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Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM),
and remain poorly constrained in the ∼ 20 − 100 M� mass range. PBH binaries were recently
suggested as the possible source of LIGO’s first detections. In this paper, we thoroughly revisit
existing estimates of the merger rate of PBH binaries. We compute the probability distribution of
orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by
all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether
the orbital parameters of PBH binaries formed in the early Universe can be significantly affected
between formation and merger. Our analytic estimates indicate that the tidal field of halos and
interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do
not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion
to be much weaker than previous calculations, albeit possibly large enough to significantly affect
the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from
gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed
in the early Universe survive to the present time, as suggested by our analytic estimates, they
dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude
larger than LIGO’s current upper limits if PBHs make a significant fraction of the dark matter. As
a consequence, LIGO would constrain ∼ 10 − 300 M� PBHs to constitute no more than ∼ 1% of
the dark matter. To make this conclusion fully robust, though, numerical study of several complex
astrophysical processes – such as the formation of the first PBH halos and how they may affect PBH
binaries, as well as the accretion of gas onto an extremely eccentric binary – is needed.

I. INTRODUCTION

The nature of dark matter has eluded several genera-
tions of theoretical and experimental physicists. While
there is no shortage of candidates, from ultra-light axion-
like scalar fields [1], to weakly interacting massive par-
ticles [2], and massive compact objects [3, 4], dedicated
dark-matter experiments remain stubbornly silent. As
LIGO is slowly but surely ushering astronomy into the
gravitational-wave era [5–7], one of the oldest dark-
matter candidates, primordial black holes (PBHs), has
recently been brought back into the spotlight [8–15].

The notion of PBHs [16] was first fleshed out by Ref.
[17], who suggested that they may form out of large
fluctuations in the early Universe, and may be of any
mass above the Planck mass. The abundance of PBHs
is bounded by a variety of observables, depending on
their mass [18, 19]. In the ∼ 20 − 100 M� mass range,
PBHs are not constrained by microlensing [20, 21], wide
Galactic binaries [22], nor the cosmic microwave back-
ground (CMB) [23, 24]. Refs. [25, 26] have argued that
dynamical heating of stellar systems in dwarf galaxies
constrain compact objects in this mass range to make up
no more than ∼ 10% of the dark matter, but Refs. [25, 27]
note the possibility that intermediate-mass black holes
in such systems would weaken this constraint. Others
[28, 29] have set similar bounds in this mass range from
the non-observation of radiation from accretion of inter-
stellar gas onto such PBHs, but the radiative-feedback
calculations upon which these conclusions rely are highly
uncertain [24, 30]; see also Refs. [31–33] for caveats on

other bounds. As more data becomes available, it will be
possible to constrain PBHs more tightly (e.g. [13, 34–38]).
In the meantime, it is important to investigate different
avenues to probe PBHs with existing data.

Two decades ago, Nakamura et al. [39] (hereafter,
NSTT) pointed out that PBHs would form binaries in the
early Universe, which would then slowly shrink through
gravitational wave radiation, and eventually coalesce.
They estimated the merger rate per galaxy at the present
time, and found it to be within the reach of the first
gravitational-wave detectors. The LIGO Scientific Col-
laboration searched for such mergers in LIGO’s second
science run [40], but could only set upper bounds on the
merger rate three to four orders of magnitude larger than
NSTT’s prediction if PBHs make all of the dark matter.
A decade later, LIGO’s sensitivity has increased spec-
tacularly, pushing out the horizon distance to cosmolog-
ical scales. It is straightforward to transpose NSTT’s
result to the ∼ 20 − 100 M� range [9], and find that
the predicted merger rate is glaringly larger than the lat-
est estimate of the binary-black-hole merger rate from
LIGO’s three detections, R ≈ 10 − 200 Gpc−3 yr−1 in
the ∼ 5 − 100 M� mass range [7]. It is therefore clear
that LIGO has the potential to significantly constrain
PBH dark matter [38], provided the rate estimated in
NSTT is accurate.

The main goal of the present work is to thoroughly
check the merger rate of PBH binaries. We start, in
Section II, by deriving the distribution of initial orbital
parameters of PBH binaries forming in the early Uni-
verse, accounting for tidal torquing by all other PBHs
(as opposed to just the nearest neighbor as in NSTT),
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as well as by standard adiabatic perturbations. Some of
the technical details of the calculation are deferred to the
Appendix. Section III is devoted to checking one of the
key underlying assumptions of NSTT, namely that PBH
binaries formed in the early Universe are subsequently
only subject to gravitational radiation reaction. While
Refs. [9, 41] have checked that PBH binaries do not get
disrupted in present-day, Milky-Way-like halos, they did
not consider the effect of the earliest non-linear struc-
tures. We fill that gap, estimating analytically the prop-
erties of the first halos and their effect on PBH binaries,
which we find to be small. We also estimate the effect of
baryon accretion, and find it to be at the verge of being
relevant. In Section IV, we revisit the late-Universe PBH-
binary formation mechanism proposed in Ref. [8]. While
the merger rate obtained there is significantly lower than
that due to early-Universe binaries, a key ingredient was
omitted in their calculation. Indeed, when estimating the
properties and mass function of halos, they did not ac-
count for the large Poisson fluctuations resulting from the
granularity of PBH-dark-matter (although they did spec-
ulate that this granularity would increase the rates). In-
cluding these, we find that, while the merger rate per halo
is much enhanced, the faster evaporation of denser halos
truncates the mass function at a larger mass, leading to
a final result that is comparable with that of Ref. [8]. In
Section V we derive potential upper limits on the PBH
abundance from LIGO’s existing upper bounds on the
merger rate.

As we discuss in the concluding section, our results
suggest that LIGO severely constrains PBH dark matter
in the ∼ 10 − 300M� mass range, eliminating them as
the dominant component of the dark matter. To make
this conclusion fully robust, though, requires careful nu-
merical investigation of how the first PBH halos form
and how PBH binaries survive in these halos, and inves-
tigation of the impact of baryon accretion onto a highly
eccentric binary. Given these remaining open questions,
continued pursuit of other observational probes of PBH
dark matter in this mass range is still warranted.

II. PBH BINARY FORMATION IN THE EARLY
UNIVERSE

A. Assumptions and notation

Throughout this paper we use geometric units G = c =
1. Whenever relevant, we use cosmological parameters
consistent with the latest Planck measurements [42]. We
denote by t0 ≈ 14 Gyr the present time.

We denote by s the scale factor normalized to unity
at matter-radiation equality, and by ρeq the density of
matter (or radiation) at equality. Neglecting dark energy
and curvature, the Hubble rate is given by

H(s) =

(
8π

3
ρeq

)1/2

h(s), h(s) ≡
√
s−3 + s−4. (1)

We assume that PBHs make a fraction f of the non-
relativistic matter (i.e. dark matter and baryons as this
simplifies expressions). We show our results in terms of
the fraction fpbh ≈ f/0.85 of PBHs in dark matter. We
assume PBHs have a single mass M = mM�. All results
carry over to a relatively narrow mass function, though
more work would be required to generalize them to an
extended mass function.

We assume that the large-scale distribution of PBHs
follows that of the dark matter, but that on sufficiently
small scales, and at early enough times, they are effec-
tively randomly distributed in space. In other words,
we neglect the possibility of small-scale PBH cluster-
ing [43], which depends on the details of the PBH for-
mation model. If PBHs do not make all of the dark
matter, we denote by σ2

eq the variance of density per-
turbations of the rest of dark matter on scales of order
∼ (10−3 − 103) M ∼ (10−2 − 105) M�, at equality. Ex-
trapolating the measured amplitude and spectral index
of primordial adiabatic perturbations [42] to these small
scales, one gets σeq ≈ 0.005, with a weak (logarithmic)
dependence on mass. We adopt this value whenever re-
quired1.

We denote by x the characteristic comoving separation
(i.e. proper separation at equality) between two PBHs,

x ≡
(

3M

4πfρeq

)1/3

. (2)

Given a comoving separation x, we define the dimension-
less variable X as

X ≡ (x/x)3. (3)

Provided a pair of PBHs are close enough, they decouple
from the Hubble flow early on, and form a binary. We
denote by a the semi-major axis of a PBH binary, by `
its angular momentum per unit reduced mass, and by

j ≡ `/
√

2Ma =
√

1− e2 (4)

its dimensionless angular momentum, where e ∈ [0, 1] is
its eccentricity. We now estimate the probability distri-
bution of these initial orbital parameters.

