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The next generation of CMB experiments (CMB Stage-4) will produce a Sunyaev-Zel’dovich (SZ)
cluster catalog containing ∼ 105 objects, two orders of magnitudes more than currently available. In
this paper, we discuss the detectability of the polarized signal generated by scattering of the CMB
quadrupole on the cluster electron gas using this catalog. We discuss the possibility of using this
signal to measure the relationship between cluster optical depth and mass. We find that the area
of observation of S4 maximizes the signal-to-noise (S/N) on the polarized signal but that this S/N
is extremely small for an individual cluster, of order 0.5% for a typical cluster in our catalog, the
main source of noise being the residual primordial E-mode signal. However, we find that the signal
could be detected using the full cluster catalog and that the significance of the result will increase
linearly with the size of the CMB S4 telescope mirror.

I. INTRODUCTION

Scattering of the cosmic microwave background (CMB)
photons with the hot electron gas inside galaxy clusters
generates a linear polarization signal proportional to the
CMB temperature quadrupole anisotropy at the cluster
location. By measuring this polarized signal, we could in
principle measure the projected quadrupole anisotropy as
a function of position on the sky and redshift [1–9] and
use it to constrain the ΛCDM model. There are, however,
many difficulties in such a measurement. First, the cos-
mological signal is intrinsically small, with a polarization
amplitude of order 2 µK, one order of magnitude smaller
than the polarized signal generated on the last scatter-
ing surface and two orders of magnitudes smaller than
the temperature anisotropies. Second, this cosmological
signal is modulated by the cluster optical depth, which is
of order τ ∼ 10−2 at the center of a typical cluster, giving
a typical polarized emission of 2×10−2 µK at the cluster
location. Finally, the remote quadrupole at the cluster
locations is highly correlated with our local CMB mea-
surement, thus adding very little new information on the
cosmological parameters in the standard ΛCDM model.

Without a dedicated, high-resolution, low-noise survey,
the detection of this signal for individual clusters is out
of reach in the near future. However, as pointed out by
[1, 6], the next generation of CMB experiments could be
sensitive to the polarized signal generated by a cluster
population.

In this paper, we investigate the possibility of detecting
this signal in the context of CMB Stage-4 (CMB S4 or
S4) [10], a next-generation CMB experiment composed
of a set of ground-based facilities. The aim of CMB S4
is to cover half the sky with noise levels in polarization
of order 1.4 µK arcmin and at high angular resolution.

Such high sensitivity and large sky coverage is expected
to increase the size of the corresponding cluster catalogue
by two order of magnitudes compared to the currently
available Planck cluster catalog [11].

We also discuss another way of using the signal. In-
stead of using it directly to measure cosmological param-
eters or test the ΛCDM model, we propose to calibrate
the relationship between cluster mass and optical depth
using the polarized emission. A simple relationship be-
tween optical depth and cluster mass has been pointed
out recently using hydrodynamical simulations of clusters
[12], but the exact parameters describing this relation-
ship are unknown and depend on assumptions about the
baryonic physics. A measurement of the cluster polarized
emission could be used to calibrate the τ -M relationship.

In this approach, we exploit the high degree of corre-
lation between the remote quadrupole measurement and
our local CMB measurement. The very high signal-to-
noise measurements of the largest modes of our last scat-
tering surface by WMAP [13] and Planck [14] can be used
to infer the expected cosmological signal at low and inter-
mediate redshift, and a comparison between the expected
polarized emission and the observed polarized emission
allows us to constrain the cluster optical depth.

Understanding the scaling of optical depth with clus-
ter mass can be crucial for the interpretation of mea-
surements of the kinetic Sunyaev-Zel’dovich (kSZ) effect.
The kSZ effect produces secondary anisotropies on the
temperature map TkSZ(n̂) ∝ τ(n̂)v · n̂/c which are pro-
portional to the cluster optical depth. The kSZ effect
will be detected with very high significance with CMB
S4 [15]; however, the cosmological information encoded
in the velocity field will be contaminated due to uncer-
tainties on the optical depth. The cluster polarization
signal can be seen as an independent way to measure
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τ(n̂). The combination of the two measurements can be
used to extract cosmological information while reducing
the contamination from baryonic effects. X-ray obser-
vation of clusters could also be used to measure cluster
optical depth [16]. The method proposed in our paper is
complementary to this approach and is affected by differ-
ent observational and model systematics. It is also free
from selection effects.

