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We present an analytical waveform family describing gravitational waves (GWs) from the inspiral, merger
and ringdown of non-spinning black-hole binaries including the effect of several non-quadrupole modes
[(` = 2,m = ±1), (` = 3,m = ±3), (` = 4,m = ±4) apart from (` = 2,m = ±2)]. We first construct spin-
weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity simulations (with
mass ratio 1 − 10) describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-
one-body waveforms describing the early inspiral. An analytical waveform family is constructed in frequency
domain by modeling the Fourier transform of the hybrid waveforms making use of analytical functions inspired
by perturbative calculations. The resulting highly accurate, ready-to-use waveforms are highly faithful (un-
faithfulness ' 10−4 − 10−2) for observation of GWs from non-spinning black hole binaries and are extremely
inexpensive to generate.

I. INTRODUCTION

LIGO’s recent observations of gravitational waves (GWs)
from coalescing binary black hole systems [1–3] mark the be-
ginning of a new branch of astronomy. Based on the observed
rate of GW signals, a large number of merger events can be
expected in upcoming observing runs of Advanced LIGO and
Virgo [4, 5], providing us a unique opportunity to constrain the
mass and spin distribution of binary black holes, to infer their
astrophysical formation channels and to probe the true nature
of extreme gravity.

The most sensitive GW detection pipelines use the technique
of matched filtering to detect GW signals from binary black
holes [6, 7], which involves cross-correlating the data with
theoretical templates of expected signals. Post detection, the
physical and astrophysical properties of the GW source are in-
ferred by comparing the data with theoretical signal templates,
by means of Bayesian inference [8]. Tests of general relativity
(GR) using GW observations also involves comparing the data
with GR templates, to investigate the consistency of the obser-
vation with the prediction of GR [9]. Thus, accurate theoretical
models of the expected signals are an essential input for GW
astronomy.

Theoretical templates describing the gravitational wave-
forms from the inspiral, merger and ringdown of binary black
holes have been computed in the recent years by combining
perturbative calculations in GR with large-scale numerical rel-
ativity simulations [10–25]. Most of these waveform families
aim to model only the leading (quadrupole; ` = 2,m = ±2)
modes of the gravitational radiation. Indeed, careful inves-
tigations suggested that the systematic errors introduced by
neglecting subdominant (non-quadrupole) modes in the param-
eter estimation of the LIGO events are negligible [26]. Due to
the near “face-on” orientations of the binaries and moderate
mass ratios, the effect of subdominant modes was negligible
in the observed signals – the systematic errors introduced by
neglecting the subdominant modes were well within the statis-

tical errors [26]. However, for binaries with large mass ratios
or high inclination angles or large signal-to-noise ratios, the
systematic errors can dominate the statistical errors, biasing
our inference of the physical and astrophysical properties of
the source (see, e.g., [27–29]). In addition, including the ef-
fect of subdominant modes can improve the precision with
which source parameters can be extracted, due to the increased
information content in the templates (see, e.g., [30–37]), po-
tentially improving the accuracy of various observational tests
of GR [38, 39].

In this paper we present an analytical waveform family de-
scribing GW signals from the inspiral, merger and ringdown
of non-spinning black-hole binaries. These waveforms are
constructed by combining perturbative calculations in GR with
numerical-relativity (NR) waveforms in the “phenomenologi-
cal” approach presented in a series of papers in the past [20–
25, 40–42]. This frequency domain, closed form waveform
family has excellent agreement (faithfulness > 0.99) with
“target” waveforms including subdominant modes, for bina-
ries with mass ratio up to 10. Target waveforms including
subdominant modes (with ` ≤ 4,m , 0) have been con-
structed by matching NR simulations describing the late inspi-
ral, merger and ringdown of the binary with post-Newtonian
(PN)/effective-one-body waveforms describing the early inspi-
ral. Our highly accurate, ready-to-use, analytical waveforms
are both effectual and faithful for observation of GWs from
non-spinning black hole binaries and are extremely inexpensive
to generate.

