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We present new simulations of decaying hydromagnetic turbulence for a relativistic equation of
state relevant to the early universe. We compare helical and nonhelical cases either with kinetically or
magnetically dominated initial fields. Both kinetic and magnetic initial helicities lead to maximally
helical magnetic fields after some time, but with different temporal decay laws. Both are relevant to
the early universe, although no mechanisms have yet been identified that produce magnetic helicity
with strengths comparable to the big bang nucleosynthesis limit at scales comparable to the Hubble
horizon at the electroweak phase transition. Nonhelical magnetically dominated fields could still
produce picoGauss magnetic fields under most optimistic conditions. Only helical magnetic fields
can potentially have nanoGauss strengths at scales up to 30 kpc today.
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I. INTRODUCTION

A host of astrophysical observations indicate the pres-
ence of coherent magnetic fields with strengths at the
microGauss (µG) level from the scale of galaxies to clus-
ters of galaxies [1]. It is thought that such fields may
have originated from cosmological or astrophysical seed
fields which were subsequently amplified during struc-
ture formation, via processes like adiabatic compression
and magnetohydrodynamic (MHD) turbulence instabili-
ties [2–4]. The statistical properties of the resulting mag-
netic field, viz. the amplitude, spectral shape, and the
correlation length, depend strongly on the initial condi-
tions, i.e., on the particular generation mechanism.

Primordial magnetic fields can be generated through
causal processes which include all astrophysical scenar-
ios as well as primordial magnetogenesis occurring af-
ter inflation. In all those cases, the correlation length
is bounded and limited by the causal horizon which is
associated with the Hubble horizon scale at the time of
magnetic field production [5]. If one accounts for the
turbulent magnetic evolution during the expansion of the
universe, the correlation length may reach galactic length
scales today [6]. In contrast, Refs. [7, 8] assumed that
the turbulent evolution is less effective in increasing the

∗Corresponding author; the authors are listed alphabetically.
†Electronic address: tinatin@andrew.cmu.edu

magnetic correlation length and obtained a faster decay
of magnetic energy.
The evolution of the magnetic field and other observ-

able signatures depend strongly on the magnetic helicity
of the initial seed field [9]. A number of astrophysical ob-
jects, ranging from stars [10] to jets from active galactic
nuclei have detectable magnetic helicity [11]. Usually, the
magnetic helicity is initially much less than the maximum
possible value, which is given by the product of magnetic
energy and the magnetic correlation length. However,
the fractional helicity increases due to MHD turbulence.
This leads to a maximally helical configuration of the
observed fields [12].
If primordial magnetic helicity is detected, it will in-

dicate a statistically significant violation of parity (or
mirror symmetry) in the early universe, and may point
towards a resolution to the matter-antimatter asymme-
try problem [13–16]. To generate causal helical magnetic
fields in the early universe, one requires fundamental
parity violation that affects the outcome of cosmologi-
cal phase (electroweak or QCD) transitions [17–32].
Assuming that the (comoving) mean energy density of

the magnetic field EM ≡ 〈B2〉/2, where B is the mag-
netic field in Lorentz-Heaviside units, depends only on
the present day temperature T0 and fundamental con-
stants such as the Boltzmann constant kB, the reduced
Planck constant ~, and the speed of light c, one finds, on
dimensional grounds,

〈B2〉/2 <∼ ǫ1(kBT0)
4/(~c)3, (1)

where ǫ1 is a dimensionless number. For ǫ1 = 1, this
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results in a root mean square (rms) field strength of
3×10−6G. (To get the field in Gauss, one has to multiply

the Lorentz-Heaviside value by
√
4π.) A certain fraction

of this magnetic field strength is also what is known as
the big bang nucleosynthesis bound (BBN), which im-
plies that the total energy density budget, in addition
to radiation and other relativistic components, should
not exceed 10% of the radiation energy density at the
moment of BBN. Equation (1) implies that the mean co-
moving magnetic energy density is determined by today’s
temperature T0. On the other hand, today’s temperature
is set by the photon (radiation) energy density, and the
dimensionless quantity ǫ1 is a ratio between the mean
comoving magnetic energy and today’s radiation energy
densities.
The conserved magnetic helicity per unit volume, i.e.,

the mean magnetic helicity density1 is roughly given by
〈B2〉 ξM, where ξM is the magnetic correlation length.
As above, assuming that this product depends only on
T0 and the fundamental constants kB, ~, and c, one finds
[33]

〈B2〉 ξM <∼ ǫ2(kBT0)
3/(~c)2, (2)

where ǫ2 is a dimensionless number. This results in a field
strength of 5× 10−19G for ξM = 1Mpc and ǫ2 = 1. (For
ξM = 10 kpc, which is more suitable for magnetic fields
produced during the electroweak phase transition [6], the
corresponding field strength would be 5× 10−18G.)
Larger values of 〈B2〉 ξM are possible if the underlying

physics involves another fundamental constant, for ex-
ample Newton’s constant G. In that case, again just on
dimensional grounds, one can write

〈B2〉 ξM <∼ ǫ3 (a⋆/a0)
3 G−3/2

~
−1/2c11/2, (3)

where a⋆/a0 = 8 × 10−16 is the ratio of the scale factor
at the time of magnetic field generation (the electroweak
phase transition) to that at the present time. This cor-
responds to a field strength of 4× 106G for ξM = 1Mpc
and ǫ3 = 1. Alternatively, of course, geometric means
between Eqs. (2) and (3) are conceivable. Of particular
interest would be a 2 : 1 mixing ratio,

〈B2〉 ξM <∼ ǫ
2/3
2 ǫ

1/3
3 (a⋆/a0) (kBT0)

2 G−1/2
~
−3/2c1/2, (4)

i.e., 10−20ǫ
2/3
2 ǫ

1/3
3 G2 Mpc, or 10−10G for ξM = 1Mpc

and ǫ2 = ǫ3 = 1. This mixing ratio corresponds to the
magnetic field being at the BBN limit and ξM being com-
parable to the Hubble scale.
The considerations above do not allow us to predict the

maximum available magnetic helicity unless some physi-
cal mechanism is identified. In the case of the chiral mag-
netic effect [20, 31], for example, Newton’s constant does

1 In the following we talk about magnetic helicity and omit the
specification to mean helicity density for simplicity.

not enter, and so Eq. (2) does impose a rather stringent
constraint. However, if stronger magnetic helicities are
to be produced by some as yet unknown mechanism [34],
this should allow us to identify a nonvanishing mixing
ratio between Eqs. (2) and (3). The ratio 2:1 is physi-
cally appealing, but by no means the only possible choice.
Note, however, that the 2:1 ratio is also being reflected in
the magnetogenesis scenario with a strong charge-parity
(CP) violation. One such option is presented by the sce-
nario of Ref. [22], in which maximal helicity is produced
through Chern-Simons CP violation leading to magnetic
fields correlated on 100 kpc scales.
In this paper we focus on magnetogenesis mechanisms

during the electroweak phase transition, as proposed in
Refs. [17, 18, 23, 28, 29], assuming that the electroweak
phase transition is strongly first order. Our main goal is
to study the dynamical evolution of the generated mag-
netic field during the expansion of the universe and es-
timate if it can serve as the initial seed for the observed
magnetic fields in galaxies and clusters.
We will determine the evolution of the magnetic field

from the electroweak epoch until the epoch of recombi-
nation. We can evolve the magnetic field from recombi-
nation to the present epoch by using the fact that the
primordial plasma is neutral after recombination and the
free MHD decay stops, so the comoving amplitude, spec-
tral shape, and helicity of the magnetic field stay un-
changed until large-scale structure formation and reion-
ization. In the following, we neglect further nonlinear
evolution of the magnetic field during large-scale struc-
ture formation and reionization.
Since the first order phase transition proceeds via bub-

ble nucleation and subsequent collisions of these bubbles
[35], there is stirring of the plasma at high Reynolds
numbers and consequent generation of turbulence. This
occurs in addition to the magnetic fields that are pro-
duced. Correspondingly, the turbulent motions can be (i)
magnetically dominant, (ii) hydrodynamically dominant
(i.e., magnetically subdominant), or (iii) have approxi-
mate equipartition between magnetic and kinetic ener-
gies. We address all these cases separately. Most of the
earlier investigations have employed magnetically domi-
nated turbulence [9, 36]. Recently, for the first time, we
have considered a magnetically subdominant case, but
with initial kinetic helicity [37].2