The paper is structured as follows. In Section II,
we review the formalism and compute the expected po-
larized signal generated from the scattering of remote
quadrupoles in the proposed CMB-S4 patch of observa-
tion. In Section III, we describe our cluster model and
compute the signal-to-noise per cluster of the CMB S4
cluster catalog. In Section IV, we show constraints on
a power-law parametrization of the τ -M relationship for
different experimental specifications of CMB S4. We dis-
cuss our results and conclude in Section V. Technical
details and beyond CMB S4 forecasts may be found in
the appendices. We adopt the Planck fiducial cosmol-
ogy [17] with ΩΛ = 0.685, Ωb = 0.049, Ωm = 0.315,
H0 = 67 km s−1Mpc−1, ns = 0.96 As = 2.2 × 10−9, and
optical depth at reionisation τreio = 0.06. Cluster masses
M500 are defined as the mass measured within a radius
R500 that encloses a mean density 500 times larger than
the critical density at the cluster redshift.

II. POLARIZATION SIGNAL

A detailed computation of the expected polarization
signal due to remote quadrupole scattering is presented
in [1]. In this section, we summarize these results and
discuss the expected signal in the CMB S4 patch of ob-
servation. We denote P(n̂, z) = τ(n̂, z)p(n̂, z) the po-
larized emission generated by the scattering of remote
quadrupoles on clusters of optical depth τ(n̂, z) at red-
shift z, and focus on the calculation of the cosmologi-
cal signal p(n̂, z). This signal can be decomposed into a
part correlated with our measurement of the CMB tem-
perature and an uncorrelated part: p(n̂, z) = pc(n̂, z) +
pu(n̂, z). It is the correlated part of the emission pc(n̂, z)
that will be used to calibrate the τ -M relationship.

A. Formalism

The complex polarization field p(n̂, z) generated by re-
mote quadrupole scattering can be expanded in spin-2
spherical harmonics with harmonic coefficients [1]

(Q± iU)(n̂, z) =
∑
`m

p`m(z)[∓2Y`m(n̂)] (1)

p`m(z) = −i`3π
√
f`

∫
dk

(2π)3/2

j`(kr)

(kr)2
∆2(k, r)φ(k)Y ∗`m(k)

Here Q and U are the Stokes parameters describing the

norm and orientation of the polarization field, f` = (`+2)!
(`−2)!
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FIG. 1: Top: power spectrum of the polarization field gen-
erated by remote quadrupole scattering. The field is purely
quadrupolar at low redshift, but contributions of higher mul-
tipoles become relevant at high redshift. Bottom: correlation
coefficient between this polarization field and our observations
of the CMB. At low redshift, measurements of our own last
scattering surface anisotropies allow us to infer the polarized
emission with high accuracy.

is a normalisation factor, and ∆2(k, r) is the quadrupole
transfer function, relating the gravitational potential
φ(k) to the temperature quadrupole seen by an observer
at a comoving distance r(z) = η0 − η(z). The trans-
fer function for small multipoles can be approximated as
the sum of the Sachs-Wolfe and integrated Sachs-Wolfe
effects,

∆`(k, r) =
1

3
j`[k(η − η∗)] (2)

+ 2

∫ η

η∗
dη′j`[k(η − η′)] ∂

∂η′

[
D(η′)

a(η′)

]
,

where η∗ is the conformal time at decoupling, D(η) is
the growth factor, and we safely neglect the contribution
coming from the Doppler effect.

The power spectrum of the polarization field generated
in two redshift slices r(z) and r(z′) is given by

ξ`(r, r
′) = 〈p`m(r)p∗`m(r′)〉 (3)

=
81πf`
100

∫
dk

k

j`(kr)

(kr)2

j`(kr
′)

(kr′)2
∆2(k, r)∆2(k, r′)PR(k)



3

FIG. 2: Absolute value of the polarized emission predicted from our local measurement of the CMB in equatorial coordinates.
The white line at DEC = 0◦ and DEC = −60◦ encompass the part of the CMB S4 area of observation that overlaps with
LSST. At low redshift the signal is mostly quadrupolar, with smaller scales contributing at high redshift. The orientation of
the large-scale modes of our last scattering surface results in most of the signal being located in the Southern hemisphere. The
full polarized emission from remote quadrupole scattering will also include contribution from modes uncorrelated with our local
measurement of the CMB. The importance of this uncorrelated signal will increase with redshift.

PR(k) is the dimensionless primordial curvature power
spectrum. The top panel of Figure 1 displays the auto-
power spectrum ξ`(z, z) as a function of redshift. At low
redshift, the polarized emission is purely quadrupolar,
but the contribution from higher multipoles increases as
we go to high redshift. Note that this set of equations
assumes that only super-horizon modes contribute, which
is a good approximation for the signal of interest.

The next step is to compute the correlation between
this polarization field and our observation of the CMB
temperature anisotropies,

ζ`(r) = 〈p`m(r)a∗`m〉 (4)

=
−27π

√
f`

25

∫
dk

k

j`(kr)

(kr)2
∆2(k, r)∆`(k, 0)PR(k).

