine the three quantities that characterize the

additional emission of GWs due to the r-modes: frequency, decay time and
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amplitude. We find that the frequency, which is the most robust predic-

tion, scales roughly as ωr−mode ∼ ωst v/c . The decay time scales as

1/τr−mode ∼ (1/τst)(v/c)
2 and is less robust. The amplitude scales as

hr−mode ∼ hst(v/c)
3 and is the least robust prediction. (Here, we have

been using ur−mode ∝ v.) Each of the three quantities will be discussed in

turn.

Let us first recall what was found for the frequency. For GWs that are

sourced by r-mode oscillations, this is given by Eq. (6) in general and, for

values of the spin parameter close to a = 0.7 , by Eqs. (8) and (10). In the

latter case, we recall that Mωr−mode = 0.27 or, equivalently, ωr−mode/ωst '

0.5 . We will thus use the scaling relation

ωr−mode ∼
ur−mode

c
ωst ' 0.5 ωst

( a

0.7

)
. (11)

Although such a relation is based on only a single choice of a (namely, a =

0.7), it can be checked that Eq. (11) recovers the correct value of ωr−mode in

Eq. (6) for the choice of (e.g.) a = 0.5 to within 5% accuracy.

Let us next move on to the decay time. In general, the decay time τ

of a mode can be estimated by the ratio of its dissipated energy dE
dt

to its

total energy E, 1/τ = 1
E
dE
dt

. The decay time of the r-modes and, there-

fore, of their corresponding GWs is determined by the shortest dissipation

time of three possibly important sources of dissipation: (i) the emission of

GWs which reduces the energy of the r-modes accordingly, (ii) the leakage

of r-modes away from the BH-like object by processes that differ from the

emission of GWs (for instance, by coupling to other types of matter) and

(iii) the intrinsic dissipation within the interior matter.

First, the decay time of the r-modes due to emission of GWs scales as
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the light-crossing time R/c divided by a factor of (Mωr−mode)
6 (e.g., [48]).

This is much too long a time scale to be of any relevance to our discussion.

Second, the time scale for leakage can be estimated by calculating the

imaginary part of the QNM frequencies. As explained in detail in [21], when

the modes are non-relativistic, the imaginary part of the frequency ωI is

parametrically smaller than the real part ω because of the scaling ωI ∼
u
c
ω . Then it follows from Eq. (11) that the imaginary part of the r-mode

frequency is doubly suppressed relative to that of the spacetime QNMs,

ωI r−mode ∼
(ur−mode

c

)2

ωI st , (12)

where the value of ωI st for a = 0.7 is given in (e.g.) Table II of [51], MωI st =

0.08 . Equivalently,

τr−mode ∼
(ur−mode

c

)−2

τst ' 4.6 τst

( a

0.7

)−2

. (13)

The third source of energy loss is the intrinsic dissipation, whose time

scale can be estimated following [48]. As will be shown, unless the ratio of the

shear viscosity η to the entropy density s is the smallest that it can be — an

approximate saturation of the KSS bound η/s ∼ 1 [53] — then the intrinsic

dissipation is too large and it is likely that the modes will decay too quickly

to ever be detected. In the case of the polymer model, the interior matter

does indeed saturate the KSS bound [14], and a simple argument (based on

reinterpreting the KSS bound as an upper limit on the entropy [54]) suggests

that this must be generally true for other models as well. Following [48], one

then finds that the intrinsic-dissipation time τ̃ for the r-modes is given by

1

τ̃r−mode
∼ η

ρR2
∼
(ur−mode

c

)2 1

τst
, (14)
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where we have used the fact that η/ρ ∼ R for KSS-saturating matter with

relativistic modes and η/ρ effectively scales like
(
u
c

)2
for non-relativistic

modes [21] so that η/ρ ∼
(
u
c

)2
R . If η/ρ is parametrically larger than

R, as is the case for all known forms of non-exotic matter, then the decay

time would be much smaller than that of the longest-lived spacetime modes,

meaning that the detection of the r-modes would no longer be feasible.