B. Initial semi-major axis

Consider two point masses M , initially at comoving
separation x, with vanishing peculiar velocity, in an oth-
erwise homogenous expanding Universe. As long as the
separation is much smaller than the Hubble scale, we

1 It is worth pointing out that early-Universe scenarios for the
formation of PBHs typically involve enhanced primordial power,
in which case σeq may be significantly higher. We leave the
examination of particular PBH formation models to future work.
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may use a Newtonian approximation. If no perturber is
present, the motion is one-dimensional. We denote by
r ∈ R the proper separation projected along the axis of
motion; it evolves according to

r̈ − (Ḣ +H2)r +
2M

r2

r

|r| = 0, (5)

where overdots denote differentiation with respect to the
proper time. We define χ ≡ r/x and rewrite Eq. (5) in
terms of the scale factor s:

χ′′ +
sh′ + h

s2h
(sχ′ − χ) +

1

λ

1

(sh)2

1

χ2

χ

|χ| = 0, (6)

where primes denote differentiation with respect to s, and
the dimensionless parameter λ is

λ ≡ 4πρeqx
3

3M
=
X

f
. (7)

At s → 0, the binary follows the Hubble flow χ(s) = s,
so the initial conditions are

χ(0) = 0, χ′(0) = 1. (8)

We see that the solution is entirely characterized by λ.
In the limit λ� 1, the PBH pair effectively decouples

from the expansion deep in the radiation-domination era,
s � 1. In that limit, h(s) ≈ s−2, and the equation of
motion is

χ′′ − 1

s2
(sχ′ − χ) +

1

λ

s2

χ2

χ

|χ| = 0. (9)

One can show that the solution to this equation is self-
similar:

χ(s;λ) = λ χ(s/λ; 1). (10)

We compute this function numerically by solving Eq. (9)
and show it in Fig. 1: we find that the binary effectively
decouples from the Hubble flow at s ≈ λ/3, and that the
proper separation then oscillates with amplitude |χ| ≈
0.2 λ = 2a/x, where a is the semi-major axis of the newly
formed binary. We therefore find, for λ� 1,

a ≈ 0.1 λ x =
0.1

f

x4

x3 = 0.1

(
3M

4πρeq

)1/3

(X/f)
4/3

.(11)

This agrees with the result of Ref. [41] given that they de-
fine the mean separation without the factor of (4π/3)1/3.
Solving the full equation (6), we find that this result re-
mains reasonably accurate even for λ ∼ 1 (see Fig. 1).
In what follows we will see that for the PBH masses con-
sidered, the bulk of binaries merging at the present time
have λ . 1, so we use Eq. (11) throughout.

C. Initial angular momentum

We now account for the fact that the binary is im-
mersed in a local tidal field Tij = −∂i∂jφ, which exerts

��� ��� ��� ��� ���
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�

FIG. 1. Dimensionless separation χ = r/x of two point
masses, rescaled by the parameter λ = 1

f
(x/x)3, as a function

of the rescaled scale factor s/λ, in the limit λ� 1 (solid) and
for λ = 1 (dashed).

a perturbative force per unit mass F = T · r, in matrix
notation. This tidal field arises from the other PBHs,
as well as from matter density perturbations, as pointed
out in Ref. [44] (see also [45]). Provided the initial co-
moving separation of the binary is small relative to the
mean separation, this tidal field does not significantly
affect the binary’s energy (hence semi-major axis). How-

ever, it produces a torque ˙̀ = r × [T · r], resulting in a
non-vanishing angular momentum

` =

∫
dt r × [T · r], (12)

and preventing a head-on collision. If the torque orig-
inates from other PBHs whose comoving separation is
approximately constant (which is accurate provided their
separation is much larger than x), then T ∝ 1/s3. If the
torque originates from linear matter density perturba-
tions, then Tij ∼ ρmδm ∝ s−3δm. If the binary decouples
deep in the radiation era, then δm ≈ constant (neglecting
the slow logarithmic growth). Therefore in either case,
we have T ≈ s−3Teq. We hence get

` =

(
3

8πρeq

)1/2 ∫
ds

sh(s)

χ2(s;λ)

s3
x× [Teq · x]. (13)

The integral only depends on λ. In the limit λ� 1, using
the self-similarity relation (10), it simplifies to∫

ds

sh(s)

χ2(s;λ)

s3
= λ

∫
ds̃

s̃2
χ2(s̃; 1) ≈ 0.3 λ, (14)

where we computed the last integral numerically. The
reduced angular momentum j ≡ `/

√
2Ma is therefore

j ≈ 0.3√
0.1

λ1/2

(
3

16πρeqM

)1/2

x3/2x̂× [Teq · x̂] ,

≈ 0.5 x3 x̂×
[
Teq

M
· x̂
]

(15)
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where we used Eqs. (7) and (11) to simplify the expres-
sion.

1. Torques by other PBHs

Let us now specifically consider the tidal field gener-
ated by a point mass M at comoving separation y � x:

T ijeq

M
=

3ŷiŷj − δij
y3

. (16)

This implies an angular momentum

j ≈ 1.5
x3

y3
(x̂ · ŷ)(x̂× ŷ), (17)

with magnitude j ≈ 0.8(x/y)3 sin(2θ), where θ is the
angle between x̂ and ŷ, consistent with the results of
Ref. [41].

The total reduced angular momentum resulting from
all other PBHs (at distance y � x) is hence given by

j ≈ 1.5
∑
p

x3

y3
p

(x̂ · ŷp)(x̂× ŷp). (18)

We compute explicitly the probability distribution of j
in the Appendix, where we find, for a given X,

j
dP

dj

∣∣∣
X

= P(j/jX), P(γ) ≡ γ2

(1 + γ2)3/2
, (19)

with jX ≡ 0.5X. (20)

Note that this distribution extends to arbitrarily large
j, while physical values are limited to j ≤ 1. As long
as jX � 1, the contribution of unphysical values j > 1
is negligibly small. We emphasize that this probability
distribution accounts for torques by all PBHs. In con-
trast, Refs. [39, 41] only considered torques by the nearest
neighbor, which leads to the correct approximate char-
acteristic value of j, but does not allow to estimate its
exact probability distribution.

2. Torques by linear density perturbations

As pointed out in Refs. [44, 45], if the PBH frac-
tion is smaller than the characteristic large-scale mat-
ter density perturbation δm, then tidal torques are
dominated by large-scale linear perturbations, T ijeq =

−∂i∂jφ = −4πρeq∂i∂j∂
−2δm. The resulting j is

Gaussian-distributed in the plane perpendicular to x̂,
with variance given by [see Appendix 2]

〈j2〉1/2 =

√
3

10

σeq

f
X ≈ 0.5

σeq

f
X. (21)

The relevant scales are those larger than the binary sep-
aration (perturbations on smaller scales are affected in a

complex way by the binary orbit and would require to
be studied separately, as we discuss in Section III A 7).
Using Eq. (11), we find that the dark matter mass cor-
responding to the binary scale when it decouples from
the Hubble flow is of order Mdm ∼ 0.1Msdec. As we will
see below, the typical decoupling scale factor for binaries
merging today is sdec ∼ 10−2 − 1, so we conclude that
the scales to be included in σeq in Eq. (21) are those cor-
responding to a dark matter mass larger than ∼ 10−3M .

In principle the probability distribution for the total j,
which is the sum of two contributions (other PBHs and
linear perturbations), can be computed by convolving the
two probability distributions. This convolution is not
analytic, however, so for simplicity we assume that for a
given semi-major axis, the probability distribution of j
is given by Eq. (19), with the characteristic value

jX ≈ 0.5
(
1 + σ2

eq/f
2
)1/2

X. (22)

D. Characteristic initial properties of binaries
merging today

For initial eccentricities close to unity, i.e. j � 1,
which, as we will see shortly, is the relevant regime, the
coalescence time through GW emission is given by [46]

t =
3

170

a4

M3
j7. (23)

For a given X hence a, there is a unique j such that the
merger time is t; using Eq. (11), it is given by

j(t;X) ≡
(

170

3

tM3f4

(0.1 x)4X16/3

)1/7

. (24)

The differential probability distribution of (X, t) is then
given by

d2P

dXdt
=
dP

dX

dP

dt

∣∣∣
X

=
dP

dX
×
[
∂j

∂t

dP

dj

∣∣∣
X

]
j(t;X)

. (25)

The probability distribution of the rescaled nearest-
neighbor separation is dP/dX = e−X (again, this as-
sumes a random distribution of PBHs, and may take
on different values in specific PBH formation models).
Given that j ∝ t1/7, ∂j/∂t = j/(7t). Using Eq. (19) we
arrive at

d2P

dXdt
=

1

7t
e−XP (γX) , γX ≡

j(t;X)

jX
. (26)

From Bayes’ theorem, we obtain the probability distri-
bution of X for binaries merging after a time t0:

dP

dX

∣∣∣
t0
∝ d2P

dXdt

∣∣∣
t0
∝ e−XP (γX) , t = t0. (27)

We now seek the value X∗ for which this probability is
maximized. We will see that X∗ � 1, so we approximate
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e−X ≈ 1. We then need to solve

0 =
∂

∂X

[
dP

dX

∣∣∣
t0

]
X∗

∝ P ′(γX∗)
∂γX
∂X

. (28)

Since γX is strictly monotonic, this implies P ′(γX∗) = 0,

which is achieved for γX∗ =
√

2, i.e.

j(t0;X∗) =
√

2jX∗ . (29)

Solving for X∗, we obtain that the most probable value
of X for binaries merging today is

X∗ ≈ 0.032 f m5/37(f2 + σ2
eq)−21/74. (30)

We show X∗ in Fig. 2. We see that for all PBH masses
and fractions of interest, X∗ � 1, indicating that PBH
binaries merging today are rare pairs with initial sepa-
ration much smaller than the characteristic inter-PBH
separation. This justifies our approximation to treat the
effect of other PBHs as a perturbation on the nearly iso-
lated binary.