The bottom panel of Figure 1 shows the scaling of the

correlation coefficient R`(z) = ζ`(z)/
√
ξ`(z, z)CTT` with

redshift. The interpretation of R`(z) is simple: it mea-
sures the accuracy with which we can predict the polar-
ized emission using our local measurement of the CMB.

B. Polarized emission in the CMB S4 patch

Figure 1 shows that measurements of the first few a`m
of our observed CMB are sufficient to infer the part of
the polarized signal correlated with our CMB observa-
tion, pc(n̂, z), with high accuracy, and that the uncorre-
lated part of the emission is always sub-dominant at low
redshift.

We compute the a`m using the spherical harmonic de-
composition of the Planck SMICA temperature map [18].
Using this map ensures that foreground contaminations
which could affect the measurement of the largest angu-
lar scales of the CMB are minimal. The noise on the
measurement of the first few a`m is subdominant and is
neglected in this analysis.

The correlated part of the polarized emission is given
by

pc(n̂, z) =
∑
`m

ζ`(z)

CTT`
a`m[−2Y`m(n̂)] (5)

We display in Figure 2 the norm of the corre-
lated part of the polarization field

√
|pc(n̂, z)|2 =
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FIG. 3: Sample mean of the absolute value of the correlated
part of the polarized emission. The emission in the S4 area of
observation is significantly higher than the full-sky average.

√
Q2
c(n̂, z) + U2

c (n̂, z) in equatorial coordinates as a func-
tion of redshift. As expected the signal is on the largest
scales at low redshift and gets contributions from smaller
scales at high redshift.

CMB S4 [10] will be composed of a set of ground-
based telescopes observing the sky from both Chile and
the South Pole but does not yet include a component in
the Northern Hemisphere. Consequently, we limit the S4
patch of observation to pixels lying below DEC = 0◦.
This is a conservative limit: low-elevation scans from
Chile have been shown to reach +20◦DEC [19]. We
do not exclude the part of the sky contaminated by
the Milky-Way emission in this analysis, assuming that
multi-frequency coverage will allow for partial foreground
cleaning and that the remaining foreground emission will
be sub-dominant with respect to other sources of errors.
We also use a lower limit of DEC > −60◦, ensuring that
the usable S4 patch of observation has overlap with the
LSST telescope [20]. LSST could then be used to measure
the redshift of clusters on which remote quadrupoles scat-
ter. The slow evolution of the cosmological signal with
redshift ensures that photometric redshift errors will not
be an important contribution in the error budget of this
analysis.

In summary, we will use for our forecasts the region
delimited by the two white lines in Figure 2, accounting
for approximately 40% of the sky.

Because the signal is dominated by few modes on very
large scales, the orientation on the sky of these modes
matters. It is clear from Figure 2 that most of the mea-
surable signal at intermediate redshift is conveniently lo-
cated in the Southern hemisphere, accessible by CMB S4.
The difference between the average correlated polarized
emission in the S4 patch of observation and the full-sky
average is illustrated in Figure 3.

III. CLUSTER MODEL

In this section, we introduce the physical model de-
scribing the emission of a single cluster. We discuss the
expected number of clusters detected through their ther-
mal Sunyaev-Zel’dovich (tSZ) emission for the CMB S4
experiment and quantify their associated polarized emis-
sion. We forecast the signal-to-noise on the future mea-
surement of the cluster polarization signal as a function
of cluster mass and redshift.

A. Cluster emission

We first consider the tSZ effect which will be used to
detect cluster and construct the CMB S4 cluster catalog.
The tSZ effect accounts for the inverse Compton scatter-
ing of CMB photons with the hot electron gas inside clus-
ters producing secondary temperature anisotropies [21]

∆T

T

∣∣∣∣
tSZ

(ν, n̂) = ftSZ(ν)
σT
mec2

∫
Pe(l, n̂) dl (6)

= ftSZ(ν)
σT
mec2

∫
ne(l, n̂)kBTe(l, n̂)dl

Here σT is the Thomson scattering cross section, Pe, ne
and Te, are respectively the electron pressure, the elec-
tron density, and the electron temperature, and ftSZ(ν)
accounts for the dependence of the effect with frequency.

We now consider the polarized emission generated by
remote quadrupole scattering, which can be written

P(n̂) =

∫
p(l, n̂)τ(l, n̂) dl (7)

= σT

∫
p(l, n̂)ne(l, n̂) dl

≈ pσT

∫
ne(l, n̂) dl

Here p(l, n̂) is the cosmological signal defined in Section
II. We extract p from the integral because the coherence
length of the signal is much larger than the cluster size.

