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We investigate constraints on scalar dark matter (DM) by analyzing the Lyman-α forest, which

probes structure formation at medium and small scales, and also by studying its cosmological con-

sequences at high and low redshift. For scalar DM that constitutes more than 30% of the total DM

density, we obtain a lower limit m & 10−21 eV for the mass of scalar DM. This implies an upper

limit on the initial field displacement (or the decay constant for an axion-like field) of φ . 1016 GeV.

We also derive limits on the energy scale of cosmic inflation and establish an upper bound on the

tensor-to-scalar ratio of r < 10−3 in the presence of scalar DM. Furthermore, we show that there is

very little room for ultralight scalar DM to solve the “small-scale crisis” of cold DM without spoiling

the Lyman-α forest results. The constraints presented in this paper can be used for testing generic

theories that contain light scalar fields.
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1 Introduction

The appearance of scalar fields with small masses is ubiquitous in extensions of the Standard Model

of particle physics. The well-known example is the QCD axion as a solution to the strong CP

problem [1, 2, 3]. String theory even provides a plenitude of “axion-like fields” upon string compact-

ifications [4, 5, 6]. The smallness of the mass is often attributed to an approximate shift symmetry,

which also suppresses interactions with other fields; this feature makes the light scalar a good can-

didate for the dark matter (DM) of our universe (see [7] for a review). Other possible roles of light

scalars have also been investigated in the literature; these include, for example, explaining the hier-

archical flavor structure in the Standard Model [8], the electroweak hierarchy [9], and the origin of

the baryon asymmetry [10]. In any case, however, the weakly interacting light scalars tend to make

up a fraction of the DM, and thus theories containing such fields can be confronted with cosmological

measurements through their scalar DM properties.

The scalar DM behaves similarly to pressureless cold dark matter (CDM) except for on scales

smaller than its de Broglie wavelength, where the wave nature of the scalar suppresses structure

formation. In particular for ultralight scalars with m ∼ 10−22 eV, the suppression happens on

galactic scales and thus drastically modifies the small-scale structures [11] (for a comprehensive

review, see [12]). In this context ultralight scalar DM is also referred to as “fuzzy dark matter,” and

has been studied as a possible resolution of the small-scale discrepancies between N-body simulations

of CDM and observations.

In this work we investigate the constraints on the mass and fraction of the scalar DM that are

obtained from the Lyman-α forest. This observable is the main manifestation of the intergalactic

medium, the diffuse matter which fills the space between galaxies, and it allows to probe the matter

power spectrum at scales and redshifts that are highly complementary to other data sets: the high

redshift and small scales regime.

The Lyman-α forest [13] is produced by the absorption of the inhomogeneous distribution of

the intergalactic neutral hydrogen along different line of sights to distant quasars [14]. It repre-

sents, therefore, an extremely useful method for probing the matter power spectrum at small scales,

i.e. 0.5 Mpc/h . λ . 100 Mpc/h [15, 16], since the intergalactic medium displays structure at these

scales. Combining this observable with other observations at larger scales allows also to obtain tight

limits on neutrino masses or inflationary models (e.g. [17, 18]). The scalar DM mass was recently

constrained from the Lyman-α forest in [16, 19] for the case where the scalar DM constitutes the

entire DM. In this paper we extend the analysis to cases where the DM consists of both scalar DM

and CDM; this is crucial for constraining general theories with light scalars which are not necessarily

designed to explain the DM of our universe.

We then discuss the implications of the Lyman-α bounds for the nature of the scalar field, and

for cosmology. We evaluate the field range of the scalar, and further derive limits on the energy

scale of cosmic inflation by combining the Lyman-α bounds with constraints from cosmic microwave

background (CMB) data on isocurvature perturbations. We also estimate the number of Milky Way

satellites arising from scalar DM, in order to assess the viability of ultralight scalar DM as a solution

to the “small-scale crisis”. As a light scalar field generically contributes to DM (unless the theory

is specifically designed so that the scalar decays away by the present time, or the scalar is too light

such that it contributes instead to the vacuum energy), the Lyman-α bounds are shown to provide
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robust constraints on theories that contain light scalars.

The paper is organized as follows: in Section 2 we review the Lyman-α forest constraints of [16]

and present for the first time constraints obtained for mixed models; in Section 3, we quantitatively

address the implications of such a measurement for the early universe and in particular on the initial

value of the scalar field, isocurvature perturbations, and the tensor-to-scalar ratio. A connection

with the local (late) Universe is provided in Section 4, where we compute the number of Milky Way

satellites predicted by the model and compare with the observed number. Finally, we conclude in

Section 5 with a summary of the main results of this work. The appendices focus on the exact

solution of the Klein–Gordon equation (Appendix A), on analytic computations of linear density

perturbations for the mixed model (Appendix B), and on a comparison between the constraints

presented and those obtained using a simpler yet more approximate method (Appendix C).

2 Lyman-α Forest Constraints

The last decade has seen the emergence of the Lyman-α forest as a cosmological probe [13]. The

light from distant background sources is scattered on the neutral hydrogen atoms in the Universe,

causing an absorption feature in the observed spectra, called the Lyman-α forest. The low-density

and high-redshift intergalactic medium displays a filamentary structure at small and medium scales

which is traced by the Lyman-α forest absorption features, and is thus sensitive to the small scale

properties of DM [15, 16, 19, 20, 21].

We rely on a sample of 100 medium resolution, high signal-to-noise quasar spectra of the XQ-100

survey [22], with emission redshifts 3.5 < z < 4.5. A detailed description of the data and the power

spectrum measurements of the XQ-100 survey is presented in [23]. Here we repeat the most important

properties of the data and the derived flux power spectrum. The spectral resolution of the X-shooter

spectrograph is 30-50 km/s, depending on wavelength. The flux power spectrum PF (k,z) has been

calculated for a total of 133 (k, z) data points in the ranges z = 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2 and 19 bins

in k−space in the range 0.003-0.057 s/km (the flux power is indeed estimated in velocity space). We

also use the measurements of the flux power spectrum of [15], at redshift bins z = 4.2, 4.6, 5.0, 5.4

and in 10 k−bins in the range 0.001-0.08 s/km. In this second sample the spectral resolution of the

quasar absorption spectra obtained with the MIKE and HIRES spectrographs are about 13.6 and

6.7 km/s, respectively. As in the analysis of [15], a conservative cut is imposed on the flux power

spectrum obtained from the MIKE and HIRES data, and only the measurements with k > 0.005

s/km are used to avoid possible systematic uncertainties on large scales due to continuum fitting (i.e.

the removal of long wavelength fluctuations that are intrinsic of the distant sources and contaminate

the large scale power estimates of PF(k, z), for all the samples considered here these continuum

fitting errors have been estimated).

Compared to XQ-100, the HIRES/MIKE sample has the advantage of probing smaller scales and

higher redshift, where the primordial power spectrum is more linear and thereby more constraining

for the models considered here. There is a small redshift overlap between the two samples at z = 4.2.

Since the thermal broadening (measured in km/s) of Lyman-α forest lines is approximately constant

with redshift, the presence of a cutoff in the matter power spectrum due to the wave nature of the

scalar DM becomes more prominent in velocity space at high redshift due to the H(z)/(1+z) scaling
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Figure 1: Constraints on the scalar DM mass m and fraction F of the total DM density in scalar

DM obtained from Lyman-α forest data; the two different areas indicate 2 and 3 σ confidence levels.