In Sec. II we briefly review the electroweak phase tran-
sition magnetogenesis, and we determine the initial con-
ditions for further evolution of the magnetic field. We
study the evolution of MHD turbulence under the initial
conditions presented in Sec. II using direct numerical sim-
ulations (DNS) in Secs. III and IV. We discuss our results
and conclude in Secs. V and VI, respectively. From now

2 The generation of kinetic helicity during parity or chirality vi-
olating electroweak phase transitions can be expected since the
interaction strengths of the left- and right-handed particles are
different.
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on, we use natural (~ = kB = c = 1) Lorentz-Heaviside
units. So there are no factors of 4π in the Maxwell equa-
tions and the magnetic energy density is B2/2. Unless
specified, t denotes the conformal time, dt = dτ/a(τ)
(with τ the physical time, and a = a(τ) the scale fac-
tor). We normalize the scale factor to be unity today,
i.e. a0 = a(τ = τ0) = 1.
The expansion of the universe can be eliminated from

the relativistic MHD equations through the use of suit-
ably rescaled (comoving) quantities [38]. For example,
we use the comoving value for the magnetic field, i.e.,
B → a2B, which also reflects magnetic flux conservation
for a frozen-in magnetic field in the expanding universe.
To avoid confusion B̃ will denote the physical magnetic
field.

II. ELECTROWEAK PHASE TRANSITION

MAGNETOGENESIS

We investigate the scenario where a cosmological mag-
netic field is generated during baryogenesis at the elec-
troweak phase transition at conformal time t = t⋆ (that
corresponds to the temperature T⋆). The phase transi-
tion is assumed to be strongly first order, and the mag-
netic field is produced by anomalous baryon number vio-
lation as described in Refs. [17, 23, 28–30, 39]. The mag-
netic field immediately after production is assumed to
be a statistically homogeneous and isotropic, Gaussian-
distributed vector field, and is described in terms of the
equal time correlation function [40],

〈B∗
i (k, t)Bj(k

′, t)〉 = (2π)3δ3(k − k′)Fij(k, t), (5)

where B(k, t) is the Fourier transform3 of B(x, t). The
correlation function Fij(k, t) has nonhelical (symmetric)
and helical (antisymmetric) components,

Fij(k, t)

(2π)3
= Pij(k̂)

EM(k, t)

4πk2
+ iǫijlkl

HM(k, t)

8πk2
, (6)

where Pij(k̂) ≡ δij − k̂ik̂j is the projection operator that

projects any vector in the direction orthogonal to k̂ and
ensures the solenoidal nature of the magnetic field.
Note that the form of the correlation function in

Eq. (5) assumes statistical isotropy – rotational symme-
try is preserved, while mirror (parity) symmetry is broken
by the helical component. Assuming that the real space
two-point correlation function 〈B(x)B(x+ r)〉 vanishes

3 We use the following convention for the forward and inverse
Fourier transforms of an arbitrary vector field A(x)

Ai(k) =

∫
d3xAi(x) e

ik·x,

Ai(x) =

∫
d3k

(2π)3
Ai(k) e

−ik·x.

for |r| → ∞, the form of the correlator Fij(k, t) in Eq. (6)
is strictly valid only if the spectrum EM(k, t) falls off
faster than k2 as k → 0 and fixed time t [40].4

A. Modeling Primordial Magnetic Field

Motivated by electroweak baryogenesis, extensions of
the standard model, in which the electroweak phase
transition is strongly first order, have been considered
(recently in [42]). The models include the standard
model with an extra singlet [43], the two-Higgs doublet
model [44], and the Next-to-Minimal Supersymmetric
Standard Model (NMSSM) [44]. For our work we will
assume that there is a strong first order phase transition
at the electroweak epoch [45]. The phase transition then
proceeds by bubble nucleation and growth, and since it is
a strong first order transition, the typical bubble size at
percolation can be large, perhaps even of the order of τ⋆.
During the phase transition, there are baryon number vi-
olating particle interactions in the medium that also gen-
erate helical magnetic fields as a by-product [23, 28, 30].
Far outside the bubbles, where the electroweak symme-
try is unbroken, we expect the magnetic fields to be in
thermal equilibrium. Inside the bubbles, the electroweak
symmetry is broken, the weak gauge fields are massive,
and baryon number violation is suppressed. Then there
is no magnetic field production within the bubbles. How-
ever, any magnetic field that is generated just outside the
bubble walls gets trapped once the bubble expands fur-
ther and this magnetic field can survive. Once the phase
transition is over, space is filled with helical magnetic
fields that were generated by baryon number violation
occurring near the bubble walls.
Baryon number violating processes will sometimes pro-

duce baryons and sometimes anti-baryons. CP violating
terms in the model will lead to a slight excess of baryons.
In terms of magnetic fields, this means that both left-
and right-handed magnetic fields will be produced but
there will be an excess of left-handed helicity.
A strong first order electroweak phase transition is also

likely to produce turbulence in the cosmological medium
[35]. Particles of the cosmological medium are massless
outside the bubbles and massive within. Thus the bubble

4 The causal magnetogenesis mechanisms considered here do not
include magnetic fields generated during cosmological inflation
in which a scale invariant spectrum with EM(k) ∝ k−1 is pro-
duced. A scale-invariant spectrum has an unlimited correlation
length scale and cannot be generated by causal processes dur-
ing cosmological phase transitions. Following Ref. [40], the re-
quirement that the correlation function in Eq. (5) be analytic
for k → 0 leads to EM(k) ∝ k4 (the so called Batchelor spec-
trum). A similar shape has been discussed in Ref. [41] in which
the authors argued that the magnetic field should have strictly
vanishing spatial correlation on length scales larger than the cos-
mological horizon scale and then should fall off faster than k4

(instead of k2 for white noise) to be divergence free.



4

wall interacts with the particles and pushes the medium
in front of it in what is described as a snowplow effect.
The typical turbulence eddy turnover velocity is given by
[35]

uT =

√

κ̃ α̃
4
3 + κ̃ α̃

, (7)

where α̃ denotes the ratio of the false vacuum energy den-
sity (latent heat) and the plasma thermal energy density,
and characterizes the strength of the phase transition; κ̃
is an efficiency parameter that is determined by α̃ and
has to be computed numerically [46],

κ̃(α̃) ≃ 1

1 + 0.715 α̃

[

0.715 α̃+
4

27

√

3α̃

2

]

. (8)