From our results in Sec. II B, the characteristic redshift
at which PBH binaries decouple from the Hubble flow is
z∗ ≈ 3zeq/(X∗/f), which we show in Fig. 3. We find that
all binaries merging today typically form prior to matter-
radiation equality, and increasingly early for f & σeq.
The characteristic semi-major axis a∗ is then obtained
from Eq. (11), and the characteristic angular momentum

j∗ is simply j(t0, X∗) =
√

2jX∗, i.e., using Eq. (22),

j∗ ≈
1√
2

(σ2
eq + f2)1/2(X∗/f)

≈ 0.023 m5/37(σ2
eq + f2)8/37. (31)

We show the characteristic initial orbital parameters in
Fig. 4.

E. Merger rate

We now have all the required ingredients to compute
the merger rate. First of all, since the typical formation
time is prior to matter radiation equality, the time of
merger (i.e. the value of coordinate time since the Big
Bang) is approximately the time it takes to merge, for
binaries merging today. The probability distribution of
the time of merger is therefore

dP

dt
=

∫
dX

d2P

dXdt
=

1

7t

∫
dXe−XP(γX). (32)

Since the integrand peaks at X∗ � 1, we may set e−X =
1, and compute the integral analytically. Using γX ∝
X−37/21, and γX∗ =

√
2, we find∫

dXP(γX) =
21

37

X∗√
2

∫
dγ(γ/

√
2)−58/37P(γ)

≈ 0.59 X∗. (33)
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FIG. 2. Characteristic rescaled initial comoving separation
X ≡ (x/x)3 for PBH binaries that merge at the present time,
as a function of the fraction of dark matter in PBHs. The
curves are labeled by the PBH mass in units of M�. We see
that X∗ � 1, indicating that PBH binaries merging today
are rare pairs with initial separation much smaller than the
characteristic inter-PBH separation. Here and in subsequent
figures, the change of slope at f ≈ σeq ≈ 0.005 is due to the
change in the dominant tidal torque, from large-scale density
perturbations at f . σeq to other PBHs at f & σeq.
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FIG. 3. Characteristic decoupling redshift of PBH binaries
merging at the present time, as a function of the fraction of
dark matter in PBHs. We see that PBH binaries typically
form around matter-radiation equality for fpbh . 0.01, and
much earlier for larger PBH fractions.

The merger rate per unit volume at the present time t0
is then obtained from

dNmerge

dtdV
=

1

2
f
ρ0
m

M

dP

dt

∣∣∣
t0
≈ 0.042 X∗

fρ0
m

Mt0
, (34)

where ρ0
m is the matter density at the present time, and

the factor 1/2 avoids double-counting of pairs .
We show the merger rate as a function of f in Fig. 5.

It scales as m−32/37 ≈ m−0.86. For f � σeq, it scales as

f53/37 ≈ f1.41, and for f � σeq it scales as f2. Note that
this contrasts with the results of Ref. [9], which did not
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FIG. 4. Characteristic initial orbital elements (semi-major
axis a and reduced angular momentum j =

√
1− e2) of PBH

binaries merging at the present time.
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FIG. 5. PBH binary merger rate, as a function of PBH frac-
tion fpbh and mass m = M/M�.

account for torques by adiabatic density perturbations
(i.e. assumed σeq = 0). In their case, the merger rate

changes from ∝ f53/37 to ∝ f3 at f . 10−3, as PBH
binaries typically form after matter-radiation equality in
that case.

The next section is dedicated to check the most impor-
tant assumption underlying this rate estimate, namely

that between formation and merger, PBH binaries are
mostly unaffected by their environment.

III. BINARY EVOLUTION BETWEEN
FORMATION AND MERGER

The goal of this section is to estimate the effect of
interactions with the overall tidal field, other PBHs and
baryons after the binary has formed, once it is part of
non-linear structures.

A. Purely gravitational interactions

We begin by considering purely gravitational inter-
actions of PBH binaries with dark matter, whether in
the form of PBHs or otherwise. Before we start, let
us point out that if PBHs do not make all of the dark
matter, one must make assumptions about the rest of
it. Given that the scales currently probed by CMB
anisotropy and large-scale-structure measurements are
significantly larger than the scales of interest here, all
bets are open regarding the appropriate model. For in-
stance, the dark matter could be cold enough that its free
streaming length is below current limts from Ly-α forest
data [47], yet be effectively warm on a scale containing a
few PBHs. Similarly, the dark matter could be an ultra-
light axion-like particle, massive enough to evade existing
constraints [1], yet light enough to have strong wavelike
effects on the scales of interest. For definiteness, we shall
assume that the rest of the dark matter is made of cold,
collisionless particles with masses � M . In addition to
being the simplest scenario, it is also that where the dark
matter is expected to cluster the most, hence have the
largest gravitational effects on PBH binaries. Making
this assumption is therefore conservative.

1. Characteristic properties of early halos

Consider a spherical region enclosing on average a total
mass Mh. The number N of PBHs it contains is Pois-
son distributed with mean 〈N〉 = fMh/M and variance
〈(∆N)2〉 = 〈N〉. For 〈N〉 � 1, the distribution of per-
turbations on that mass scale is nearly Gaussian, with
variance at equality

σ2(Mh; eq) ≈ σ2
eq +

f2

〈N〉 = σ2
eq + f

M

Mh
. (35)

Let us remark that the scales relevant to this section
are typically larger than those relevant to the calculation
of the torque in Sec. II C 2 (if we consider only haloes
containing at least a few PBHs), so the meaning of σeq is
technically different in these two contexts. For simplicity,
and assuming that the variance of perturbations varies
slowly with mass on these scales, we may approximate
them to be roughly equal.
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During the matter era, perturbations grow linearly
with the scale factor, σ(Mh, s) ≈ s σ(Mh; eq). Per-
turbations of mass scale Mh typically collapse when
σ(Mh, s) ≈ 1, i.e. at scale factor

scoll(Mh) ≈
(
σ2

eq + fM/Mh

)−1/2
. (36)

As a sanity check, with our assumed σeq = 0.005, we
find that the first small-scale structures form at z ∼ 20
if f = 0, consistent with current estimates.

Once a perturbation collapses and virializes into a halo,
we assume its characteristic density ρh is ∼ 200 times the
mean density at the time of collapse:

ρh ≈ 200 ρm(scoll). (37)

The variance of the relative velocity of two point masses
in the halo is typically

v2
h ≈ 2

(
4πρh

3
M2
h

)1/3

. (38)

The halo changes on a characteristic dynamical time

th ≈
√

3

4πρh
. (39)

We are interested in a slightly different property, namely
the characteristic halo mass a PBH binary (or any mass
element) is part of as a function of cosmic time. We shall
make the simplest assumption, that at any given time
most of the mass resides in halos that have just collapsed.
In other words, inverting Eq. (36), we assume that the
characteristic halo mass as a function of scale factor is

Mh(s) ≈ fMs2, (40)

valid for s � σ−1
eq . At later times, standard adiabatic

perturbations become larger than the small-scale Poisson
contribution, and the characteristic mass Mh(s) depends
on the detailed functional form of σeq(Mh). Of course a
PBH binary can only be part of a halo that contains at
the very least 2 PBHs. For definiteness, we will consider
halos as containing at least 10 PBHs. We define s10 as
the characteristic scale factor at which such halos (with
mass Mh = 10M/f) first form,

s10 ≡
(
σ2

eq + f2/10
)−1/2

. (41)

To summarize, we take the following simple prescription:
at a given scale factor s ≥ s10, a PBH binary is typically
part of a halo of mass fMs2 = 10M/f(s/s10)2, whose
characteristic density, velocity dispersion and dynamical
time are given by Eqs. (37), (38) and (39).