This paper is organized as follows: Section II presents the
construction of the analytical inspiral, merger, ringdown wave-
forms by combining numerical relativity with perturbative
calculations in general relativity. In particular, Section II A
describes the construction of hybrid waveforms by matching
the spherical harmonic modes of PN and NR waveforms, while
Section II B describes the construction of the analytical wave-
form family approximating these hybrid waveforms in the
frequency domain. The faithfulness of the new analytical
waveforms to the original hybrids is studied in Section II C.
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Simulation ID q Mωorb e # orbits

Fitting

SXS:BBH:0198 1.20 0.015 2.0 × 10−4 20.7
SXS:BBH:0201 2.32 0.016 1.4 × 10−4 20.0
SXS:BBH:0200 3.27 0.017 4.1 × 10−4 20.1
SXS:BBH:0182 4.00 0.020 6.8 × 10−5 15.6
SXS:BBH:0297 6.50 0.021 5.9 × 10−5 19.7
SXS:BBH:0063 8.00 0.019 2.8 × 10−4 25.8
SXS:BBH:0301 9.00 0.023 5.7 × 10−5 18.9
SXS:BBH:0185 9.99 0.021 2.9 × 10−4 24.9

Verification

SXS:BBH:0066 1.00 0.012 6.4 × 10−5 28.1
SXS:BBH:0184 2.00 0.018 7.6 × 10−5 15.6
SXS:BBH:0183 3.00 0.019 6.3 × 10−5 15.6
SXS:BBH:0182 4.00 0.020 6.8 × 10−5 15.6
SXS:BBH:0187 5.04 0.019 5.0 × 10−5 19.2
SXS:BBH:0181 6.00 0.017 7.9 × 10−5 26.5
SXS:BBH:0298 7.00 0.021 4.0 × 10−4 19.7
SXS:BBH:0063 8.00 0.019 2.8 × 10−4 25.8
SXS:BBH:0301 9.00 0.023 5.7 × 10−5 18.9
SXS:BBH:0185 9.99 0.021 2.9 × 10−4 24.9

TABLE I: Summary of the parameters of the NR waveforms used
in this paper: q ≡ m1/m2 is the mass ratio of the binary, Mωorb is
the orbital frequency after the junk radiation and e is the residual
eccentricity. The waveforms listed under the title Fitting are used to
produce the analytical fits described in Section II B while those listed
under the title Verification are used for assessing the faithfulness of
the analytical model in Section II C.

Section III presents some concluding remarks and discusses
our future work. Supplementary calculations and information
are presented in the Appendix.

II. THE WAVEFORM MODEL

The two polarizations h+(t) and h×(t) of GWs can be conve-
niently expressed as a complex waveform h(t) := h+(t)− i h×(t).
It is convenient to expand this in terms of the spin −2 weighted
spherical harmonics so that the radiation along any direction
(ι, ϕ0) in the source frame can be expressed as

h(t; ι, ϕ0) =

∞∑
`=2

∑̀
m=−`

Y−2
`m (ι, ϕ0) h`m(t). (2.1)

The spherical harmonic modes h`m(t) are purely functions of
the intrinsic parameters of the system (such as the masses
and spins of the binary), while all the angular dependence is
captured by the spherical harmonic basis functions Y−2

`m (ι, ϕ0).
Here, by convention, the polar angle ι is measured with respect
to the orbital angular momentum of the binary. The leading
contribution to h(t; ι, ϕ0) comes from the quadrupolar (` =

2,m = ±2) modes. The relative contributions of various sub-
dominant (nonquadrupole) modes depend on the symmetries
of the system. For non-spinning binaries, it can be seen from
the PN inspiral waveforms that the three subdominant modes

with the largest amplitudes are (` = 3,m = 3), (` = 4,m = 4)
and (` = 2,m = 1). This observation seems to hold through the
merger regime (described by NR waveforms) as well. Thus, in
this paper we focus on the modeling of these three subdominant
modes, apart from the dominant quadrupole modes. Note that,
due to the symmetry of non-spinning binaries, where the orbital
motion is fully restricted to a fixed plane, the negative m modes
are related to positive m modes by a complex conjugation. That
is h`−m = (−)` h∗`m [43]. Also, the m = 0 modes are comprised
of the nonlinear memory in the waveform, which has only
negligible effect in GW detection and parameter estimation. It
is also challenging to accurately extract this non-oscillatory
signal from NR simulations [44, 45]. Thus, only m > 0 modes
are considered in this paper.

A. Construction of hybrid waveforms

In this paper we construct an analytical waveform family
in the Fourier domain, that describes the three subdominant
modes (`m = 33, 44, 21) apart from the dominant 22 mode of
the GW polarizations from non-spinning black hole binaries.
We start by constructing the spherical harmonic modes of
hybrid waveforms by combining PN and NR waveforms in a
region where both calculations are believed to be accurate.