A strong phase transition is described by α̃ & 1 and a
weak phase transition has α̃ ≪ 1.
Another important parameter that characterizes the

forcing stage of turbulence is the duration of the phase
transition described by a parameter β̃, which is the rate
of time variation of the nucleation rate itself computed
at the phase transition time τ⋆. Thus, β̃−1 gives a time
scale during which the whole universe is converted to the
true vacuum phase (typically β̃ ≫ H⋆) [47].
An outcome of the DNS of the magnetic field gener-

ation process is that the initial magnetic field spectrum
is peaked at a scale that corresponds to the size of the
bubbles at percolation. Hence, for a strong first order
phase transition, the initial magnetic field can be corre-
lated on cosmological scales. Let us denote this initial
(physical) correlation length by l⋆ and define the dimen-
sionless parameter γ⋆ = l⋆H⋆, which we will take as a
free parameter in the interval 10−4 < γ⋆ < 0.1 (it is com-
monly assumed that for a first order electroweak phase
transition γ ≃ 0.01 [48, 49]). It is of interest to evalu-
ate the comoving value of the Hubble length scale at the
electroweak phase transition. We have already stated
H−1

⋆ ≈ 1 cm. Then, the comoving value, denoted λH⋆
, is

given by

λH⋆
≡ a0

a⋆
H−1

⋆ = 5.8×10−10 Mpc

(

100GeV

T⋆

)(

100

g⋆

)1/6

,

(9)
where the subscripts ⋆ and 0 denote respectively the
epoch of the magnetic field generation and the present
epoch; g⋆ is the number of relativistic degrees of freedom
in the medium at the electroweak epoch, and we have
used the time-temperature relation

a⋆
a0

≃ 8× 10−16

(

100 GeV

T⋆

)(

100

g⋆

)1/3

. (10)

The numerical value of λH⋆ ≈ 6×10−4 pc is much smaller
than the current horizon scale ∼ 1 Gpc, and without
significant growth, would not be an interesting scale for
astrophysics. However, it is known that turbulent MHD

evolution of helical magnetic fields allows for an inverse
cascade that can lead to a significantly larger coherence
scale, even larger than ∼ 10 kpc [6, 28, 38]. This is also
seen in the results of our DNS.
An important quantity associated with the primordial

magnetic field is its total energy density at the moment of
generation, ρM⋆. Since the frozen-in (physical) magnetic
field amplitudes scale with the expansion of the universe
as B̃ ∼ a−2, the magnetic energy density scales like ra-

diation if dissipation and/or amplification processes are
ignored. So the ratio of the magnetic and radiation en-
ergy densities stays constant during the expansion of the
universe. BBN bounds the radiation-like energy density
during BBN, and only ∼ 10% of the ordinary radiation
energy density can be additionally present in the universe
in the form of another relativistic component [50]. In par-
ticular, during the radiation-dominated epoch, neglecting
the presence of any additional relativistic components,
the Friedman equation in the flat Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric, reads 3H2 = 8πGρR
where ρR denotes the (physical) radiation energy den-
sity. The expansion rate (H) can be limited by the
rate of nucleosynthesis (that is bounded by the abun-
dance of light elements in the universe). At the elec-
troweak epoch, the radiation energy density is given by
ρR(t⋆) = πg⋆T

4
⋆ /30, where g⋆ is the number of degrees

of freedom at the temperature T⋆. Applying the BBN
bound that ρM(t⋆)/ρR(t⋆) ≤ 0.1 (with ρM = B̃2/2) and

assuming a frozen-in magnetic field (B̃ ∝ a−2), the co-

moving magnetic field strength can be no larger than
8.4 · 10−7(100/g)1/6G ∼ 1 µG,5 which agrees well with
the dimensional argument given in Sec. I. In our DNS
we take

b⋆ ≡
√

ρM⋆

0.1ρR⋆
≈ B⋆

µG
. 1 (11)

to be a free parameter of the model.
We define the Alfvén velocity associated with the mag-

netic field, vA = B/
√
w, where w = ρ + p is the spe-

cific enthalpy for an ultra-relativistic gas with density ρ
and pressure p. The mean normalized magnetic and ki-
netic energy densities per unit mass are 〈v2

A(t)〉/2 and
〈u2(t)〉/2, with u(x, t) denoting the velocity and angu-
lar brackets denote ensemble averaging. If the physi-
cal magnetic field scales as a−2 with the expansion of
the universe, the Alfvén velocity vA(x, t) is time inde-
pendent, and thus does not require rescaling to the co-
moving quantity. At this point vA(x, t) is fully deter-
mined by the initial value of the magnetic field, i.e.,
vA(x, t) = vA⋆(x) ≡ vA(x, t = t⋆).
Owing to the presence of hydromagnetic turbulence,

the magnetic field evolution can be described by a simple

5 Here we have assumed that the number of relativistic degrees of
freedom, g, is unchanged from the electroweak phase transition
until BBN.
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power law, B(x, t) = B⋆(x) (t/t⋆)
nE/2, where nE charac-

terizes the scaling of the decay of mean magnetic energy
density EM(t) = 〈B2(x, t)〉/2, which be written in terms
of the magnetic energy spectrum EM(k, t) as

EM(t) =

∫

dk EM(k, t), (12)

while the magnetic helicity6, defined as HM = 〈A · B〉
with B = ∇ × A, and can be computed through the
magnetic helicity spectrum as

HM(t) =

∫

dk HM(k, t). (13)

The magnetic correlation length is defined as

ξM(t) =

∫

dk k−1EM(k, t)

EM(t)
. (14)

Assuming that this integral converges, the realizability
condition can be written as

2EM(k, τ) ≥ k|HM(k, τ)|. (15)

This is a consequence of the Cauchy-Bunyakovsky-
Schwarz inequality and implies that the magnetic energy
cannot decay faster than the helicity [52]. On integration,
the realizability condition gives [53, 54]

2ξM(τ)EM(τ) ≥ |HM(τ)| (16)

and implies that the maximal helicity is
2
∫∞

0 dk k−1EM(k).
Alternately, one can say that there is a lower bound

on ξM given by,

ξmin
M (t) ≡ HM(t)

2EM(t)
. (17)

The realizability condition then implies ξmin
M ≤ ξM. This

allows us to define the fractional magnetic helicity as

ǫM(t) =
ξmin
M (t)

ξM(t)
=

HM(t)

2ξM(t)EM(t)
≤ 1. (18)

Its initial value is related to a parameter σM⋆ that will
be defined below and will serve as a free parameter.
Another free parameter in our considerations is the

initial velocity, u⋆. Applying the BBN bound on the ki-
netic energy density, EK(t), which should be less than
10% of the radiation energy density (i.e., ≤ 0.1ρR), we
obtain that u⋆ ≤ 0.4 if decay and/or amplification of the
velocity field during turbulence is neglected (the initial
velocity field is assumed to be unchanged from the elec-
troweak epoch until the BBN epoch).

6 HM(t) is distinct from the current helicity HC(t) = 〈B ·∇×B〉;
the current helicity spectrum is HC(k, t) ≡ k2HM(k, t).

III. MAGNETIC FIELD EVOLUTION

We follow the evolution of fields from the epoch right
after magnetogenesis up to the recombination epoch. We
are interested in the evolution of the magnetic energy
density EM(t), which determines the rms value of the

magnetic field, Brms(t) =
√

2EM(t), and the correla-
tion length ξM(t). For a partially helical magnetic field
we study the redistribution of helical structure at large
scales, and estimate the time scale during which the field
might become fully helical. We also study the evolution
of the velocity field.