2. Relation of halo properties to characteristic PBH binary
properties

Here we write a few relations between the properties of
the first halos and those of PBH binaries, which we will

use repeatedly in the remainder of this section. We keep
track of numerical factors in order not to add on to the
uncertainty, but one should keep in mind that these are
order-of-magnitude estimates. We define the following
dimensionless quantity

ε ≡
(

4πρha
3

3M

)1/3

≡ ε10(s10/s), (42)

where, using Eqs. (11), (30) and (41),

ε10 ≈ 0.6 (σ2
eq + f2/10)1/2(X/f)4/3

≈ 0.006 m20/111
(σ2

eq + f2/10)1/2

(σ2
eq + f2)14/37

(X/X∗)
4/3 (43)

We see that ε10 � 1 for all (m, f) of interest. In words,
PBH binaries are much “denser” than the characteristic
first halos, because they typically form much earlier on.

An immediate consequence is that the orbital time of
the binary is always much shorter than the dynamical
time of the halo:

torb

th
∼ ε3/2 � 1. (44)

Another relevant timescale is that of general-
relativistic apsidal precession, which, for an equal-mass
binary is (see e.g. Ref. [48])

tprec =
1

6

a

M
j2torb. (45)

For binaries merging at t = t0, using Eq. (23), we may
rewrite this as

tprec =
1

6

(
170

3

t0
M
j−7

)1/4

j2torb

≈ 2× 105m−1/4j1/4torb. (46)

In particular, for typical binaries with j ≈ j∗, using
Eq. (31), we get

tprec

torb
≈ 105m−8/37(σ2

eq + f2)2/37. (47)

Using Eqs. (44), and (42)-(43), we therefore find, for the
characteristic binaries merging today,

tprec

th
∼ 105m−8/37(σ2

eq + f2)2/37ε
3/2
10 (s10/s)

3/2. (48)

Therefore we find that, until late times, the apsidal pre-
cession time is typically much longer than the character-
istic dynamical time of the halo.

The ratio of the halo’s pairwise velocity dispersion to
a binary’s circular velocity vbin ≡

√
2M/a is

v2
h

v2
bin

≈ a

M

(
4πρh

3
M2
h

)1/3

= (Mh/M)2/3ε. (49)
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For PBH fractions f & σeq, the mass of the first halos
evolves according to Eq. (40), so we get

vh
vbin

≈ (10/f)1/3ε
1/2
10 (s/s10)1/6

≈ 0.09 m10/111f−47/222(s/s10)1/6(X/X∗)
2/3,(50)

where the second line is valid for f &
√

10σeq ∼ 0.01. For
f & 0.01, PBH binaries are therefore typically “hard”
relative to the first halos they are part of. Eventually, as
the characteristic halo mass and virial velocity increase,
this is no longer the case.

Finally, it is useful to rewrite the Hubble rate as fol-
lows:

H =

√
8π

3
ρm ≈

1

10

√
4πρh

3
≈ 1

10
t−1
h , (51)

and integrals over time become∫
dt

th
=

∫
d ln s

Hth
≈ 10

∫
d ln s. (52)

We now discuss how the orbital elements of PBH binaries
may be affected by non-linear structure. We first consider
the effect of the tidal field from the smooth halo, and then
consider discrete interactions with other PBHs.

3. Torques by the tidal field from the smooth halo

The rate of change of a binary’s specific energy due
to a tidal field Tij is Tijriṙj = 1

2Tij
d
dt (rirj), where ri(t)

is the binary’s separation. Integrating over time, we see
that the binary’s energy hence semi-major axis are secu-
larly conserved if Tij changes on a timescale much longer
than the binary’s period. We have shown in the previous
section that th � torb, and as a consequence, the halo’s
tidal field does not affect the semi-major axis of typical
PBH binaries.

The tidal field exerts a torque per reduced mass

˙̀
i = εijkrjTklrl. (53)

Since th � torb, we may average this equation over an
orbital period:

〈 ˙̀i〉 = εijkTkl〈rjrl〉 ∼ |Tij |a2. (54)

If the tidal field evolved on a timescale longer than the
apsidal precession time, further averaging over the pre-

cession time would lead to ˙̀
i ∝ εijkTkl(δjl − ˆ̀

j
ˆ̀
l), i.e.

˙̀ ∝ ` × (T · `) ⊥ `, in which case the magnitude of the
angular momentum would also be secularly conserved.
However, we saw in the previous section that tprec � th,
so the tidal field of the halo can indeed change `.

The characteristic tidal field Tij = −∂i∂jφ is of order
|Tij | ∼ (4π/3)ρh, as can be seen from Poisson’s equa-
tion. The torque on a binary with semi-major axis a is
therefore of order ˙̀ ∼ (4π/3)ρha

2, implying, since ȧ = 0,

dj

dt
∼ 4π

3
ρh

a3/2

M1/2
. (55)

The tidal field of the smooth halo is roughly constant on
a dynamical time th. During that time, the magnitude
of the angular momentum changes by a amount ∆jh of
order

∆jh ∼
4π

3
ρhth

a3/2

M1/2
∼ ε3/2 � 1. (56)

After a time ∼ th, the principal axes of the tidal
field change direction, so the changes ∆jh are uncorre-
lated from one dynamical time to the next. The angu-
lar momentum therefore undergoes a random walk on
timescales t� th, and its variance grows as

〈∆j2〉 ∼
∫
dt

th
(∆jh)2 ∼

∫
dt

th
ε3

∼ 10

∫
d ln s ε3 ∼ 10 ε310, (57)

where we have used Eq. (52), and ε = ε10(s10/s). Using
Eqs. (43) and (31), we find, for typical binaries merging
today,

〈∆j2〉
j2
∗
∼ 0.004 m10/37

(σ2
eq + f2/10)3/2

(σ2
eq + f2)58/37

� 1. (58)

We therefore conclude that the overall halo’s tidal field
does not significantly alter the orbital parameters of PBH
binaries merging today.

4. Distant encounters with other PBHs

Let us now consider discrete interactions with other
PBHs. We start by considering distant encounters,
i.e. those whose distance of closest approach rp is at least
a few times a, so that their interaction is tidal.

Consider a single PBH approaching a PBH binary on
a hyperbolic orbit with impact parameter b and relative
velocity at infinity v. Conservation of energy and angular
momentum imply the following relations between (b, v)
and the distance of closest approach rp:

b2 = r2
p +

6Mrp
v2

, (59)

rp =
b

[1 + (3M/bv2)2]1/2 + 3M/bv2
. (60)

By conservation of angular momentum, the velocity at
pericenter is vp = bv

rp
. The characteristic interaction time

is therefore

tp ∼
rp
vp

=
r2
p

bv
. (61)

The change in specific angular momentum is of order

∆` ∼ M

r3
p

a2tp ∼
Ma2

rpbv
. (62)
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The change of specific energy E/M is at most (provided
the interaction is prompt, i.e. tp . torb) of order

∆E

M
∼ M

r3
p

a

√
M

a
tp ∼

M3/2a1/2

rpbv
, (63)

hence the fractional change in semi-major axis is at most

∆a

a
=

∆E

E
∼ M1/2a3/2

rpbv
. (64)

The change in j is of the same order:

∆j =
∆`√
2Ma

− 1

2
j

∆a

a
∼ ∆`√

Ma
∼ M1/2a3/2

rpbv
. (65)

Note that limiting ourselves to tidal distant encoun-
ters implies that these changes are always small: using
Eq. (59), with rp � a, we get

∆a

a
. ∆j �

(
1 + av2/6M

)−1/2 ≤ 1. (66)

The merger timescale can only be significantly affected
if a or j change by a fractional amount of order unity.
While ∆a/a� 1 for distant encounters, since the charac-
teristic j is small, we do have to make sure that ∆j � j.

To change j by an amount greater than ∆j0 requires

rpb .
M1/2a3/2

v∆j0
. (67)

Defining α ≡ bv2/(3M) and va ≡
√
M/a, this condition

implies

α3

1 +
√

1 + α2
.

v3

v3
a∆j0

. (68)

This has the approximate solution

α2 . α2
0 ≡

(
v3

v3
a∆j0

)2/3

+
v3

v3
a∆j0

. (69)

From this we obtain the cross section to change j by more
than ∆j0:

σ∆j≥∆j0(v) = π

(
3M

v2

)2

α2
0

∼ Ma

v2

1

∆j
2/3
0

+
M1/2a3/2

v

1

∆j0
. (70)

The first term in this cross section corresponds to the
limit of nearly parabolic encounters, and the second term
to the limit of quasi-straight line trajectories. The for-
mer has the same dependence as equation (19) of [49]
(once translated from e to j), where this cross section
was computed exactly in the quasi-parabolic-orbit limit.
The numerical prefactor found in Ref. [49] for equal-mass
objects is ≈ 7.