PN inspiral waveforms, scaled to unit total mass and unit
distance, can be written as

hPN
`m (t) = 2 η v2

√
16π

5
H`m e−i mϕorb(t), (2.2)

where η = m1m2/M2 is the symmetric mass ratio and M =

m1 + m2 is the total mass of the binary, v = (Mωorb)1/3 is the
PN expansion parameter, ωorb = dϕorb/dt is the orbital fre-
quency and ϕorb is the orbital phase. The PN mode amplitudes
H`m are currently computed up to 3PN1 accuracy by [43, 47–
49] while the 3.5PN orbital phase ϕorb(t) can be computed in
the adiabatic approximation using inputs given in [50] and
references therein.

In order to improve the accuracy of the inspiral waveforms,
we compute the phase evolution of the inspiral part from the 22
mode of the effective-one-body (EOB) waveforms calibrated
to NR simulations (SEOBNRv4 [13]). Hence our inspiral
waveforms are given by

hPN
`m (t) = 2ηv2

√
16π

5
H`m e−i mϕEOB22(t)/2, (2.3)

where ϕEOB22 is the phase of the 22 mode of the SEOBNRv4
waveform. Note that, for m = 2 modes, H`m contains imaginary
terms at order 2.5PN and above, which can be absorbed into
the phase. However, since this correction appears at order 5PN
and above in the phase, we neglect these corrections and use
|H`m| instead of H`m for the m = 2 modes.

1 The dominant, 22 mode inspiral model that we use here is actually 3.5PN
accurate [46].
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Hybrid waveforms containing all the relevant modes (` ≤
4, 1 ≤ m ≤ `) are constructed by matching NR modes hNR

`m (t)
with PN modes hPN

`m (t) with the same intrinsic binary param-
eters. The PN waveforms are matched with NR by a least
square fit over two rotations2 on the NR waveform and the
time-difference between NR and PN waveforms over an appro-
priately chosen matching interval (t1, t2), where the NR and
PN calculations are believed to be accurate.

mint0,ϕ0,ψ

∫ t2

t1
dt

∑
`,m

∣∣∣hNR
`m (t − t0) ei(mϕ0+ψ) − hPN

`m (t)
∣∣∣ . (2.4)

The hybrid waveforms are constructed by combining the NR
waveform with the “best matched” PN waveform in the follow-
ing way:

hhyb
`m (t) ≡ τ(t) hNR

`m (t − t′0) ei(mϕ′0+ψ′) + [1 − τ(t)] hPN
`m (t), (2.5)

where t′0, ϕ
′
0 and ψ′ are the values of t0, ϕ0 and ψ that minimizes

the difference δ between PN and NR waveforms. Above, τ(t)
is a weighting function defined by:

τ(t) ≡


0 if t < t1
t−t1
t2−t1

if t1 ≤ t < t2
1 if t2 ≤ t.

(2.6)

Our hybrid waveforms include spherical harmonic modes up
to ` = 4 and m = −` to ` in this analysis, except the m =

0 modes. We use a subset of these hybrid waveforms for
constructing the analytical waveforms in the Fourier domain
and to test the faithfulness of the analytical waveforms. The
NR waveforms that were used to construct the hybrids are listed
in Table I. Note that, although the analytical waveforms only
model the 22, 33, 44, 21 modes, their faithfulness is established
by computing their mismatches with hybrids containing all the
modes up to ` = 4, except the m = 0 modes.

B. Construction of the analytical waveform model

In this section, we construct an analytical model for the
Fourier transform h`m( f ) of the real part of h`m(t) for the
22, 33, 44, 21 modes. Due to the symmetry of the non-spinning
binaries, the Fourier transform of the imaginary part of h`m(t)
can be computed by adding a phase shift of π/2 to h`m( f )
(see Appendix C). Writing this in terms of a Fourier domain
amplitude and phase

h`m( f ) = A`m( f ) ei Ψ`m( f ), (2.7)

2 These two rotations are necessary due to the freedom in choosing the frame
with respect to which the NR and PN waveforms are decomposed into
spherical harmonics modes. In general three Euler rotations (ι, ϕ0, ψ) can
be performed between the two frames. However, one angle (ι) is fixed by
the choice of aligning the z axis along the direction of the total angular
momentum of the binary [27, 51].

our phenomenological model for the amplitude of each mode
is the following:

A`m( f ) =


AIM
`m( f ); f < f A

`m

ARD
`m ( f ); f ≥ f A

`m.
(2.8)

The Fourier frequencies below the matching frequency f A
`m

roughly correspond to the inspiral-merger stages of the signal,
while the frequencies above f A