We define the tSZ and optical depth amplitude as

atSZ ≡
4πσT
d2
A(z)

∫ R500

0

drr2ne(r)
kBTe(r)

mec2
= Y500 (8)

aτ ≡
4πσT
d2
A(z)

∫ R500

0

dr r2 ne(r) = τ500 (9)

where dA(z) is the angular diameter distance at redshift
z. We use the GNFW/Arnaud profile [22] to describe
the tSZ pressure profile and the cored NFW model to
describe the electron density profile [1]

ΓtSZ(x) =
[
(xc500)γ [1 + (xc500)α](β−γ)/α

]−1

(10)

Γτ (x) =
[
(x+ x0)c500(1 + c500x)2

]−1
(11)
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where x is the dimensionless radial variable x = r/R500

and the best-fit values of the GNFW/Arnaud profile α =
1.062, γ = 0.3292, β = 5.4807, c500 = 1.156 are taken
from [22]. The core parameter x0 = 0.02R200/R500 is
assumed to be fixed for all clusters of the catalog [1].
Using this notation, the emission centered a single cluster
can be written

δT (ν, θ) = atSZftSZ(ν)gtSZ(θ/θ500) (12)

P(θ) = paτgτ (θ/θ500) (13)

with

g{τ,tSZ}(x) =

∫∞
−∞ dxzΓ{τ,tSZ}(

√
x2
z + x2)

4πθ2
500

∫ 1

0
dxrx2

rΓ{τ,tSZ}(xr)
. (14)

We do not model the kinematic Sunyaev-Zel’dovich (kSZ)
effect arising due to the bulk motion of the cluster. It
is subdominant compared to the tSZ effect and has a
different frequency scaling. We also do not consider the
polarized emission due to the transverse velocity of the
cluster. Not including it contributes to negligible bias
and increased variance for the recovery of the polarized
signal generated by remote quadrupole scattering [1].

B. Matched filter

The maximum-likelihood solution for the amplitudes
atSZ and aτ can be obtained using matched filtering of the
data. A matched filter uses knowledge of the spatial pro-
file to optimally recover the amplitude while suppresss-
ing other components with different spatial/spectral dis-
tributions [23–25]. We can write a data model for the
cluster emission at frequency ν in a small patch around
a cluster

δTν(x) = δTCMB(x) + ftSZ(ν)gtSZ(x)atSZ + nT (x, ν)

Qν(x) = QCMB(x) + gτ (x)Qpaτ + nQ(x, ν)

Uν(x) = UCMB(x) + gτ (x)Upaτ + nU (x, ν) (15)

Here Qp and Up are the Stokes parameters describing
the cosmological signal generated by remote quadrupole
scattering. They are constant in the patch surround-
ing the cluster. nT , nQ and nU represent the instru-
mental noise in temperature and polarization data, with
σ(nQ) = σ(nU ) =

√
2σ(nT ). A derivation of the matched

filter for the tSZ emission can be found in [15]. The
maximum-likelihood solution for the tSZ amplitude is
given by

aML
tSZ

σ2(atSZ)
=
∑
ν,ν′

∫
d`g∗tSZ(`)ftSZ(ν)[C−1

T (`)]ν,ν′Tν′(`)

1

σ2(aML
tSZ)

=
∑
ν,ν′

ftSZ(ν)ftSZ(ν′)

∫
d`|gtSZ(`)|2[C−1

T (`)]ν,ν′

(16)

The noise covariance matrix is obtained by summing the
background CMB power spectrum and the effective in-
strumental noise power spectrum

[CT (`)]ν,ν′ = CTT (`) + δν,ν′
Nν(`)

B2
ν(`)

(17)

= CTT (`) + δν,ν′Ñν (18)

where Bν(`) the frequency-dependent beam transfer

function and Ñν is the effective noise power spectrum.
The matched filter for the optical depth amplitude

takes a similar form but with the additional complexity of
having to consider the two Stokes parameters. A detailed
derivation is presented in Appendix A. The maximum-
likelihood solution for the optical depth is given by

aML
τ

σ2(aτ )
=

∫
d`g∗τ (`)

(
Qp
Up

)T
[C−1
P (`)]

(
Q(`)
U(`)

)
1

σ2(aτ )
=

∫
d`

|gτ (`)|2|p|2

CEE(`) + 2(
∑
Ñ−1
ν (`))−1

(19)

where ` is a two dimensional wavevector and |p| =√
Q2
p + U2

p is the norm of the cosmological signal. For

forecasting the signal-to-noise for an individual cluster
we will use |p| ∼ |pc| ∼ 〈|pc(z)|〉S4 and neglect pu, the
part of the remote signal generated by remote quadrupole
scattering but uncorrelated with our CMB measurement.
For a single cluster, the variance produced by this term
is sub-dominant compared to other sources of errors. It
will be included in Section IV when we will consider the
use of the full cluster catalog to constrain the relationship
between optical depth and mass.