The number of encounters that change j by more than
∆j0, per binary, is then

N∆j≥∆j0 =

∫
dt
fρh
M

vhσ∆j≥∆j0(vh), (71)

where fρh/M is the number density of PBHs, that is,

N∆j≥∆j0 ∼ f
[

a

∆j
2/3
0

∫
dt
ρh
vh

+
(a3/M)1/2

∆j0

∫
dtρh

]

∼ f
[

1

∆j
2/3
0

∫
dt

th
ε

(
M

Mh

)1/3

+
1

∆j0

∫
dt

th
ε3/2

]

∼ 10f

[
(f/10)1/3

(
ε310

∆j2
0

)1/3

+

(
ε310

∆j2
0

)1/2
]
. (72)

An initially narrow distribution in j is broadened by im-
pulsive torques from other PBHs up to the characteristic
∆j0 for which N∆j≥∆j0 ≈ 1, which is approximately

∆j2
0 ∼ ε310 ×max

[
(f/10)(10f)3, (10f)2

]
∼ (10f)2 ε310.(73)

This is a factor of ∼ 10f2 larger than Eq. (57), and is
therefore still small relative to j2

∗ , even for f ≈ 1, and
even if multiplied by a factor of ∼ 10. Therefore we
conclude that distant encounters with other PBHs do
not significantly affect the orbital parameters of PBH
binaries merging today.

5. Close encounters with other PBHs

Let us estimate the probability of close encounters,
i.e. those with closest approach rp . a. The cross section
from such encounters is obtained from Eq. (59):

σclose(v) ∼ π
[
a2 + 2

Ma

v2

]
. (74)

The first term is just the geometric cross section and the
second term accounts for gravitational focusing. There-
fore the total number of such encounters per binary is

Nclose =
f

M

∫
dtρhvhσclose(vh)

∼ f
[
a2

M

∫
dtρhvh + a

∫
dt
ρh
vh

]
. (75)

While the second term is dominated by the first halos as
vh increases with time, the first term also gets a contri-
bution from low redshifts. Indeed, at z . 20, the char-
acteristic halo mass increases exponentially with redshift
due to the logarithmic behavior of σ(Mh), and so does

vh ∼M1/3
h ρ

1/6
h .

Let us start by evaluating the low-redshift contribu-
tion, i.e. the number of close encounters in Milky-Way-
like halos, with characteristic density ρMW ≈ 200ρ0

m and
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velocity dispersion vMW ≈ 200 km/s:

Nclose

dt

∣∣∣
mw
∼ f a

2

M
ρMWvMW

∼ 10−4f
( a

104AU

)2 30M�
M

Gyr−1. (76)

The probability of close encounters in Milky-Way-like ha-
los is therefore clearly negligible.

The contribution from the first halos is dominated by
the gravitational focusing term, since vh � vorb in the
first halos:

Nclose ∼
∫
dt

th
ε

(
M

Mh

)1/3

∼ 10f(f/10)1/3ε10. (77)

From Eq. (43) we see that this number is at most ∼ 0.01
for f ∼ 1, and very small for f � 1.

We therefore conclude that close encounters are un-
likely, and as a consequence we need not worry about
their detailed consequences. Let us point out, as addi-
tional reassurance, that since PBH binaries are typically
hard relative to the first halos, they can not be disrupted
(“ionized”), as the perturbing PBHs do not have suffi-
cient energy to do so.

6. Dynamical friction by dark matter particles

Ref. [45] pointed out that if PBHs are a subdominant
component of dark matter, and if the bulk of dark mat-
ter is made of particles with masses � M , they would
exert dynamical friction on PBH binaries, possibly mak-
ing them merge in a short timescale. Here we revisit this
process using our analytic estimates for the properties of
the first halos.

The rate of hardening of a binary in a background of
point masses was estimated in Ref. [50]. The effect is
largest for hard binaries. In the limit of hard, highly-
eccentric binaries, the results of [50] are approximately

d ln a

dt
≈ −30

ρha

vh
≈ − 3

th
ε(M/Mh)1/3. (78)

Therefore we see that |∆ ln a| ∼ 30ε10 � 1.
The fitting function for the rate of change of eccentric-

ity given in Ref. [50] translates to

d ln j

d ln a
≈ e2(k1 + k2e)j

2(k0−1) ≈ (k1 + k2)j2(k0−1), (79)

where the constants ki are of order unity and de-
pend on vh/vbin, and the second approximation holds
for e ≈ 1. The minimum value of k0 estimated by
Ref. [50] is k0 ∼ 0.75. Therefore we find that ∆ ln j

is at most ∼ 10ε10/j
1/2
∗ ∼ 10(σ2

eq + f2/10)1/2/(σ2
eq +

f2)1/4(X∗/f)5/6 � 1.
From these analytic estimates, we conclude that dy-

namical friction by dark-matter particles does not sig-
nificantly affect the orbital parameters of PBH binaries
merging today.

7. A note on local particle-dark-matter halos

The previous paragraphs focused on large halos, con-
taining a few PBHs on average. In particular, for σeq .
f � 1, such halos only collapse at s10 ∼

√
10/f , i.e. sig-

nificantly after matter-radiation equality.
In addition to being part of large halos, PBHs get

“clothed” in a local halo of bound dark matter particles
if fpbh < 1 [51–53]. While accretion onto a binary
must differ from accretion onto a point mass, we
nevertheless generically expect that a dark-matter mass
of order Mdm ∼ M becomes bound to the binary by
matter-radiation equality. If the bulk of the dark matter
is a thermal relic with a weak-scale annihilation cross
section, the local dark matter halo could moreover be
a luminous source of annihilation products [54]. It is
difficult to estimate analytically the properties of such a
local halo and the effect it may have on PBH binaries
(see Ref. [45] for an attempt to do so). It is however
a well-posed numerical problem, the study of which we
defer to future work.

To conclude this section, we find that the orbital pa-
rameters of PBH binaries formed in the early Universe
are not significantly affected by halos large enough to
contain ∼ 10 PBHs. However, we emphasize that this
conclusion relies on very simple analytic estimates for
complex dynamics. For instance, one of our underlying
assumptions is that each generation of halos gets mostly
tidally stripped as they get engulfed in the next genera-
tion of more massive halos. It might be that most of the
first halos actually survive as substructure of the subse-
quent generation, in which case the phase-space parame-
ters determining collision rates would significantly differ
from our estimates. A definitive answer to the problem of
survival of PBH binaries in early halos is therefore likely
to require more detailed numerical studies.

B. Effect of baryon accretion

Ref. [45] suggested that a thin circumbinary accretion
disk may form around PBH binaries once the Bondi ra-
dius exceeds the binary separation. Such a disk would
then exchange energy and angular momentum with the
binary [55]. While it is not clear what kind of accretion
flow would take place (thin, slim, thick disk or advection-
dominated flow, see e.g. [56] for a review), here we at-
tempt to give an estimate of the magnitude of this effect.

1. Estimate of the work and torque on the binary

Let us first consider a quasi-spherical accretion flow
onto the binary. Assuming the binary separation is less
than the Bondi radius, the characteristic velocity of the
gas at the orbital separation is of order the free fall
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velocity, which is of the order of the orbital velocity
v ∼

√
M/a. The drag force on each black hole is of the

order Ṁv, i.e., if we assume the Bondi-Hoyle-Lyttleton
accretion rate locally onto each black hole, [57–59],

Mv̇ ∼ −4πρ(a)
gas

M2

v3
v ∼ −4πρ(a)

gasMa, (80)

where ρ
(a)
gas is the local gas density. Now, the total accre-

tion rate on the binary is such that Ṁ = 4πρgasr
2vr =

constant, so the gas density at the binary’s orbit is of

order 4πρ
(a)
gas ∼ Ṁ/(a2

√
M/a). Hence we get

Mv̇ ∼ −Ṁ
√
M/a. (81)

The binary loses energy at a rate Ė ∼Mv̇v and angular
momentum at a rate L̇ ∼Mv̇a, i.e., denoting the binary’s
total mass by Mbin = 2M , we get

Ė = −A Ṁ
Mbin

a
, (82)

L̇ = −B Ṁ
√
Mbina, (83)

where A and B are dimensionless numbers of order unity.
Let us now consider instead a thin circumbinary accre-

tion disk with surface density Σ and effective shear vis-
cosity ν. The disk is truncated at an inner edge rin, where
viscous torques balance gravitational torques [60]. This
inner edge is typically around one of the lowest Lindblad
resonances [61], i.e. rin ∼ 2a, as confirmed in numerical
simulations [60] with typical Shakura-Sunyaev [62] vis-

cosity parameters. The torque L̇ on the binary is the op-
posite of the torque on the disk, which is approximately
the viscous torque at the inner edge, i.e. [60]

L̇ ∼ −3πνΣ
√
Mbinrin. (84)

The effective viscosity also determines the radial inflow,
hence the accretion rate [63]:

Ṁ ∼ 3πνΣ. (85)

Dividing these two equations, we obtain again Eq. (83).
Of course, the parameter B depends on the binary’s ec-
centricity and on the details of the accretion physics, but
should be of order unity (see also Ref. [64] for a similar
parametrization).