`m roughly corresponds to the
ringdown stage. The amplitude model for the inspiral-merger
part is given by

AIM
`m( f ) = APN

`m ( f )

1 +

k=1∑
k=0

(
αk, `m + αL

k, `m ln v f

)
vk+8

f

 , (2.9)

where v f = (2πM f /m)1/3 and APN
`m ( f ) is the Padé resummed

version of the 3.5PN (3PN) amplitude of 22 (33, 44, 21) mode
in the Fourier domain (see Appendix A). The Padé resummed
version of the PN amplitude was employed to provide a better
agreement with the late inspiral part of the hybrid amplitude.
The inspiral-merger amplitude is modeled as the product of a
Padè resummed PN amplitude and another function that mim-
ics a PN-like expansion. Such a form allows the resulting
function to include very higher order terms, thus providing
better fits to the late inspiral and merger part of the hybrid
amplitude 3. Above, αk, `m, αL

k, `m and f A
`m are phenomenolog-

ical parameters whose values are determined from fits with
numerical Fourier transforms of the hybrid waveforms.

The ringdown amplitude is modeled from the Fourier trans-
form of a damped sinusoid, which is exponentially damped
to mimic the high-frequency fall of the NR waveforms in the
Fourier domain. That is,

A`m( f )RD = w`m e−λ`m |B`m( f )| , (2.10)

where B`m( f ) is the Fourier transform of the `,m, n = 0 quasi-
normal mode of a Kerr black hole with mass M f and dimen-
sionless spin a f [52], determined from initial masses:

B`m( f ) =
σ`m − i f

f 2
`m + (σ`m − i f )2

. (2.11)

The frequencies f`m and σ`m are the real and imaginary parts of
the `,m, n = 0 quasi-normal mode frequency Ω`m0 = 2π ( f`m +

iσ`m). The phenomenological parameters λ`m in Eq.(2.10)
are determined from fits with numerical Fourier transforms of
the hybrid waveforms, while w`m is a normalization constant
to make the amplitudes continuous at the merger-ringdown
matching frequency f A

`m. The mass M f and spin a f of the
final black hole are computed from the masses m1 and m2 of
the initial black holes, using fitting formulae calibrated to NR
simulations. For this work, we use the fitting formulae given
by [15].

3 This idea is similar in spirit to the “factorized resummed amplitude” for
effective one body waveforms proposed by [18].
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FIG. 1: Comparison between the amplitude (top panels) and phase (bottom panels) of the hybrids and analytical waveforms for selected mass
ratios q = 2.32 (left panels) and q = 9.99 (right panels). In each plot, the solid lines correspond to hybrid waveforms for different modes and the
dashed lines correspond to the analytical waveforms for the same mode. The legends show the `m value for different modes. The black dots
show the transition frequency ( f A

`m and f P
`m) from the inspiral-merger to the ringdown part of the phenomenological amplitude and phase models.

Our analytical model for the phase of the Fourier domain
waveform reads

Ψ`m( f ) =


ΨIM
`m( f ) ; f < f P

`m

ΨRD
`m ( f ) ; f ≥ f P

`m

where the phase model for the inspiral-merger part of each
mode takes the following form:

ΨIM
`m( f ) = ΨPN

`m ( f ) +

k=4∑
k=0

(βk, `m + βL
k, `m ln v f + βL2

k, `m ln2 v f ) vk+8
f ,

(2.12)
where ΨPN

`m ( f ) is the PN phasing of the `m mode, while the
higher order phenomenological coefficients βk, `m, βL

k, `m, βL2
k, `m

are determined from fits against the phase of hybrid waveforms.
This particular phenomenological ansatz is motivated from the
PN expansion of the frequency domain GW phasing of the
inspiral waveforms in the test particle limit (see, e.g., [53]).

For the ringdown part of the phase we simply attach the
phase of Fourier transform B`m( f ) of the `,m, n = 0 quasi-
normal mode at a transition frequency f P

`m. Thus, our ringdown
phase model reads

ΨRD
`m ( f ) = 2π f tP

`m + φP
`m + arctan B`m( f ), (2.13)

where tP
`m and φP

`m are computed by matching two phases (ΨIM
`m

and ΨRD
`m ) and their first derivative at the matching frequency

f P
`m. Figure 1 provides a comparison of the amplitude and phase

of the numerical Fourier transform of the hybrid waveforms,
along with the analytical fits given by Eqs. (2.8) and (2.12).