C. CMB-S4 cluster catalog

The uncertainties on the amplitude of the tSZ effect
after matched filtering of the data can be used to predict
the number of clusters detected by CMB S4. The CMB
S4 instrumental specifications assumed for this work are
presented in Table I; they correspond to ∼ 105 detectors
and the angular resolution obtained with a three-meter
mirror.

We follow [15] and compute the cluster detection effi-
ciency

χ̃(M500, z) =

∫
d(lnY true

500 )

∫ ∞
qσN

dY obs
500 (20)

PSZ(lnY true
500 |M500, z)Pdet(Y

obs
500 |Y true

500 )

Here PSZ accounts for the intrinsic scatter in the relation-
ship between tSZ flux and mass (e.g [15]). Pdet quantifies
the uncertainty in the measurement of the tSZ amplitude
for the CMB S4 specification. We use a detection thresh-
old of qσN , σN being the noise on the measurement of
Y500. In this work, we will only consider clusters detected
with a tSZ signal-to-noise threshold q > 6.
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Frequency Noise RMS Beam FWHM

(GHz) (µK-arcmin) (arcmin)

28 9.8 14.0

41 8.9 10.0

90 1.0 5.0

150 0.9 2.8

230 3.1 2.0

TABLE I: Instrumental noise and angular resolution of the
5 frequency channels of CMB S4. The final design of CMB
S4 is still being discussed so these numbers should be taken
with caution. In our analysis, we will only consider the 41,
90 and 150 GHz frequency channels and assume that the 28
and 230 GHz channel will be used as templates to clean the
synchrotron, dust, and cosmic infrared background signal.

13.0 13.5 14.0 14.5 15.0

log10(M500) [h
−1M¯]

0.5

1.0

1.5

z

0.
00

2

0.
00

5

0
.0

1
0

dN/(dlog10(M)dz)

100

101

102

103

104

105

≥106

FIG. 4: Expected redshift and mass distributions for tSZ-
selected clusters detected with an S4 experiment. The white
contours represent the signal-to-noise on the cluster polar-
ization signal for individual clusters. The S/N for a typical
cluster detected by CMB-S4 is small for the CMB-S4 specifi-
cation.

The S4 cluster catalog can then be obtained by multi-
plying the detection efficiency by the halo mass func-
tion. We display in Figure 4 the cluster distribution
together with the signal-to-noise (aτ/σ(aτ )) for the in-
dividual clusters of the catalog. The S/N per individual
cluster is extremely small, 0.5% for a typical cluster in our
catalog. Note that the E-mode background contributes
to a strong degradation of the signal-to-noise.

IV. RELATIONSHIP BETWEEN OPTICAL
DEPTH AND MASS

While the detection of the polarized signal for an indi-
vidual cluster is well beyond the reach of a CMB S4 ex-
periment, the signal could be detected statistically using
the full S4 cluster catalog, and could in principle be used
to learn about the optical depth of the cluster population.
Hydrodynamical simulations of cluster suggest a simple
relationship between cluster optical depth and mass [12].
In this section, we first discuss the form of the Fisher
matrix for the parameters describing this τ500-M500 rela-
tionship. We then forecast constraints on these parame-
ters using the CMB S4 instrumental specifications. For
completeness, we also discuss the effect of increasing the
angular resolution of CMB S4 on these constraints.

A. Fisher Matrix

We use a power-law parametrization for the τ500-M500

relationship

τ500 = aτ (A, b) = Aτ∗

(
dA(z∗)

dA(z)

)2(
M500

M∗

)b
(21)

with the pivot mass M∗ = 1.2× 1014h−1M�, pivot red-
shift z∗ = 0.5, and fiducial values (A, b) = (1, 1). The
Fisher matrix for the full cluster catalog can be written

Fαβ =
∑
ij

∂aτ,i
∂α

pc,i(C
−1)ijpc,j

∂aτ,j
∂β

(22)

+
1

2
Tr(C−1C,αC

−1C,β)

where the sum over i and j is taken over all clusters
from the catalog. The covariance matrix has contribu-
tions from two terms: an error for each individual cluster
measurement and an error term coming from the part of
the remote quadrupole signal uncorrelated with our local
CMB measurement

Cij = σ2
i δij + aτ,iaτ,jξ

U
ij . (23)

For a cluster of mass M at redshift z

σ−2
i =

1

8πθ2
500

∫
dkk|u(k)|2

(CEE(k/θ500) + 2Ñ(k/θ500))
(24)