The scaling (83) is confirmed in numerical simulations
of thin circumbinary disks. Ref. [65] simulated a cir-
cumbinary accretion disk around a circular binary. Di-
viding their Eqs. (18) and (20) gives our Eq. (83) with
B ≈ 2.4. While [65] only explicitly resolved the region
r ≥ a, the more recent simulations of Ref. [66] resolves
the interior region r ≤ a and the individual accretion
“minidisks” around each black hole. They find that
the dominant contribution of the torque arises from gas
streams close to the individual black holes. Recasting
their equation (14) in physical units, and setting the sink
timescale to the characteristic viscous timescale, trans-
lates again to our Eq. (83) with B ≈ 5.6.

The rate of energy change can be obtained from the
following consideration. For a perturbing potential Φ of
the form Φ ∝ φml(r)e

i(mθ−lΩbt), where θ is the polar

angle and Ωb ≡
√
Mbin/a3, the combination E − l

mΩbL
is constant. Provided the torque is dominated by low-
order (m, l), we therefore find Ė ∼ ΩbL̇, which translates
to Eq. (82). Here again, the parameter A depends on
eccentricity and the details of the accretion disks, but
should be of order unity.

Therefore, we expect the simple relations (82) and (83)
to hold under rather general circumstances. From these

relations, and using E = − 1
8M

2
bin/a and L = 1

4M
3/2
bin a

1/2j
for an equal-mass binary, it is straightforward to show
that

ȧ

a
∼ dj

dt
∼ −Ṁ

M
, (86)

with uncertain numerical prefactors. Note, that the sign
of the effect itself is uncertain: the binary could instead
extract energy and angular momentum from the accre-
tion flow.

2. Accretion rate and total change in orbital parameters

Our next step is now to estimate the accretion rate Ṁ .
Accretion is typically highly time-dependent and may
proceed in bursts (see e.g. Fig. 7 of Ref. [65]), whose
amplitude and timescale cannot be simply estimated.
However, provided the Bondi radius is larger than the
binary separation, the large-scale accretion flow should
be roughly of the Bondi-Hoyle-Lyttleton type [57–59]:
outside the sonic radius there should be little difference
between accretion onto a point mass or a binary2. There-
fore, on timescales long compared to the Bondi time, the
average accretion rate ought to be close to the Bondi
value, 〈Ṁ〉 ≈ ṀB. Since the total change in orbital

parameters is proportional to
∫
dtṀ/M , it is this long-

timescale accretion rate that is relevant, rather than the
possibly large short-time fluctuations. We denote by
ṁ ≡ Ṁ/ṀEdd, where3 ṀEddc

2 ≡ LEdd ≈ 2 Mc2 Gyr−1

is the Eddington luminosity. We therefore have∫
dt
Ṁ

M
∼ 2

∫
ṁ dt

Gyr
. (87)

The rate of accretion from the background baryon gas
was computed in Ref. [24] accounting for relative motions
of baryons and PBHs and Compton cooling and heating.
At redshifts less than a few hundred, which dominate the

2 We thank Geoffrey Ryan for pointing this out.
3 Our convention follows that of Refs. [23, 24] but differs from

the accretion-disk litterature where ṀEdd is often defined with
a factor of 10 larger.
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integral, the characteristic dimensionless accretion rate
they find is ṁ ∼ 10−5(M/M�). Therefore, we get∫ tmax

dt
Ṁ

M
∼ 2× 10−5 tmax

Gyr

M

M�
. (88)

At low enough redshift, once the binaries are part of large
halos, we expect the accretion to be cutoff due to the
large non-linear velocities and heating of the gas [23].
Cutting off the integration at z ≈ 10 corresponds to
tmax ∼ 0.5 Gyr, so we get∫

dt
Ṁ

M
∼ 10−5 M

M�
, (89)

which matches what Ref. [45] estimated from the results
of Ref. [23]. Therefore we conclude that, even if the co-
efficient in Eq. (86) is ∼ 10 − 100, the semi-major axis
should not be significantly affected by an accretion disk.
This contrasts with the results of Ref. [45] who found
an orbital decay timescale much shorter than the Hubble
time. The difference can be traced back to their esti-
mate of the characteristic disk mass Mcbd ≡ πa2Σ by
Mcbd ∼ H−1Ṁ , instead of the more appropriate order
of magnitude Mcbd ∼ tviscṀ . Ref. [45] therefore seem to
have overestimated the effect of the accretion disk by a
factor ∼ H−1/tvisc � 1. Nevertheless, if the coefficient
in Eq. (86) is large, and for large enough PBH masses,
the change in j, while small in absolute value, could still
exceed the characteristic initial value for PBH binaries
merging today (see Fig. 4).

If this is the case, and accretion efficiently extracts
angular momentum, binaries that would have otherwise
merged today may merge much earlier on. In the extreme
case where most binaries merge quickly, a high-redshift
gravitational-wave background would result [45]. Con-
versely, if accretion tends to circularize eccentric bina-
ries, they may merge on a much longer timescale. More
generally, if accretion significantly affects orbital param-
eters, the probability distribution of merger times, hence
the merger rate, could be drastically different from what
we have estimated in Section II. This warrants further
work, most likely numerical simulations, to investigate
this issue in more detail.

IV. PBH BINARY FORMATION IN
PRESENT-DAY HALOS

It was pointed out in Ref. [8] (hereafter, BCM) that
PBH binaries can also form in present-day halos through
gravitational bremsstrahlung: if two PBHs pass close
enough to each other, they may radiate a sufficient
amount of energy in gravitational waves to become
bound. The binaries formed through this pathway are
typically very tight and highly eccentric [10], and co-
alesce within a timescale much shorter than a Hubble
time, so that the merger rate is approximately equal to
the capture rate. BCM found that the merger rate is

dominated by the smallest halos, of a few hundred solar
masses, and is of order ∼ 1 Gpc−3 yr−1 if PBHs make
all of the dark matter. This is significantly lower than
the merger rate of binaries formed in the early Universe.
However, the calculation of BCM did not account for the
contribution of Poisson fluctuations to density pertur-
bations when estimating the characteristic density and
velocity dispersion of the smallest halos. Given how sen-
sitively these depend on the variance of perturbations,
it is worth revisiting this calculation. Throughout this
section we assume f = 1.

A. General considerations

The cross section for two equal masses to become
bound due to gravitational radiation is [67]

σgw(v) = 4π

(
85π

3

)2/7
M2

v18/7
≈ 45

M2

v18/7
, (90)

where v is the relative velocity of the two PBHs at large
separation. The rate of binary formation in a given halo
is therefore

Γ =
1

2

∫
d3r

ρ(r)2

M2
〈vσgw〉(r) ∼ 20 Mhρhv

−11/7
h . (91)

Using Eq. (38) for virialized halos, we have vh ∼
2M

1/3
h ρ

1/6
h , so that

Γ ∼ 10 M
10/21
h ρ

31/42
h . (92)

A simple prescription for the characteristic halo density
is that it is ∼ 200 times the mean density at the time
of collapse. Neglecting the effect of dark energy at low
redshift, the characteristic redshift of collapse of pertur-
bations of mass Mh is

zcoll ∼ σ(Mh), (93)

where σ(Mh) is the variance of linear perturbations on
the mass scale Mh extrapolated to the present time.
Therefore,

ρh ∼ 200 [σ(Mh)]3 ρ0
m. (94)

Note that this is consistent with the asymptotic be-
havior of the fitting formula of Ref. [68] for the
mass-concentration relation: for NFW profiles, ρh ∼
200 ρ0

m c3, and the concentration c scales nearly linearly
with σ(Mh) at large values. This implies

Γ ∼ 450
(
ρ0
m

)31/42
M

10/21
h [σ(Mh)]31/14. (95)