Finally, the phenomenological parameters describing the
analytical model are represented as quadratic functions of the
symmetric mass ratio η

αi, `m = ai, `m + bi, `m η + ci, `m η
2 ,

αL
i, `m = aL

i, `m + bL
i, `m η + cL

i, `m η
2 ,

βk, `m = ak, `m + bk, `m η + ck, `m η
2 ,
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βL
k, `m = aL

k, `m + bL
k, `m η + cL

k, `m η
2 ,

βL2
j, `m = aL2

j, `m + bL2
j, `m η + cL2

j, `m η
2 ,

λ`m = (aλ`m + bλ`m η + cλ`m η
2) ,

f A
`m = (aA

`m + bA
`m η + cA

`m η
2) /M,

f P
`m = (aP

`m + bP
`m η + cP

`m η
2) /M . (2.14)

where the index i runs from 0 to 1, k runs from 0 to 4 and j is
0 except for 21 mode ( j=0,1). Figure 2 shows the values of
the phenomenological parameters estimated from the hybrid
waveforms, as well as the fits described by Eq. (2.14).

C. Assessing the accuracy of the analytical model

Here we quantify the faithfulness of the analytical model
that we constructed by computing the mismatches of these
with the hybrid waveforms, which are assumed as our fiducial
waveforms. Indeed, relative contribution of different modes
depend on the orientation of the binary with respect to the line
of sight. Figure 3 shows some examples of the hybrid wave-
forms for different orientations along with the corresponding
waveforms generated from our analytical model (by taking
the inverse Fourier transform). Computation of these polariza-
tions h+(t) and h×(t) is described in Appendix C. Polarizations
of the hybrid waveforms have been computed using all the
modes up to ` = 4, except the m = 0 modes; see, Eq. (C1),
while the analytical phenomenological waveforms have been
computed using `m = 22, 21, 33, 44 modes only, by comput-
ing the inverse Fourier transform of the expression Eq. (C7)
numerically.

Since the relative contribution to the observed h(t) from
different modes depend on the relative orientation of the binary,
the mismatches of our analytical phenomenological waveforms
with the hybrids will be a function of the orientation angles.
Figure 4 shows the mismatches for different orientations as a
function of the total mass M and mass ratio q of the binary.
Relative contribution from subdominant modes are expected
to be the smallest [largest] for binaries with inclination angles
ι = 0 [ι = π/2]. The figure shows that the mismatches are less
than 1% for all orientations, illustrating the high faithfulness
of our phenomenological waveforms. Note that GW detectors
have a strong selection bias towards small inclination angles
(ι→ 0). Hence, the mismatches averaged over all orientations
are likely to be comparable to the ones reported in the left
panel of the Figure (ι = 0).

III. SUMMARY AND CONCLUSIONS

In this paper, we presented an analytical family of frequency-
domain waveforms describing the GW signals from non-
spinning black-hole binaries, including some of the leading
subdominant modes of the radiation (`m = 21, 33, 44), apart
from the dominant (`m = 22) mode. The construction of these
analytical waveforms involves two major steps: 1) the construc-
tion of a set of hybrid waveforms by combining the spherical
harmonic modes of PN and NR waveforms corresponding to

a limited set of mass ratios 1 ≤ q ≤ 10, 2) representing the
numerical Fourier transform of the hybrid waveforms by a suit-
able set of analytical functions which allow us to interpolate
these waveforms smoothly over the parameter space. The ana-
lytical gravitational waveforms that are constructed in this way
are highly faithful (mismatch 0.01%− 1%) to our target hybrid
waveforms that include all the modes up to ` = 4 (except the
m = 0 modes).

The Fourier domain amplitude of our phenomenological
waveforms contain a inspiral-merger part that is smoothly
matched to the ringdown part. The inspiral-merger ampli-
tude is modeled as the product of a Padè resummed version
of the Fourier domain PN amplitude and another function that
mimics a PN-like expansion whose coefficients are determined
by fitting against the Fourier-domain amplitude of the hybrid
waveforms. The ringdown part is modeled as the Fourier trans-
form of a time-symmetric damped sinusoid, which is expo-
nentially damped to mimic the high-frequency fall of the NR
waveforms in Fourier domain. Similarly, the Fourier domain
phase is modeled as a PN-like series including the known coef-
ficients from PN theory till 3.5PN order, while the higher order
“pseudo-PN” terms are determined by fitting against the hybrid
waveforms. The resulting waveforms are also computationally
inexpensive to generate, allowing their direct implementation
in GW searches and parameter estimation.