A. Direct Numerical Simulations

We solve the equations for the logarithmic total energy
density ln ρ, the velocity u, and the magnetic vector po-
tential A, in the form [38]

∂ ln ρ

∂t
= −4

3
(∇ · u+ u ·∇ ln ρ)+

1

ρ

[

u · (J ×B) + ηJ2
]

(19)
Du

Dt
=

u

3
(∇ · u+ u ·∇ ln ρ)− u

ρ

[

u · (J ×B) + ηJ2
]

−1

4
∇ ln ρ+

3

4ρ
J ×B +

2

ρ
∇ · (ρνS) (20)

∂B

∂t
= ∇× (u×B − ηJ), (21)

where B = ∇ × A and D/Dt = ∂/∂t + u · ∇ is the
advective derivative, fvisc = ν

(

∇2u+ 1
3∇∇ · u+G

)

is
the viscous force in the compressible case with Gi =
2Sij∇j ln νρ as well as Sij = 1

2 (ui,j + uj,i) − 1
3δijuk,k

being the trace-free rate of strain tensor. The pressure
is given by p = ρc2s , where cs = 1/

√
3 is the sound speed

for an ultra-relativistic gas. Furthermore, J = ∇ × B

is the current density. In Appendix A we discuss the
main difference from the usual MHD equations for a non-
relativistic isothermal gas.
In contrast to some of our previous studies [6, 12, 55]

in which the initial magnetic energy spectrum was as-
sumed to be a δ-function (the magnetic field energy den-
sity has been injected at a given wave number), in the
present work we assume the initial spectra to be given
by EM(k, t⋆) and HM(k, t⋆). We also use different con-
ditions for the velocity field, including the magnetically
subdominant case and equipartition with the magnetic
field. The magnetically dominant case has been studied
previously, see [56] and references therein, but the mag-
netically subdominant and equipartition cases have not
been studied. In particular, the cases of kinetically dom-
inant and equipartition MHD decay were presented for
the first time in a recent publication [37] by the present
authors. The application to cosmology is discussed be-
low.
We allow ν and η to be time-dependent; see Ref. [37]

for details. This is done to address the problem that ν
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and η are very small in the early universe, but are also
subject to numerical limitations in that they cannot be
too small, especially at early times when the velocities
are still large. We take advantage of the fact that a self-
similar evolution is possible by allowing ν and η to vary
as

ν(t) = ν⋆ max(t, t⋆)
r, (22)

where r = (1 − α)/(3 + α) [58] depends on the initial
power law slope α, and t⋆ is the minimal time after which
these coefficients are allowed to be time-dependent. For
α = 2 we have r = −0.20, whereas for α = 4 we have
r = −0.43, so ν(t) decreases with time in both cases. We
take different values of ν⋆, depending on the value of α.
In all cases with α = 2 we use ν⋆ = 10−6, while in all
cases with α = 4 we use ν⋆ = 10−5. We adopt the same
initial values for η, i.e., η⋆ = ν⋆.
For our DNS we use the Pencil Code (https://

github.com/pencil-code) which is a public MHD code
that is particularly well suited for simulating turbulence.
We consider a cubic domain of size L3, so the smallest
wave number in the domain is k1 = 2π/L. The numerical
resolution is 11523 meshpoints in all the cases presented
below.

B. Initial condition

In practice, we construct the initial condition for
the magnetic vector potential A(x) from a random δ-
correlated three-dimensional vector field in real space.
It has therefore a k2 spectrum. We transform this
field into Fourier space and construct the magnetic field,
B(k) = ik ×A(k). We then scale the magnetic field by
functions of k such that it has the desired initial spec-

trum, apply the projection operator Pij = δij − k̂ik̂j (to
ensure a divergence free magnetic field),

Bi(k) = B⋆

[

Pij(k)− iσMǫijlk̂l

]

gj(k)S(k), (23)

where gj(k) is the Fourier transform of a δ-correlated
vector field in three dimensions with Gaussian fluctua-
tions, i.e., gi(x)gj(x

′) = δij δ
3(x − x′), k0 is the initial

wave number of the energy-carrying eddies and S(k) de-
termines the spectral shape with

S(k) =
k
−3/2
0 (k/k0)

α/2−1 exp[−G (k2/k20 − 1)]

[1 + (k/k0)2(α+5/3)]1/4
, (24)

where G = 0 in most cases, and G = 1 in some special
cases where the initial power is more strongly concen-
trated around k = k0. This results in a random mag-
netic field with the desired magnetic energy and helicity
spectra and obeys

kHM(k, t⋆)

2EM(k, t⋆)
=

2σM

1 + σ2
M

≡ ǫM. (25)

A similar scheme allows us to generate the velocity field,

ui(k) = u⋆

[

Pij(k)− iσKǫijlk̂l

]

gj(k)S(k). (26)

These initial condition are implemented as part of the
Pencil Code.

We now consider possible initial conditions in a cosmo-
logical scenario, where we have in mind magnetic fields
generated at the electroweak phase transition. In the
standard model, the electroweak phase transition is of
second order and CP violation is very weak. However,
we also know that the standard model is incomplete,
most convincingly because of the observed non-vanishing
neutrino masses. In addition, the standard model does
not contain a candidate for cosmological dark matter.
Neither does it successfully explain the observed baryon
asymmetry of the universe. Hence it is almost certain
that there is fundamental physics beyond the standard
model.
The exact nature of what lies beyond the standard

model is unclear. Yet we expect beyond-standard-model
(BSM) physics to explain neutrino masses and contain a
suitable dark matter candidate and also have a successful
baryogenesis mechanism. The requirement of baryogen-
esis points to some general features essential to BSM as
first outlined by Sakharov [57]: the model should have
strong departures from thermal equilibrium and should
contain significant violations of charge conjugation (C)
symmetry, CP conjugation symmetry, and baryon num-
ber.

In the present context, it is possible that strong de-
partures from thermal equilibrium might occur during
strong first order phase transitions, in which case the
cosmological medium could become turbulent. Thus we
would like to include fluid kinetic energy as an initial con-
dition. Electroweak symmetry breaking also leads to the
production of magnetic fields [17]. In addition, baryon
number violating processes lead to the generation of he-
lical magnetic fields [23, 28]. If there is significant vio-
lation of C and CP, helicity might be large. One may
also expect C and CP violation to leak into the kinetic
motion, in which case the initial conditions would have
non-vanishing kinetic helicity.

To keep the discussion as general as possible we con-
sider three different cases for the initial conditions: (i)
magnetically dominant turbulence, (ii) kinetically domi-
nant turbulence, and (iii) equipartition between magnetic
and kinetic energy densities. In every case, there are sev-
eral parameters that we have to choose that quantify the
magnetic and kinetic energy and helicity spectra such as
B⋆,

7 u⋆, σK, and σM, defined in Sec. II A. In addition, it
is assumed that the phase transition leads to a peak in

7 Equivalently we can use b⋆; see Eq. (11). Note that b⋆ = 1
corresponds to the case with maximal magnetic field strength
allowed by BBN
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the spectra at some fraction, γ⋆, of the Hubble scale. For
example, γ⋆ will depend on the bubble size at percolation
in the case of a first order phase transition. The resulting
magnetic field values are given for several choices of the
parameters.
An important control parameter is the initial ratio of

the normalized rms magnetic field (or Alfvén velocity)
and rms velocity defined as

Q⋆ = B⋆/(ρ
1/2
⋆ u⋆). (27)

