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We investigate whether Effective Field Theory (EFT) approaches, which have been useful

in examining inflation and dark energy, can also be used to establish a systematic approach to

inflationary reheating. We consider two methods. First, we extend Weinberg’s background

EFT to the end of inflation and reheating. We establish when parametric resonance and

decay of the inflaton occurs, but also find intrinsic theoretical limitations, which make it

difficult to capture some reheating models. This motivates us to next consider Cheung,

et. al.’s EFT approach, which instead focuses on perturbations and the symmetry breaking

induced by the cosmological background. Adapting the latter approach to reheating implies

some new and important differences compared to the EFT of Inflation. In particular, there

are new hierarchical scales, and we must account for inflaton oscillations during reheating,

which lead to discrete symmetry breaking. Guided by the fundamental symmetries, we

construct the EFT of reheating, and as an example of its usefulness we establish a new class

of reheating models and the corresponding predictions for gravity wave observations. In

this paper we primarily focus on the first stages of preheating. We conclude by discussing

challenges for the approach and future directions. This paper builds on ideas first proposed

in the note [1].
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I. INTRODUCTION

If inflation occurred in the early universe it must have eventually ended resulting in a hot, thermal

universe by the time of Big Bang Nucleosynthesis (BBN). The process by which the inflaton’s

energy is transferred into other particles – which hopefully, eventually, gave rise to Standard Model

particles – is known as inflationary reheating. Reheating can occur perturbatively [2–4], or non-

perturbatively in a process known as preheating [5–7] (see [8, 9] for recent reviews).

Existing investigations into reheating have been rather model dependent, often focusing on

constraining the precise regions of the parameter space that lead to successful reheating. Analytic

methods for exploring the dynamics still rely on the earliest works mentioned above, and the non-

linearities and complexity of the reheating process still require invoking numeric/lattice methods

[8–16]. Moreover, the wealth of cosmological observations from the Cosmic Microwave Background

(CMB) and Large Scale Structure (LSS) relate to the physics of inflation far before reheating, and

so the lack of observational windows on (p)reheating has also made its study far less compelling

than inflation – with the prediction of gravitational waves providing a possible exception.

In this paper, we take steps to address the model dependence of (p)reheating building on motiva-

tion from recent works [1, 17, 18]. Our approach is to use the Effective Field Theory (EFT) approach

to cosmology, which at this point has been applied to all cosmic epochs except for (p)reheating.

We will first consider the EFT of the background as developed by Weinberg for inflation in [19]

and later adapted to studies of dark energy in [20]. Ultimately, we will find that this approach is

not completely satisfactory in generalizing studies of reheating. Instead we find that the different

approach of the EFT of cosmological perturbations is more promising.

The EFT of Inflation [21–23] and generalizations to dark energy [24–29] and structure formation

[30] are based on the idea that there is a physical clock corresponding to the Goldstone boson that

non-linearly realizes the spontaneously broken time diffeomorphism invariance of the background.

In unitary gauge – where the clock is homogeneous – the matter perturbations are encoded within

the metric, i.e. the would-be Goldstone boson is ‘eaten’ by the metric, since gravity is a gauge

theory. After we establish the limitations of the EFT background approach, we then present an

EFT of reheating using this EFT of perturbations to develop a more robust approach to studying

the end of inflation and reheating.

The rest of the paper is as follows. In Section II, we review some of the important issues and

constraints surrounding particular examples of (p)reheating models. In Section III, we consider

Weinberg’s approach to the EFT of Inflation, and consider how inflation might end and (p)reheating
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would proceed. We find that the perturbative approach to the background presents a substantial

challenge to this approach, along with the usual problem of knowing the complete inflationary

potential. This motivates us to construct an EFT of reheating in Section IV – focusing on the

EFT of the perturbations. We analyze the process of particle production, demonstrate how our

approach connects to existing preheating models, and discuss ways in which our EFT can be used

to connect to both inflation (and its end) and observations. In Section V, we conclude and discuss

the challenges facing our approach and future directions.

II. CHALLENGES FOR INFLATIONARY REHEATING

Model dependent studies of (p)reheating have raised a number of important questions and issues.

From the perspective of inflationary model building within string theory, the requirement to isolate

the inflationary sector to achieve an adequate duration of inflation can result in challenges in

transferring the energy density to other fields, and eventually the Standard model sector following

inflation [31]. The complexity of the string landscape and the large number of moduli fields can

exacerbate this problem [32]. In bottom-up approaches, toy models often demonstrate a conflict

between the need for the inflaton to have feeble interactions during inflation (so as to be consistent

with both successful inflation and constraints on non-Gaussianity), and later having strong enough

couplings for the complete decay of the inflaton and the (eventual) successful reheating of the

Standard Model. Perturbative decay can also present a challenge depending on the effective mass

of the decay channels and the time dependence of the inflaton decay rate [33].

As an example, consider Chaotic inflation with V ∼ m2
φφ

2 and reheating with a renormal-

izable coupling to a reheat field, χ. We note that this model is in tension with existing CMB

constraints, but it presents a simple example of the more general problems one might anticipate

with (p)reheating. The Lagrangian we consider is1

L = −1

2
(∂φ)2 − 1

2
m2
φφ

2 − 1

2
(∂χ)2 − U(χ)− g2

2
φ2χ2, (1)

where we assume that initially the reheat field is fixed by its U(χ) and remains in its vacuum during

inflation. The mass of the inflaton is fixed by the power spectrum [34],

∆2
R =

1

96π2

(
mφ

mpl

)2

(4N∗)
2 ≡ 2.2× 10−9 (2)

1 We work in reduced Planck units mpl = 1/
√

8πG = 2.4 × 1018 GeV with ~ = c = 1 and with a ‘mostly plus’

(−,+,+,+) sign convention for the metric. Our conventions for curvature tensors are those of Weinberg.
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where N∗ is the number of e-folds before the end of inflation and with N∗ = 60 we have mφ '

6.4 × 10−6mpl. The inflaton will begin to oscillate around the minimum of its potential when its

mass becomes comparable to the Hubble scale, mφ ≈ H(tosc), with a profile given by the expression

φ0(t) = Φ(t) sin(mφt) [7]. The amplitude of the oscillations, Φ(t), is a monotonic function of cosmic

time given by Φ =
√

8/3 (mpl/2πNosc), where Nosc is the number of oscillations after the end of

inflation. Setting Nosc = 1 gives Φ ≈ 0.3mpl, which we take as the initial amplitude of the inflaton

oscillations.

If the direct coupling in (1) presents the only decay channel for the inflaton the expansion of

the universe will prevent the complete perturbative decay of the inflaton [7]. This is because the

decay rate, Γ, scales as Γ ∝ Φ2 ∼ 1/t2 whereas the expansion rate during reheating scales as

H ∼ 1/t. Instead, in this case decay must proceed non-perturbatively through preheating [5–7],

where parametric resonance can lead to enhanced decay of the inflaton condensate. The mode

equation for χ fluctuations resulting from (1) in the presence of the oscillating condensate φ0(t) is

χ̈k +
[
k2 +m2

χ + g2φ2
0

]
χk = 0, (3)

where we have neglected the expansion of the universe (a = 1) and note that including gravitational

effects would act to strengthen the main conclusion below. If the field begins in its Bunch-Davies

vacuum the corresponding WKB solution is χk ∼ exp(−i
∫
ωk(t

′)dt′), where ωk is time-dependent

frequency corresponding to the terms inside the brackets in (3). Particle production occurs if the

adiabatic conditions fail corresponding to ω̇k � ω2
k or ω̈k � ω3

k, etc... Thus, a necessary condition

for preheating is

ω̇k
ω2
k

' g2φφ̇(
k2 +m2

χ + g2φ2
)3/2 > 1, (4)

corresponding to the production of modes with their momenta satisfying

k2 .
(
g2φφ̇

)2/3
− g2φ2 −m2

χ. (5)

The ratio in (4) is maximal when the inflaton is near the bottom of the potential, where we

can approximate φ̇0 ' mφΦ. Broad resonance [7] will assure us that preheating is successful.

This corresponds to a restriction on the range of wave numbers in the resonance band ∆k � mφ

Maximizing the right side of (5) with respect to φ, we find the maximum value of φ2
∗ ' 0.2 φ̇/g

corresponding to a maximum value of resonant momentum k2
∗ = 0.4 gφ̇ − m2

χ. Therefore the

condition for broad resonance ∆k ' k∗ � mφ can be written as a condition on the coupling
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constant g,

g �
m2
φ +m2

χ

φ̇
'
m2
φ +m2

χ

mφΦ
. (6)

Taking Φ ' 0.3mpl and assuming mχ � mφ we find g � 3.8× 10−5 for efficient preheating in the

broad resonance regime.

On the other hand, we can obtain a lower bound on the strength of the coupling by requiring the

one-loop correction induced by the g2φ2χ2 interaction to not to spoil the flatness of the potential

during inflation. That is, we require δmφ . mφ ' 6.4 × 10−6mpl, whereas the loop correction is

δm2
φ = (g2Λ2

uv)/(16π2). The cut-off is expected to be Planckian Λuv ≈ mpl, implying g < 10−5.

Clearly, this result implies that the required value of the coupling, g, to obtain efficient preheating

is inconsistent with having a naturally light inflaton during inflation. In other words, in general it

is expected that heavy χ fields running in the loops induced by the direct coupling g2φ2χ2 tends

to de-stabilize parameters of the inflationary sector if we insist on the effective particle production

at the end of inflation.

We have a good understanding of the limitations to the approximations we have used above

to constrain preheating in chaotic inflation models, especially since these toy models have been

well-studied over the years to establish when they lead to successful reheating. At the same time,

it is clear that we are seeing tension in analytic expectations for finding reliable preheating models.

It is also clear that doing a full non-linear analyses for all parameters in all models of preheating

is not an efficient way to do model analysis. Can one always establish a connection between the

parameters during inflation and those same parameters during reheating? What is the expected

mass of the reheat fields during inflation? Can’t the inflaton just decay through higher dimensional

operators present at the time of reheating? These are some of the questions we hope to address by

developing a more systematic approach to reheating below.

III. REHEATING IN WEINBERG’S COVARIANT FORMULATION OF THE EFT OF

INFLATION

In this section, we extend Weinberg’s EFT approach to inflation [19] to include the end of

inflation and the beginning of (p)reheating. Focusing on a two-field scalar field model for simplicity,

we present both analytic and numeric results from our investigation into the background evolution

and the resulting particle production. We find that consistency of the background EFT within this

approach limits its applicability and how well it can be used to successfully describe (p)reheating.