The merger rate per unit volume is then obtained by
integrating Γ over the halo mass function:

dNmerge

dtdV
=

∫
dMh

dnh
dMh

Γ(Mh). (96)
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The halo mass function is well modeled on large scales
Mh & 1010M�, corresponding to σ(Mh) . 4 [69]. It
is not unreasonable to extrapolate fitting functions sev-
eral orders of magnitude in mass for standard adiabatic
perturbations, as σ(Mh) only depends logarithmically on
Mh in that case. However, for Poisson perturbations,
σ(Mh) ∝ 1/

√
Mh, and the mass function for very large

values of σ is anyone’s guess. For lack of a better esti-
mate we shall therefore simply use the Press-Schechter
(PS) mass function [70]:

dnh
dMh

≈
√

2

π

ρ0
m

Mh

∣∣∣d lnσ

dMh

∣∣∣νe−
1
2ν

2

, ν ≡ 1.68

σ(Mh)
, (97)

For the small halos of interest, with mass Mh � 1012M�,
ν � 1 and one can neglect the exponential term. We
therefore arrive at

dNmerge

dtdV
∼ 600

(
ρ0
m

)73/42
∫
Mc

dMh

∣∣∣ dσ
dMh

∣∣∣ σ3/14

M
11/21
h

,(98)

where Mc is a cutoff mass that truncates the otherwise
divergent integral at Mh → 0. To determine Mc, we
follow BCM and require that the evaporation timescale
of the halo is less than a Hubble time t0. The evaporation
time is approximately [71]

tevap ∼ 10
N

lnN
th, (99)

where th is the halo’s crossing or dynamical time, and
N ≡ M/Mh is the number of objects in the halo. Using
Eq. (94), we have

th ∼ 0.1[σ(Mh)]−3/2t0. (100)

Therefore the cutoff halo mass Mc is determined by the
implicit equation

[σ(Mc)]
3/2 ∼ Mc/M

ln(Mc/M)
. (101)

Up to our specific assumptions about the the character-
istic halo density and mass function, Eqs. (98) and (101)
are fairly general. They illustrate that the merger rate is
entirely determined by the variance σ2(Mh).

B. Merger rate accounting for Poisson
perturbations

Let us now explicitly include Poisson perturbations.
From Eq. (35), shot noise perturbations dominate over
standard adiabatic perturbations for Mh ≤ M/σ2

eq ≈
4 × 104M . Provided this is the case, the variance at
the present time is of order

σ(Mh) ≈ zeq

√
M

Mh
. (102)

Eq. (101) therefore implies

z3/2
eq

(
M

Mc

)3/4

∼ Mc/M

ln(Mc/M)
, (103)

which implies

Mc ≈ 3× 103 M ≡ NcM, (104)

consistent with the results of Ref. [72], and well into the
regime where Poisson perturbations dominate over adia-
batic ones. This is to be contrasted with the cutoff mass
of BCM, who estimated Mc ≈ 400M� for M = 30M�,
corresponding to Nc ≈ 13.

The merger rate per halo, Eq. (95), is therefore

Γ ∼ 3× 1010
(
ρ0
m

)31/42
M

10/21
h (M/Mh)31/28

∼ 6× 10−14Gpc−3yr−1
(m

30

)10/21
(
Mc

Mh

)53/84

.(105)

For m = 30, this rate is about two orders of magnitude
larger than that of BCM at Mh = Mc ≈ 105M�.

Finally, the total merger rate per unit volume is

dNmerge

dtdV
∼ 600

(
ρ0
m

)73/42
M−11/21z17/14

eq

×
∫ ∞
Nc

dx

x11/21

1

2x3/2
x−13/28

∼ 500
(
ρ0
m

)73/42
M−11/21

∼ 0.2 (m/30)−11/21Gpc−3yr−1. (106)

This is within a factor of a few of the result of BCM,
as the much larger cutoff mass compensates for the en-
hanced merger rate per halo.

We therefore conclude that (i) the merger rate of PBH
binaries formed in present-day halos is roughly consis-
tent with the estimate of BCM, despite the important
effect of small-scale Poisson fluctuations, and (ii) it is
a subdominant contribution to the overall PBH-binary
merger rate4. This last statement holds provided PBH
binaries formed in the early Universe are not significantly
disturbed between formation and merger, as our analytic
estimates above indicate.

V. POTENTIAL LIMITS FROM EXISTING
LIGO OBSERVATIONS

We now estimate upper limits on the volumetric
merger rate of binary black holes set by LIGO O1, and

4 Ref. [73] recently argued that PBH mergers in dark matter spikes
around supermassive black holes may yield an important con-
tribution to the overall rate from present-day halos, possibly
increasing the total rate by more than an order of magnitude.
However, the associated uncertainties are very high and in any
case this rate is still dwarfed by that of early-Universe binaries.
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M/M� R90% [Gpc−3 yr−1]

10 330

20 77

40 15

100 2

200 5

300 20

TABLE I. Estimated 90% upper limits on the merger rate of
equal-mass binary black holes from the LIGO O1 run. The
limits for M/M� = 10, 20 and 40 are inferred from Refs. [75,
76], and those for M/M� = 100, 200 and 300 are taken from
Ref. [74] for non-spinning black holes.

how such limits would translate on the PBH abundance
provided the merger rate is that computed in Section II.

In Ref. [74], the LIGO collaboration provides 90% up-
per limits to the merger rate of intermediate-mass black
holes, with individual masses up to 300 M�. These limits
depend on the spins of the black holes, in particular on
their projection along the orbital angular momentum: in
the case of 100− 100 M� binary, the upper bound varies
by a factor ∼ 4 between the nearly aligned and nearly
anti-aligned cases. Since Ref. [74] does not provide up-
per limits for non-zero spins for M/M� = 200 and 300,
we shall use their zero-spin bounds for all cases, keeping
in mind that they are only accurate up to a factor of a
few.

For M = 10, 20, 40 M�, we estimate the 90 % upper
limit on the merger rate from R90% = − ln(0.1)/〈V T 〉
[74], where 〈V T 〉 is the average space-time volume to
which the LIGO search is sensitive, and is obtained from
integrating Fig. 7 of Ref. [75]. We anticipate that LIGO
also strongly constrains masses M ≤ 10 M�, and defer
this detailed analysis to the LIGO collaboration, updat-
ing that carried out in Ref. [40] with the S2 run. We
summarize our estimated limits in Table I.

We show these limits in Fig. 6, alongside the PBH bi-
nary merger rate if they make all of the dark matter, and
if PBH binaries are not significantly perturbed between
formation and merger. We see that the latter largely
exceeds the estimated upper limits, by 3 to 4 orders of
magnitude, depending on the mass. This indicates that
LIGO could rule out PBHs as the dominant dark mat-
ter component, and set stringent upper limits to their
abundance.

To estimate these potential limits, we solve for the
maximum PBH fraction for which the merger rate is be-
low the LIGO upper limits. Note, that the merger rate is
not linear in f , nor a simple power law through all range
of f , so these limits must be computed numerically. We
show the result in Fig. 7, alongside other existing bounds
in that mass range. We see that LIGO O1 may limit
PBHs to be no more than a percent of the dark mat-
ter for M ∼ 10 − 300 M�. If confirmed with numerical
computations, these would become the strongest existing
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FIG. 6. Merger rate of PBH binaries if they make up all of
the dark matter, and provided PBH binaries are not signifi-
cantly perturbed between formation and merger (solid line).
Superimposed are the upper limits from LIGO given in Table
I and described in the main text.

micro-lensing wide binaries
ultra-faint dwarfs

potential limits  
from LIGO O1 run
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FIG. 7. Potential upper bounds on the fraction of dark matter
in PBHs as a function of their mass, derived in this paper (red
arrows), and assuming a narrow PBH mass function. These
bounds need to be confirmed by numerical simulations. For
comparison we also show the microlensing limits from the
EROS [21] (purple) and MACHO [20] (blue) collaborations
(see Ref. [77] for caveats and Ref. [32] for a discussion of
uncertainties), limits from wide Galactic binaries [22], ultra-
faint dwarf galaxies [25], and CMB anisotropies [24].

bounds in that mass range.

VI. DISCUSSION AND CONCLUSIONS

NSTT [39] pointed out long ago that PBHs would
form binaries in the early Universe, as a consequence of
the chance proximity of PBH pairs, and estimated their
merger rate at the present time. Following the first de-
tection of a binary-black-hole merger [5], Sasaki et al. [9]
updated this calculation to 30 M� PBHs, and general-
ized it to an arbitrary PBH abundance. They focused on
the case where PBHs are a very subdominant fraction of
the dark matter, as was implied by the stringent CMB



15

spectral distortions bounds at the time [23], since then
revised and significantly alleviated [24] (see also [33]).