This derivation of this equation is equivalent to the one
presented in (A13) of Appendix A, but with the polarisa-
tion amplitude |p2| factorized out. The interpretation of
the Fisher matrix is simple. The first term quantifies the
constraining power in the change in the correlated po-
larized emission due to a change of the optical depth of
the cluster population. The polarized emission can be di-
rectly compared with the expected emission inferred from
measurement of our local last scattering surface. The
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trace accounts for the constraining power on the opti-
cal depth in the uncorrelated component of the polarized
emission. This second term carries very little information
so we can safely neglect it. An analytical computation of
the Fisher matrix is possible: using the fact that the co-
herence length of the cosmological signal is much larger
than the angular extent of the galaxy clusters, we get

Fαβ =
1

4π

∫
dzfαβ(z)

∑
`m

pc,`m(z)p∗c,`m(z)

− 1

4π

∫
dzdz′fα(z)fβ(z′)∑

`m

pc,`m(z)[C`(z, z
′)]−1p∗c,`m(z′) (25)

The derivation of this result and the form of the weight
factors fαβ(z) and fα(z) are provided in the Appendix.
The first term of this expression corresponds to a simple
inverse-variance weighting combination of all individual
cluster measurements, and the second term accounts for
the increase in variance due to the uncorrelated part of
the remote quadrupole signal. We note that the Fisher
matrix does not include uncertainties on the mass mea-
surement of the cluster. One possibility to infer clus-
ter masses is to use the relationship between tSZ flux
and cluster mass (e.g. [26]), which could be accurately
calibrated using the high signal-to-noise measurement
of CMB lensing [27, 28]. The uncertainties on cluster
masses will always be subdominant compared to mea-
surement errors on the polarization signal. This fisher
matrix does not take into account correlated noise be-
tween different cluster optical depth measurements. This
assumption will break down for nearby cluster due to the
correlation lenght of the background E modes.

B. Result for different CMB S4 experimental
specifications

The Fisher matrix allows us to forecast the expected
error bars on the power law parameter A and b of the
τ500-M500 relationship, using the constraining power in
the correlated remote quadrupole signal. We choose as
a baseline the angular resolution displayed in Table I,
which corresponds to the angular resolution achievable
with three-meter mirrors, but we also investigate the ef-
fect of increasing the mirror size. The results of this anal-
ysis are shown in Figure 5 and Figure 6. Figure 5 shows
the total signal to noise on the correlated polarized emis-
sion, and Figure 6 shows the 68% and 95% confidence
levels on the τ500-M500 relationship parameters. For the
fiducial CMB S4 specifications, we expect a S/N ∼ 3,
which would not result in a useful characterization of
the τ500-M500 relationship. The S/N improves linearly
with the telescope diameter. For example, if S4 is com-
posed of telescopes observing at arcminute resolution in
the 150 GHz band (corresponding to a 9-meter mirror) it
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S
ig

n
a
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o
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2.8 2.1 1.7 1.4 1.2 1.1 0.9

Angular Resolution at 150 GHz (arcminute)

FIG. 5: Aggregate S/N on the measurement of the cluster
polarized emission as a function of the mirror size for a future
CMB S4 experiment. The S/N is around 3 for the fiducial
S4 specifications and scales roughly linearly with mirror size.
Improvement on the S/N is due to the increased number of
clusters and the reduced effective noise of the matched filter
for each cluster. The second effect dominates at low and in-
termediate resolution while the first effect becomes important
for telescope mirror > 7m.

will reach a signal-to-noise of around nine on the cluster
polarized emission.

V. DISCUSSION

In this paper we have investigated the possibility for
the next-generation CMB S4 experiment to detect the
polarized emission generated by remote quadrupole scat-
tering on the hot electron gas inside clusters. We find
that this detection would be difficult, with a signal to
noise of only 0.5% for typical cluster detected by S4 and
an overall expected detection of only 3σ for the CMB S4
fiducial specifications. We find that the signal-to-noise
will increase linearly with respect to the angular reso-
lution of the telescope, reaching a 9σ detection for a 9
meter mirror.

We also discuss the possibility of using the signal to cal-
ibrate the relationship between optical depth and mass
of the cluster, using the strong correlation between the
polarized emission at low redshift and our own last scat-
tering surface observations.

We should note that Fisher forecasts tends to be on
the optimistic side. While using the matched filter for-
malism we implicitly had to assume perfect knowledge
of the cluster spatial profiles. This allowed us to opti-
mally separate the cluster signal from the background
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FIG. 6: 68% and 95% confidence levels on the power-law pa-
rameters of the relationship between optical depth and mass.
The results suggest that the baseline specifications of CMB
S4 with 3-meter mirrors might not be enough to calibrate the
relationship using measurement of the cluster polarization sig-
nal. Increasing the mirror size helps by increasing the number
of detected clusters and by reducing the uncertainties on the
matched filter for individual clusters.

CMB polarization. However, in practice, uncertainties
on these profiles will also increase the uncertainties of
the detection.