This will motivate us to consider a different approach in Section IV.
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A. Construction of the EFT

Following [19] we consider the most general EFT of a scalar field in General Relativity which

can be written as

Linf = −1

2
m2

plR−
1

2
(∂φ)2 − V (φ) +

c1

Λ4
(∂φ)4 , (7)

where Λ is the UV cutoff of the theory, in general c1 = c1(φ) is an arbitrary function of the scalar,

and we have neglected terms involving the Weyl tensor which are suppressed relative to the leading

correction [19]. Assuming that the equations of motion admit inflationary solutions it was shown

in [19] that this is also the most general EFT for the inflationary background (to be contrasted to

the EFT for the perturbations which we will discuss in Section IV).

CMB observations imply that the power spectrum of scalar fluctuations is nearly scale-invariant,

which can be realized through an approximate shift symmetry for the inflaton. This allows us to

approximate c1(φ) as nearly constant during inflation (its time evolution is slow-roll suppressed).

When the EFT expansion is applicable, i.e. Λ > φ̇1/2, self-interactions of the inflaton are small and

non-Gaussianity is negligible [35].

We now introduce an additional scalar that will play the role of the reheat field after inflation.

For simplicity, we will focus on the situation where the reheat field has an effective mass of at least

the Hubble-scale during inflation to avoid considering multi-field inflation. However, the reheat

field’s mass during inflation is an important consideration which we comment on later. Given these

assumptions the starting point of our analysis is similar in spirit to that of [36], where those authors

considered the EFT of the inflationary background coupled to an additional scalar sector during

inflation. Again working to next-to-leading order in the derivative expansion we can introduce the

Lagrangian for the additional scalar χ,

Lχ = −1

2
(∂χ)2 − U(χ) +

c2

Λ4
(∂χ)4 , (8)

where c2 and U(χ) are arbitrary functions of χ, but can not contain the inflaton due to its approx-

imate shift symmetry2.

Finally, we can introduce the interactions between the two sectors that respect the inflaton’s

shift symmetry – implying that terms of the form φpχq are forbidden. At the level of dimension five

operators it was shown in [36] that the shift symmetry can be used to forbid the operators ∂µφ∂µχ

2 The spontaneous or explicit breaking of the shift symmetry at the time of reheating can be important and creates

an additional limitation of this approach.
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and χ∂µφ∂µχ. Similar arguments can be used at the level of dimension six operators and we find

the two leading interactions3

Lmix = −c3(∂φ)2 χ

Λ
− c4(∂φ)2 χ

2

Λ2
+O

(
1

Λ3

)
, (9)

where c3 and c4 are expected to be order one constants and positive (for a UV completable EFT [37]

and to avoid pathological instabilities [38]). Given our discussion and assumptions above, the EFT

of Inflation with an additional to-be reheat field is then given by, L = Linf + Lχ + Lmix. Focusing

on the leading interactions we have

L =
1

2
m2

plR−
1

2
f
(χ

Λ

)
(∂φ)2 − 1

2
(∂χ)2 − V (φ)− U(χ), (10)

where

f
(χ

Λ

)
= 1 + 2c3

χ

Λ
+ 2c4

χ2

Λ2
. (11)

The dynamics of fluctuations that arise from (10) have been studied extensively in the context of

inflation. In particular, there can be interesting signatures for both the power spectrum and higher

point correlation functions (e.g. non-gaussianity) depending on the mass of χ [39], its stabilization

[40–45], and whether the χ and φ sectors are strongly or weakly mixed [46].

In this work we are interested in connecting this system to the end of inflation and reheating.

In particular, we would like to investigate if (p)reheating of the χ sector can be achieved through

the derivative couplings in (11) as these are the leading interactions allowed by the shift symmetry

of the inflaton.

We note that (p)reheating with derivative couplings has been considered before. The authors

of [47] have studied a particular realization of the EFT we are considering in this work. In their

case the approximate shift symmetry of the EFT resulted from a specific UV completion motivated

by Natural Inflation [48], where the spontaneous (and explicit) breaking of a U(1) symmetry of a

complex scalar resulted in an inflaton associated with the pseudo-Nambu-Goldstone Boson (pNGB)

and the reheat field corresponded to the excitation of the radial direction. The UV theory took the

form

L = −(∂µΦ)(∂µΦ∗)− λ(F 2 − Φ∗Φ), (12)

3 We have taken the cutoff of the EFT to be the same for both the inflationary and hidden sector for simplicity,

although this need not be the case. We expect our main conclusions in this section to be insensitive to this

assumption.
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where the U(1) symmetry is broken by the vacuum solution 〈|Φ|〉 = F . The inflaton potential

results from the explicit breaking term

V (φ) = µ4

[
1− cos

(
φ

F

)]
. (13)

Expanding around the vacuum solution using

Φ = (F + χ) eiφ/F , (14)

one can easily see that this particular model can be recast as the EFT of the matter sector given by

the Lagrangian (10) with the replacement Λ→ F . We note that in this particular class of models,

adequate inflation unfortunately requires F � mpl, which seems to be at odds with additional non-

perturbative corrections and expectations from quantum gravity [49, 50]. However, we emphasize

that the (bottom-up) EFT approach we are taking here is more general than this particular class

of models. In particular, we emphasize (see also [36]) that the symmetries resulting in (10) may be

the result of a fundamental symmetry of the UV theory (as in the example of [47]), but they can

also be the result of an accidental symmetry in the IR, or the result of fine-tuning of the effective

potential. In this way, the model of [47] provides a particular UV completion of the more general

EFT approach we consider here. This is analogous to the way in which EFT methods can capture

phenomenology near the scale of Electroweak symmetry breaking, without one having a precise

description of the UV physics and mechanism responsible for breaking Electroweak symmetry.

In general, the inflaton potential V (φ) in our EFT is arbitrary and does not need to take the

specific form given in (13). We also have that the scale Λ can be taken as Λ < mpl without

raising any immediate issues about the consistency of inflation. We will see the importance of this

observation when we consider the dynamics of the background and fluctuations in the following

sections.

B. Analysis of Reheating in the EFT

To justify using an EFT at the end of inflation, we need to ensure that the model is self-

consistent, i.e. we have to check that there is a consistent background solution to the equations of

motion for the fields,

φ̈+ 3Hφ̇+ ∂χ (ln f) φ̇χ̇+ f−1∂φV = 0, (15)

and

χ̈+ 3Hχ̇− 1

2
(∂χf) φ̇2 + ∂χU = 0, (16)
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and that the background also admits a perturbative description. This procedure will allow us to

study the existence (or non-existence) of resonant phenomena, and establish when viable preheating

occurs.

m�t

m�t

m�t

�̃0(t)

�̃0(t)

�̃0/⇤ = 1

H̃(t)

FIG. 1. This figure gives the evolution of the background fields and Hubble parameter, where tildes

imply we have normalized these quantities by
√

8πmpl – except for H̃ ≡ H/mφ, and time is in units of the

inflaton mass. For this realization we take mχ/mφ = 10, mpl/Λ = 14 and initial conditions φ
0

= 1.038 mpl,

φ̇
0

= −0.662 mpl, χ0
= χ̇

0
= 0.005 mpl. The top panel gives the evolution of the inflaton. In the middle

panel the solid black curve is χ̃
0
(t) and below the dot-dashed blue horizontal line marks the region where the

EFT of the background is valid. The bottom plot gives the Hubble rate where the red-dashed line represents

a strictly matter dominated evolution.
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We begin by studying the behavior of the background fields φ0 and χ0 . These are described by

the following equations of motion,

φ̈0 + 3Hφ̇0 + ∂χ (ln f) φ̇0χ̇0 + f−1∂φV = 0, (17)

and

χ̈0 + 3Hχ̇0 −
1

2
(∂χf) φ̇2

0
+ ∂χU = 0. (18)

If we further assume that the zero-mode dominates the energy density (and pressure) of the universe

in the linear regime, then we can write down the evolution equations for the scale factor,

H2 =
1

3m2
pl

(
1

2
fφ̇2

0
+

1

2
χ̇2

0
+ V (φ0) + U(χ0)

)
, (19)

and the Hubble parameter,

Ḣ = − 1

2m2
pl

(
fφ̇2

0
+ χ̇2

0

)
. (20)

The first question that we need to address is whether the zero-mode of the reheat field acquires

a significant displacement from zero. Using (11), and taking c3 and c4 to be order-one constants

then (18) becomes

χ̈0 + 3Hχ̇0 + ∂χU −
φ̇2

0

Λ2
χ0 −

φ̇2
0

Λ
= 0, (21)

The last two terms in (21) come from the EFT expansion – i.e. we have dropped terms in the

Lagrangian of order ∼ φ̇2
0
χ3

0
/Λ3 and higher. Therefore, if either of these terms become large (e.g.

if χ0/Λ > 1) then the EFT expansion of the background is not justified. Equation (21) is that

of a harmonic oscillator with time-dependent frequency, where the last term resembles an external

force, which we also require to be small compared to the restoring force from the effective potential.

Assuming that U(χ0) ≈ m2
χχ

2
0
/2, which is self consistent with our small-displacement assumption,

we can find the stable minimum of the effective potential,

Ueff = U(χ0)− 1

2
φ̇2

0
f
(χ

Λ

)
. (22)

to be

χ0(t) '
φ̇2

0

m2
χΛ

+O

(
φ̇4

0

m4
χΛ2

)
. (23)

The velocity of the inflaton at the end of inflation is roughly φ̇ ∼ mφmpl, which allows us to

write down an approximate condition on the size of χ0 ,

χ0

Λ
< 1 (24)
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implies that

m2
φ

m2
χ

.

(
Λ

mpl

)2

(25)

That is, we find that we are free to lower the cutoff of the EFT below the Planck scale (Λ� mpl),

but at the cost of increasing the mass of the reheat field above that of the inflaton. The fact that

particle production is still possible in themχ � mφ regime emphasizes the importance of preheating

versus reheating, since in this situation perturbative decays are kinematically forbidden. It is also

interesting that this condition is independently required so that the reheat field does not interfere

with the the inflationary dynamics prior to reheating (constraints from non-Gaussianity could also

be imposed). That is, even for mφ < mχ ' 3HI such heavy fields can have a dramatic impact on

inflation [39–46]. We also note that the presence of a discrete Z2 symmetry could be used to forbid

the dimension five operator leading to the tadpole in (21), and our stability condition (25) would

still hold due to the presence of the dimension six operator.

We have numerically verified the result (25) by solving the system (17)-(19) for a range of masses,

initial conditions, and the cutoff Λ. In Figure 1, we plot a particular realization of a consistent

configuration for the background fields together with the evolution of the cosmological background.

In the plot, we takempl/Λ = 14 andmχ/mφ = 10 consistent with (25). We see that the background

value χ0 stays consistent within the EFT regime, while inflaton oscillations proceed as in the case

of a quadratic potential. On the other hand, it can be seen that the expansion of the universe

is slightly faster than H(t) ∝ t−1 initially, and then asymptotes to this behavior at late times

mφt � 1. We conclude this section by emphasizing that in order to have a stable, well-behaved

background solution within the regime of validity of the EFT, one requires the condition, (25) to

be satisfied.