A note on the limitations of this work: These waveforms aim
to model the GW signals from non-spinning black hole bina-
ries in quasicircular orbits. Spin effects of black holes are not
considered. (We note that, an approximate phenomenological
model for spinning binaries, making use of rescaled amplitudes
and frequencies of the ` = m = 2 mode for modeling the non-
quadrupole modes has been developed recently [42] and an
EOB model is under development [55]). Additionally, we con-
sider only a subset of the subdominant modes `m = 21, 33, 44.
Although the subdominant modes that we neglect here makes
no appreciable contributions to the total signal for the mass
ratios that we consider, this may not be the case for even higher
mass ratios. Modeling of some of the subdominant modes (e.g.,
`m = 32, 43, etc.) that we neglect here could be harder, due
to the effect of “mode-mixing” [56]. There is ongoing work
that aims to include the spin effects, to model the subdominant
modes that are neglected here, and to extend the validity of
these waveforms making use of numerical waveforms model-
ing binary black holes with extreme mass ratios.
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FIG. 2: The estimated values of the phenomenological parameters describing the analytical waveforms, plotted against the symmetric mass ratio
η. Different markers correspond to different modes. Also plotted are the fits given by Eqs. (2.14).
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Appendix A: Padé summation on the post-Newtonian amplitude
in the Fourier domain

The PN expression for various mode amplitudes have a
stationary point at high frequencies when higher order PN cor-
rections are included. This makes it inconvenient to model
the amplitude of the phenomenological waveforms as a fac-
torized correction to the PN waveforms as shown in Eq.(2.9).
In order to resolve this issue, and to generally improve the
agreement of PN amplitude with that of the hybrid waveforms,
we construct our inspiral amplitude model by performing Padé
summation of these expressions. Padé summation of a given
function involves finding a suitable rational function whose
Taylor expansion to a given order matches exactly with the Tay-
lor expression of the original function to the same order. For
instance, Padé summation of a simple power series

∑n
k=0 anxn

can be written as

Pp
q (x) =

∑p
k=0 bk xk∑q
k=0 ck xk

, (A1)

where p + q = n. Each of these coefficients (bk and ck) then
can readily be obtained by demanding that a Taylor expansion
of the above to order n reproduces exactly the first n terms the
given power series. Such rational functions are called Padé
approximants (see App. A of Ref. [57] for a related discussion).

After comparing various Padé approximants correspond-
ing to PN amplitude expressions for each mode we find the
most suitable (i.e., an approximant with no point of inflection)
approximant corresponds to the choice of rational functions
associated with p = 0 and q = n, i.e., P0

n. For instance for the
` = m = 2 mode whose (normalized) amplitude is given by the
series,

∑7
k=0 αkv

k, the Padé approximant we find most suitable
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FIG. 5: Comparison of the Padé approximant of the PN inspiral amplitude (thin, solid lines) with regular Taylor expanded amplitude (thin,
dotted lines) and the amplitude of the hybrid waveform (thick, solid lines) for different modes `m = 21, 22, 33, 44. The left panel corresponds to
mass ratio q = 2.32 while the right panel corresponds to mass ratio q ' 10.

for our purposes is given by

P0
7(v) =

β0∑7
k=0 γkvk

. (A2)

Moreover by the virtue of the use of normalized amplitude
expressions in constructing the Padé approximants we can
choose (without any loss of generality), β0 = γ0 = 1, which
leads to the following simple expression

P0
7(v) =

1
1 +

∑7
k=1 γkvk

. (A3)

Figure 5 shows a comparison of the standard Taylor expanded
3.5PN (3PN) amplitude for 22 (21, 33, 44) with our correspond-
ing resummed Padé function as well as the amplitude of the
hybrid waveform in the Fourier domain. Explicit expressions
for Padé approximants for modes we consider here are listed
in Appendix B below.

Appendix B: Padé resummed frequency domain expressions for
the inspiral amplitude

As discussed above, occurrence of divergences in the PN am-
plitudes when including higher PN terms motivates us to find
Padé resummed expressions of the PN amplitudes as our inspi-
ral amplitude model. Here we provide, analytical expression
for the complete inspiral model for each mode in the frequency
domain which are constructed using the prescription listed in
Ref. [58] and uses Stationary Phase Approximation. Resulting
expression for each mode of the gravitational wave polariza-
tions in the frequency domain take the following general form

h̃`m( f ) =
M2

DL
π

√
2η
3
v−7/2

f e−i m Ψ(v f ) H`m(v f ) . (B1)