In this work, we consider the values 10, 1, and 0.1,
corresponding to magnetically dominant, equipartition,
and magnetically subdominant cases. We also consider
the time-dependent quantity Q(t) = vA/urms, and list,
in particular, the value at the last time, Qe = Q(te).
Furthermore, we quote the Reynolds number, Re =
urmsξM/ν, at t = te.
a. Magnetically dominant turbulence. For magneti-

cally dominant turbulence we assume that the velocity
field is small initially. The magnetic energy spectrum
must satisfy the causality requirements, i.e., the magnetic
field two point correlation function 〈Bi(x)Bj(x + r)〉 ≡
Bij(r) → 0 for r ≥ ξM, where ξM is the magnetic cor-
relation length with its maximal value being given by
the comoving Hubble horizon radius, and we have used
the isotropy condition, Bij(r) = Bij(|r|). The causal-
ity condition requires that EM(k, t⋆) ∝ kα for k → 0
together with the requirement that Fij(k) is analytical
for a solenoidal magnetic field (divergence-free condition
∇ · B = 0). This leads to α ≥ 4 [41]; in practice, one
finds the Batchelor spectrum with α = 4.
The initial peak position of the magnetic energy spec-

trum is determined by the phase transition bubble size
(i.e., the γ⋆-parameter). The ratio between the mag-
netic and kinetic energies at the initial moment is a large
number EM(t⋆)/EK(t⋆) ≫ 1, and at all wave numbers k
the magnetic energy spectrum is dominant, EM(k, t⋆) ≫
EK(k, t⋆). This class of initial conditions is realized
in most baryogenesis mechanisms during cosmological
phase transitions. It can be also applied when the mag-
netic field was generated at earlier epochs and undergoes
coupling with primordial plasma within the Hubble hori-
zon.
b. Kinetically dominant turbulence. In the case of

kinetically dominant turbulence, the initial Alfvén ve-
locity is negligibly small compared to the turbulence
turnover velocity, i.e., the magnetic energy density is
negligibly small compared to the kinetic energy density,
EM(t⋆) ≪ EK(t⋆), and at all wave numbers k the magnetic
energy spectrum is subdominant, EM(k, t⋆) ≪ EK(k, t⋆).
This class of initial conditions can be realized for a
strong first order phase transitions when the turbulent
turnover velocity uT (t⋆) ≃ 0.3, which is a consequence
of high enough values for α̃ and κ̃ parameters. This
agrees with the BBN bound on the relativistic energy
density; see Sec. II. The initial kinetic energy spectrum
can be approximated by a white noise spectrum with
EK(k, t⋆) ∝ k2 (which ensures the causality requirement)

or by the Batchelor spectrum EK(k, t⋆) ∝ k4 (which en-
sures the causality and divergence-free requirements). In-
terestingly in the latter case the initially solenoidal ve-
locity field acquires a longitudinal structure through the
interaction with the magnetic field, as will be discussed
below. In addition we study the evolution of a magnetic
field that has initially a white noise spectrum.
c. The Case of Equipartition. The case of equipar-

tition between magnetic and kinetic energy spectra
EM(t⋆) ≃ EK(t⋆) is hard to realize in the early uni-
verse and requires very specific physical conditions during
phase transitions. We study this case for completeness.

C. Simulation parameters and analysis tools

We compute magnetic and kinetic energy spectra,
EM(k, t) and EK(k, t), respectively, and evaluate corre-
sponding magnetic and kinetic correlation lengths using
Eq. (14). We define a time-dependent Reynolds number,
Re = urmsξM/ν, and quote approximate values charac-
teristic of the late time evolution.
As demonstrated earlier [56], Ei(k, t) with i = M and

K can be collapsed onto a function φi(κ) of a single ar-
gument κ = kξi(t) via

Ei(k, t) = ξ−βi

i φi(kξi), (28)

where βi quantifies the decay of the spectral energy
around the wave number k = ξ−1

i , which itself decreases
approximately like a power law with ξi(t) ∝ tqi , where qi
is a scaling exponent. Since Ei(t) =

∫

Ei(k, t) dk, it also
decays like a power law with Ei(t) ∝ t−pi , where

pi = (βi + 1) qi. (29)

The values of βi are believed to depend on the physics
that governs a particular case [56].
It is convenient to define and plot instantaneous scaling

exponents as pi(t) = d ln Ei/dt versus qi(t) = d ln ξi/dt for
i = M and K and discuss the evolution of the point

Pi = (pi, qi) (30)

in the pq diagram. Solutions that obey invariance under
rescaling [56, 58],

k → k′ℓ and t → t′ℓ1/qi , (31)

all lie on the line pi = 2(1 − qi) in this diagram. The
functions φi(κ) are universal functions for given βi and
thus qi. If that is the case, then qi = 2/(βi + 3).
We are particularly interested in the possibility of an

inverse cascade, which means that the magnetic energy
increases at small wave numbers, even though the total
energy decreases. This implies that

si ≡ ∂ lnEi(k, t)/∂ ln t > 0 for k ≪ ξi(t)
−1. (32)

At small κ = kξi(t), we have φi(κ) ∝ κα, and therefore

si = (αi − βi) qi, (33)
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FIG. 1: Run A with Q⋆ = 10, Re = 130, Batchelor spectrum α = 4, so ν⋆ = 10−5cs/k1 and r = −0.43 are used, and no helicity
is applied, i.e., σM = σK = 0. (a) EM (red, solid) and EK (blue, dashed) at times t/tA⋆ = 4, 30, 120, 500, and 2000. The last
time is indicated by thick lines. (b) ξM/ξ⋆ (red, thick) and ξK/ξ⋆ (blue, thick) with scale on the left, together with vA/vA⋆ (red,
dashed) and urms/vA⋆ (blue, dashed) with scale on the right. (c) pq diagram showing the evolution of PM (red, filled symbols)
and PK (blue, open symbols). The symbol size increases with time. The equilibrium line p = 2(1− q) is shown as solid, while
the β = const lines are dotted.

which implies that large initial slopes (e.g., α = 4) and
small values of β, e.g., when the decay is governed by the
conservation of magnetic helicity (β = 0) or the mean
squared vector potential (β = 1) will lead to an inverse
cascade, but not when β ≥ 2) [56].

IV. RESULTS

A. Batchelor spectrum and no helicity

We begin by comparing the evolution of initially non-
helical velocity and magnetic fields for Q⋆ = 10, 1, and
0.1, corresponding to Runs A–C; see Figs. 1–3 and Ta-
ble I. In all three cases, we plot Ei(k, t) at selected times,

TABLE I: Summary of our runs

Run σK σM α G Q⋆ Qe te/tA⋆ βM qM pM Figurea

BKT 0 0 4 0 ∞ 2.8 1335 1.2 0.47 1.02 Ref. [59]

A 0 0 4 0 10 2.5 206 1.8 0.37 1.04 Fig. 1

B 0 0 4 0 1 2.4 114 1.9 0.36 1.03 Fig. 2

C 0 0 4 0 0.1 1.0 460 3.0 0.31 1.26 Fig. 3

D 0 0 2 0 1 3.2 208 1.7 0.38 1.03 Fig. 4

E 0 0 2 1 1 2.6 170 1.7 0.36 0.95 Fig. 5

F 0 0 2 1 ∞ 2.6 170 1.7 0.35 0.94 Fig. 6

G 0 0.03 2 1 1 3.2 1024 0.3 0.55 0.73 Fig. 7

H 1 1 4 0 1 1.3 562 0.6 0.46 0.76 Fig. 8

I 1 0 4 0 1 2.3 1250 0.2 0.49 0.58 Fig. 9

J 1 −1 4 0 1 2.9 460 0.1 0.48 0.57 Fig. 10

BK 0 1 4 0 ∞ 4.2 1025 0.0 0.59 0.62 Ref. [56]
aBKT refers to the nonhelical run of Ref. [59] and BK to a fully

helical of Ref. [56]. Q⋆ and Qe refer to the values of Q at the be-
ginning and end of the run, respectively. The instantaneous scaling
exponents βM, qM, and pM are given at the end of the run, whose
normalized end time te/tA⋆ is given.

normalized by the initial Alfvén time tA⋆. We also show
the evolution of Ei(t) and ξi, as well as a parametric rep-
resentation of the instantaneous scaling exponents pi(t)
versus qi(t) for i = M and K (pq diagram). In all three
cases (Runs A, B, and C), there is inverse energy transfer
at small k, which is in agreement with Eq. (33).
Remarkably, Runs A and B are rather similar at later

times, i.e., for t/tA⋆ >∼ 10, where Q(t) ≈ 10, which agrees
with the initial value Q⋆ = 10 for Run A, but not with
that of Run B, where the initial ratio was unity. The
resulting values of pM ≈ 1 are similar to those obtained
earlier from an initial condition obtained from a run that
was driven for a short time with a monochromatic mag-
netic forcing function [59], which is marked in Table I by
BKT, where β turned out to be close to 1 instead of the
present value of 2. For Run C, on the other hand, even
though Q was initially 0.1, it reaches unity at later times;
see Fig. 3.
Indeed, comparing the pq diagrams for all three cases,

we see again that for Runs A and B, both PM and PK

evolve along the β = 2 line toward the equilibrium line
where p = 2(1 − q) and thus p = 6/5 and q = 2/5. By
contrast, for Run C, the Pi (with i = M and K) evolve
towards the β = 4 line. Furthermore, the Pi seem to
move away from the equilibrium line. At present, we do
not know whether this could be an artifact of limited
scale separation (k/k1 is too small) for small values of k
and also of the limited inertial range between k0 and the
dissipation wave number above which the spectra stop
being power laws.