1. Non-perturbative Dynamics and Limitations of the Background EFT

We now consider whether resonant particle production is possible around the background we

analyzed in the previous section. Expanding both scalar fields to first order around their background

values, φ = φ0 + δφ, χ = χ0 + δχ in the Lagrangian (10), we write the equation of motion for the

linearized fluctuations of the reheat field in Fourier space as

δχ̈k + 3Hδχ̇k +

[(
k

a

)2

+m2
χ −

φ̇2
0

Λ2

]
δχk = 2

φ̇0

Λ

[
1 +

χ0

Λ

]
δφ̇k, (26)

where the terms on the right side are due to the mixing with inflaton fluctuations. These terms

can source δχk fluctuations whenever δφ̇k is large. In the initial stage of (p)reheating the effect of
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0 2 4 66420 6420

FIG. 2. Instability band structure for the model Vtot = 1
2m

2
φφ

2 + 1
2m

2
χχ

2 − 1
2 φ̇

2
0
f
(
χ
Λ

)
, where f is given by

(11). This density plot represents the real part of the scaled Floquet exponent, Re(µk), where lighter regions

represent larger values. The y-axis is the hierarchy between the Planck mass and the rescaled cut-off of the

EFT, Λ̃ = Λ/
√

8π, while the x-axis corresponds to K =
√
k2 +m2

χ in units of mφ.

this term will be negligible. Neglecting these terms, we focus on sub-Hubble scales first neglecting

the cosmological expansion (we take a(t)→ 1, H(t)→ 0). In this approximation, (26) becomes

δχ̈k +

[
k2 +m2

χ −
φ̇2

0

Λ2

]
δχk = 0, (27)

where we define the frequency of the modes as ω2
k(t) = k2 + m2

χ − φ̇2
0
/Λ2. Given a coherently

oscillating inflaton, φ0 = Φ(t) sin(mφt), we can map this mode equation to the Mathieu equation

δχ′′k + [Ak − 2q cos(2z)] δχk = 0, (28)

where we have defined the dimensionless time z = mφt and Ak = (k2 + m2
χ)/m2

φ − 2q with q =

Φ2/4Λ2. Floquet’s theorem [51] states that for a given wave-number, (26) has solutions of the form

δχk = eµkzg1(z) + e−µkzg2(z), (29)

where g1 and g2 are periodic functions and µk is the Floquet exponent. In general, the Floquet

exponent µk depends on the wave number k, the mass of the reheat field mχ, and the ratio Φ/Λ.

For cases where the real part of the exponent is non-zero, we have exponentially growing modes of

δχk.
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The structure of (28) tells us that the resonant momenta are grouped into bands in parameter

space. Since k2 > 0, and hence, Ak > −2q, there are also meaningful statements one can make

about the regions of the Mathieu parameter space that are probed by our reheating models. One

interesting case is when some modes satisfy −2q < Ak < 0; in this case, (28) assures us that there’s

a time when the mass-squared of the these modes is negative (analogous to the cases explored in

[52]) and the Floquet exponent can be very large, µk ' (4/π) q1/2 for q � 1. There’s another case

in which 0 < Ak < 2q, where the mass-squared of some of the δχk modes become tachyonic for

certain time intervals and is also very efficient (analogous to [13].)

On the other hand, Ak is frequently larger than 2q. While these models have parametric instabil-

ities, the resonance structure requires us to be more careful. For our purposes here, the consistency

of the background EFT requires the mass of the reheat field to satisfy m2
χ > φ̇2

0
/Λ2, which requires

avoiding the regions of the parameter space that guarantee strong, broad, resonance. While the

inflaton undergoes periodic oscillations this condition implies

m2
χ > m2

φ

Φ2

Λ2
, (30)

which is exactly what we have found in equation (25) with Φ = mpl. Here, we have used φ(t) =

Φ sin(mφt) considering the maximum value of φ̇2
0
/Λ2. We have also studied this system numerically,

using FloqEx [53], with our results appearing in Figure 2. The figure shows the magnitude of the

Floquet exponent as a function of cutoff and wave number. One can see the broad (and tachyonic)

resonance regimes mostly live outside of those probed by the EFT. We must keep in mind, though,

that these estimates could still produce some particles through parametric resonance, and should

be studied through full lattice methods – we leave this to future work.

Our main conclusion thus far is that if we require the reheat field to respect the shift symmetry of

the inflationary sector (implying adequate inflation consistent with CMB observations), successful

reheating suggests considering an EFT cutoff far below the Planck scale Λ � mpl. We saw that

having such a sub-Planckian cutoff can quickly lead to the breakdown of the background EFT

expansion when we require efficient reheating in the EFT.

As another example of when the EFT expansion may breakdown, consider the corrections we

have thus far neglected in (7). When evaluated on the background the operator contains a term

c1

Λ4
(∂φ)4 ⊃ c1

Λ4
φ̇2

0 (∂φ)2 . (31)

During inflation this term will be slow-roll suppressed φ̇2
0/Λ

4 ∼ εH2m2
pl/Λ

4 and higher order terms
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will be even further suppressed as long as Λ is not far below mpl during inflation4. However, for

smaller values of the cutoff this corresponds to strong coupling of the background and our EFT

approach breaks down – this would also lead to a large level of non-Gaussianity [46]. Assuming the

background remains weakly coupled at the end of inflation we have

c1

Λ4
φ̇2

0 ∼
m2
φφ

2
e

Λ4
∼
(
mφ

mpl

)2( φe
mpl

)2 (mpl

Λ

)4
, (32)

so for Λ far below the Planck scale the EFT would again fail as this term would be as important as

the kinetic term (and terms even higher in derivatives that we neglected would also be important).

For example, in chaotic inflation where the inflaton mass is fixed by the COBE normalization

this implies Λ & 10−3mpl. We emphasize that this constraint has nothing to do with requiring

adequate inflation and is an added constraint for the consistency of the derivative expansion of the

EFT during reheating. We now turn to a different EFT approach where the challenges discussed

in this section can be addressed.

IV. THE EFT OF (P)REHEATING

EFT of Inflation

EFT of 
Reheating

FIG. 3. Obtaining adequate inflation, ending inflation and then successful reheating in the EFT requires

a complete knowledge of the inflationary potential. This presents a challenge when using Weinberg’s EFT

approach to capture reheating in many classes of models.

We have seen that using an EFT approach to the background has limited utility in simultaneously

describing inflation and reheating. Indeed, in addition to the challenges discussed at the end of

4 Using the power spectrum normalization one can also show the condition φ̇2
0/Λ

4 < 1 implies a lower bound

Λ/mp &
√
ε 10−2, where ε = d(H−1)/dt is the slow-roll parameter.
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Section III, an additional concern is that there could be terms that badly break the shift symmetry

at the time of reheating. Such terms could be small during inflation (suppressed by the breaking

scale), but could be important at the time of reheating. Alternatively, there are many reheating

models in which the shape of the potential during inflation is vastly different than it is during

reheating (and could include additional fields like in hybrid models) and the background EFT

approach requires a knowledge of the complete potential. This is illustrated in Figure 3.

In particular, the terms arising from the breaking of the shift symmetry of the inflaton (which

would include thus far forbidden terms of the form giφ
pχq) could become as important as the other

terms we have considered in (26). As another example consider the potential

V =
m2M2

2α

[(
1 +

φ2

M2

)α
− 1

]
. (33)

where α < 1. This toy model captures many important inflationary models including axion mon-

odromy [54]. During the inflationary phase this potential scales as V ∼ φ2α and is sensitive to the

scale M , whereas the behavior during reheating (φ < M) is independent of M and V ∼ m2φ2.

So in our EFT approach expanding the field in powers of φ/Λ is causing us to miss these types of

theories.

In addition, new degrees of freedom could appear at the time of reheating that were heavy during

inflation and could have been integrated out – in other words the EFT during inflation and the

EFT during reheating can correspond to two distinct EFTs. This is not to say our approach doesn’t

capture many models. In particular, we’ve seen that the model of [47] is captured by our approach,

and most chaotic inflation models would be as well. But even focusing only on the inflationary

epoch we know that Weinberg’s EFT is not capable of capturing a large number of interesting

models. For example, in DBI type models where the background is in some sense strongly coupled

one needs a non-perturbative expression for the background as it is a resummed expression where

each derivative in the derivative expansion must be kept, e.g. V ∼
√

1− φ̇2/Λ4. Such models

are not captured by the Lagrangian of (7). One may also anticipate reheating models where the

background of the reheat field could also exhibit such non-linear behavior and then the derivative

expansion of the Lagrangian (8) would be inadequate – as well as the expansion of the mixing terms

stopping at dimension six in (9). One final objection is that we have only concentrated on scalar

reheat fields. Reheating to fermions and gauge fields is also important, and the way in which this

proceeds is not only model dependent, but the spin statistics can also make important differences

in the efficiency of reheating [55].

Given these shortcomings of the EFT of the background we now turn to construct an EFT
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for reheating along the lines of the EFT of Inflation [22]. As we will discuss, this approach can

overcome many of the obstacles established in this Section. In the remainder of this section, we

first begin by constructing an EFT focusing on the fluctuations directly at the end of inflation.

This theory will share many similarities with the EFT of multi-field inflation [23, 46]. However

there will be important differences which we will discuss. We then demonstrate how the approach

can reproduce both the results of self resonant reheating and multi-field reheating. We also discuss

some new models that arise from considering the symmetries of the EFT.

A. Construction of the EFT of Fluctuations

The EFT expansion in fluctuations (rather than the background) relies on the fact that the

background expansion of the universe spontaneously breaks time-translation invariance. Over the

history of the universe there have been many different dominant forms of matter and energy, and so

many different sources of time-translation breaking including; inflatons, post-inflation / pre-BBN

fields, radiation, dark matter, and eventually dark energy today. As the universe passed through

these phases the energy density changed its composition many times, but the scale factor continued

to monotonically increase. The EFT approach takes this background evolution as given a priori

(as specified by the background functions a(t), H(t), and Ḣ(t)) and focuses directly on the most

general EFT for the fluctuations around this background.

In taking this approach we give up on realizing explicit models for the background, and instead

focus on implications and observations associated with the fluctuations. In regards to connecting

with observations this approach is adequate5, since physical observables correspond to fluctuations

and not background quantities [57]. The approach also has the advantage that the underlying

physics responsible for driving the background expansion can be non-perturbative, in the sense

that the background doesn’t need to admit an EFT expansion (as we required in Section III).

Instead, this EFT approach is more general and models are classified by their symmetry breaking

properties and the allowed operators in the Lagrangian correspond to cosmological perturbations.