These results have been obtained for the reference combination of data sets described in [16], with a

physically motivated weak prior on the thermal evolution of the intergalactic medium. The regime of

m < 10−22 eV has been extrapolated.

between the fixed comoving length scale set by the scalar DM properties (cf. (B.21), (B.24)) and the

corresponding velocity scale. Furthermore, the 1D power spectrum is more sensitive to the presence

of a cutoff compared to the 3D power spectrum, since the value of 1D flux power at a given k1D

takes contributions from all the smaller scales k > k1D.

In terms of simulations, similarly to [16], we model the flux power spectrum using a set of

hydrodynamical simulations performed with the GADGET-III code, a modified version of a publicly

available GADGET-II code [24]. The goal of the suite of simulations is to provide a reliable template

of mock flux power spectra that has to be compared to observations. Since the flux power spectrum

is affected both by astrophysical and cosmological parameters it is important to properly take them

into account and accurately quantify their impact in the likelihood.

We simulate 9 different scalar DM models, with light scalar masses m of 1, 4 and 15.7×10−22 eV,

and density ratios F between the scalar DM and total DM (i.e., scalar DM plus CDM) of 1, 0.75

and 0.25. We also simulate the corresponding ΛCDM model, and since the interpolation is done in

the α = 10−22 eV/m, the entire range from α = 0 (ΛCDM case) to α = 1 (m = 10−22 eV) is covered

by interpolation alone. For larger values of α, or equivalently m < 10−22 eV a linear extrapolation

is used. In the plane of the DM ratio and the light scalar mass, we assume that the ΛCDM model

is exact on the axis of F = 0 and any m. These models were also simulated using the axionCAMB

code [25] to obtain the linear transfer function in the initial conditions. At the nonlinear level we do
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not incorporate the effect of the quantum pressure, however this should not impact our results for

scalar masses down to m ∼ 10−22 eV, as discussed in e.g. [16, 26]. For even smaller masses the scalar

DM fraction becomes small, as we will shortly see, hence the quantum pressure is also expected to

be negligible there. If the quantum pressure at the nonlinear level is actually non-negligible, then

it should lead to further suppression of structure formation; hence the bounds we present for the

scalar DM parameters can be considered as conservative.

Following [16] we vary only σ8 (the normalization of the matter power spectrum) and the slope

of the matter power neff , at the scale of Lyman-α forest (0.005 s/km). Five different values are

considered in the hydrodynamical simulations for both σ8 (in the range of [0.754, 0.904]) and neff (in

the range of [−2.3474,−2.2674]). These parameters just described are our cosmological parameters.

There have been several studies in the past (e.g. [18, 27, 28]), that have shown that the Lyman-α

forest is really measuring the amplitude of the linear matter power spectrum, the slope of the power

spectrum, and possibly the effective running, all evaluated at a pivot scale of around 1-10 Mpc/h.

Thus σ8 and neff used are good tracers of what is actually measured. Given that all our modelling

in simulations kept Ωmh
2 fixed, σ8 can be directly translated into the amplitude of linear matter

power at the pivot scale (similarly to how neff was used). As pointed by [18], these matter power

amplitude parameters are equivalent. The linear matter power only weakly depends on Ωmh
2, and

moreover, the effects of Ωm and H0 on the linear matter power are already captured in the tracers

of the amplitude (σ8) and slope (neff). Therefore the constraints are not sensitive to the value of

Ωm nor H0.

Regarding the astrophysical ones, we vary thermal history parameters in the form of the am-

plitude (T0) and the slope (γ) of the intergalactic medium temperature density relation, usually

parameterized as T = T0(1 + δIGM)γ−1, with δIGM the intergalactic medium overdensity (we refer to

[29] for the physical motivation of why the intergalactic medium is expected to follow the relation

above). In the Monte Carlo Markov Chain (MCMC) runs presented in Fig. 1 the thermal param-

eters (T0, γ) were assumed to follow a power-law redshift evolution (e.g. T0(z) = TA(1 + z)T
S
),

with weak priors (TA ∈ [0, 20000] K and TS ∈ [−5, 5]) imposed on the slope and amplitude of those

power-law relations (see reference case in [16]). Thermal evolution described by such power-laws

agrees well with the temperature measurements found in the literature ([30, 31]). However, even if

more conservative temperature evolution with redshift was allowed in the MCMC runs, the MCMC

constraints are expected to become weaker by only an order of unity (as was the case for F = 1 in

[16]; see T0(z) bins case in Table I). The conservative approach allowed T0(z) to vary independently

in each redshift bin, but prevented un-physical jumps in temperature (jumps with > 5000 K were

not allowed between consecutive redshift bins).

We also vary the timing of the instantaneous reionization model zrei. As in [16], three values for

each of these parameters are considered, in the regime based on recent observational results. The

thermal history is supposed to be the most important contaminant since a hotter medium in general

tends to produce a smoother flux distribution and a flux power with less substructure at small scales,

like warm DM or ultralight scalar DM models do. However, the redshift evolution of thermal and

cosmological effects is very different and the wide range explored by our data allows to break the

degeneracies between the parameters in a very effective way. We further consider ultraviolet (UV)

fluctuations of the ionizing background, which could be particularly important at high redshift

and build a refined power spectrum template that incorporates this effect. The amplitude of this
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effect is let free and is described by the parameter fUV = [0, 1], which we marginalize over in the

final constraints. We do not consider here temperature fluctuations which have been advocated

as potentially mimicking the presence of a cutoff at small scales in [12]. However, according to

sophisticated and recent hydrodynamical simulations these effects appear to happen at large and

not small scales [32, 33]. A comprehensive treatment of spatial UV and temperature fluctuations

would require computationally prohibitive radiative transfer calculations in large volumes and it is

beyond the analysis performed here.

With the models of the flux power spectra obtained from the hydrodynamical simulations, we

establish a sparse grid of points in the parameter space and by using linear interpolation between

the grid points we obtained predictions for the quantity PF(k, z,p), with p a vector containing all

the parameters described in the analysis, by performing a Taylor expansion for the desired models

in a much finer grid for the highly multidimensional parameter space. We refer to [34] for a more

detailed description of the basic idea of this approach. We use an MCMC code in order to estimate

the parameter constraints, and the cast results in terms of mass and fraction of scalar DM have been

obtained by marginalizing over the whole set of other parameters. The results of the MCMC for the

mixed models are shown in Figure 1, using the reference analysis of [16] which relies on all the data

sets and the assumption that the thermal state evolution follows a power-law, without any prior on

the cosmological parameters.

When the scalar DM constitutes the entire DM, i.e. F = 1, the Lyman-α forest data yields a

lower bound on the scalar mass of m & 10−21 eV, as was also shown in [16]. On the other hand, the

Lyman-α forest becomes insensitive to scalar DM at F . 0.2, which reflects the fact that the matter

power spectrum is only mildly suppressed by scalar DM with such small fraction, no matter how light

it is. (This is explicitly shown in Appendix B through analytic computations of the linear matter

power spectrum.) Although the regime of m < 10−22 eV is only explored through extrapolation of

our simulation models, we do not expect the bound in this regime to change significantly even with

actual simulations, as the finite size of the error bars on the measured flux power spectrum makes

it difficult to detect the mild suppression of the matter power.

Constraints on small-scale properties of the DM for ultra-light bosons, resonantly produced sterile

neutrinos and thermal relics, also in mixed cold and warm models have also recently been presented

in [19, 20, 21], with results that are in overall agreement and exclude models with a relatively strong

suppression of power to alleviate the small-scale problems of CDM.