B. White-noise spectrum and no helicity

Let us now turn to simulations with α = 2, which was
recently studied in Ref. [8], where it was found that no
inverse transfer occurs in that case. Here we also compare
with simulations where an additional Gaussian profile is
included in the initial spectrum (G = 1); see Eq. (24).
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FIG. 2: Same as Fig. 1, but for Run B with Q⋆ = 1 and Re = 100. The times in (a) are t/tA⋆ = 4, 40, 180, and 800.

FIG. 3: Same as Fig. 1, but for Run C with Q⋆ = 0.1 and Re = 35. The times in (a) are t/tA⋆ = 0.4, 4, 18, 80, and 200.

FIG. 4: Similar to Fig. 1, but for Run D with Q⋆ = 1, Re = 600, and α = 2, so ν⋆ = 10−6cs/k1 and r = −0.20 are used. The
times in (a) are t/tA⋆ = 40, 80, 150, 400, 800, 1600, and 3000.

We only consider cases where Q⋆ = 1 or → ∞.

Not surprisingly, the cases with G = 0 (Run D; see
Fig. 4) and G = 1 (Run D; see Fig. 5) are rather similar,
except that the early time evolution is closer to equipar-
tition We also compare with the case Q⋆ → ∞ (Run F).
Again, it has the same late-time evolution as Runs D
and E, but the early time evolution is now close to that
of Run D; see Fig. 6.

In all these cases, P evolves along the β = 2 line to-
wards the equilibrium line. This implies that in these
cases there is no inverse transfer; see Eq. (33). This is
consistent with Ref. [8]. As we already noted, the white
noise spectrum for the initial magnetic field has only aca-
demic interest because we expect causality to limit the
power on large length scales to sub-white noise levels; see

footnote 2.

C. White-noise spectrum with magnetic helicity

The case of fractional helicity has been studied pre-
viously [12] in connection with QCD phase transition-
created initial magnetic fields. In these studies, α = 4
was used, but the resolution was only 5123.
We now discuss the case with α = 2 (Run G). In con-

trast to the earlier case with α = 4 [12], there is now no
inverse transfer at early times when the magnetic energy
is still strong. As in earlier work, we plot the evolution
of ξM, as defined in Eq. (14), which increases like t1/2.
We compare this with ξmin

M , defined in Eq. (17), which
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FIG. 5: Same as Fig. 4, but for Run E with G = 1 and Re = 200. The times in (a) are t/tA⋆ = 0.6, 6, 12, 20, 50, and 200.

FIG. 6: Same as Fig. 5, but for Run F with Q⋆ → ∞, i.e., u⋆ = 0, and Re = 200. The times in (a) are t/tA⋆ = 0.6, 6, 12, 20,
50, and 200.

FIG. 7: Similar to Fig. 5, but for Run G with σM = 0.03 and Re = 300. The times in (a) are t/tA⋆ = 0.6, 4, 18, 120, 300, 600,
and 1200. In (b), the evolution of ξmin

M is shown as a green dashed-dotted line.

increases with time since HM(t) = const and EM ∝ t−1.
The result is shown in Fig. 7. Evidently, ξmin

M (t) ∝ t,
and so ξmin

M (t) will be equal to ξM after some time. The
initial value of ξmin

M (t) depends on the fractional helicity

and is given by ǫMk−1
0 . It turns out that the late-time

sub-inertial spectrum for the magnetic field changes from
a k2 (white noise spectrum) to a k4 (Batchelor spectrum)
at the time when the magnetic field begins to be fully he-
lical. This change of slope was also found for σM = 0.1
[56].

D. Batchelor spectrum with initial kinetic helicity

The initial presence of kinetic helicity has profound
effects on the evolution of the magnetic field. Kinetic
helicity leads to an α effect, i.e., the destabilization of
a large-scale magnetic field. The details of this process
in decaying turbulence were studied in Ref. [37], where
it was found that the initial kinetic helicity gets trans-
formed efficiently into magnetic helicity such that the
residual helicity, 〈ω · u〉 − 〈J · B〉/ρ⋆ is approximately
constant. During the time of their runs, the magnetic
helicity 〈A · B〉 was still increasing, so one expects to
reach the familiar behavior with pi = qi = 2/3 at much
later times.
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FIG. 8: Similar to Fig. 2, but for Run H with σK = σM = 1 and Re = 65. The times in (a) are t/tA = 0.5, 3, 10, 25, 50, 100,
250, and 500.

FIG. 9: Similar to Fig. 8, but for Run I with σK = 1, σM = 0 and Re = 160. The times in (a) are t/tA = 1, 4, 14, 60, 180, and
600.

FIG. 10: Similar to Fig. 8, but for Run J with σK = 1, σM = −1 and Re = 160. The times in (a) are t/tA = 0.5, 3, 10, 25, 50,
100, 250, and 500.

In Table I, the corresponding results for p and q from
Ref. [56] are marked with BK. Pi evolves towards the
β = 0 line, but it is still far away from the ultimate
equilibrium line p = 2(1 − q). Instead, we see that in
Figs. 8–10, qM = 0.4–0.5 during an extended time inter-
val, and that pM = 0.5–0.6, while in the equilibrium state
we would expect pM = 1.2–1.0.

E. Comparison with the equilibrium line

In Table II, we summarize the anticipated values of q
and p that would be expected for given values of q or

β if the solutions were to lie on the equilibrium line in

TABLE II: Scaling exponents and relation to physical invari-
ants and their dimensions.

β q p inv. dim.

4 2/7 ≈ 0.286 10/7 ≈ 1.43 L [x]7[t]−2

2 2/5 = 0.400 6/5 = 1.20 S [x]5[t]−2

1 2/4 = 0.500 4/4 = 1.00 〈A2

2D〉 [x]4[t]−2

0 2/3 ≈ 0.667 2/3 ≈ 0.67 〈A ·B〉 [x]3[t]−2
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the pq diagram. These different cases are based on the
dimensions of potentially conserved quantities such as the
Loitsiansky and Saffman integrals,

L =

∫

r2〈u(x) · u(x+ r)〉 dr ∝ ℓ5u2
ℓ (34)

and

S =

∫

〈u(x) · u(x+ r)〉 dr ∝ ℓ3u2
ℓ , (35)

respectively [60], with typical velocity uℓ on scale ℓ, the
conservation of magnetic helicity, 〈A · B〉, and the pos-
sible conservation of the mean squared vector potential,
〈A2〉, which is known to be conserved in two-dimensions
(2D).