In many cases the symmetries alone can be used to establish rigid constraints on the theory of the

fluctuations and associated observables. For example, it is well known that inflation requires that de

Sitter symmetry must be non-linearly realized and this leads to constraints on inflaton correlation

functions. This fact is manifest in the EFT of Inflation approach using the corresponding Goldstone

boson [57]. This EFT approach has also been shown to be useful when the cosmological background

5 Although the connection to observables is not necessarily always straightforward [56].
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changes its behavior, e.g. in the EFT of dark energy [25–29], where one is primarily interested in

observations during matter domination, but also must account for observations during dark energy

domination.

The generality of the EFT approach when applied to cosmological backgrounds was first es-

tablished in [21], where the authors were investigating violations of the Null Energy Condition in

non-standard cosmologies. In that paper, referencing earlier work of Weinberg [58], it was pointed

out that on long wavelengths there is always an adiabatic mode corresponding to the Goldstone

boson of spontaneously broken time diffeomorphism invariance. Whenever a decoupling limit ex-

ists – in which the Goldstone decouples from gravity – this broken symmetry is then realized as

spontaneously broken time translation invariance (the gauge symmetry effectively becomes a global

symmetry). Thus, for any FRW spacetime it is possible to utilize the EFT approach and it is in

this vain that we will construct our EFT for reheating following the initial ideas presented in [1].

As an example, suitable for studying the dynamics at the end of inflation, we can consider a

decelerated FRW expansion with the background metric

ds2 = −dt2 + a2(t)δijdx
idxj , ä(t) < 0. (34)

We can think of this background as generated by the evolution of a set of homogeneous scalars6

fields, i.e. {φ0 , χ0 , . . . }. In this work, to study dynamics at the end of inflation, we may consider

only one of the scalars, e.g. the inflaton φ0 , that contributes significantly to the evolution of scale

factor, a(t). This FRW evolution has a preferred time slicing described by the homogeneous scalar

which can also be considered a clock. In order to describe the theory of fluctuations around this

background, we can go to a co-moving frame (unitary gauge) where the vacuum expectation value

of the scalar coincides with this privileged time slicing, corresponding to distinct values of 〈φ〉 = φ0 .

As we have fixed the slicing of space-time, general time diffs7 are no longer a symmetry and the

fluctuations of the scalar are hidden in the metric perturbations, which now describe three degrees

of freedom: two transverse for the graviton and one for the scalar. We can always re-introduce

inflaton fluctuations by a common local shift in time, i.e. t → t + π(x). By definition, such a

fluctuation corresponds to an adiabatic fluctuation, proportional to Goldstone mode δφ = φ̇0π

associated with the broken symmetry. In this work, apart from the adiabatic fluctuations, we will

consider an additional degree of freedom X(t, x) = χ0(t) + χ(t, x), which will play the role of the

(p)reheat field. As is standard in the literature we will take this field to be a subdominant source
6 In general, we are not restricted to scalar fields, e.g. another example can be a set of perfect fluids.
7 As we mentioned before our main interest is the global part of time diffs, i.e. time translations. See [59] for more

discussion on this matter.
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of background evolution during the first stages of preheating (i.e. ρφ � ρχ) since before particle

creation 〈X〉 ' 0.

1. The Action in Unitary Gauge

The procedure for constructing the EFT of fluctuations for the inflationary sector coupled to a

reheat field at the time of reheating is similar to the case of quasi-single field inflation considered in

[60]. Those authors considered the effects of particle production during inflation, whereas here we

consider reheating and important differences will be discussed below. Nevertheless, the action can

be constructed analogously and working in unitary gauge the action for the fluctuations is

S =

∫
d4x
√
−g

[
m2

pl

2
R− f1(t)− f2(t)g00 + F (2)(δg00, χ, δRµνρσ, δKµν ;∇µ; t)

]
, (35)

where f1 and f2 are arbitrary functions of time, F (2) starts quadratic in operators which must be

covariant in spatial indices but not in time, ∇µ is the covariant derivative, and δRµνρσ and δKµν are

the fluctuations in the Riemann tensor and extrinsic curvature, respectively. Note that the second

and third terms in the above action are the only ones that contain linear perturbations. Requiring

that terms linear in the fluctuations vanish (i.e. tadpole cancelation) follows from enforcing the

background equations of motion in an FRW background [22],

3H2m2
pl = f1(t) + f2(t), (36)

and

− 2Ḣm2
pl = 2f2(t). (37)

As a simple example of tadpole cancelation, consider the end of inflation where the inflaton begins

oscillating with a potential V (φ) and where derivative interactions and the density of other fields are

negligible. In this case the functions in (37) are given by f1 = V (φ0) and f2 = φ̇2
0
/2. However, more

generally, f1 and f2 can take any form as long as the background corresponds to the (p)reheating

period, i.e. an FRW universe with possibly small corrections due to oscillations. For example, we

could have a preheating model corresponding to DBI-like models of inflation where a large number

of derivative self-interactions could play an important role [61]. In that case the functions f1 and

f2 would contain terms with an infinite number of derivatives at the level of the background. The

key is that the behavior of the matter sector will be captured by the functions f1 and f2, and

once we cancel the tadpoles, the background is then given (by the equations of motion) by H(t)
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and its derivatives. Then, we can focus on the EFT of the fluctuations about this background –

just as in the case of the EFT of Inflation or DE [22, 25, 26]. Thus, the problem we encountered

in the previous section, where we would need to keep all the terms in the χ/Λ expansion is not

an issue here. Instead, these terms are captured by H and Ḣ and could represent re-summed,

non-perturbative expressions for the background8. Moreover, because we are not performing a

perturbative expansion of the background, we work under the assumption that we have a complete

knowledge of the potential overcoming the problems associated with Figure 3.

The most general action is found by expanding the function F (2) in (35) in terms of fluctuations

{δg00, χ, δKµν , δRµνρσ} and their derivatives. We emphasize that this EFT expansion is one in

perturbations and derivatives. During reheating, the fluctuations are also assumed to be initially

small, however significant particle production can change this (as we will discuss). Whereas the

derivative expansion follows from locality, causality and unitarity in an FRW universe. In the

gravity sector, δg00 is a zero derivative object, whereas δKµν corresponds to one derivative and

δRµνρσ to two, as they contain first and second order derivatives of the metric, respectively. When

we introduce the Goldstone boson in the next section, it will be clear that terms with δK and δR

will include higher derivatives of the Goldstone boson. Finally, we find it convenient to split the

action in (35) into three parts

S = Sg + Sχ + Sgχ, (38)

where the action Sg contains only terms build out of {δg00, δKµν , δRµνρσ}, Sχ contains those purely

from χ and the action Sgχ is due to mixing between gravity sector and χ. Following our discussion

above, we then have

Sg =

∫
d4x
√
−g

[
m2

pl

2
R−m2

pl

(
3H2(t) + Ḣ(t)

)
+m2

plḢ(t)g00 +
m4

2(t)

2!

(
δg00

)2
+ . . .

]
, (39)

Sχ =

∫
d4x
√
−g
[
−α1(t)

2
gµν∂µχ∂νχ+

α2(t)

2
(∂0χ)2 − α3(t)

2
χ2 + α4(t)χ∂0χ

]
, (40)

Sgχ =

∫
d4x
√
−g
[
β1(t)δg00χ+ β2(t)δg00∂0χ+ β3(t)∂0χ− (β̇3(t) + 3H(t)β3(t))χ

]
, (41)

where g00 = −1 + δg00 and the dots represent terms higher order in fluctuations and derivatives.

Here, {m2(t), αi(t), βi(t)} are thus far arbitrary functions of time that are permitted in the unitary

8 The importance of strong coupling and resummation appears in many areas of physics including QCD and theories

of modified gravity. See e.g. [62]. An approach to strong coupling during preheating, using methods of holography,

appeared in [63, 64].
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gauge as time diffs have been spontaneously broken by the background. We note that the coefficient

of the δg00 operator is fixed by the background, implying that it is universal in the sense that all

preheating models with the same background evolution will have the same coefficient (specified by

H(t) and its derivatives). Whereas, the operator
(
δg00

)2 is an example of a non-universal operator,

becausem2 is not fixed by the symmetries of the FRW background. Instead its value corresponds to

a specific class of models (those with a non-unity sound speed). Similarly, broken time diffs generally

allow for a term proportional to α2 that leads to non-trivial sound speed cχ = α1/(α1 + α2) in the

reheat sector χ. In (41), the functions βi can be seen as a measure of the strength of mixing with

gravitational fluctuations (including one scalar d.o.f). At this stage, the usefulness of this approach

might be in question, given the large number of free parameters. However, as we will see in the

following sections, even though this is the most general theory to quadratic order, in practice many

of the terms in (39)-(41) are not important for elementary processes within reheating. Finally,

we can further simplify the action by performing a field re-definition of χ, using that χ = 0 on

the background trajectory and using time reparametrization invariance to set α4 = β3 = 0 in the

actions (40) and (41).

The form of (39), (40) and (41) are not particularly useful in studying the dynamics as the scalar

fluctuation representing inflaton is not manifest. We can re-introduce diffeomorphism invariance

and the Goldstone mode related to inflaton by the Stückelberg trick, which will be our main focus

in the following section.

2. Introducing the Goldstone Boson

To introduce the Goldstone boson along with time diffs, we first perform the broken time diffs

t → t + ξ0(t, ~x) in the actions (39)-(41). Since the cosmological background (i.e. H, Ḣ) as well as

the free functions {αi, βi} depend on cosmic time, t. The gauge function, ξ0, will appear explicitly

in the actions for the perturbations. We then replace ξ0 → π(t, ~x) everywhere it appears in the

action and require that the Goldstone transforms non-linearly, π → π− ξ0 under diffs. In this way,

clearly full diffeomorphism invariance can be restored in (39)-(41). In order to find the explicit

form of the actions including the Goldstone π, we need to know the transformation rule for the
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remaining operators appearing in (39)-(41) under t→ t+ π. Under the transformation we have

g00 → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ,

gi0 → gi0 + giν∂νπ,

∂0χ→ ∂0χ+ gµν∂µχ∂νπ,

f(t)→ f(t+ π) (42)

Rµνλσ → Rµνλσ (43)∫
d4x
√
−g →

∫
d4x
√
−g

where f(t) represents any time-dependent function appearing in the action. Carrying out this

procedure on the action (39) we find

Sg =

∫
d4x
√
−g

[
m2

pl

2
R−m2

pl

(
3H(t+ π)2 + Ḣ(t+ π)

)
+m2

plḢ(t+ π)(g00 + 2g0µ∂µπ + gµν∂µπ∂νπ)

+
m4

2(t+ π)

2!
(δg00 + 2g0µ∂µπ + gµν∂µπ∂νπ)2

]
. (44)

We see that this action is invariant under time diffs if we require the Goldstone to transform as

π → π − ξ0(t, ~x), i.e. the symmetry is non-linearly realized [23]. We also note that requiring the

symmetry be realized in the UV has forced relationships between the various operators (all the

terms in parentheses must have the same coefficients). Following the same steps, (40) and (41)

become

Sχ =

∫
d4x
√
−g
[
−α1(t+ π)

2
gµν∂µχ∂νχ+

α2(t+ π)

2
(∂0χ+ ∂µπ∂

µχ)2

− α3(t+ π)

2
χ2

]
, (45)

Sgχ =

∫
d4x
√
−g
[
β1(t+ π)(δg00 + 2∂0π + ∂µπ∂

µπ)χ

+ β2(t+ π)(δg00 + 2∂0π + ∂µπ∂
µπ)(∂0χ+ ∂µπ∂

µχ)
]
. (46)

Similar to the discussion above, the non-linearly realized symmetry introduces interactions between

χ and the Goldstone, π.