Conversely, if η/ρ ∼ R as expected, then both the leakage time and

the intrinsic-dissipation time are parametrically longer than the decay time

of the spacetime QNMs by a factor of (u/c)−2,

τr−mode ∼ τ̃r−mode ∼
(ur−mode

c

)−2

τst ' 4.6 τst

( a

0.7

)−2

. (15)

Let us now consider the amplitude of the emitted GWs. Our approach

is to use Einstein’s celebrated quadrupole formula, while taking into ac-

count that the matter in some models can be surrounded by a (possibly

semi-transparent) horizon. The latter consideration can be incorporated by

parametrizing the strength of the coupling of the fluid modes to the emitted

GWs. For any specific case, this coupling is determined by the details of the

model. For example, if the matter within a BH-like object is not surrounded

by any horizon, this coupling can be estimated by treating the background

spacetime as fixed and (essentially) flat [55]. Then, h ∝ d2Q/dt2 , where h

is the gravitational waveform and Q is the quadrupole moment of the energy

density.

Now suppose that some quadrupole moment does exist in a confined re-

gion of space. Just how much of this moment contributes to the production

of outgoing GWs? If the region is surrounded by a classical horizon, the an-

swer is none. In this case, the horizon is completely opaque and nothing can
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escape from inside. On the other hand, the region will be semi-transparent

if surrounded by a “quantum horizon” because then some GWs can escape

to the outside. The fraction of those escaping is proportional to the dimen-

sionless ~ of the problem, ~̃ < 1 . For example, in the polymer model, the

relevant dimensionless parameter for a certain class of fluid modes is ~̃ = g2
s

[21], where the string coupling gs is the ratio between the Planck length and

the string length scale. The numerical value of gs is expected to be small but

not extremely small. For instance, the string coupling cannot be too much

smaller than unity given that the expected grand unification of forces at the

Planck energy is correct. In cases like the wormhole model [37], the region

is not surrounded by any horizon.

We will cover this broad spectrum of cases by introducing a “trans-

parency” or transmission coefficient Thor that ranges from 0 (a classical hori-

zon) to 1 (no horizon). An r-mode can now be characterized as follows: Its

frequency and lifetime are fixed by the frequency of rotation (equivalently, the

Kerr parameter a) of the BH-like object, whereas its amplitude additionally

depends on a model-dependent parameter Thor for which 0 ≤ Thor ≤ 1 .

Let us briefly comment on how Thor can generally be estimated (see [36] for

a detailed discussion). One can assign a width to a given quantum horizon of

∆RS = ~̃RS (RS is the object’s Schwarzschild radius). The width ∆RS can,

when the BH is out of equilibrium, be expected to be macroscopically large

and still well within the potential barrier at about 3
2
RS. This is because ∆RS

scales with the product of the horizon radius and a simple, positive power of

the dimensionless ~ which need only be smaller than unity. The width ∆RS

implies that the GWs corresponding to some fluid mode will first appear in
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the exterior at a radius where the Tolman redshift factor is
√

~̃. Using this

redshift along with the quadrupole formula, one finds that the amplitude of

the GWs, by the time they reach the potential barrier, will be suppressed by

some power of ~̃ — it is this suppression that should be identified with Thor, a

number that is less than one but, at the same time, need not be unobservably

small. On the other hand, in cases like the wormhole model for which there

is no horizon, one can view Thor as some power of the redshift factor at the

location of the object’s outermost surface or its throat.

The redshift factor describes how an external observer, who believes that

the fluid modes originate from outside of the horizon, is able to reconcile

the suppression factor Thor with her knowledge of general relativity. From

an internal perspective, the suppression can be attributed to quantum ef-

fects being the primary source of mode leakage. One should not combine

these two sources of suppression, as this would amount to a double count-

ing. The consistency between the internal and external perspectives and that

these provide complementary pictures will be exposed in the aforementioned

treatment [36].

Putting all of these ingredients together and recognizing that the r-modes

induce velocity perturbations, one can find an appropriate estimate of the

GW amplitude in [55] (also [48]). Let us first express the r-mode waveform

as

hr−mode = Ar−mode e
−t/τr−mode sin(ωr−mode t− φr) , (16)

with φr representing the constant phase and Ar−mode, the dimensionless strain
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amplitude. Then

Ar−mode ∼ αr−mode Thor
M

rs

(ur−mode
c

)3

, (17)

where αI < 1 parametrizes the amount of energy that the merger injects

into the Ith class of mode perturbations and rs is the radial distance from

the center of the source. The factor
(ur−mode

c

)3
is a product of a factor of(ur−mode

c

)2
originating from the two time derivatives in the quadrupole for-

mula (d/dt ∼ ωr−mode ∝ ur−mode ) and additional factor of ur−mode

c
that can

be attributed to the waves being sourced by velocity perturbations.