Comparing with the numerical results given in Table I,
we see that for the runs with fractional magnetic helic-
ity or with initial kinetic helicity, there is a tendency to
develop maximal magnetic helicity at later times. As a
consequence, all those runs are seen to develop toward
the β = 0 line. However, in none of those runs there is
a perfect convergence toward the equilibrium point with
p = q = 2/3, as would be expected in the fully helical
case. Instead, we find that q ≈ 0.5 and p ≈ 0.6, so the
decay is even slower than with maximum helicity.

The departure from the expected equilibrium position
may well be a finite size effect of the computational do-
main. Ideally, one would like to have a much larger nu-
merical resolution, so as to be able to follow an unim-
peded development of the inverse cascade for both EM

and EK toward smaller wave numbers. At the same time,
of course, it is important to include large enough wave
numbers to resolve the turbulent inertial and dissipative
subranges.

In most of the runs without kinetic or magnetic helic-
ity, the final values of q are in the range 0.3–0.4, which is
again smaller than what is expected for the equilibrium
points (p, q) = (0.5, 1), when β = 1 or (0.4, 1.2), when
β = 2; see Table II. In those cases, on the other hand,
there is a clear trend that (p, q) evolves along the β = 2
line towards the equilibrium point; see Figs. 1 and 2 for
α = 4 and Figs. 4–6 for α = 2.

Interestingly, the two groups of runs for α = 4 and α =
2 show the same convergence properties along the β = 2
line toward the equilibrium point (p, q) = (0.4, 1.2). This
decay law is suggestive of the case where the Saffman
integral (35) is conserved. Thus, we have here is a clear
example where the temporal evolutions of EM and ξM are
clearly independent of the initial slope α, where the case
with α = 4 shows inverse cascading while that with α = 2
does not, as expected based on Eq. (33).

The subequipartition case with Q⋆ = 0.1 is different
again; see Fig. 3, where we observe a clear development
along the β = 4 line toward the equilibrium point on
which the Loitsiansky integral (34) is expected to be con-
served.

V. DISCUSSION

This work has exposed several unknown behaviors of
decaying MHD turbulence. First, for nonhelical turbu-
lence with an α = 4 Batchelor spectrum, large initial val-
ues of Q⋆ (here Q⋆ = 1 and 10) lead to distinctly different
behaviors than small values (here Q⋆ = 0.1). While the
former case yields Qe ≡ Q(te) ≈ 3 at the end of our runs
(at t = te), the latter case yields Q(te) ≈ 1; see Run C in
Table I. There is at present no indication that all these
cases yield ultimately the same late-time behavior. How-
ever, we cannot exclude the possibility that large and
small initial Q⋆ values yield ultimately the same final Qe

value.

Second, in the case with α = 2, no inverse transfer
was found to be possible. This is because that case also
yields β = 2, and so α = β, which implies that no inverse
transfer is possible; see Eq. (33). This is compatible with
recent work by Reppin & Banerjee [8].

Third, in the case with initial kinetic helicity, a non
scale-invariant behavior is found during an extended pe-
riod of time where the points PK and PM evolve away
from the equilibrium line, p = 2(1− q).

In view of the early universe, an important lesson is the
fact that even just a small amount of magnetic or kinetic
helicity yields the standard fully helical inverse transfer
after a certain time. The situation is similar in the case
where there is only kinetic helicity initially. In both cases,
βM ≈ 0, which implies that pM = qM; see Eq. (29). This

also means that Brms ∝ ξ
−1/2
M . However, unlike the case

with initial magnetic helicity where pM = qM = 2/3, we
find here pM ≈ qM ≈ 1/2 during an extended period
of time; see Figs. 9 and 10. Ultimately, at very late
times, we might still expect pM = qM = 2/3, but the
time required for this to happen may be too long.

To put our results into perspective, it is instructive to
consider the evolution of Brms as a function of ξM, which,
in turn, is a function of time and thus of the scale factor
or the inverse temperature of the universe. The turbu-
lent evolution of Brms and ξM proceeds from the time
of magnetic field generation until recombination. This
implies an increase in the conformal time by twelve or-
ders of magnitude, and thus eight orders of magnitude
in ξM ∝ t2/3, if the initial magnetic field is fully helical.
On the other hand, if there is only initial kinetic helicity,
and if the ξM ∝ t1/2 decay law persists for a significant
fraction of time, we might only cover about six orders of
magnitude in ξM, but the field will not decay by as much
as in the former case.

Turning now to the cosmological applications of our
results, we are interested in predicting the magnetic field
characteristics at the epoch of recombination, trec, for
initial conditions specified at some earlier epoch, t⋆. In
Appendix B we show that, if there is sufficient time for
the magnetic field to reach maximal helicity, and if it
is not caused by initial kinetic helicity (which leads to
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FIG. 11: Turbulent evolution of Brms and ξM starting from their upper limits given by the BBN bound and the horizon scale

at the EWPT for the fully helical case (Brms ∝ ξ
−1/2
M

), the nonhelical case (Brms ∝ ξ−1

M
), and the fractionally helical case with

ǫM⋆ = 10−3. Circles indicate the final points at recombination for zero or partial initial magnetic helicity, the filled circle marks
the fully helical case, and the filled square indicates the case with initial kinetic helicity. The regimes excluded by observations
of blazar spectra are marked in gray. The upper boundary of the gray area corresponds to the lower bound claimed in [61]
based on the deficit of blazar gamma rays in the GeV band as compared to the flux expected due to the inverse cascade while
assuming that the mean blazar TeV flux remains constant. The bottom line in the gray area shows the lower bounds while
assuming that the TeV flux activity is limited by the source observation period (few years) [62, 63]. The end of the evolution
at recombination is denoted by the straight line given by the relation in Eq. (36), and the final values of Brms and ξM are
indicated for helical and nonhelical scenarios.

p ≈ q ≈ 0.5 for a long period of time, as in Run I), then

Brec

ξrec
=

B⋆

ξ⋆

(

trec
t⋆

)−1

. (36)

This result is independent of the initial hydromagnetic
state and provides a universal result, applicable to a large
number of cases we have considered. Note that t⋆/trec =
Trec/T⋆.
Let us now discuss the different turbulent decay scenar-

ios for two cases, the best case scenario where a magnetic
field is generated at the horizon scale with a strength
limited by BBN and the second case where magnetic
helicity is generated by the chiral magnetic effect; see
Fig. 11. In the former case, if the initial field is fully

helical, we will reach a magnetic field at a scale of 30 kpc
with a strength of 0.3 nG. If we only have kinetic helicity
initially, and if the ξM ∝ t1/2 behavior persists during
the whole time, we might even get 3 nG, but only on a
scale of 0.3 kpc. If the magnetic field stays nonhelical
during the entire time, and if turbulence is magnetically
dominated, the field would again be of a typical scale of
about 0.3 kpc, but now the field is significantly weaker
– about 3× 10−3 nG. Even magnetic fields amplified by
the chiral magnetic effect cannot have helicity in excess of
〈B2〉 ξM ≈ 5×10−38G2 Mpc if the chiral asymmetry is set
by the temperature [33]. This might still be compatible
with the most conservative lower limits on the magnetic
field strength derived from blazar spectra, when account-
ing for the fact that the TeV flux activity is limited by
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the source observation period (few years) [62, 63], but
not with stronger fields on large length scales claimed
in Ref. [61] through the assumption of a constant mean
blazar TeV flux.