The results of this paper are based on the full MCMC analysis outlined in this Section. However,

it is possible to get a simpler, although less accurate, grasp of the Lyman-α forest constraints by

applying an intuitive method dubbed as area criterion [35]. This method and its comparison with

the MCMC results are discussed in Appendix C.

3 Cosmological Implications

We now move on to discuss the implications of the Lyman-α constraints for the scalar field, and

for the early universe. After evaluating the field range of the scalar, we compute the isocurvature

perturbations in the scalar DM density sourced during cosmic inflation. Combining with CMB

constraints on DM isocurvature, we also derive bounds on the inflation scale.
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3.1 Initial Displacement from the Vacuum

A light scalar field stays frozen at its initial field value in the early universe. Hence any initial

displacement from the potential minimum gives rise to a scalar DM density in the later universe.

We consider such an initial vacuum misalignment to be the main source of the density, and also

suppose the scalar mass to be time-independent (unlike the QCD axion whose mass depends on the

cosmic temperature). Then the scalar can collectively be described by a homogeneous Klein–Gordon

equation in a FRW background universe,

φ̈+ 3Hφ̇+m2φ = 0, (3.1)

where an overdot denotes a derivative in terms of the cosmological time, and H = ȧ/a. The

homogeneous scalar field forms a perfect fluid with an energy density and pressure of

ρφ =
1

2

(
φ̇2 +m2φ2

)
, pφ =

1

2

(
φ̇2 −m2φ2

)
. (3.2)

We denote the initial displacement of the scalar field from its potential minimum by φ?. In the

early universe when H � m, the scalar field is frozen at φ? due to the Hubble friction, and thus

contributes to the vacuum energy. On the other hand in the later universe when H � m, the scalar

undergoes harmonic oscillations along the quadratic potential and behaves as pressureless matter.

Thus the scalar densities in the two epochs are written as

ρφ =


1

2
m2φ2

? when H � m, (3.3)

1

2
m2φ2

?

(aosc

a

)3
when H � m. (3.4)

These asymptotic behaviors smoothly connect to each other at around H ∼ m. Here aosc represents

the scale factor at the ‘onset’ of the scalar oscillation; the explicit value of aosc is chosen such that the

scalar density in the asymptotic future matches with the expression (3.4). We also denote quantities

measured at a = aosc by the subscript “osc”.

We are interested in ultralight scalars that start oscillating in the radiation-dominated epoch,

instead of during times prior to reheating. The exact solution of the Klein–Gordon equation in a

radiation-dominated background is given in Appendix A, where the ratio between the mass and

Hubble rate at a = aosc is shown to take the value of

m2

H2
osc

=

(
8

π

)4/3 [
Γ

(
5

4

)]8/3

≈ 2.68. (3.5)

Since the total energy density, and hence the Hubble rate, of a radiation-dominated universe are

related to the cosmic temperature by

ρr = 3M2
pH

2 =
π2

30
g∗T

4, (3.6)

with Mp = (8πG)−1/2 being the reduced Planck mass, the temperature at a = aosc is obtained as

Tosc ≈ 0.5 keV
(g∗osc

3.36

)−1/4 ( m

10−22 eV

)1/2
. (3.7)
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Thus for instance, a scalar with m = 10−22 eV starts oscillating when the cosmic temperature drops

to Tosc ≈ 0.5 keV. Moreover, the scalar would be oscillating at matter-domination equality as long

as m� 10−28 eV.

Using that the entropy of the universe is conserved since the radiation-dominated epoch, the

scalar density today can be expressed in terms of the entropy density s as

ρφ0 =
1

2
m2φ2

?

s0

sosc
, (3.8)

where the subscript “0” denotes quantities in the present universe. Here, sosc is written in terms of

Hosc using (3.6) as

sosc =
2π2

45
gs∗oscT

3
osc =

2π2

45
gs∗osc

(
90

π2

M2
pH

2
osc

g∗osc

)3/4

. (3.9)

Thus the present-day scalar DM abundance is obtained by combining (3.5), (3.8), and (3.9).

Expressing it in terms of the ratio to the CDM density measured by Planck [36], Ωch
2 = 0.1186 ±

0.0020 (68% C.L., TT+lowP+lensing), one finds1

F ≡ Ωφ

Ωc
≈ 0.6

(g∗osc

3.36

)3/4 (gs∗osc

3.91

)−1
(

φ?
1017 GeV

)2 ( m

10−22 eV

)1/2
. (3.10)

Using this relation, the Lyman-α constraints on (m, F ), cf. Figure 1, are translated into bounds

on the scalar parameters (m, φ?). In Figure 2 we plot the 2 and 3σ limits on (m, φ?) from the

Lyman-α forest data, where the shaded regions indicate the allowed parameter space. Here we have

set g∗osc = 3.36, gs∗osc = 3.91, since Tosc � 1 MeV for the displayed masses (cf. (3.7)). The dashed

lines in Figure 2 indicate the contours of constant fraction F . We find that the initial displacement

is bounded from above as |φ?| . 1016 GeV for most values of the mass. For masses of m & 10−21 eV,

φ? is constrained mainly by the requirement that the scalar should not lead to overabundance of

DM (i.e. F ≤ 1). On the other hand for m . 10−21 eV, the Lyman-α forest gives the strongest

constraint. As one goes to even smaller masses m . 10−22 eV, the Lyman-α bound on φ? weakens

since the scalar DM density F decreases. There the Lyman-α bound closely follows the F = 0.2

contour, allowing φ? to take larger values.

3.2 Isocurvature Perturbation and Inflation Scale

The ultralight scalar acquires super-horizon field fluctuations during cosmic inflation.2 As a conse-

quence, the initial field value φ? possesses fluctuations with a power spectrum of

Pδφ?(k) =

(
Hk

2π

)2

, (3.11)

1Note that F is defined in this paper as the density ratio between scalar DM and total DM (i.e., scalar DM plus

CDM). Here we are identifying the measured CDM density with the total DM density.
2This is not necessarily the case if the scalar arises after inflation as a pseudo Nambu–Goldstone boson of a

spontaneously broken global U(1) symmetry. However in such cases, topological defects are produced, which would

overclose the universe (unless the number of degenerate vacua along the bottom of the Mexican hat potential is

N = 1) [37, 38, 39]. For a recent discussion, see also [40]. Thus in this Section we suppose the scalar field to have

existed already during inflation.
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Figure 2: Upper limits on the initial displacement of the scalar field φ? from Lyman-α forest data

(2 and 3 σ C.L.) as a function of the scalar DM mass m. The colored dashed lines show contours

of constant scalar DM fraction F .

where Hk represents the Hubble rate during inflation when the comoving wave number k exits the

horizon. Since the scalar does not dominate the universe until the matter-radiation equality, its field

fluctuations lead to isocurvature perturbations.

From (3.8) the scalar DM density depends on the initial field value as ρφ ∝ φ2
?, therefore the

density fluctuates as
δρφ
ρφ

= 2
δφ?
φ?

, (3.12)

up to linear order in the field fluctuations. Identifying this with the scalar DM isocurvature per-

turbation Sφγ using (3.11), and further multiplying with the DM fraction yields the effective CDM

isocurvature power spectrum,

Pcγ(k) = F 2Pφγ(k) =

(
FHk

πφ?

)2

. (3.13)

Given that the Hubble rate during inflation is nearly constant, the isocurvature spectrum is nearly

scale-invariant. Moreover, the scalar φ does not contribute to curvature perturbations and hence

there is no correlation between the isocurvature and curvature perturbations.