This amplitude should be compared to that of the spacetime modes, which

scales as

Ast ∼ αst
M

rs
. (18)

In the recently detected events, the fraction of radiant energy in the form

of GWs was found to be a few percent of the system’s total mass, which

is consistent with prior estimates of about αst ∼ 0.1 corresponding to a

gravitational radiant energy of around 3% of M [56, 57]. It is likely that

αr−mode and αst are of similar magnitudes; in which case, the suppression of

the r-mode amplitude is determined solely by Thor(ur−mode/c)
3,

Ar−mode ∼ Thor

(ur−mode
c

)3

Ast ∼ 0.1 Thor Ast

( a

0.7

)3

. (19)

4. Gravitational waveform and spectrum

Let us now look at the gravitational waveform for the r-modes in both the

time and Fourier domain, beginning with the former. The case of primary

interest is when the final spin is a = 0.7, which corresponds to the merger of
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two non-spinning, equal-mass BHs. From the results of the previous section,

the following picture emerges: In a BH-merger event, the r-modes produce

a GW signal at a lower frequency, ωr−mode ∼ 0.5 ωst , with a longer decay

time, τr−mode ' 4.6 τst , and with a suppressed amplitude, hr−mode ∼

0.1 hst , in comparison to the standard spacetime-mode signal. One can also

anticipate some additional delay in the emission of GWs due to the reduction

in frequency, as there is an expected delay of about one oscillatory period.

(This allows time for the mode to reach the outer surface.) Figure 1 depicts

the waveform of GWs emitted from a BH-merger — if the r-modes do exist —

for a final spin of a = 0.7 , v/c = 0.35 , ωr−mode = 0.5 ωst , τr−mode = 5 τst

and hr−mode = 0.1 hst , along with a delay of about one period.
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���
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Figure 1: Gravitational waves emitted during the ringdown phase of a BH

merger with the parameters listed in the text. The blue (thick, dashed) line

depicts hst in arbitrary units as a function of time in units of M , while the

red (thin, solid) line depicts hr−mode.
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We next consider the GW spectrum in the Fourier domain, as this is

important for calculating the signal-to-noise ratio (SNR) later. The Fourier

transform of a damped sinusoid is given by [58, 21]

|h̃(f)| = Ar−mode τr−mode

∣∣∣∣2f 2
rQr cosφr − fr(fr − 2ifQr) sinφr
f 2
r − 4iffrQr + 4(f 2

r − f 2)Q2
r

∣∣∣∣ , (20)

where fr ≡ ωr−mode/(2π) is the r-mode frequency and Qr ≡ πfrτr−mode .

To make this transform explicit, Eqs. (11) and (13) can be used to determine

how the r-mode frequency and damping time scale with respect to those of

the spacetime mode. Meanwhile, the fitting function for the spacetime-mode

parameters in terms of M and a can be found in [51]. Similarly, Eq. (19) can

be used for the amplitude scaling, where the spacetime-mode amplitude Ast

can be obtained from [21].

Figure 2 presents such spectra for a = 0.5 and a = 0.68 . Here, we have

set Thor = 1 , φr = 0 , depicted the sky-averaged amplitude at a luminosity

distance of DL = 410 Mpc and chosen M = 62.3 M� , where the last two

values correspond to those of GW150914 [16, 17]. The relation between a

and the symmetric mass ratio η of a BH binary [52] has been adopted to

rewrite the radiation efficiency in Ast (with the pre-merger BH spins set to 0

for simplicity) in terms of a. One can observe how the amplitude, frequency

and the width of the peak all grow with increasing a. For reference, we have

included the spectrum of the spacetime mode for GW150914; as well as the

noise spectral density of Advanced LIGO (aLIGO), both for its O1 run and

for its design sensitivity.
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Figure 2: Sky-averaged GW spectrum of the r-mode for BH-like objects with

a = 0.5 (blue, dotted-dashed) and a = 0.68 (green, double dotted-dashed).

We choose M = 62.3 M�, DL = 410 Mpc and Thor = 1. For reference,

the spectrum corresponding to the observed ringdown for GW150914 (red,

dashed) is included. Also shown are the noise spectral density of aLIGO in

the O1 run (thin, black, solid) and for its design sensitivity (thick, black,

solid). The ratio between the signal and noise roughly corresponds to the

SNR and the signal is detectable if this ratio is above the threshold (∼ 5). We

stress that the results presented here are not robust and should be understood

as only rough estimates.