In this paper, we consider quadrupole scattering in
galaxy clusters, treating each cluster as a single measure-
ment of the cosmological signal p, applying a matched
filter and integrating over the cluster area. We can in-

stead imagine measuring the modulated signal P = τp
for a spatially-varying optical depth τ . The cosmological
signal p caused by quadrupole scattering contains only
E modes (for scattering at a fixed redshift), but the ob-
served signal P contains B modes due to modulation by
the spatially-varying optical depth τ [29]. The B compo-
nent of P may be of interest, because the B-mode back-
ground is much smaller than the E-mode background,
so the signal to noise on the B-mode polarized emission
generated by remote quadrupole scattering could even-
tually exceed that of the E-mode field. Investigation of
the properties of this signal is left to future work.

To conclude, CMB S4 could achieve a significant detec-
tion of the cluster signal if it is made of high-resolution
telescopes. The signal could then be used to get a first
calibration of the τ500-M500 relationship. As shown in
Appendix C, the exploitation of the full potential of
the cluster polarization signal will require improving the
noise level on the CMB sky even beyond CMB S4 speci-
fications. A combination of the cluster polarization mea-
surement with the kSZ measurement could then be used
to test the ΛCDM model while keeping under control
baryonic physics affecting the cluster optical depth.
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Appendix A: Matched filter for the optical depth
parameter

In this appendix, we present the derivation of the
matched filter for the optical depth parameter aτ for a
single cluster. We start with the log-likelihood for aτ at
a single frequency

χ2 =

∫
d`V T (`)[C−1

P (`)]V (`) (A1)

V (`) =

(
Q(`)

U(`)

)
− gτ (`)aτ

(
Qp
Up

)
Here Q and U are the observed Stokes parameters, and
Qp and Up represent the cosmological signal generated
by remote quadrupole scattering. The noise covariance

matrix has contributions from the background Q,U po-
larization field and from instrumental noise

[CP (`)] =

(
CQQ(`) CQU (`)

CQU (`) CUU (`)

)
+ 2Ñ(`)I2×2, (A2)

where I2×2 is the two-dimensional identity matrix and
NUU (`) = NQQ(`) = 2NTT (`).

It is convenient to transform the Stokes parameters to
E and B modes. In a small patch around the cluster (e.g.
[30])

E(`)± iB(`) = e∓2iφ`(Q(`)± iU(`)) (A3)

Here φ` is the angle between the Fourier wave vector `
and `x the x axis of the Fourier plane. Assuming that
the primordial and lensed B modes can be neglected with
respect to the sum of the E-mode background and instru-
mental noise, we have

CQQ(`) = CEE(`) cos2 2φ`

CQU (`) = CEE(`) cos 2φ` sin 2φ`

CUU (`) = CEE(`) sin2 2φ` (A4)

The maximum-likelihood solution is found by setting the
derivative of the log-likelihood with respect to the ampli-
tude parameter to zero, yielding

aML
τ

σ2(aτ )
=

∫
d`g∗τ (`)

(
Qp
Up

)T
[C−1
P (`)]

(
Q(`)

U(`)

)
1

σ2(aML
τ )

=

∫
d`|gτ (`)|2

(
Qp
Up

)T
[C−1
P (`)]

(
Qp
Up

)
(A5)

After a bit of algebra we can simplify the expression of
σ2(aML

τ )(
Qp
Up

)T
[C−1
P (`)]

(
Qp
Up

)
=
|p2|2Ñ(`) + CEE(`)B2

p

2Ñ(`)(CEE(`) + 2Ñ(`))

(A6)

with |p2| = Q2
p + U2

p , and B2
p the B modes part of the

cosmological signal generated by remote quadrupole scat-
tering. Note that this term has a simple interpretation.
If the polarization generated by remote quadrupole scat-
tering was purely B mode (with B2

p = |p2|), we would
be able to distinguish it from the E mode background,
and the variance of the filter would be purely given by
the variance of the instrumental noise. The most conser-
vative scenario is obtained by setting Bp = 0, and the
variance gets contributions both from the E mode back-
ground and the instrumental noise

1

σ2(aτ )
=

∫
d`

|gτ (`)|2|p2|
(CEE(`) + 2Ñ(`))

. (A7)
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Our approach is thus local, and the signal is measured
cluster by cluster. Recently, nonlocal approaches have
been proposed, which use the fact that B modes can be
generated from the modulation of the remote scatter-
ing signal by the free electron density across the entire
Universe (see for example [6], [29] and [31] ). For mul-
tifrequencies observations we replace the effective noise
covariance matrix by the minimum variance combination:

1

Ñ(`)
=
∑
ν

1

Ñν(`)
(A8)