Since the scalar DM compatible with the Lyman-α analysis behaves similarly to CDM on large

scales, the CMB constraints on CDM isocurvature perturbations also apply to scalar DM. Parame-

terizing the isocurvature power spectrum in terms of the curvature power as

Pcγ(k) =
βiso(k)

1− βiso(k)
Pζ(k), (3.14)
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Figure 3: Upper bound on the inflation scale Hinf and tensor-to-scalar ratio r at the pivot scale

kpiv/a0 = 0.05 Mpc-1, as a function of the scalar DM mass m (2σ C.L.). Differently colored regions

represent the allowed parameter space when the scalar DM constitutes a certain fraction F of the

total DM.

uncorrelated and scale-invariant CDM isocurvature is constrained by Planck [41] at the pivot scale

kpiv/a0 = 0.05 Mpc-1 as

βiso(kpiv) < 0.038 (95% C.L., TT, TE, EE+lowP), (3.15)

with Pζ(kpiv) ≈ 2.2× 10−9.

The Planck upper bound on the isocurvature translates into a bound on the inflation scale

through (3.13); eliminating φ? using (3.10), we obtain an upper limit on the Hubble rate when the

pivot scale leaves the horizon as

Hkpiv < 4× 1012 GeV
(g∗osc

3.36

)−3/8 (gs∗osc

3.91

)1/2
F−1/2

( m

10−22 eV

)−1/4
. (3.16)

This can also be expressed as a bound on the tensor-to-scalar ratio,3

r(k) =
PT (k)

Pζ(k)
=

1

Pζ(k)

2H2
k

π2M2
p

, (3.17)

as

r(kpiv) < 2× 10−4
(g∗osc

3.36

)−3/4 (gs∗osc

3.91

)
F−1

( m

10−22 eV

)−1/2
. (3.18)

3Here we assume that the sound speed of the tensor fluctuations is unity.
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Alternatively, in terms of m and φ?, the bound is written as

r(kpiv) < 4× 10−4
(g∗osc

3.36

)−3/2 (gs∗osc

3.91

)2 ( m

10−22 eV

)−1
(

φ?
1017 GeV

)−2

. (3.19)

These constraints become weaker for a smaller m. On the other hand, the Lyman-α forest sets

a lower bound on m. Thus by combining the Lyman-α and CMB constraints, an upper bound

on the inflation scale can be obtained. This is presented in Figure 3, where each colored region

represents the values allowed for the scalar DM mass m and the tensor-to-scalar ratio r, or the

inflation scale Hinf , when the scalar DM constitutes a certain fraction F of the total DM. Here

we combined the 2σ limit on scalar DM from the Lyman-α forest analysis (cf. Figure 1) with the

Planck 2σ limit on isocurvature perturbations (i.e. (3.18) with g∗osc = 3.36, gs∗osc = 3.91). The

former sets the left boundaries of each region, and the latter the upper boundaries.4 One clearly

sees that scalar DM is incompatible with an observably large r, with the upper limits on r becoming

stronger for a larger F . In particular if the scalar DM constitutes more than 20% of the total DM,

the tensor-to-scalar ratio would be as low as r < 10−3. This in turn suggests that any detection of

primordial gravitational waves in the near future would rule out scalar DM produced from a vacuum

misalignment as the main component of DM.5 We will also illustrate this point in Figure 5, where

contours of the upper bounds of r (3.19) are shown on the (m, φ?) plane; regions above the contour

would be excluded if r is detected at the displayed value.

3.3 Comments on Axion-like Fields

Scalar fields with approximate continuous shift symmetries, often referred to as axion-like fields,

have been studied as an ultralight DM candidate [6, 7, 12]. These models are typically described by

an action with a periodic potential of

S =

∫
d4x
√−g

[
−1

2
f2
ag

µν∂µθ∂νθ −m2f2
a (1− cos θ)

]
, (3.20)

with fa being an “axion decay constant”. When focusing on the vicinity of a minimum θ = 0, the

potential is expanded as

V (θ) = m2f2
a (1− cos θ) =

1

2
m2f2

aθ
2 +O(θ)4. (3.21)

Thus our analyses in the previous Sections apply to axion-like fields by replacing φ with a product

of the decay constant and the angle, i.e.,

φ→ fa θ. (3.22)

In particular, if the initial misalignment angle θ? is of order unity, then the bounds on φ? directly

translates into bounds on the decay constant fa.

4Isocurvature perturbations can also impact the Lyman-α forest [42], thus for a rigorous treatment, the isocurvature

should also be included in the Lyman-α analyses. However since the scalar DM isocurvature is nearly scale-invariant,

its effect on the Lyman-α should be tiny; hence here we simply combine the result of Section 2 with the Planck limit.
5However we should also remark that there has been attempts to make light scalar DM consistent with high-

scale inflation by adding further ingredients. One such example is an axion-like field with a time-dependent decay

constant [39, 43, 44, 45, 46, 47].
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However we should also remark that the discussions are modified if the initial angle is as large

as |θ?| > 1; then the expansion (3.21) breaks down and the axion potential can no longer be

approximated by a quadratic. The non-quadratic nature of the axion potential would lead to (i) an

increase in the final axion DM density due to a delayed onset of the scalar oscillation [48, 49], and (ii) a

significant enhancement of the axion isocurvature due to a nonuniform onset of the oscillation, giving

much stronger bounds on the inflation scale [50, 51, 52]. We also note that, besides such anharmonic

initial conditions, a time-dependent m (e.g. of the QCD axion) or fa (e.g. [39, 43, 44, 45, 46, 47])

can also modify the cosmological evolution of the axion.

4 Implications for the Number of Milky Way Satellites

In this Section we discuss the astrophysical implications of an ultralight scalar DM scenario: the

possibility, in this framework, of alleviating the “small-scale crisis” of the standard CDM paradigm.

In particular, we focus on the well known missing satellite problem [53, 54].

It is nowadays well established that DM models described by suppressed matter power spectra

may be able to relax the tensions present in the standard CDM context at sub-galactic scales, i.e. the

discrepancy between the observed number of dwarf galaxies within the Milky Way (MW) virial radius

and the number of MW substructures predicted by cosmological N -body simulations, assuming the

standard CDM model. Current analyses claim, for instance, that thermal warm DM candidates

with masses between 2 and 3 keV can induce a suppression in the corresponding matter power

spectra such that this tension vanishes or is greatly reduced (e.g., [55, 56]). It is thus interesting to

investigate the implications of our scenario at sub-galactic scales, in order to check if the (m, F )-

combinations which have been found to be in agreement with Lyman-α forest data are also capable

of solving/alleviating the missing satellite problem.

An accurate calculation of the number of substructures Nsub with ultralight scalar DM would

require high-resolution N -body simulations, which is beyond the scope of this paper. Here we instead

make a rough estimate of Nsub using the following analytical expression for the number of subhalos,

dNsub

dMsub
=

1

44.5

1

6π2

Mhalo

M2
sub

P (1/Rsub)

R3
sub

√
2π(Ssub − Shalo)

, (4.1)

which was introduced in [57, 58] based on the conditional mass function normalized to the N -body

simulation results.6 Here Rsub, Msub and Ssub are radius, mass and variance of a given subhalo,

while Mhalo and Shalo are the mass and the variance of the main halo, defined as follows:

Si =
1

2π2

1/Ri∫
0

dk k2P (k), Mi =
4π

3
Ωmρc(cRi)

3, c = 2.5, (4.2)

with P (k) being the linear power spectrum of a given model computed at redshift z = 0, and ρc the

critical density today.