5. Prospects for detection

Let us now discuss the future prospects for detecting r-modes. In [21], we

derive an upper bound on the amplitude of the secondary ringdown mode
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relative to the primary one assuming that the former was not detected in

the GW150914 observation. Applying that result to the current analysis and

choosing a = 0.68 (the final spin of the remnant BH for GW150914 [16, 17]),

we then obtain hr−mode/hst < 0.26 . This inequality can, using Eq. (19),

be mapped to one on Thor, leading to Thor . 2.6 . This should be regarded

as only a rough bound, as it is based on scaling relations for the amplitude,

frequency and damping time which neglect any O(1) prefactors. Rough or

otherwise, such a bound is not really useful because Thor cannot be any larger

than unity.

Our main interest is in the scaling relation for the minimum Thor that

is required for detecting r-modes (which we denote T
(min)
hor ) in terms of M ,

a, DL and detector sensitivity. The starting point is the calculation of the

SNR, which is obtained from

SNR2 = 4

∫ fmax

fmin

|h̃(f)|2

Sn(f)
df , (21)

where fmin and fmax are the minimum and maximum frequencies, while

Sn is the noise spectral density. Then using Eqs. (19)–(21), along with

ur−mode/c ∝ a and df ∼ 1/τr−mode , one finds that

SNR ∝ Ar−mode
√
τr−mode ∝ Thor Ast a

3√τr−mode (22)

for a white-noise background. It is worth noting that the SNR scales as

(v/c)2 since Ar−mode ∝ (v/c)3 and τr−mode ∝ (v/c)−2 . One can now derive

the minimum Thor for detection by equating this calculation to the threshold

SNR. However, our main interest is still in the scaling behavior of T
(min)
hor . For

instance, since DL only appears in Eq. (22) through Ast as Ast ∝ 1/DL ,

T
(min)
hor is linearly proportional to DL.
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Figure 3: The minimum Thor, which characterizes the amount of quantum

leakage of the r-mode GWs through the horizon, that is needed for aLIGO

at Hanford and Livingston with its design sensitivity to detect r-mode GWs

from equal-mass BH binaries at DL = 410 Mpc. We show the minimum Thor

as a function of M (top) and a (bottom). Solid lines are the fits proportional

to M−3/2 and a−3. The shaded region (Thor ≤ 1) corresponds to the theo-

retically allowed range of Thor. Observe that T
(min)
hor for massive and rapidly

spinning sources falls into this range. We stress that the bounds presented

here are not robust and should be understood as only rough estimates.

Let us next look at the M dependence of T
(min)
hor . Recalling that Ast ∝M

and τr−mode ∝ M , one can see from Eq. (22) that SNR ∝ M3/2. Thus,

setting this expression for the SNR equal to the threshold SNR of 5, one can

deduce that T
(min)
hor is proportional to M−3/2. The top panel of Fig. 3 shows,
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for a fixed set of a values, the M dependence of T
(min)
hor as calculated directly

from Eq. (21) (i.e., without imposing the white-noise assumption or using

Eq. (22)) for a sky-averaged waveform. One can compare this figure to the fit

proportional to M−3/2 (which is also plotted) and observe that the numerical

values follow the anticipated M−3/2 dependence for the smaller values of M .

For larger M , the peak frequency of the GW spectrum in Fig. 2 shifts to

a lower frequency and, as a result, the white-noise assumption becomes less

valid. Thus, the minimum Thor for detection deviates from its expected

M−3/2 dependence in this regime of larger mass.

Finally, we can consider the a dependence of T
(min)
hor . For one thing, Ast

is proportional to the radiation efficiency, which is further proportional to

the symmetric mass ratio η [50], which is roughly proportional to a [52]. For

another, τr−mode ∝ a−2 , and hence Eq. (22) indicates that SNR ∝ a3 .

It then follows, in analogy to the M -dependence argument, that T
(min)
hor is

proportional to a−3. The bottom panel of Fig. 3 depicts how T
(min)
hor depends

on a as calculated from Eq. (21) for a set of fixed M values. Also shown is

the fit proportional to a−3. Once again, the numerical values nicely follow

the anticipated dependence when M is smaller but deviate from expectations

when M is larger. The logic underlying this behavior is, of course, the same

as that discussed in the previous paragraph.