To describe the dynamics at the end of inflation, working with the full action given by Sg +

Sχ + Sgχ in complete generality is a difficult task. First of all, we need to have some input for

the time-dependent functions, i.e. {H(t), αi(t), βi(t)} appearing in the Lagrangian. However, as we

will see, an investigation on the background dynamics during reheating along with the associated
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symmetries and scales of interest will allow us to obtain generic information on the form of these

functions. This will be our main focus in the next section.

B. Background Evolution During Reheating and Symmetries of the Action

1. Background Evolution and Symmetries

In parametrizing the background expansion we have assumed a decelerating FRW universe. A

simple example is provided by a perfect fluid with an equation of state w and with corresponding

scale factor a(t) ∝ t2/3(1+w) and expansion rate H(t) = ȧ/a ∝ t−1 with H−1 setting the cosmic

time scale. On the other hand, in studies of the dynamics at the end of inflation the frequency of

inflaton oscillations introduce another important time scale. For example, if the inflaton oscillates

in a power-law potential, V ∝ φn
0
, the period of oscillations will be 2πω−1 = 4

∫ φi
0 dφ0 (V (φi) −

V (φ0))−1/2, which for general n depends on the initial amplitude, φi [65]. In the limit that the

period of oscillations is much smaller than the expansion time scale, ω−1 � H−1, coherent scalar

field oscillations behave like a perfect fluid with an average equation of state, 〈w〉a = (n− 2)/n+ 2

[66].

The presence of two different time scales leads to interesting symmetry breaking patterns within

the EFT, and whether a symmetry is realized will depend on the dynamics under investigation. At

high energies (or small wavelengths) the energy being probed Eprobed exceeds both the oscillation

and expansion energy i.e. Eprobed � ω � H and so the time evolution of the oscillator and

the cosmic expansion is negligible – time-translations are a good symmetry. As we lower the

energy scale to Eprobed . ω we first break time-translation invariance down to a discrete symmetry

t → t + 2πω−1. Then as we further lower the energy to Eprobed . H � ω this discrete symmetry

is further broken by the cosmic expansion. This symmetry breaking reflects that on large scales

(low-energy) we have an expanding universe, but on sub-Hubble scales the only time dependence

results from the oscillating scalar field and the effect of the expansion can be ignored. And at even

higher energies (smaller distances / faster time scales) the scalar oscillations would not be probed.

This hierarchy in scales can be captured by parameterizing the background behavior by a Hubble

rate that is a sum of a monotonically evolving part and a small rapidly oscillating component,

H(t) = HFRW(t) +Hosc(t)P (ωt), (47)

where the first term is adiabatically evolving HFRW(t) ∝ t−1 and monotonically decreasing, whereas

the second term leads to an oscillatory correction described by a general periodic function P (ωt)
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with period T = 2πω−1. In order to ensure an overall monotonic FRW evolution we take the first

term to be dominant, HFRW � Hosc. This implies our clock is always monotonically increasing

– as exemplified by the monotonic evolution of the scale factor a(t) in an FRW universe. This

situation is to be contrasted with models where the universe itself is oscillating [67], which can

exhibit a number of pathologies [38]. We also note that the time dependence of HFRW and Hosc is

slow compared with the time scale of oscillations ω−1, i.e. ḢFRW/(HFRWω) ∼ Ḣosc/(Hoscω) � 1.

This corresponds to our earlier statement that on short time scales (larger energies) there is an

approximate discrete symmetry.

An important question is whether we can generalize the symmetry arguments above for the time-

dependent functions associated with the non-universal operators in (44)-(46), i.e. {m2, αi, βi}. On

general grounds, in an FRW background described by (47) we expect that the functions m2, αi, βi

– which describe the self-couplings, and couplings/mixings between the Goldstone and the reheat

sector χ – to be a generic function of the Hubble rate in (47) and its derivatives. Depending on the

couplings between these sectors this suggests that in general we can write these functions in the

form

Fi(t) = Mp
i (t)P ′(ω′t), (48)

where in general the periodic function P ′ is different from the one in (47) as is the frequency ω′ 6= ω.

Here, the index i collectively represents time-dependent functions {m2, αi, βi} and p denotes the

mass dimension of these functions. Suggested by the symmetry breaking pattern we discussed

above, we can similarly take Ṁi/(Miω)� 1.

2. Symmetries of the Action and Implications

An important consequence of the discrete symmetry of the Goldstone is that non-derivative

interactions can appear in the action. When this is a good symmetry we can expand the background

and non-universal parameters {H, Ḣ,m2, αi, βi} in the form

Fi(t+ π) = Fi(t) + Ḟi(t)π +
1

2
F̈i(t)π

2 + . . . . (49)

This breaking is similar in spirit to the work of [68], where those authors considered resonant non-

Gaussianity induced through small-scale oscillations in H and Ḣ during single-field inflation. In

the two-sector EFT we are considering here we can extend that study to dynamics that arise in the

presence of interactions between the Goldstone π and reheating χ sectors. Moreover, contrary to
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the situation during inflation, where there is a fixed energy scale corresponding to horizon crossing,

[22], to study dynamics at the end of inflation we are often interested in the dynamics at sub-

Hubble scales. For sub-Hubble scales with Eprobe > ω we expect interactions induced by expanding

the time-dependent functions in (49), which parametrize important contributions to the dynamics.

Such interactions can induce large loop corrections for the parameters of the EFT, and additionally

back-reaction effects can become large and the perturbative expansion of the EFT of fluctuations

will fail. In typical studies of preheating, the importance of such contributions correspond to the

end of ‘stage one’, which can be followed by turbulence and chaotic behavior [7]. We leave an

investigation of these stages to future work. In the following, we will focus on the first stages of

preheating and establish how our framework captures existing models. We will also explore new

models and their connection to observations during the first stages of preheating.

C. Capturing Existing Models

1. Reheating Through Self-Resonance

In this section, we focus on the Goldstone sector in (44) to construct models of reheating through

self-resonance. That is, we want to establish how the EFT reproduces self-resonant models of

reheating where inflaton ‘particles’ (here corresponding to the Goldstone π ∼ δφ) are created

from oscillations of the background condensate φ0(t). We will also consider when gravitational

fluctuations can be shown to decouple. To begin we expand the time-dependent functions in (44)

and use the ADM decomposition9 of the metric in spatially flat gauge working to second order in

fluctuations δN,N i and π. We have

Lπc =
1

2

(
π̇2
c − c2

π

(∂iπc)
2

a2

)
− 1

2
m2
π(t)π2

c −
(−2Ḣ)1/2

cπ

(
π̇cδNc −

1

2

(
Ḧ

Ḣ
− 2

ċπ
cπ

)
πcδNc

)
+ (−2Ḣ)1/2cπ

(
3HδNc + ∂iN

i
c

)
πc + . . . (50)

where we introduced the canonical fields πc =
√
−2Ḣm2

pl c
−1
π π, δNc = mplδN,N

i
c = mplN

i, the

sound speed of the fluctuations is c2
π = m2

plḢ/(m
2
plḢ −m4

2), and we neglect terms involving the

scalar curvature as they are sub-leading.

An important consequence of the background evolution and time-dependent sound speed is that

9 Details appear in Appendix A
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it induces a time-dependent mass10 for the Goldstone

m2
π = −3Ḣc2

π −
1

4

(
Ḧ

Ḣ
− 2

ċπ
cπ

)2

− 3H

2

(
Ḧ

Ḣ
− 2

ċπ
cπ

)
− 1

2
∂t

(
Ḧ

Ḣ
− 2

ċπ
cπ

)
, (51)

which we note would vanish in a strictly de Sitter limit with constant sound speed (familiar from

the EFT of Inflation). Resonant effects induced by such time dependence of cπ is an interesting

possibility that we will explore in future work. For simplicity, here we will focus on the time-

dependence of the background and assume that the time dependence of the sound speed is negligible.

To understand the Goldstone dynamics we first identify the energy scales at which different

phenomena become important. An important scale is the symmetry breaking scale below which

we are able to focus on the EFT of the perturbations (we can ‘integrate out the background’) and

the Goldstone description can be useful. Following closely the example of [46], we can identify the

Noether current associated with the broken symmetry by introducing ‘fake’ Lorentz invariance in

(50) by rescaling the spatial coordinates

L̃g = −1

2
(∂̃π̃c)

2 + . . . , (52)

where x̃ ≡ c−1
π x, L̃g ≡ c3

πLg and π̃c = (−2Ḣm2
plcπ)1/2πc. The Noether current associated with (52)

is then J̃µ = −Λ2
sb∂

µπ̃c, and the symmetry breaking scale is given by11 Λ2
sb = (−2Ḣm2

plcπ)1/2.

For the simplest models, with unity sound speed, we have Λ2
sb = (−2Ḣm2

pl)
1/2, and this agrees

with expectations that the time evolution of the background is responsible for breaking the time

translation symmetry (H(t) is changing in time). In particular, given the background evolution in

(47) we are interested in the time averaged value Λ2
sb ≡ 〈(−2Ḣm2

plcπ)1/2〉T ≈ HFRWmpl c
1/2
π . For

energy scales where E < Λsb the Goldstone description of (50) is valid. We emphasize that we are

focusing on fluctuations around a decelerating FRW background, and so the symmetry breaking

scale is more dependent on time12 than the inflationary case i.e. Λ2
sb ∝ t−1. However, in the presence

of resonance and with strong enough couplings to the reheating sector to make reheating efficient, it

is justified to take a decoupling limit HFRW → 0 and mpl →∞, such that the combination HFRWmpl

remains fixed. In this case, an evolving symmetry breaking scale is unimportant for the validity

of the Goldstone description – all that is required is a hierarchy of scales Λsb � ω where ω is the

oscillation time scale associated with the background evolution that appeared in (47).