For a given MW halo mass, e.g. Mhalo = 1.7 · 1012 M�/h [59], we can now obtain the number

of subhalos Nsub with masses Msub ≥ 108 M�/h predicted by different parameterizations of the

6Notice that the use of this procedure is supported by the recent analysis performed in Ref. [35], where the accuracy

of the theoretical predictions (Eq.(4.1)) has been checked against a large suite of N -body simulations.

11



10−23 10−22 10−21 10−20

m [eV]

0.0

0.2

0.4

0.6

0.8

F

3 σ C. L. (Lyman-α forest)
2 σ C. L. (Lyman-α forest)
”solution” to missing satellite
Nsub = 60 (Mhalo = 1012M�/h)

Nsub = 60 (Mhalo = 3 · 1012M�/h)

Figure 4: The comparison between the constraints on the scalar DM parameter space from the Lyman-

α forest data analysis at 2 and 3σ (red regions, see Fig. 1), and the region capable of “solving” the

missing satellite problem (cyan region bounded by dashed lines). The green and blue dotted lines refer

to models which predict Nsub = 60, when choosing Mhalo = 1012M�/h and Mhalo = 3 · 1012M�/h,

respectively.

scalar DM scenario (i.e. by different combinations of m and F ). This is done simply by integrating

Eq. (4.1). Here, note that a different choice of Mhalo mainly leads to an overall shift in Nsub for

all DM scenarios, as is seen from the Mhalo-dependence of Eq. (4.1). Hence instead of studying the

absolute value of Nsub, which is sensitive to the MW halo mass, we firstly would like to focus on the

relative suppression of Nsub, i.e., the ratio between Nsub for cases with and without scalar DM. As a

benchmark value for the relative suppression of Nsub, we take the thermal warm DM with masses in

the interval between 2 and 3 keV as reference models, and consider the mixed scalar DM and CDM

scenarios that yield similar relative suppressions to be able to solve the missing satellite problem.

The parameter window for (m, F ) of scalar DM where the number of subhalos lies within the

“solving” range is shown in Fig. 4 as the cyan shaded area bounded by dashed lines. For reference,

when using Mhalo = 1.7 · 1012 M�/h, the aforementioned computation gives the number of subhalos

with CDM only as Nsub = 158, while 20 ≤ Nsub ≤ 60 for the reference warm DM models. (However,

as we explained, these absolute values are irrelevant when focusing on the relative suppression

of Nsub.) The red shaded areas in Fig. 4 represent the 2 and 3σ contours from the Lyman-α forest

data analysis, discussed in Section 2. As one can easily see from the plot, there is very little room

for simultaneously satisfying these constraints and solving the missing satellite problem.

Let us also discuss the effects of the observational uncertainties in the MW halo mass; for

instance, a recent comprehensive dynamical analysis of redshifts and distances of 64 dwarf galaxies
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around the MW has led to Mhalo = 2.8 ·1012 M� [60]. The detailed value of Mhalo does matter when

focusing instead on the absolute value of Nsub, and past studies such as [61] have pointed out the

degeneracy between the MW halo mass and the DM parameters required for relaxing the missing

satellite problem.

In order to take into account these issues, we have iterated the same analysis with different input

values for Mhalo, and compared the corresponding predictions to a fixed satellite number Nsub = 60;

this value is chosen as a sum of the 11 MW classical satellites and the 15 ultra-faint satellites from

SDSS, with the latter value multiplied by a numerical factor which accounts for the limited sky

coverage of the survey [35, 58, 62]. For Mhalo = 1.7 · 1012 M�/h, the number Nsub = 60 is realized

at the lower boundary of the cyan band. The green and blue dotted lines in Fig. 4 respectively

indicate where Nsub = 60 is realized for Mhalo = 1012M�/h and Mhalo = 3 · 1012M�/h; these

values for the MW halo mass roughly correspond to the current observational limits [63, 64]. For

Mhalo = 1012M�/h, even with the pure CDM case the satellite number is as low as Nsub = 94,

indicating that the missing satellite problem itself is ameliorated if the MW halo mass takes a value

close to its lower bound. Consequently, the green line lies inside the region allowed by the Lyman-

α forest. On the other hand, a larger MW halo mass makes the problem worse (Nsub = 274 for

Mhalo = 3 ·1012M�/h with pure CDM), and thus further reduces the scalar DM parameter space for

satisfying the Lyman-α forest constraint and solving the missing satellite problem at the same time.

To summarize, unless the MW halo mass is close to its current lower bound and thus the satellite

number is suppressed, the Lyman-α constraint leaves very little room for scalar DM to serve as a

solution to the missing satellite problem.

5 Summary and Conclusions

Light scalars, if present in theories beyond the Standard Model, are inevitably produced in the early

universe due to a vacuum misalignment, unless the initial conditions are fine tuned. Since their

interactions with other fields are typically suppressed, such light scalars would survive until the

present universe and constitute a fraction of DM. The goal of this work was to investigate general

constraints on theories that contain ultralight scalar fields, by analyzing the imprint of scalar DM

on the Lyman-α forest and studying its cosmological consequences. The basic assumptions we made

about the scalar is that it is light, long-lived, and mainly produced by a vacuum misalignment. If

there are additional processes that produce the scalars, then the scalar DM density would increase

and the constraints would become more stringent; in this sense our bounds are conservative.

The results of this paper are summarized in Figure 5, which shows the allowed values for the

mass m and initial displacement of the scalar field φ?. The field displacement is generically bounded

as |φ?| . 1016 GeV; otherwise the scalar would either lead to too much DM in the universe, or

suppress structure formation and contradict the Lyman-α forest measurements. (If the scalar is an

axion-like field, the bound on φ? corresponds to that on the product of the axion decay constant

and the initial misalignment angle, faθ?, when anharmonic effects are negligible.) By combining the

Lyman-α constraints with the CMB bounds on DM isocurvature perturbations, we further derived

upper limits on the scale of cosmic inflation in the presence of scalar DM. These are shown in

in Figure 5 as dashed lines, indicating the parameter regions that will be ruled out if primordial
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gravitational waves are detected in the future. A dotted white line is also overlaid to indicate where

the fraction of the DM in scalar DM is 20%; this value serves as the fraction threshold below which

the Lyman-α forest becomes insensitive to the presence of scalar DM.

We also estimated how well scalar DM can solve the “small-scale crisis” of CDM. The cyan

band bounded by dashed lines in the figure corresponds to that shown in Figure 4, indicating the

parameter region where the missing satellite problem is solved without the aid of baryonic physics.

With the tiny overlap between the solving region and the allowed window, our analyses suggest

that ultralight scalar DM cannot solve the missing satellite problem without spoiling the Lyman-α

forest. However we should also remark that we have used rather simple analytic approximations for

estimating the satellite number, hence it would be important to verify this conclusion with numerical

simulations.

In this paper we have discussed cosmological implications of light scalars that follow from the

Lyman-α constraints with minimal assumptions about the scalar field theory. Thus, theories with

light scalars in general are subject to our constraints. We focused in particular on gravitational

effects, without making assumptions about the coupling of the scalar to other matter fields (except

that the couplings are small enough so that the scalar DM survives until today). Other possible

gravitational consequences of light scalars we did not discuss include superradiance of black holes [6,

65], and effects on pulsar timing observations [66] or binary pulsars [67]. We also remark that

concrete models of scalar DM can contain couplings with other fields, such as axion-type couplings to

photons. In such cases the model parameters can further be constrained from various experiments [7].