In light of its dependence on M , a and DL, one can roughly estimate the

minimum Thor for detection as

T
(min)
hor ≈ 0.97

(
M

62.3M�

)−3/2 ( a

0.68

)−3
(

DL

410Mpc

)
×
(
Ns

1

)−1/2(
Nd

2

)−1/2
( √

Sn(f0)

4× 10−24Hz−1/2

)
, (23)
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where we also included the dependence on the number of (identical) GW

sources Ns and the number of (identical) GW detectors Nd. See, for instance,

[60] on how to coherently stack small-SNR signals from different GW sources.

Additionally,
√
Sn(f0) is the detector sensitivity at f0 = 200 Hz and is merely

a representative parameter for an overall sensitivity scaling (as T
(min)
hor depends

on
√
Sn(f) and not just

√
Sn(f0) ).

Let us study the prospect for the detection of r-modes in more detail.

Equation (23) and Fig. 3 imply that the detectability increases for sufficiently

massive, rapidly spinning and close-enough objects. For such sources, T
(min)
hor

becomes smaller than unity and falls into the theoretically allowed range of

Thor, as indicated by the magenta shaded regions in Fig. 3. For example, a

mass of M = 100 M� allows one to detect an r-mode with Thor as small as

∼ 0.5. If Virgo, KAGRA and LIGO-India further come online (Nd = 5), an r-

mode can be detected with Thor & 0.3 . On the other hand, third-generation

GW detectors, such as the Einstein Telescope and Cosmic Explorer, will

have ∼ 10 times better sensitivity than aLIGO. Hence an r-mode can be

detected with Thor as small as ∼ 0.1 for the fiducial parameters in Eq. (23)

when using third-generation detectors. Alternatively, such detectors may

find ∼ 103 GW sources having a similar SNR to that of GW150914 (∼ 20).

Setting DL (
√
Sn(f0) ) to be 10 times larger (smaller) and Ns = 103 in

Eq. (23), one finds that r-modes can be detected with Thor & 0.03 .

6. Conclusion

We have argued that a BH-like object — an object that resembles a BH

from the outside but with a different composition for its interior — can
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be discriminated from the BHs of GR on the basis of its r-modes. This

follows from the observation that, just like a relativistic star, the r-mode

frequency and damping time should be essentially independent of the object’s

composition, depending only on its mass and speed of rotation v to leading

order in v/c.

Under suitable circumstances, the GWs originating from the r-modes

should stand out clearly in the data, as their frequencies scale with the ro-

tational speed of the BH-like object and their lifetimes are enhanced by a

factor of (v/c)−2. However, because the wave amplitude drops off quickly by

a factor of (v/c)3, one is faced with two competing effects: The easier it is

to distinguish the r-mode-sourced GWs from those sourced by the spacetime

modes, the weaker is the r-mode signal. The GW spectrum also drops out

of the detector band for smaller v/c, making the detection of such lower-

frequency waves even more difficult. More optimistically, we have shown

that, given aLIGO’s design sensitivity and a sufficiently massive, rapidly ro-

tating and close-enough source, the minimum value of Thor — this being

a parameter which characterizes the quantum leakage of the r-mode GWs

through the horizon — that is needed for detection is below unity, which is

the theoretical upper bound on Thor. The prospect for detection increases as

the detector sensitivity improves, more detectors come online and the number

of GW sources increases. Alternatively, the absence of any r-modes would

allow one to place upper bounds on Thor. Such a bound would enable one to

rule out some of the proposed models for the BH interior.

Here, we mainly focused on answering the binary question: Are the BHs

in Nature those of GR or are they not? If the latter is indeed true, further
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discrimination will be possible by looking at other classes of fluid modes, as

most of these carry information about the interior composition already at

leading order in frequency. In these cases, however, the theoretical predic-

tions will necessarily be model dependent. A detailed discussion of this topic

from the perspective of the collapsed-polymer model [13] can be found in

[21]. Other relevant works in this direction include [37, 38, 40, 41, 61, 62].

Finally, one might be concerned as to (i) how interior fluid modes can

couple to external GWs in models with a horizon, albeit a horizon with a

quantum disposition, and (ii) how an external observer would perceive this

class of GWs in a way that is consistent with classical GR (which certainly

maintains its validity in the exterior part of spacetime). As these are im-

portant issues in their own right, we intend to address them in a separate

discussion [36].
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