In this paper, we have, first of all, made several im-
provements to the calculation of NSST, and accurately
computed the distribution of orbital parameters of PBH
binaries forming in the early Universe. Specifically,
we have computed the exact probability distribution of
initial angular momentum for a close pair torqued by
all other PBHs, and have accounted for the tidal field
of standard adiabatic density perturbations, dominant
when PBHs make a small fraction of the dark matter.

Our second and most important addition was to check
thoroughly whether the highly eccentric orbits of PBH
binaries merging today can get significantly disturbed
between formation and merger. To do so, we have esti-
mated the characteristic properties of the first non-linear
structures, and as a consequence their effects on the or-
bital parameters of PBH binaries. We found that PBH
binaries merging today are essentially unscathed by tidal
torques and encounters with other PBHs. This robust-
ness stems from the fact that these binaries typically form
deep inside the radiation era and are very tight. We have
also estimated the effect of baryon accretion to be much
weaker than previous estimates [45], but potentially im-
portant if unknown numerical prefactors happen to be
large.

Thirdly, we have revisited the calculation of Ref. [8]
for the merger rate of PBH binaries forming in present-
day halos through gravitational recombination. We have
explicitly accounted for the previously neglected Pois-
son fluctuations resulting from the granularity of PBH
dark matter. This shot noise greatly enhances the vari-
ance of density perturbations on small scales, and has
pronounced effects on the properties of low-mass halos.
We found that, despite a very different merger rate per
halo and minimum halo mass, the final merger rate esti-
mated by Ref. [8] was in the right ballpark. This makes
it a very subdominant contribution to the overall binary-
PBH merger rate.

Last, but not least, we have shown that the predicted
merger rate would overwhelmingly exceed current upper
bounds from LIGO O1 if PBHs make all of the dark
matter. We have estimated possible upper bounds on
the PBH abundance to be less than a percent of the dark
matter in the range 10− 300 M�, and as low as ∼ 0.2%
for M = 100 M�.

These potentially stringent upper bounds need to be
confirmed or refuted by a suite of numerical computa-
tions to check and complement our analytic estimates5.
Specifically, it would be interesting to investigate in more
detail (i) how the first PBH halos form and how they
may affect PBH binaries, (ii) the effects of a local bound
halo of dark matter particles if PBHs are a subdominant
dark matter component, and (iii) baryon accretion onto

5 This statement could and should be made for most published
bounds on PBHs.

a highy-eccentric PBH binary. These are complex but
well-defined and interesting astrophysical problems, with
possible implications beyond the topic of PBHs.
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Appendix: Probability distribution of the initial
angular momentum

1. Torques by other PBHs

In this appendix we compute the full probability dis-
tribution of j resulting from torques by all other PBHs,
as given in Eq. (18). We apply Markoff’s method, and
parallel Chandrasekhar’s derivation of the Holtsmark dis-
tribution for the gravitational field of point masses [78].
We consider N masses uniformly distributed within a vol-
ume V = 4π

3 R
3 and take the limit N,V →∞ at constant

density n = N/V .

The vector j lies in the plane orthogonal to x. Using
Eq. (18), the two-dimensional probability distribution for
j is formally given by

dP

d2j
= lim
V→∞

N∏
p=1

∫
V

d3yp
V

δD

[
j − 1.5

N∑
q=1

x3

y5
q

yq|| yq⊥

]
,(107)

where y|| ≡ y · x̂ is the projection of y on x̂, y⊥ ≡ x̂×y is
the (rotated) component of y perpendicular to x̂, and δD
is the two-dimensional Dirac function, which we rewrite

δD(X) =

∫
k⊥x̂

d2k

(2π)2
eik·X . (108)

We hence get

dP

d2j
= lim
V→∞

∫
d2k

(2π)2
eik·jIN , (109)

I ≡
∫
V

d3y

V
exp

[
−1.5i

x3

y5
y||k · y⊥

]
= 1− 1

V

∫
V

d3y

{
1− exp

[
−1.5i

x3

y5
y||k · y⊥

]}
.(110)
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The latter integral is convergent when V →∞, so we get

lim
V→∞

IN = lim
V→∞

{
1− 1

V

∫
d3y

[
1− e

−1.5i x
3

y5 y||k·y⊥
]}nV

= e−nJ , (111)

J ≡
∫
d3y

(
1− exp

[
−1.5i

x3

y5
y||k · y⊥

])
. (112)

We rotate the component of y perpendicular to x̂, y →
(y · x̂)x̂ + x̂ × y, and rescale y → (1.5k)1/3xy, so the
integral J becomes, recalling that k ⊥ x,

J = 1.5kx3

∫
d3y

(
1− exp

[
i

y3
(ŷ · x̂)(ŷ · k̂)

])
= 2πkx3

∫ ∞
0

dv

v2

d2ŷ

4π

(
1− eiv(ŷ·x̂)(ŷ·k̂)

)
, (113)

where in the second line we changed variables to v =
1/y3. Let us first consider the angular integral:

A(v) ≡
∫
d2ŷ

4π

(
1− eiv(ŷ·x̂)(ŷ·k̂)

)
. (114)

To compute it we use spherical polar coordinates, with

polar axis x̂× k̂:

A(v) =

∫ 2π

0

dφ

2π

∫ 1

0

dµ

(
1− exp

[
iv

2
sin(2φ)(1− µ2)

])
=

∫ 1

0

dµ
(

1− J0

[v
2

(1− µ2)
])
, (115)

where J0 is the zeroth-order Bessel function. Since
J0(x) = 1+O(x2) for x→ 0, we can compute the integral
over v first:

J = 2πkx3

∫ 1

0

dµ

∫ ∞
0

dv

v2

(
1− J0

[v
2

(1− µ2)
])

= 2πkx3

∫ 1

0

dµ
1− µ2

2

∫ ∞
0

du

u2
(1− J0(u)). (116)

The last two integrals are analytic, and we arrive at the
simple expression

J =
2π

3
x3k = 0.5

X

n
k. (117)

We hence arrive at the probability distribution

dP

dj
= 2πj

dP

d2j
= j

∫
d2k

2π
eik·j−jXk

= j

∫
kdkJ0(kj)e−jXk, (118)

where jX ≡ 0.5X. This integral is analytic and gives
us Eqs. (19)-(20), which is the exact expression for the
distribution of reduced angular momentum (for a given
X hence jX), accounting for tidal torquing by all other
PBHs (not just the nearest neighbor).

2. Torques by density fluctuations

Let us now consider torques by linear density pertur-
bations in the case where PBHs do not make all of the
dark matter. The linear density field, hence tidal tensor,
are Gaussian, and so is the resulting j. Using Eq. (15),
the variance of j is given by,

〈j2〉 =
x6

4M2
〈εijkx̂jTklx̂l εipqx̂pTqmx̂m〉 (119)

where we have dropped the subscript “eq” on Tij . This
expression simplifies to

〈j2〉 =
x6

4M2

〈
Tklx̂lTkmx̂m − (x̂kTklx̂l)

2
〉
. (120)

Averaging over the direction of x̂ we arrive at

〈j2〉 =
x6

20M2

〈
TijTij −

1

3
TiiTjj

〉
. (121)

In Fourier space, Tij = −kikjφ = k̂ik̂j4πρm,eqδeq , so we
arrive at

〈j2〉 =
3

10

(
4π

3

)2
x6

M2
[ρeq]2〈δ2

eq〉, (122)

which implies Eq. (21).
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Phys. Rev. D 94, 084013 (2016), arXiv:1606.07437.
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and J. B. Muñoz, Phys. Rev. D94, 023516 (2016),
arXiv:1605.01405.

[13] E. D. Kovetz, Phys. Rev. Lett., in press (2017),
arXiv:1705.09182.

[14] S. Blinnikov, A. Dolgov, N. K. Porayko, and K. Postnov,
JCAP 1611, 036 (2016), arXiv:1611.00541 [astro-ph.HE].

[15] A. Kashlinsky, Astrophys. J. 823, L25 (2016),
arXiv:1605.04023.

[16] Y. B. Zel’dovich and I. D. Novikov, Soviet Astronomy
10, 602 (1967).

[17] S. Hawking, Mon. Not. R. Astron. Soc. 152, 75 (1971).
[18] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama,

Phys. Rev. D 81, 104019 (2010), arXiv:0912.5297.
[19] B. Carr, F. Kühnel, and M. Sandstad, Phys. Rev. D 94,

083504 (2016), arXiv:1607.06077.
[20] C. Alcock et al., Astrophys. J. Lett. 550, L169 (2001),

astro-ph/0011506.
[21] P. Tisserand et al., Astron. Astrophys. 469, 387 (2007),

astro-ph/0607207.
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