It would also be interesting to combine such coupling constraints with the results of this paper, to

systematically analyze specific classes of scalar DM models.
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A Exact Solution of the Klein–Gordon Equation

In this appendix we provide the exact solution of the homogeneous Klein–Gordon equation (3.1) in

a radiation-dominated universe whose Hubble rate redshifts as

H ∝ a−2. (A.1)

Here we should note that the redshifting of the Hubble rate can depart from ∝ a−2 when the

effective number of relativistic degrees of freedom g(s)∗ changes in time; however as long as g(s)∗
stays constant while the scalar makes the transition from vacuum energy-like (non-oscillatory) to

matter-like (oscillatory), then the solution under (A.1) can be used to accurately compute the scalar

density in the asymptotic future.
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Figure 5: Summary of constraints on the scalar field mass m and the initial displacement φ?. (For

an axion-like field, φ? = faθ?.) The 2 and 3σ C.L. regions allowed by Lyman-α forest data are shown

in red. The upper-right corner is excluded by the overabundance of DM. The dashed lines indicate

the parameter regions that will be ruled out by a detection of a tensor-to-scalar ratio r. The cyan

band bounded by dashed lines shows where the missing satellite problem can be solved. On the white

dotted contour, scalar DM constitutes 20% of the total DM.

The solution of (3.1) with (A.1) is given in terms of a Bessel function of the first kind as

φ = φ? Γ

(
5

4

)(
4H

m

)1/4

J1/4

( m
2H

)
, (A.2)

where we have chosen the initial condition for φ such that it approaches a constant value φ→ φ? as

m/H → 0. Hence, after the scalar starts to oscillate, its density (3.2) asymptotes to

lim
m
H
→∞

ρφ =
4

π

[
Γ

(
5

4

)]2

m1/2φ2
?H

3/2. (A.3)

Equating this with (3.4):

lim
m
H
→∞

ρφ =
1

2
m2φ2

?

(aosc

a

)3
=

1

2
m2φ2

?

(
H

Hosc

)3/2

, (A.4)

yields the ratio between the scalar mass and Hosc as

m2

H2
osc

=

(
8

π

)4/3 [
Γ

(
5

4

)]8/3

≈ 2.68. (A.5)

With this Hosc, one can compute the scalar density not only during radiation-domination, but also

in the subsequent epochs as demonstrated in Section 3.1.
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B Linear Matter Power Spectrum with Scalar DM

Here we compute the linear matter power spectrum in the presence of scalar DM. The goal of this

appendix is to clarify the effects of the scalar DM parameters on the linear matter power spectrum

through (mostly) analytic computations.

B.1 Scalar DM as a Fluid

We start by describing scalar DM as a cosmological fluid, using the formalism discussed in, e.g., [6,

11, 12, 68]. A large number of scalar particles with mass m behaves as a classical field obeying the

Klein–Gordon and Einstein’s equations,

∇µ∇µφ = m2φ, Gµν = 8πGTµν , (B.1)

where the scalar field contributes to the energy-momentum tensor as

T φµν = gµν

(
−1

2
∂ρφ∂

ρφ− 1

2
m2φ2

)
+ ∂µφ∂νφ. (B.2)

Regarding the metric of the FRW universe with perturbations, we take the Newtonian gauge and

ignore anisotropic stress,

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Φ)dx2. (B.3)

The Hubble rate is defined as H = ȧ/a, with an overdot denoting a t-derivative.

When H � m, and hence the scalar field is harmonically oscillating, it is convenient to rewrite

φ as

φ =
1√
2m

(
ϕe−imt + ϕ∗eimt

)
, (B.4)

in terms of a complex field ϕ describing the oscillation amplitude whose time dependence is slow

compared to the oscillation period. We rewrite the Klein–Gordon equation in terms of ϕ under the

assumption of tiny perturbations |Φ| � 1, and thus ignoring terms that contain quadratic or higher

orders of Φ. Furthermore, let us focus on nonrelativistic modes (k/a � m), and suppose the time

scales for the variations of Φ, ϕ, a, and their derivatives to be much longer than the oscillation period,

i.e., |Φ̇| � m|Φ|, |ϕ̈| � m|ϕ̇|, etc. This, in particular, allows us to drop second time-derivatives

in the equation. After taking an average over the oscillation period, the Klein–Gordon equation

reduces to a Schrödinger-type equation [68],

i

(
ϕ̇+

3

2
Hϕ

)
= − ∂2ϕ

2a2m
+mΦϕ, (B.5)

where ∂2 ≡ ∂i∂i, and sum over repeated spatial indices is implied irrespective of their positions.

In terms of the amplitude and the phase of ϕ, we now define

ρφ ≡ mϕϕ∗, vi ≡
∂i{arg(ϕ)}

am
= − i

2am

(
∂iϕ

ϕ
− ∂iϕ

∗

ϕ∗

)
, (B.6)
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whose meaning will soon become clear. Multiplying both sides of the Schrödinger equation (B.5)

by ϕ∗, its real and imaginary parts respectively lead to the following equations,

v̇i +Hvi +
vj∂jvi
a

= −∂iΦ
a

+
1

2a3m2
∂i

(
∂2√ρφ√

ρφ

)
, (B.7)

ρ̇φ + 3Hρφ +
∂i(ρφvi)

a
= 0. (B.8)

One can also rewrite the Einstein’s equation in a similar fashion. Focusing on sub-horizon and

nonrelativistic modes, i.e. H � k/a � m, it can be checked that the (0, 0) component of the

Einstein’s equation yields
∂2Φ

a2
= 4πG

(
ρφ + T others

00

)
− 3

2
H2, (B.9)

where T others
00 denotes the contributions to the energy-momentum tensor from components other

than the scalar DM. Interpreting ρθ and vi as the density and velocity fields, the set of equations

(B.7), (B.8), and (B.9) are seen to correspond respectively to the Euler, continuity, and Poisson

equations; thus we have arrived at a fluid description of the scalar DM. The only difference with the

familiar CDM fluid is the existence of the last term in the right hand side of (B.7), which represents

a pressure due to the wave nature of the scalar field on small scales.

B.2 Evolution of DM Density Perturbations

Let us now study the evolution of density perturbations in a matter-dominated universe that is filled

with the scalar DM and CDM. We also describe CDM as a fluid obeying the Euler and continuity

equations as in (B.7) and (B.8), except for that there is no pressure term, and replace T others
00 in the

Poisson equation (B.9) by the CDM density ρc. Then one immediately sees from the equations that

the homogeneous and isotropic background satisfies

˙̄ρφ
ρ̄φ

=
˙̄ρc

ρ̄c
= −3H, ρ̄φ + ρ̄c =

3H2

8πG
, (B.10)

where a bar is used to denote unperturbed values. We discuss the density fluctuations around the

background in terms of the density contrast,

δn =
ρn − ρ̄n
ρ̄n

, (B.11)

where n = φ, c,m, with ρm = ρφ + ρc being the total DM density. Expressing the ratio between the

unperturbed densities of the scalar and total DM as

F =
ρ̄φ
ρ̄m

, (B.12)

which is a constant in the range 0 ≤ F ≤ 1, the density contrast of the total DM is written as

δm = Fδφ + (1− F )δc. (B.13)
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Expanding the equations (B.7), (B.8), and (B.9) up to linear order in δ and vi, and then combining

the equations to eliminate vi and Φ, one arrives at the evolution equations for the density contrasts,

δ̈φk + 2Hδ̇φk +
c2
sk

2

a2
δφk −

3

2
H2δmk = 0, (B.14)

δ̈ck + 2Hδ̇ck −
3

2
H2δmk = 0. (B.15)

Here we have written the linearized equations in terms of the Fourier components (k is a comoving

wave number, with k = |k|), and the sound speed of the scalar DM is

c2
s ≡

k2

4a2m2
. (B.16)

From their derivations, it should be noted that the equations (B.14) and (B.15) are valid during

the matter-dominated epoch, and for wave numbers that are sub-horizon and nonrelativistic, i.e.,

H � k/a� m.