10 This is the mass term in the absence of mixing terms given in the second and third lines of (50).
11 We present the scale in terms of energy, but it is important to remember that since Lorentz invariance is sponta-

neously broken energy scales do not necessarily coincide with momenta [22].
12 This raises the interesting issue of ‘level crossing’, which is ubiquitous when applying EFT to gravitational systems

[69].
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Another important scale in understanding the Goldstone dynamics is the energy scale where

mixing with gravitational fluctuations becomes important (Emix). Consider the frequency of the

Goldstone πc in Fourier space and in the absence of mixing terms

ω2
π =

c2
πk

2

a2
+m2

π(t) + . . . , (53)

where dots represent sub-leading contributions of order H2. We emphasize that ωπ is the frequency

of the Goldstone, whereas the inflaton oscillations have a frequency we continue to denote by ω which

is often comparable to the Goldstone mass ω ∼ mπ as follows from (47) and (51). Remembering

this distinction, we note that contrary to the inflationary case, we are not interested in the dynamics

at a fixed energy scale, and in general whether mixing with gravity is important will depend on

the scales one is interested in. For example, we can separate the Goldstone modes into relativistic

ω . cπk/a (or equivalently mπ . cπk/a) and non-relativistic ω > (cπk)/a modes. For relativistic

modes, time derivatives scale the same as spatial ones in (50), i.e. π̇2
c ∼ c2

π(∂iπc/a)2 ∼ ω2
ππc. On the

other hand, for non-relativistic modes, spatial derivatives are less important than time derivatives

and terms involving the spatial kinetic terms can be compared with the mixing terms in (50). The

most relevant mixing term13 between πc and gravitational fluctuations is given by

Lmix ⊃
(−2Ḣ)1/2

2cπ

Ḧ

Ḣ
πcδNc. (54)

From Appendix A, we use the solution δNc ≈ cππc in (54) and note that Ḣ ≈ H2, Ḧ ≈ ωH2 (where

we keep the leading terms). This leads to Lmix ≈ ωHπ2
c from which we can see the energy scale at

which mixing with gravity becomes important is Emix ≈ (ωH)1/2. For relativistic modes, mixing

with gravity is always irrelevant as ω2
π > ω2 � ωH. For non-relativistic modes, we compare the

mixing term with the spatial kinetic term in (50). This leads to the conclusion that mixing with

gravity will be important for modes with momenta satisfying the following condition,

k

a
.

√
ωH

cπ
(55)

An explicit example: The generic construction above is useful in studying models of inflaton

self-resonance. Consider an example where mixing with gravity at the end of inflation leads to

resonant effects for πc. For this purpose, we consider a simple limit of the unitary gauge action

in (39) where m2 = 0, m2
pl(3H

2 + Ḣ) = V (φ0) = m2
φφ

2
0
/2 , and Ḣm2

pl = −φ̇2
0
/2. These choices

correspond to a cosmology dominated by a single scalar field – the inflaton. In the regime where

13 Another equally important term is the one proportional to π̇cδNc. When we solve for δNc in terms of πc and use

this solution in (50), we can integrate by parts the time derivative on πc leading to a term comparable to (54).
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(energy)2

HFRWmpl
√
cπ

ω2

ωHFRW

symmetry breaking scale

scale of background oscillations

scale of mixing with gravity

H2
FRW

(energy)2

HFRWmpl

4m2
φ

3mφHFRW

H2
FRW

gHFRWmpl

Resonant modes
are produced with
energies below this
scale

χk

FIG. 4. Relevant energy scales for the preheating models considered in Section IVC. On the left, we have

the hierarchy in energy scales associated with the dynamics of the Goldstone boson with a sound speed cπ

following our general discussion of self-resonant models. The right diagram shows the hierarchy of scales for

the example of canonical two-field preheating models.

mφ � H, the background condensate oscillates around the minimum of its potential V = m2
φφ

2
0
/2,

and in this case we can solve for the background evolution [70]

H(t) = HFRW(t)− 3HFRW(t)2

4mφ
sin(2mφt) + . . . , (56)

where HFRW = 2/(3t) is the Hubble rate in a matter dominated universe with scale factor a(t) ∝ t2/3

and dots represent terms suppressed by higher powers of Hm/mφ. This solution has exactly the

form proposed in (47) with Hosc ≡ −3H2
FRW/4mφ, ω ≡ 2mφ, and we also have HFRW � mφ.

Given the background evolution in (56), we can now consider the dynamics of πc. To reproduce

this class of models we take the cπ → 1 limit, and solve for the constraints δNc and N i
c. Using our

results from Appendix A, along with (50) we have

Lπc = −1

2
(∂πc)

2 − 1

2

(
m2
π(t) +m2

mix(t)
)
π2
c , (57)

where the mass mixing induced by δNc and N i
c is

m2
mix = 6Ḣ + 2

Ḧ

H
− 2

Ḣ2

H2
. (58)

Using the background evolution given by (56) and (58) the mode equation for the re-scaled field

variable π̃c = a3/2πc can be written as

¨̃πc +

[
k2

a2
+m2

φ

(
1 + 6

HFRW

mφ
sin(2mφt)

)]
π̃c = 0, (59)
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where we have dropped additional terms further suppressed by H2
FRW/m

2
φ and m2

π → V ′′(φ0) = m2
φ

which follows from relating derivatives of the potential to the time derivatives of the Hubble rate

given in (56) (See Appendix B).

To establish whether self-resonance results in particle production we can recast (59) in the form

of a Mathieu equation by re-defining the time variable z = mφt+π/4 with Ak = 1+k2/(a2m2
φ) and

q = 3HFRW/mφ. As the background evolution implies the hierarchy HFRW � mφ, this implies modes

in equation (59) will be in the narrow resonance regime, q � 1. The first instability corresponds

to the condition Ak < 1 + q implying modes with momenta

k

a
<
√

3HFRWmφ (60)

will be amplified [7]. This result matches well with our previous estimate on the momentum scales

where mixing with gravitational fluctuations is important in (55) (recalling we have cπ = 1 here).

Such resonant effects due to mixing with gravity have been considered previously in the literature

[71, 72], where those authors studied the growth of the density perturbations and the onset of non-

linear effects arising during oscillations of the background. Here, we can use the EFT to reproduce

their results

δk ≡
δρk
ρ̄(t)

=
δρk

3H2m2
pl

∝
(

k

aHFRW

)2

, for
k

a
<
√

3HFRWmφ, (61)

where δρk is defined as

δρk = (−2Ḣ)1/2mpl

[
π̇c −

1

2

(
3 +

Ḧ

Ḣ
− 2

Ḣ

H

)
πc

]
. (62)

We now consider how the EFT captures models where the reheat sector results from the inflaton

resonance given by the time-dependent functions in (45) and (46). If any of these couplings are

stronger than gravitational strength the resonance in the reheat sector will typically dominate over

the gravitationally induced effects discussed above.

2. Reheating in a Two-Field Model

In this section, we explicitly demonstrate how the EFT approach reproduces models of two-field

reheating, taking as a concrete example the specific class of models given by (1). In the early

stages of preheating the inflaton will dominate the energy density. We take the reheat field to be

initially in its vacuum14 with χ0 = 0, and we consider production of χ quanta in the presence of

14 We saw in Section III that it was a challenge for the background EFT model, but this is natural here as the shift

symmetry of the background has been badly broken by the interactions.
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the oscillating inflaton condensate φ0(t). In the unitary gauge with φ = φ0(t) and χ0 = 0, we have

the following matter Lagrangian

Sm =

∫
d4x
√
−g
[
−1

2
φ̇2

0
g00 − V (φ0)− 1

2
gµν∂µχ∂νχ−

1

2
(U ′′(χ0) + g2φ2

0
)χ2

]
. (63)

Using the background equations of motion we can cancel the tadpole terms, m2
pl(3H

2 + Ḣ) =

V (φ0) = m2
φφ

2
0
/2 , Ḣm2

pl = −φ̇2
0
/2, and the unitary gauge matter Lagrangian is then given by

Lm = m2
plḢg

00 −m2
pl(3H

2 + Ḣ)− 1

2
gµν∂µχ∂νχ−

1

2

(
m2
χ + 2

g2m2
pl

m2
φ

(3H2 + Ḣ)

)
χ2, (64)

where we defined U ′′(χ0) ≡ m2
χ. Comparing with the unitary gauge action (39) – (41), the mat-

ter Lagrangian (64) corresponds to the following choice for non-universal parameters in the EFT

framework,

α1 = 1, α3 = m2
χ + 2

g2m2
pl

m2
φ

(3H2 + Ḣ), {m2, α2, α4, β1, β2} = 0. (65)

We emphasize that in this model the linear mixing between the χ sector and gravitational sector

(which includes the Goldstone in the unitary gauge) vanishes automatically since β1, β2 = 0 in (41).

As before, we can introduce the Goldstone sector in (64) following the transformation15 rules in

(42). However, in the presence of strong resonance in the χ sector, i.e. if α̇3/α
2
3 > O(1) during any

time in the linear stage of preheating, Goldstone fluctuations will be negligible compared to the

χ’s that are amplified through the strong resonance. In general, the validity of this argument relies

on the strength of the coupling between the background and the χ sector through the mass term.

For example, in the model we are considering here, introducing π via t→ t+ π (See also (42)) will

lead to the Goldstone sector we have discussed in the previous section, where mixing with gravity

leads to weak resonance q ≈ HFRW/mφ � 1 (c.f. (59) and the discussion that follows). On the

other hand, the strength of the resonance in the χ sector depends on the ratio gmpl/mφ which can

be quite large unless g � 1. Too see this in detail, it is enough to compare the scales in our EFT.

The strength of the resonance in χ can be read from (65) and compared to the strength ≈ mφHFRW

of the resonance in the Goldstone sector in equation (59). The following condition is sufficient to

neglect the Goldstone dynamics

g2

(
mpl

mφ

)(
Λsb

mφ

)2

> 1. (66)

15 It is important to note that the transformation t → t + π that introduces the Goldstone also induces non-linear

interactions between the Goldstone and reheat sectors – we will elaborate on this below.
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It is clear from this expression that unless the coupling constant is tiny g � 1 we can neglect the

mild amplification of Goldstone due to mixing with gravity.

Another simplification we can make in this case is to consider the decoupling limit in the EFT

where |Ḣ| ≈ H2
FRW → 0 and m2

pl → ∞, while keeping the combinations Ḣm2
pl and H2m2

pl as

constant. In this limit, it is clear that π fluctuations will stay in their vacuum as the terms leading

to narrow resonance vanishes (HFRW → 0). We also note that the decoupling limit corresponds to

taking the rigid space-time limit, a → 1 that is commonly discussed in the preheating literature16

[7, 8].