We can simplify this expression even further, using the
azimuthal symmetry of the profile. Its Fourier transform

gτ (`) =
1

4πθ2
500

∫
dx

2π
ei`.xuτ (x) (A9)

uτ (x) =

∫∞
−∞ dxzΓτ (

√
x2
z + x2)∫ 1

0
dxrx2

rΓτ (xr)
(A10)

is given simply by

gτ (`) =
1

4π
uτ (k = `θ500) (A11)

uτ (k = `θ500) =

∫
dxxJ0(`θ500x)uτ (x) (A12)

The covariance becomes

1

σ2(aτ )
=

1

8πθ2
500

∫
dkk|u(k)|2|p2|

(CEE(k/θ500) + 2Ñ(k/θ500))

(A13)

Appendix B: Analytical form of the Fisher Matrix

The dominant term of the Fisher matrix for the cluster
polarized emission can be written as

Fαβ =
∑
ij

∂aτ,i
∂α

pc,i(C
−1)ijpc,j

∂aτ,j
∂β

(B1)

with covariance matrix

Cij = σ2
i δij + aτ,iaτ,jξ

U
ij (B2)

The sum over i and j is taken over the 200 000 clus-
ters of the CMB S4 catalog. The coherence length of the
quadrupole can be used to reduce the number of degrees
of freedom in the problem. We can define a set of voxels,
volume elements in which the cosmological signal is con-
stant, and use a projection operator between voxel and
cluster

pc,i =
∑
v

Jivpc,v (B3)

ξUij =
∑
vw

Jivξ
U
vwJwj (B4)

where Jiv is unity if the cluster i belong to the voxel v
and zero otherwise. The covariance matrix then becomes

Cij = σ2
i δij + aτ,iaτ,j

∑
vw

Jivξ
U
vwJwj (B5)

and can be inverted using the Woodbury formula,

(C−1)ij = σ−2
i δij −

∑
vw

aτ,i
σ2
i

Jiv(M
−1)vwJwj

aτ,j
σ2
j

Mvw =

(
(ξ−1)Uvw + δvw

∑
k∈v

a2
τ,k

σ2
k

)
(B6)

This allows us to get an analytic estimate of the Fisher
matrix

Fα,β =
∑
v

|pc,v|2fαβ,v (B7)

−
∑
vw

fα,vpc,v(M
−1)vwp

∗
c,wfβ,w

The weight factors fαβ,v and fα can be written as inte-
grals over the cluster distribution

fαβ,v = 4π

∫ zv+δz

zv

f∗sky(z)dz
r2(z)

H(z)

∫
dM

n(M, z)χ̃(M, z)

σ2(M, z)

∂a(M, z)

∂α

∂a(M, z)

∂β
(B8)

fα,v = 4π

∫ zv+δz

zv

f∗sky(z)dz
r2(z)

H(z)

∫
dM

n(M, z)χ̃(M, z)

σ2(M, z)
a(M, z)

∂a(M, z)

∂α
(B9)

σ−2(M, z) =
1

8πθ2
500

∫
dkk|u(k)|2

(CEE(k/θ500) + 2Ñ(k/θ500))
(B10)

where n(M, z) is the halo mass function, χ̃(M, z) is
the detection efficiency (see Equation 20), and σ2(M, z)
is the error on the polarized emission for a single

cluster which depends only on the angular extent of the
cluster θ500(M, z). Note that fαβ,v and fα,v depend
only on the redshift of the voxels and not on their
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FIG. 7: S/N on the cluster polarization signal as a function of
number of detectors and mirror size. The baseline number of
detector corresponds to CMB S4: 100 000 detectors. These
forecasts do not include the B modes signal generated by the
modulation of the E modes signal by the electron density field.
They should be seen as pessimistic.

angular position on the sky. However, the signal is
slightly anisotropic and most of the constraining power
is located in the S4 survey area (see Section II). We
take this into account by using an effective sky fraction
f∗sky(z) = fsky〈|pS4

c (z)|〉/〈|pfull
c (z)|〉. Equation B7 is then

equivalent to Equation 25 after a spherical harmonic
transform.

Appendix C: Beyond CMB S4

The paper focusses on the possible detection and ex-
ploitation of the polarized signal emitted by clusters with
the upcoming CMB S4 experiment. CMB S4 consists
of ∼ 105 detectors observing at microwave frequencies
and is expected to reach noise level of 1 µK arcmin over
half the sky. In Figure 7 we show the signal-to-noise im-
provement for more futuristic experiments. We should
note that using a matched filter to extract the cluster
polarization signal requires the assumption that clusters
are isolated objects; for these futuristic experiments, this
assumption will break down and cluster blending will be-
come important. Another important signal for the next
generation experiment is the B modes signal arising from
the modulation of the remote quadrupole scattering E
modes field by the electron density field. This signal
might be detected with a higher signal-to-noise as it is
not degenerate with the strong primordial E modes back-
ground. The forecasts presented in this section should
then be seen as pessimistic.
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