In the case where the scalar DM constitutes the entire DM, i.e. F = 1, one can read off its Jeans

wave number from the last two terms in (B.14) as

kJ

a
=
√
Hm, (B.17)

where we have ignored numerical factors. As we are interested in scalar masses larger than the Hubble

rate at matter-radiation equality, the Jeans length is smaller than the Hubble length throughout the

matter-dominated epoch. On length scales larger than the Jeans length (k < kJ), the pressure term

is negligible and the scalar DM behaves similarly to CDM; thus the density fluctuation possesses the

usual growing mode δφk ∝ a. However below the Jeans length (k > kJ), δφk undergoes oscillations

of ∝ exp(±2icsk/aH) and thus does not grow. Here note that in a matter-dominated universe, the

comoving Jeans wave number grows as kJ ∝ a1/4. Hence for modes that are sub-Jeans at the time

of matter-radiation equality, i.e. k > kJeq, the scalar DM perturbation is prevented from growing

until the mode k crosses the Jeans scale at a = ak, where

ak = aeq

(
k

kJeq

)4

. (B.18)

With a slight abuse of language, we will refer to kJ as defined in (B.17) as the Jeans wave number

even in cases with F 6= 1.

If DM is a mixture of scalar DM and CDM, i.e. 0 < F < 1, then the matter fluctuations grow

even on small scales, albeit slowly. This is seen by dropping δφk in (B.15) by taking an average over

δφk’s oscillation period, giving

d2δck

da2
+

3

2a

dδck

da
− 3(1− F )δck

2a2
= 0. (B.19)

Here we have rewritten the derivatives in terms of time by those of a, using H ∝ a−3/2 (cf. (B.10)).

This equation has a general solution of

δck = C+a
n+ + C−a

n− , with n± =
−1±

√
25− 24F

4
, (B.20)
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whose first term is a growing mode, and the second a decaying mode. The growing CDM perturbation

drags the scalar DM and thus δφk starts to grow even before crossing the Jeans scale (B.17).

On the other hand, wave modes with k < kJeq stay super-Jeans throughout the matter-dominated

epoch. We should also note that during radiation-domination, there is no significant growth for both

scalar DM and CDM perturbations on sub-horizon scales.7 Therefore the difference in the matter

perturbations between cases with and without scalar DM becomes prominent on wave numbers

k > kJeq, mainly due to the difference in the evolution during the matter-dominated epoch. For

reference, the Jeans wave number at the matter-radiation equality is

kJeq

a0
=
aeq

a0

√
Heqm ≈ 7 Mpc-1

( m

10−22 eV

)1/2
, (B.21)

where the subscript “0” denotes quantities today.

B.3 Suppression of Linear Matter Power Spectrum

In order to evaluate the growth of the perturbations for arbitrary F , we suppose an adiabatic initial

condition and consider δφ to behave similarly to δc during radiation-domination, and on super-Jeans

scales. For wave numbers k > kJeq, let us make a rough approximation that the total matter

perturbation follows δmk ∝ an+ since matter-radiation equality until crossing the Jeans scale at

a = ak, then subsequently grows as the usual δmk ∝ a. This approximation is crude, but allows us

to understand the overall spectral shape of the suppression and how it is determined by the scalar

DM parameters.

By comparison with the pure CDM (F = 0) case where δmk ∝ a throughout matter-domination,

one can estimate the suppression of the linear matter power spectrum due to the scalar DM. For

wave modes that have crossed the Jeans scale, the matter perturbation containing scalar DM is

suppressed relative to that with pure CDM by∣∣∣∣∣δ
(φ+c)
mk

δ
(c)
mk

∣∣∣∣∣
kJeq<k<kJ

=

(
aeq

ak

)1−n+

=

(
kJeq

k

)4(1−n+)

. (B.22)

On the other hand for modes that are still sub-Jeans at the time the matter perturbations are

measured, the suppression saturates to a k-independent value of∣∣∣∣∣δ
(φ+c)
mk

δ
(c)
mk

∣∣∣∣∣
k>kJ

=
(aeq

a

)1−n+

=

(
kJeq

kJ

)4(1−n+)

. (B.23)

See also [6] where similar results were obtained.

The relative suppression of the linear matter power spectrum Pm(k) ∝ |δmk|2 due to the scalar

DM, obtained from squaring (B.22) and (B.23), is sketched in the left panel of Figure 6. The

actual spectrum with scalar DM can be oscillatory, and so what is illustrated in the figure should

be considered as the envelope. We stress that while the scalar mass m determines the Jeans wave

7The evolution of the matter fluctuations prior to matter-radiation equality can be described by further including

a homogeneous radiation component ρ̄r ∝ a−4 to T others
00 in (B.9) (hence ignoring radiation perturbations on sub-

horizon scales); this amounts to multiplying the term (3/2)H2δmk in (B.14) and (B.15) by ρ̄m/(ρ̄m + ρ̄r). During

radiation-domination (ρ̄m/ρ̄r → 0), δφk has general solutions of exp{±i(csk/aH) ln a}.
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Figure 6: Left: A sketch of the suppression of the linear matter power spectrum containing scalar

DM relative to that with pure CDM. Right: The wave number k1/2 at which the linear matter power

spectrum is suppressed by 1/2, in units of the Jeans wave number at matter-radiation equality kJeq,

as a function of the scalar DM fraction F .

number at equality kJeq above which the suppression appears, the spectral index of the suppression

is set by the fraction F . Moreover, the suppression saturates at the Jeans wave number kJ at the

time of the measurement, where the saturated suppression factor (B.23) is independent of m.8

Provided that the square of (B.23) is smaller than 1/2, we can define the wave number k1/2 at

which the power spectrum Pm(k) is suppressed by 1/2. From (B.22), k1/2 is obtained in terms of

the Jeans scale at equality (B.21) as

k1/2

kJeq
= f(F ), where f(F ) = 2

1
10−2

√
25−24F . (B.24)

This ratio as a function of F describes how the suppression effect is diluted for a smaller scalar DM

fraction. We plot this in the right panel of Figure 6, where one sees that k1/2 ∼ kJeq for F > 0.1,

whereas k1/2 becomes exponentially larger than kJeq for F . 0.1. In particular if F . 0.07, then

k1/2 even exceeds the present-day Jeans scale kJ0 = (a0/aeq)1/4kJeq ∼ (3000)1/4kJeq (here we are

ignoring dark energy for simplicity); namely, the linear power spectrum today does not fall below

1/2 of that from pure CDM. This indicates that a scalar DM, no matter how light its mass is, would

not impact structure formation as long as its fraction is below ∼ 10% of the total DM.