To study particle production, we can focus on the decoupling limit of the Lagrangian (64), and

consider the mode equation for χ as,

χ̈k + ω2
χ(t)χk = 0 (67)

where the time dependent frequency is given by

ω2
χ = k2 +m2

χ +
g2m2

pl

m2
φ

(3H2 + Ḣ). (68)

In the decoupling limit, the time dependent mass induced by the background evolution stays in-

tact, which is crucial for particle production. As we have mentioned before, particle production

corresponds to the breakdown of the adiabaticity in the frequency, i.e. |ω̇χ/ω2
χ| > O(1). Using (56)

and the relations with the potential and Hubble rate in Appendix B, this condition translates into

K2 . g HFRWmpl ≈ gΛ2
sb, (69)

where K =
√
k2 +m2

χ is the rescaled momenta. In the example we are considering, we see that

this condition justifies the use of the EFT formalism as the resonant modes have a momenta much

smaller than the symmetry breaking scale for small enough coupling, i.e. HFRWmpl ≡ Λ2
sb � gΛ2

sb

for g � 1. The structure of the instability band along with the exponentially growing solutions in

the χ sector have been studied many times in the literature [8]. Here, our main purpose is to show

the connection of the EFT approach to well established two-field reheating models.

Another potential use of EFT formalism is to capture the effects of backreaction. This can be

achieved by realizing that once we introduce the Goldstone mode in the unitary gauge Lagrangian

(64) the time dependent mass (and for general models other time dependent functions) of χ becomes

α3(t + π). As α3 is a rapidly varying function of time in the presence of particle production in

16 An additional and important point on the decoupling limit is that in this limit the time-dependent functions such

as α3 we are considering will be purely periodic functions. This can be seen by using (56) in equation (65) and

taking the decoupling limit. This implies that EFT should respect an exact discrete symmetry in this limit.
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the χ sector, this term will induce higher order interactions between π and χ upon expanding the

function,

Lint = −1

2

(
α̇3π +

1

2
α̈3π

2

)
χ2. (70)

In particular, in the current example the first term in (70) will lead to a tadpole term for πc =

(−2Ḣ)1/2mplπ. In the Hartree approximation [7] this gives

Lint ⊃ −
1

2

α̇3

(−2Ḣm2
pl)

1/2
〈χ2〉πc, (71)

where

〈χ2(t)〉 =
1

2π2

∫ ∞
0

dk k2 |χk(t)|2. (72)

The existence of such a tadpole term can be considered as an indication of backreaction effects.

For example, as we produce χ particles the coefficient in front of πc will grow and may eventually

disturb the background evolution. In particular they can increase the frequency of the background

oscillations of the condensate [7],

m2
φ → m2

φ +
α̇3

(−2Ḣm2
pl)

1/2
〈χ2〉 (73)

In order to understand the onset of the backreaction effects in the presence of particle production,

we can compare the second term in (73) with m2
φ. We refer to this time where the backreaction

becomes important as tb and the condition reads

m2
φ =

α̇3(tb)

(−2Ḣ(tb)m
2
pl)

1/2
〈χ2(tb)〉 (74)

Knowing the solutions for χk, the background evolution (56) and the couplings α3 one can calculate

tb.

We emphasize that our discussion in this section is not limited to the example given by (65).

Using the EFT formalism, we can in principle capture models that belong to the same “universality

class”, i.e. direct coupling models with interactions including Lm ∝ µφχ2 and non-renormalizable

couplings Lm ∝ φnχ2/Mn−2 where n > 2 and M,µ are energy scales [73].

D. A New Class of Reheating Models

In the previous section, we showed how the EFT captures resonance effects in two-field reheating

models. We now reconsider particle production in the presence of a reduced sound speed for the
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reheat field, cχ 6= 1. Familiar from the EFT of Inflation and Dark Energy, there is no symmetry

protecting cχ = 1 in the EFT of reheating. This gives rise to a new class of models for preheating

where the produced particles can have cχ � 1.

We follow our previous discussion in Section IVB and consider the time-dependent functions

associated with the reheat sector {αi, βi}. The terms proportional to β1 and β2 in (46) lead to

mixing of χ with both gravity and the Goldstone sector. We will ignore these terms here, leaving

a discussion of them to Appendix A. In the absence of these mixing terms we focus on the action

(45). Defining the canonical field χc = αχ(t)χ where α2
χ(t) = α1(t) + α2(t), we have the following

second order Lagrangian for the canonical reheat field

Lχc =
1

2

[
χ̇2
c − c2

χ(t)
(∂iχc)

2

a2

]
− 1

2
m2
χ(t)χ2

c , (75)

where we have defined the sound speed c2
χ = α1/(α1 + α2) and the time-dependent mass term is

m2
χ(t) =

α3(t)

α2
χ(t)
−
(
α̇χ
αχ

)2

+ 3H

(
α̇χ
αχ

)
+ ∂t

(
α̇χ
αχ

)
. (76)

Similar to the Goldstone case in Section IVC1, we have a time-dependent mass mχ(t) induced by

the time dependence of the sound speed cχ and α1
17. We will concentrate on strong resonant effects

due to non-adiabaticity in the time-dependent coefficient α3 and assume that the time variation of

αχ is slow compared to α3, so that the sound speed is nearly constant18 (where α1, α2 ≈ constant).

We can then neglect the last three terms in (76) and the mode equation for the re-scaled field

variable χ̃c = a3/2χc in Fourier space is

¨̃χkc +

[
c2
χ

k2

a2
+ α3 + ∆

]
χ̃kc = 0, (77)

where ∆ = −3(3H2 +2Ḣ)/4 ≈ O(H2) are gravitational terms resulting from the rescaling χc → χ̃c

and we have absorbed the constants α1, α2 into the definition of α3. Following our discussion

in Section IVB, it is convenient to parameterize α3 as α3 = M2(t)F (ωt), where M(t) is always

adiabatic so that Ṁ/M2 � 1 and F is a periodic function which must violate adiabaticity so

that preheating occurs. That is, at some point adequate particle production requires the so-far

arbitrary function to satisfy Ḟ /F 2 > 1. In many models the periodicity of the function will be set

by the background evolution in (47). We focus on the strong resonance regime where M � H and

M/ω � 1 and hence drop O(H2) terms in the frequency ω2
χ,

ω2
χ = c2

χ

k2

a2
+M2F (ωt). (78)

17 Recall that c2χ = α1/α
2
χ

18 Again, we leave the interesting case of strong time dependence of the sound speed to future work.
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The non-adiabaticity in α3 will lead to non-adiabaticity in the frequency ω2
χ, i.e. ω̇χ/ω2

χ > O(1).

We take this to occur as times tj when ω2
χ is at its minimum19. This suggests that we can expand

the frequency around the times tj as

ω2
χ ' c2

χ

k2

a2
+

1

2
M2ω2(t− tj)2 + . . . (79)

where we have used F̈ ≈ ω2F and dots represent higher order terms in the t− tj expansion. This

allows us to re-write the mode equation in a simpler form

¨̃χkc +

[
c2
χ

k2

a2
+
M2ω2

2
(t− tj)2

]
χ̃kc = 0 (80)

and the typical momenta when adiabaticity is violated ω̇χ > ω2
χ corresponds to

k2
∗ ≡

Mω

c2
χ

&
k2

a2
, (81)

We see that for cχ < 1, the physical wave numbers inside the resonant regime are further enhanced

(the resonance band is broadened) compared to the standard cases that have been studied in the

literature. It is customary to map the mode equation (80) to a scattering problem described

by a Schrödinger equation with a negative parabolic potential by defining a new time variable

τ ≡ cχk∗(t− tj) and a dimensionless physical momentum κ ≡ k/(ak∗),

d2χ̃kc
dτ2

+
(
κ2 + τ2

)
χ̃kc = 0. (82)

The solution to the scattering problem and the resulting number density of particles between

scattering events has appeared in the literature many times [7, 74] (See also [18]). In real space,

the growth of the number density of particles can be described by the following expression [7],

nχ(t) =
1

2πa3

∫
d3k nkχ(t) ∼ k3

∗√
πµmφt

e2µmφt, (83)

where (for simplicity) we have assumed that the background is given by the quadratic potential we

considered before, i.e. ω ∼ mφ. Here µ is the maximum value of the Floquet index at kmax ≈ k∗/2

[7]. It is clear from this expression that there will be an enhancement in the number of produced

particles due to the small sound speed in the χ sector, k∗ ∝ c−1
χ . This also agrees with our intuition

as equation (81) tells us that resonant bands are wider for cχ < 1 and thus the contribution to the

integral in (83) over resonant modes will be enhanced by factors of c−1
χ . In the next section we will

consider observational consequences of the EFT of reheating, focusing on this new class of models

with non-standard sound speed. We also discuss additional challenges and future directions for the

approach.

19 Note that here we are focusing on non-tachyonic resonance, for tachyonic resonance this situation will be different,

see e.g. [73].
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V. CHALLENGES AND OUTLOOK

In this paper we have presented an EFT approach to reheating that overcomes the challenges of

the background evolution discussed in Section III and is adequate to capture all existing reheating

models in the literature. Guided by symmetries, our approach is also useful for finding new models

of reheating, e.g. we found a new class of models where the reheating sector has cχ 6= 1. However,

there are many challenges remaining for our EFT approach.

One of the more serious concerns is the lack of a direct connection to observations. This problem

is not specific to our approach, with the lack of direct observational constraints on reheating being

an important reason that far less is known about this epoch than inflation. In our EFT framework,

symmetries help to alleviate more of the theoretical uncertainties associated with reheating than a

toy model approach. For example, the need to non-linearly realize time translations demonstrated

that many of the unknown coefficients are related, and the need to violate non-adiabaticity (required

for particle production) also placed some level of theoretical constraint on the reheating sector.

Nevertheless, we saw in Section IV there are a large number of free functions that must be further

restricted by observations. Unlike the situation for inflation, where non-Gaussianity and features in

the primordial power spectrum are a rich source of observational constraints, direct observational

constraints on reheating are lacking. One possibility to remedy this is gravitation wave (GW)

signatures.

Once particles are produced during reheating20 they can scatter off each other creating a back-

ground of GWs [11, 14]. The scattering leads to a transverse-traceless source for the gravitons

ḧij + 3Hḣij −
1

a2
∂2hij =

2

m2
pl

T TTij (84)

Following the methods of [75] we can then estimate the critical density of gravitational waves

today21

Ωgw =
Sk(tf )

a4
J ρJ

(
aJ
arh

)1−3w (grh

g0

)−1/3

Ωr,0, (85)

where subscript “0” denotes a quantity evaluated today, ‘J ’ represents the time when the universe

becomes radiation dominated and ‘rh’ denotes the beginning of reheating. Here, ω is the average

equation of state of the universe between the time interval tJ < t < trh and gi is the effective

20 This should not be confused with sourcing a gravity perturbation with a second order scalar perturbation. Here we

are considering on-shell particles that are classically scattering off of each other and generating a GW spectrum.

We refer the reader to [75] for more details.
21 For a different approach we refer the reader to [76].
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relativistic degrees of freedom. Finally, the source term Sk encodes the predictions for different

classes of models in the EFT.