VI. CONCLUSIONS

To understand the evolution of cosmic magnetic fields,
we have considered a broad range of different initial con-
ditions: magnetically and kinetically dominated cases,
with and without helicity either in the magnetic or the
velocity field, as well as with shallow and steeper initial
energy spectra. Our results are best summarized by pre-
senting them parametrically in the Brms versus ξM dia-
gram discussed in Sec. V. The resulting trajectories have
different slopes, −(1 + β)/2, and cover different extents
in ∆ log ξM = q∆ log t in time. The most shallow slope is
1/2 in the helical case, where β = 0. This is independent
of whether helicity is initially in the magnetic field or in
the velocity.
Although the two cases are essentially the same as far

as the slope is concerned, there is a difference in terms
of the length scales covered during the evolution. The
largest range of scales is covered when the initial mag-
netic field is fully helical and q = 2/3, but is q = 1/2
when only the velocity is initially helical. Consequently,
because p = q in the fully helical case, the magnetic field
decays less in the latter case. However, it is not clear
whether there is any physical mechanism that can create
kinetic helicity throughout the entire universe. Famil-
iar effects in dynamo theory that involve rotation and
nonuniformity always produce positive and negative sign
at the same time, so there is no net effect on larger scales.
For the magnetic field, on the other hand, this limitation
does not apply if it is created through non-MHD effects
such as the chiral magnetic effect. One exception is the
chiral vortical effect [32], but since the chiral asymmetry
is expected to be set by the temperature, chiral effects
will be constrained as explained in Eq. (2) of the intro-
duction. This now seems to be excluded by the observa-
tions of blazar spectra, which are in agreement with the
conclusions of Ref. [7].
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Appendix A: Comparison with the standard MHD

equations

The purpose of this appendix is to contrast Eqs (19)–
(21) with the usual MHD equations for an isothermal gas,
i.e.,

∂ ln ρ

∂t
= − (∇ · u+ u ·∇ ln ρ) , (A1)

Du

Dt
= −1

3
∇ ln ρ+

1

ρ
J ×B +

2

ρ
∇ · (ρνS) , (A2)

∂B

∂t
= ∇× (u×B − ηJ). (A3)

In Fig. 12 we show a comparison of magnetic and ki-
netic energy spectra for a low resolution version of Run I
for the relativistic and nonrelativistic equation of state.
(This run is identical to Run A of Ref. [37].) Note that
the magnetic energy spectra are virtually the same, but
the kinetic energy is slightly (factor 4/3) less in the rel-
ativistic case where Q⋆ = 1; see panel (a). For the case
where Q⋆ = 0.1, the magnetic energy is slightly (factor
4/3) larger; see panel (b).

Appendix B: The resulting magnetic field

characteristics

Accounting for the scaling laws obtained for the runs
summarized in Table I, the (comoving) correlation length
and the mean (comoving) magnetic energy density at
time t for the ith run are given as

ξ(i) = ξ
(i)
⋆

(

t

t⋆

)qi

, E(i)
M = E(i)

M⋆

(

t

t⋆

)−pi

. (B1)

Correspondingly, the magnetic field rms amplitude is

B(i)
rms = B

(i)
⋆,rms

(

t

t⋆

)−pi/2

. (B2)
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FIG. 12: Magnetic energy spectra (solid lines) and kinetic
energy spectra (dashed lines) for decaying MHD turbulence.
Black (red) lines are for the relativistic (nonrelativistic) equa-
tion of state with (a) Q⋆ = 1 and (b) Q⋆ = 0.1.

Let us consider MHD turbulence decay laws that con-
serve different invariants during the turbulent decay pro-
cess. In this case the scaling exponents can be calculated
using Table II, where β = p/q − 1 can be used as sub-
script instead of the “i”. Hence we use pβ and qβ with
β = 1, 2, 4 for nonhelical and partially helical fields and
p0 = q0 = 2/3 for the case of fully helical decay.
If the initial magnetic fields are only partially helical,

the first evolutionary stage consists of the field developing
towards maximal helicity. During this period, the growth
of the correlation length is slower: ∼ t1/2 for nonhelical
compared to ∼ t2/3 for fully helical cases in the magnet-
ically dominant scenarios. Also, in this period the mean
magnetic energy density decay is faster: ∼ t−1 for non-
helical compared to ∼ t−2/3 for fully helical cases in the
magnetically dominant scenarios. The fractional helicity
grows during the turbulence decay process and reaches a
state with maximal helicity at the time [12]

thel = t⋆(ǫM,⋆)
−1/qβ , (B3)

where ǫM⋆ = ǫM(t⋆) and ǫM is defined in Eq. (23).
The generation of the magnetic (and/or velocity) field

occurs deep in the radiation dominated epoch during
which a ∝ t (i.e., the conformal time) while the ending
evolution proceeds during the matter dominated epoch
when a ∝ t2. To compute the magnetic field characteris-
tics at recombination trec, namely the rms magnetic field
amplitude Brec and the correlation length ξrec, we first
calculate the correlation length and the rms magnetic

FIG. 13: Ratio of correlation lengths, ξM/ξM⋆, for magneti-
cally dominant cases for nonhelical (blue), fully helical (red),
and fractionally helical (σ⋆ = 0.03; magenta) cases.

field when the fully helical state is reached:

ξhel = ξ⋆

(

thel
t⋆

)qβ

, Bhel = B⋆

(

thel
t⋆

)−pβ/2

, (B4)

where qβ (pβ) is the correlation length scale growth (the
mean magnetic energy density decay) index during the
first partially helical stage: β = 1, 2, 4. If the fully heli-
cal stage is reached before recombination, the correlation
length and the rms magnetic field at recombination can
be calculated as follows:

ξrec = ξhel

(

trec
thel

)q0

, Brec = Bhel

(

trec
thel

)−p0/2

, (B5)

with q0 (p0) referring to the correlation length (the mean
magnetic energy) growth (decay) index during the second
helical stage. It is easy to see that

ξrec = ξ⋆

(

trec
t⋆

)q0

(ǫM⋆)
−(qβ−q0)/qβ ,

Brec = B⋆

(

trec
t⋆

)−p0/2

(ǫM⋆)
(pβ−p0)/2qβ . (B6)

Recalling the definition of the β parameter and the pq
equilibrium condition (see Sec. III C), we can express the
scaling exponents as follows:

qβ =
2

β + 3
, pβ =

2

β + 3
(β + 1) . (B7)

Hence Eqs. (B6) and (B7) show that the ratio of the cor-
relation length and the mean magnetic field amplitude at
recombination does not depend on the (fractional) helic-
ity of the initial magnetic field8 ǫM⋆ or the β parameter

8 Note that in the case of initial kinetic helicity (which leads to
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itself:

Brec

ξrec
=

B⋆

ξ⋆

(

trec
t⋆

)−1

. (B8)

This helps to set a common recombination limit for dif-
ferent types of turbulent decay. On the other hand, the
mean magnetic field amplitude and the corresponding
correlation length of nonhelical or weakly helical fields,
when there is not sufficient time to reach a fully helical
state before recombination, can be calculated as:

Brms = B⋆

(

ξM
ξ⋆

)−(β+1)/2

. (B9)

Figure 11 shows the evolution of the mean turbulent
magnetic field amplitude with respect to the correlation
length ξM for different classes of MHD turbulence. Initial
values (ξ⋆, B⋆) correspond to the maximal values set by
BBN constraints at the EWPT epoch.

We provide some numerical estimates of the growth of
correlation lengths for the magnetically dominant case.
We take ξM,⋆ to be the maximum comoving Hubble ra-
dius at the epoch of electroweak phase transition, given
by (9), and note that at recombination, the temperature
was ∼ 0.25 eV. The correlation length evolution relations
stated above can be plotted as in Fig. 13.

We have used the fact that the conformal time is ex-
pressed in terms of the scale factor aeq at the epoch of
matter-radiation equality and the fractional matter den-
sity Ωm,0 as

t(a) =
2

√

Ωm,0H0

[√

aeq + a−√
aeq

]

, (B10)

and that the effective degrees of freedom of the particle
species are roughly constant throughout.
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