We have also numerically solved the coupled evolution equations (B.14) and (B.15). In order to

incorporate the slow growth of the CDM perturbation towards the end of the radiation-dominated

epoch, we further included a background radiation component as explained in Footnote 7, and

started the computations at a = aeq/10 with a simplified adiabatic initial condition δφk = δck,

δ̇φk = δ̇ck = 0.9 The ratio of the resulting linear matter power spectrum today between cases with

scalar DM and pure CDM is shown in Figure 7, for various values of the scalar DM fraction F . The

8The suppression function presented in Eq. (8) of [11] behaves quite differently from what we discussed in the

region k � kJeq. This is because the function of [11] was obtained to describe the first few efolds of suppression at

around kJeq, instead of the asymptotic behavior. We thank Wayne Hu for private communication on this point.
9A more rigorous treatment would involve solving the relativistic perturbation equations until the fluid description

becomes valid (see e.g. [69, 70, 71, 72]), and also inclusion of other components such baryons and dark energy. However

our simplified treatment should suffice for estimating the relative suppression of the perturbations by the scalar DM

at the order-of-magnitude level.
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Figure 7: Suppression of the linear matter power spectrum today due to a scalar DM with mass m =

10−22 eV, for various values of the scalar DM fraction F . The results are obtained by numerically

solving the evolution equations (B.14) and (B.15).

mass of the scalar DM is fixed to m = 10−22 eV, and the spectrum is shown for wave numbers that

are sub-horizon and nonrelativistic (H < k/a < m) at the initial time of the calculation. As was

indicated by the analytic arguments, the suppression appears at around the Jeans scale at equality

kJeq/a0 ∼ 7 Mpc-1, and saturates at around the Jeans scale today kJ0/a0 ∼ 50 Mpc-1. It is also

clearly seen that k1/2 ∼ kJeq for F > 0.1, whereas for F . 0.1 the suppression does not fall much

below 50% on any scale.

The scale k1/2 also offers a rough guide to estimate the mass of halos whose formation are

suppressed. The mass contained in a sphere of diameter 2πa/k1/2 is

M1/2 =
H2

2G

(
πa

k1/2

)3

∼ 1010M� f(F )−3
( m

10−22 eV

)−3/2
, (B.25)

where in the far right hand side we substituted (B.24) to k1/2, and used thatM1/2 is time-independent

during matter-domination and thus estimated its value at equality. We can thus infer from linear

theory that the scalar DM suppresses the number of halos with masses below M1/2.

C The Area Criterion for the Lyman-α Forest

The aim of this Appendix is to compare the Lyman-α forest constraints determined through the full

MCMC analysis discussed in detail in Section 2, against the bounds obtained by applying a simple yet

intuitive method introduced by the authors of Ref. [35], i.e. the area criterion for the Lyman-α forest.

Whereas absolute limits on DM properties can only be extracted through a comprehensive sta-

tistical analysis as the one that we have performed, the area criterion allows to investigate deviations

with respect to a given reference model in an approximate yet immediate way, without the need of
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Figure 8: Here we compare the 2 and 3 σ limits from the MCMC analysis (red regions), with the

2 and 3 σ limits determined through the area criterion (superposed gray regions bounded by dashed

lines). All the combinations of scalar DM mass and fraction which sample the region outside the

gray contours are thus rejected by the area criterion analysis.

running computationally expensive cosmological simulations. Firstly, we parameterize the deviation

of a given model with respect to the standard CDM case through the ratio

ξ(k) =
P1D(k)

PCDM
1D (k)

, (C.1)

where P1D(k) is the 1D matter power spectrum of the model that we are considering, computed by

the following integral on the 3D matter power spectrum:

P1D(k) =
1

2π

∞∫
k

dk′k′P (k′), (C.2)

with P (k′) being the 3D linear matter power spectrum, computed at redshift z = 0.

In order to find out whether a model deviates more or less from standard CDM, with respect to

the reference model that we have chosen, we adopt the following criterion: a model is rejected if it

shows a larger power suppression with respect to the reference one. The suppression in the power

spectra is computed via the following estimator:

δA ≡ ACDM −A
ACDM

, (C.3)

where A is the integral of ξ(k) over the typical range of scales probed by Lyman-α observations

(e.g., 0.5 h/Mpc ≤ k ≤ 10 h/Mpc for the MIKE/HIRES+XQ-100 combined data set used in this
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work and in Ref. [16]), i.e.,

A =

kmax∫
kmin

dk ξ(k), (C.4)

such that ACDM ≡ kmax − kmin by construction.

We are now able to use the area criterion 10 that we have just outlined for constraining the DM

mass m and abundance F , in the ultralight scalar DM framework that we have examined in this

paper. In doing so, we calibrate the method by taking as references the 2 and 3 σ limits on the

scalar DM mass where it constitutes all the DM content of the universe, namely the values given by

the intercepts between the 2 and 3 σ contours with the F = 1 line in Fig. 1.

We have then computed the corresponding linear power spectra with the numerical Boltzmann

solver axionCAMB [25] and plugged into Eqs. (C.1) and (C.3). The resulting δAREF2σ and δAREF3σ

are the estimate of the small-scale power suppression with respect to standard CDM for scalar

DM models that are excluded at 2 and 3 σ C.L., respectively. Thereafter, we have built a grid

in the {m,F}-space, where each grid-point is associated to a different combination of scalar DM

mass and fraction, in order to compare all the corresponding δA with δAREF and accept only those

combinations which exhibit a smaller power suppression, i.e. δA < δAREF.

The results are reported in Figure 8, where the red shaded areas refer to the 2 and 3 σ contours

from the MCMC analysis, while the superposed gray areas bounded by dashed lines correspond to

the 2 and 3 σ contours determined through the area criterion. Hence, all the combinations of scalar

DM mass and fraction which sample the region outside the gray contours are not allowed by the

area criterion analysis.

Firstly we notice that for the case F = 1 the numbers returned by the area criterion are by defi-

nition in agreement with the more exact and comprehensive MCMC analysis discussed in Section 2.

However, below scalar DM abundances of around 30%, the contours predicted by applying the area

criterion clearly depart from the results of the full statistical analysis that we have performed. This

is due to the fact that when we apply the area criterion to models with small masses, even the

practically negligible suppressions associated with small fractions (see Appendix B.3) correspond

to larger estimators δA with respect to the reference one. In other words, shifting the position

of the cut-off at lower wavenumbers (i.e. investigating small scalar DM masses) unavoidably leads

to a suppression which, quantified through the area estimator, is larger than the reference one.

Consequently, although the Lyman-α bound is expected to be insensitive to scalar DM with small

fractions (as discussed in Section 2), the bound obtained using the estimator Eqs. (C.3) and (C.4)

improves towards smaller mass even in the regime m . 10−22 eV. Nonetheless, the area criterion

could be considered as a simple, fast and intuitive method for performing preliminary tests on any

DM scenario with Lyman-α forest data. Thereby, we leave for future work a careful study in order

10The physical observable for Lyman-α forest experiments is the flux power spectrum PF(k, z), not the linear matter

power spectrum. Nonetheless, two different features of the Lyman-α physics suggest that the area criterion analysis

could be also quantitatively correct. Firstly, the relation between linear matter and flux power can be modeled as

PF(k, z) = b2(k, z)P linear
1D (k, z), with b2(k, z) being a bias factor that differs very little for models reasonably close to

the standard CDM case (see e.g. [73]): this justifies the use of Eq. (C.1). Furthermore, the area criterion is motivated

by the fact that IGM peculiar velocities (typically < 100 km/s) tend to redistribute the small-scale power within a

relatively broad range of wave-numbers in the explored region [74].
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to figure out a more accurate estimator (e.g., by introducing a weight function inside Eq. (C.4)).
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