For example, let us consider the new class of models discussed in Section IVD. In that case the

source term Sk is given by

Sk(tf ) =
c4
χ k

3

4π2m2
pl

∫
dp

∫ 1

−1
d(cos θ) p6 sin4 θ (86)

×

[ ∣∣∣∣∫ tf

ti

dt cos (kt)χc(p, t)χc(|~k − ~p|, t)
∣∣∣∣2 +

∣∣∣∣∫ tf

ti

dt sin (kt)χc(p, t)χc(|~k − ~p|, t)
∣∣∣∣2
]

where we focus on two-body scattering, θ is the scattering angle, and we assume that scatter-

ing happens at a fast enough rate that we can neglect the Hubble expansion. To get an order

of magnitude estimate we can focus on the low momenta. In this case, the contribution of the

mode functions to time integrals will be maximal for p∗ =
√
Mω/cχ and defining a dimensionless

momentum P = p/p∗ we have

Sj+1
k ∼ 1

c3
χ

(Mω)3/2k3

m2
pl

∫ 1

−1
d(cos θ) sin4 θ

∫
dPP 6 × [Time integrals], (87)

where we recall that α3 is parameterized by M and ω as in (80), and so the EFT parameters are

determining the strength of the GW signal. Moreover, the gravitational waves will be amplified by

a factor of c−3
χ . This scaling may be counter-intuitive to the reader. The prefactor in (86) results

from the two-to-two scattering of the particles as their momenta is now p → cχp. However, the

lower sound speed implies it costs less energy to produce the particles leading to an enhancement

of the particle production rate, and more particles scattering leads to more gravity waves. Thus,

the GW signal is enhanced compared to the cχ = 1 case. Assuming this signal survives the later

stages of reheating the detectability will depend on the peak frequency [11, 14, 76]

f =

√
Mω

ajρ
1/4
j cχ

4× 1010 Hz, (88)

which again depends explicitly on the EFT parameters and the sound speed. We see that by

reducing the sound speed we can increase the frequency in the new class of reheating models.

GWs provide one way to constrain the EFT parameters. However, we leave a more complete

analysis, which requires following the signal through all the stages of reheating22, to future work.

Primordial Black Hole constraints and the matching of inflationary perturbations to late time

observables lead to additional ways in which the EFT parameters may be restricted. In regards

22 One interesting approach would be to see if we could combine the EFT framework here with the recent fitting

analysis of [77].
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to the latter, we have stressed that direct observables correspond to perturbations, however the

subtle ways in which we match inflationary predictions to CMB and LSS observations does depend

implicitly on the background dynamics, particularly through the equation of state. Recently, it

has been shown that the physics of reheating (including non-linearities and back-reaction) can have

subtle and interesting effects on the equation of state and the dynamics of thermalization [78]. We

hope to return to these issues and interesting possibilities in future work.

In addition to the challenge to connect with observations, a number of theoretical issues remain

to be addressed. In particular, in this paper we have primarily focused on connecting the EFT

to scalar field driven models of reheating. However, the spectator field χ can be thought of as

an additional clock field, which can also represent reheat fields beyond spin zero. Extending our

framework to other spins is an important consideration. We have also primarily focused on the

first stage of reheating in the EFT. However, one of the most useful applications of our approach

could be to gain a better understanding of the rescattering and back-reaction effects that happen

following the first stage. These are stages that usually require lattice simulations, and the Goldstone

approach could be a fruitful way to get a better analytical understanding. There is also the issue of

when the produced particles become significant enough that they contribute to the energy density.

At this point the Goldstone boson (related to the matter sector responsible for time-translations

being broken) can change its nature from inflatons to the reheat field. How this transition proceeds

is important for establishing the connection between the Goldstone and the background fields. This

is similar to the situation in studies of dissipation in the EFT of Inflation (see e.g. [79]), and we

expect many of the techniques there could prove useful for the case of reheating as well.
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APPENDIX A: ADM FORMALISM AND MIXING WITH GRAVITY

To account for gravitational fluctuations and discuss the regime where they are irrelevant to the

dynamics of the Goldstone we decompose the metric in the ADM form. In the spatially flat gauge

we have

ds2 = −(N2 −NiN
i)dt2 + 2Nidx

idt+ ĝij dx
idxj , (89)

where ĝij = a2(δij + hij) is the spatial metric and our gauge choice implies hii = ∂ihij = 0. Inverse

metric elements can be written as

g00 = − 1

N2
, g0i = gi0 =

N i

N2
, gij = hij − N iN j

N2
. (90)

To find the relevant terms in the gravitational sector, we expand the Einstein Hilbert term as

Sg ⊃
m2

pl

2

∫
d4x
√
−g R =

m2
pl

2

∫
d4x

√
ĝ
[
NR(3) +

1

N
(EijEij − Eii2)

]
, (91)

where R(3) is the three curvature associated with spatial metric ĝij and Eij is related to the extrinsic

curvature of constant time slices through

Eij ≡ NKij =
1

2
[∂tĝij − ∇̂iNj − ∇̂jNi] , (92)

where ∇̂i is the covariant derivative with respect to spatial metric ĝij . Using the above expressions,

we can expand (44) up to second order in scalar fluctuations

Sg =

∫
d4x a3

[
−
m2

plḢ

c2
π

(
π̇2 − c2

π

(∂iπ)2

a2

)
− 3m2

plḢ
2π2 +m2

pl(2c
−2
π Ḣπ̇ − 6HḢπ)δN + 2m2

plḢN
i∂iπ

−m2
pl(3H

2 + c−2
π Ḣ)δN2 − 2m2

plHδN∂iN
i

]
(93)

where the speed of sound is defined as c2
π = m2

plḢ/(m
2
plḢ − m4

2). Defining the canonical fields,

πc =
√
−2Ḣm2

pl c
−1
π π, δNc = mplδN,N

i
c = mplN

i, one can re-write the Lagrangian as in (50).

Focusing on the Goldstone sector for now, we can solve for the Lagrange multipliers δN and N i

in terms of π. To linear order in π we have,

δN = −Ḣ
H
π, ∂iN

i = c−2
π

Ḣ

H2
∂t (Hπ) . (94)

Using the canonical field definitions above we may write

δNc =
(−2Ḣ)1/2

2H
πc, ∂iN

i
c = c−2

π

Ḣ

H2
∂t

(
cπHπc

(−2Ḣ)1/2

)
. (95)
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Using these solutions for the gravitational fluctuations δNc N
i
c in (50) (while taking the cπ → 1

limit) we recover the result of (57).

In the presence of a reheat sector χ, we need to take into account the mixing between χ and

gravitational fluctuations, as well as π − χ mixings. Considering the mixings at second order we

need to take into account the action in (46). Expanding up to second order in δN , N i, π and χ,

we have

S
(2)
mix =

∫
d4x a3

[
2β1 (δN − π̇)χ− 2β2 (δN − π̇) χ̇

]
. (96)

We note that the action (45) does not lead to any second order mixing therefore it is enough to

consider the mixing action above. Combining (93) and (96) in the presence of mixing we have the

following solutions for the constraints,

δN = −Ḣ
H
π, ∂iN

i = c−2
π

Ḣ

H2
∂t (Hπ) +

β1

m2
plH

χ− β2

m2
plH

χ̇. (97)

We see that inclusion of reheat sector does not change the solution for δN , but we have additional

contributions to N i proportional to the time-dependent parameters β1, β2 . To illustrate the decou-

pling of χ, we consider a simple πc sector with cπ = 1 and note that time derivatives of canonically

normalized fields χc and πc have the approximate scalings in the WKB approximation,

π̇c ≈ ωππc ∼ ωπc, χ̇c ≈ ωχχc ∼
√
α3χc ∼Mχc, (98)

where we take |α3| = M2 following our discussion in the main text and focused on the non-

relativistic modes for both fields. Following our discussion in section IVB, we assume that the

strength of the couplings β1 and β2 is as strong as the time-dependent parameter α3 responsible for

the resonance. By dimensional analysis, we therefore take |β1| ∼ M3 and |β2| ∼ M2. Canonically

normalizing the fields as before we find from (96) that for resonant modes mixing between χc and

gravitational fluctuations can be neglected in the following range of momenta(
M

Λsb

)√
MH <

cχk

a
<
√
Mω. (99)

Similarly we have the following range where we can neglect direct mixing between πc and χc,(
M

Λsb

)√
Mω <

cχk

a
<
√
Mω. (100)

Consistency of the EFT picture requires M/Λsb � 1 and we see that within this regime we can

neglect both types of mixing for a wide range of momenta. In particular, with some mild assump-

tions, we showed that in the presence of strong resonance, we can neglect the mixings between πc
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and χc. This finding is similar in spirit to the discussion presented in the recent works [18, 80]

where those authors pointed out that it is technically natural to assume a flat field space metric in

the presence of strong disorder/resonance.

We conclude this appendix by giving the second order action for tensor perturbations and their

interaction with πc and χc that we used in the main text. Using the gravitational part of the action

in (91) with (92) and noting the Ricci curvature R(3) on spatial hyper-surfaces,

R(3) = ĝik∂lΓ
l
ik − ĝik∂kΓlil + ĝikΓlikΓ

m
lm − ĝikΓmil Γlkm, (101)

Γkij =
1

2
ĝkl (∂iĝjl + ∂j ĝil − ∂lĝij) , (102)

we have the following second order action for the tensor part of the metric fluctuations

Sg =
m2

pl

8

∫
d4x a3

(
ḣij ḣij −

∂khij∂khij
a2

)
. (103)

On the other hand, expanding the actions (44) and (45) we find the following cubic order interactions

between πc and χc

ShXX ⊃
∫
d4x a3

(
c2
χ

2
hij

∂iχc∂jχc
a2

+
c2
π

2
hij

∂iπc∂jπc
a2

)
. (104)

APPENDIX B: RELATING UNITARY GAUGE TO THE SCALAR POTENTIAL

In cosmologies dominated by a scalar field, we can map the time-dependent background quanti-

ties in our Unitary gauge Lagrangian (39) to the explicit scalar field models with a given potential

V (φ0). A simple example we provided in the main text was

V (φ0) = m2
pl(3H

2(t) + Ḣ(t)), − 2Ḣm2
pl = φ̇2

0
(105)

Using dφ0 = φ̇0dt and time derivatives of expressions in (105), we can relate the derivatives of the

potential with respect to φ to the time derivatives of the Hubble rate H(t). Here, we list some of

these expressions,

V ′(φ0) =
mpl

(−2Ḣ)1/2

(
6HḢ + Ḧ

)
, (106)

V ′′(φ0) = −3Ḣ − 1

4

(
Ḧ

Ḣ

)2

− 3H

2

(
Ḧ

Ḣ

)
− 1

2
∂t

(
Ḧ

Ḣ

)
, (107)

V ′′′(φ0) =
1

(−2Ḣm2
pl)

1/2

[
−H

(4)

2Ḣ
− 9Ḧ

2
+

Ḧ3

2Ḣ3
− 3H

2
∂t

(
Ḧ

Ḣ

)
+

1

2
∂t

(
Ḧ2

Ḣ2

)]
(108)
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