Here, M and η again denote the total mass and symmetric
mass ratio parameter of the binary whereas DL is the lumi-
nosity distance of the source. The quantity v f is given by
v f ≡ (2 πM f /m)1/3 and Ψ(v f ) represents the orbital phase of
the binary computed using stationary phase approximation (see
for instance Ref. [58] for a related discussion). Finally, H`m
are the Padé resummed version of the inspiral amplitudes and
takes following form for the modes whose complete models
are presented in this study. They read

H22 = 22P0
7(v f ) (B2a)

H21 = i

√
2

3
δ [21P0

5(v f )] v f (B2b)

H33 = −i
3
4

√
5
7
δ [33P0

5(v f )] v f (B2c)

H44 = −
4
9

√
10
7

(1 − 3 η) [44P0
4(v f )] v2

f (B2d)

here, `mP0
n(v f ) are Padé resummed expressions for (normal-

ized) inspiral amplitudes corresponding to p = 0 and q = n
(see Appendix A for related discussions) and can be expressed
in the following general form.

`mP0
n(v) =

1
1 +

∑n
k=1 γ

`m
k vk

, (B3)

where γ`m corresponding to each mode can be written in the
following form,

γ22
1 = 0 (B4a)

γ22
2 =

323
224
−

451
168

η (B4b)

γ22
3 = 0 (B4c)
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γ22
4 =

44213383
8128512

−
92437
48384

η +
483509
169344

η2 (B4d)

γ22
5 =

85π
64

+

(
24 i −

85π
16

)
η (B4e)

γ22
6 =

40919017211
1226244096

−
428 i π

105
+

(
−

1906061676931
15021490176

+
205 π2

48

)
η +

6864704395
1251790848

η2 −
48013667
34771968

η3 (B4f)

γ22
7 =

633281π
1161216

+

(
2357 i
324

−
21367 π

3456

)
η +

(
−

86519 i
945

+
496409 π

24192

)
η2 (B4g)

γ21
1 = 0 (B4h)

γ21
2 = −

335
672
−

117
56

η (B4i)

γ21
3 =

i
2

+ π + 2 i ln 2 (B4j)

γ21
4 =

2984407
8128512

+
62659
12544

η +
96847
56448

η2 (B4k)

γ21
5 = −

335i
1344

+
1115π
1344

+ η

(
1255i
112

−
885π
112

−
145
28

i ln 2
)

−
335
336

i ln 2 (B4l)

γ33
1 = 0 (B4m)

γ33
2 =

1945
672

−
27
8
η (B4n)

γ33
3 =

2 i
5
− π + 6 i ln 2 − 6 i ln 3 (B4o)

γ33
4 =

4822859617
447068160

−
5571877
887040

η +
301321
63360

η2 (B4p)

γ33
5 =

389 i
32
−

2105π
1344

−
1945 i
112

ln(3/2) + η

(
33079 i
1944

−
23π
16

+
93 i
4

ln(3/2)
)

(B4q)

γ44
1 = 0 (B4r)

γ44
2 =

1
1 − 3η

(
−

158383
36960

+
128221

7392
η −

1063
88

η2
)

(B4s)

γ44
3 =

1
1 − 3η

(
−

42 i
5

+ 2π + η

(
1193 i

40
− 6π − 24i ln 2

)
+ 8 i ln 2) (B4t)

γ44
4 =

1
(1 − 3η)2

(
5783159561419
319653734400

−
6510652977943

53275622400
η

+
8854729392203

35517081600
η2 −

1326276157
8456448

η3 +
63224063
1006720

η4
)
.

(B4u)

Finally, the orbital phase takes the following form in Fourier
domain

Ψ(v f ) = 2π f t0 − π/4 +
3

256 η v5
f

 7∑
k=0

ψkv
k
f

 , (B5)

where, t0 represents a reference time4 and ψk denote the PN
corrections to the leading order orbital phase. These read

ψ0 = 1, (B6a)
ψ1 = 0, (B6b)

ψ2 =
3715
756

+
55
9
η, (B6c)

ψ3 = −16 π, (B6d)

ψ4 =
15293365

508032
+

27145
504

η +
3085

72
η2, (B6e)

ψ5 = π

(
38645
756

−
65
9
η

)
(1 + 3 ln v f ), (B6f)

ψ6 =
11583231236531

4694215680
−

6848γE

21
−

640π2

3

+

(
−

15737765635
3048192

+
2255π2

12

)
η +

76055
1728

η2 −
127825

1296
η3

−
6848

21
ln(4v f ), (B6g)

ψ7 =
77096675π

254016
+

378515π
1512

η −
74045π

756
η2, (B6h)

where γE is the Euler’s constant.

Appendix C: Computing the + and × polarization waveforms
from the spherical harmonic modes in the frequency domain

The complex time-series, h = h+ − i h×, can be decomposed
into a sum of spherical harmonic modes as

h(t) =

+∞∑
`=2

∑̀
m=−`

h`m(t) Y`m
−2 (ι, ϕ0) , (C1)

where Y`m
−2 ’s (the spin-weighted spherical harmonics of weight

−2) are functions of the spherical angles (ι, ϕ0) defining the
binary’s orientation, and are given as

Y`m
−2 =

√
2` + 1

4π
d `m

2 (ι) ei mϕ0 , (C2)

where d `m
2 (ι) are the Wigner d functions (e.g., [59]). The

spherical harmonic modes of the waveform in time-domain
have the following generic form

h`m(t) = A`m(t) eiϕ`m(t) (C3)

4 Note that we have set the phase at reference time to zero, since phase
shifts can be introduced on the waveform by the spherical harmonic basis
functions; see Eq.(C7).
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Further, m < 0 modes are related to m > 0 modes as h`,−m(t) =

(−)`h∗`m(t) [43]. Using Eq. (C2) and Eq. (C3) in Eq. (C1) and
making use of the above property we can write expressions for
the real and imaginary part as

h+(t) =

+∞∑
`=2

∑̀
m=1

√
2` + 1

4π

[
(−)`d `,−m

2 (ι) + d `m
2 (ι)

]
A`m(t) cos[ϕ`m(t) + mϕ0], (C4a)

h×(t) =

+∞∑
`=2

∑̀
m=1

√
2` + 1

4π

[
(−)`d `,−m

2 (ι) − d `m
2 (ι)

]
A`m(t) sin[ϕ`m(t) + mϕ0]. (C4b)

The frequency domain + and × waveforms can now be ob-
tained simply by taking Fourier Transform of h+(t) and h×(t),

respectively

h̃+( f ) =

+∞∑
`=2

∑̀
m=1

√
2` + 1

4π

[
(−)`d `,−m

2 (ι) + d `m
2 (ι)

] {
cos(mϕ0) h̃R

`m( f ) − sin(mϕ0) h̃I
`m( f )

}
, (C5a)

h̃×( f ) =

+∞∑
`=2

∑̀
m=1

√
2` + 1

4π

[
(−)`d `,−m

2 (ι) − d `m
2 (ι)

] {
sin(mϕ0) h̃R

`m( f ) + cos(mϕ0) h̃I
`m( f )

}
. (C5b)

where h̃R
`m( f ) and h̃I

`m( f ) are the Fourier transforms of the real
and imaginary parts of h`m(t).

h̃R
`m( f ) =

∫ ∞

−∞

e2πi f tA`m(t) cosϕ`m(t) dt, (C6a)

h̃I
`m( f ) =

∫ ∞

−∞

e2πi f tA`m(t) sinϕ`m(t) dt. (C6b)

We know that for non-spinning binaries (as well as for non-
precessing binaries), h̃I

`m( f ) = −ih̃R
`m( f ). This allows us to

write Eq. (C5) as

h̃+( f ) =

+∞∑
`=2

∑̀
m=1

[
(−)`

d `,−m
2 (ι)

d `m
2 (ι)

+ 1
]

Y`m
−2 (ι, ϕ0) h̃R

`m( f ) (C7a)

h̃×( f ) = −i
+∞∑
`=2

∑̀
m=1

[
(−)`

d `,−m
2 (ι)

d `m
2 (ι)

− 1
]

Y`m
−2 (ι, ϕ0) h̃R

`m( f ).

(C7b)

Note that h̃R
`m( f ) can be written as

h̃R
`m( f ) = A`m( f ) ei Ψ`m( f ). (C8)

The phenomenological model for the frequency domain am-
plitudes A`m( f ) and phases Ψ`m( f ) are obtained by fitting the
FFT of hybrids.

The signal observed at a detector is a linear combination
of the two polarizations h+ and h×. The Fourier transform
of the observed signal can be written in terms of the Fourier
transform of the two polarizations as

h̃( f ) = F+(θ, φ, ψ) h̃+( f ) + F×(θ, φ, ψ) h̃×( f ), (C9)

where the antenna pattern functions F+(θ, φ, ψ) and F×(θ, φ, ψ)
are functions of two angles (θ, φ) describing the location of the
binary in the sky and the polarization angle ψ.
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