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Using some of the latest cosmological datasets publicly available, we derive the strongest bounds
in the literature on the sum of the three active neutrino masses, Mν , within the assumption of
a background flat ΛCDM cosmology. In the most conservative scheme, combining Planck cosmic
microwave background (CMB) temperature anisotropies and baryon acoustic oscillations (BAO)
data, as well as the up-to-date constraint on the optical depth to reionization (τ), the tightest
95% confidence level (C.L.) upper bound we find is Mν < 0.151 eV. The addition of Planck high-`
polarization data, which however might still be contaminated by systematics, further tightens the
bound to Mν < 0.118 eV. A proper model comparison treatment shows that the two aforementioned
combinations disfavor the IH at ∼ 64% C.L. and ∼ 71% C.L. respectively. In addition, we compare
the constraining power of measurements of the full-shape galaxy power spectrum versus the BAO
signature, from the BOSS survey. Even though the latest BOSS full shape measurements cover a
larger volume and benefit from smaller error bars compared to previous similar measurements, the
analysis method commonly adopted results in their constraining power still being less powerful than
that of the extracted BAO signal. Our work uses only cosmological data; imposing the constraint
Mν > 0.06 eV from oscillations data would raise the quoted upper bounds by O(0.1σ) and would
not affect our conclusions.

I. Introduction

The discovery of neutrino oscillations, which resulted
in the 2015 Nobel Prize in Physics [1], has robustly
established the fact that neutrinos are massive [2–9].
The results from oscillation experiments can therefore be
successfully explained assuming that the three neutrino
flavour eigenstates (νe, νµ, ντ ) are quantum superposi-
tions of three mass eigenstates (ν1, ν2, ν3). In analogy to
the quark sector, flavour and mass eigenstates are related
via a mixing matrix parametrized by three mixing angles
(θ12, θ13, θ23) and a CP-violating phase δCP.

Global fits [10–14] to oscillation measurements have
determined with unprecedented accuracy five mixing pa-
rameters, namely, sin2 θ12, sin2 θ13, sin2 θ23, as well as the
two mass-squared splittings governing the solar and the
atmospheric transitions. The solar mass-squared split-
ting is given by ∆m2

21 ≡ m2
2 − m2

1 ' 7.6 × 10−5 eV2.
Because of matter effects in the Sun, we know that the
mass eigenstate with the larger electron neutrino frac-
tion is the one with the smallest mass. We identify the
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lighter state with “1” and the heavier state (which has
a smaller electron neutrino fraction) with “2”. Conse-
quently, the solar mass-squared splitting is positive. The
atmospheric mass-squared splitting is instead given by
|∆m2

31| ≡ |m2
3 − m2

1| ' 2.5 × 10−3 eV2. Since the sign
of the largest mass-squared splitting |∆m2

31| remains un-
known, there are two possibilities for the mass order-
ing: the normal hierarchy (NH, ∆m2

31 > 0, with m1 <
m2 < m3) and the inverted hierarchy (IH, ∆m2

31 < 0,
and m3 < m1 < m2). Other unknowns in the neutrino
sector are the presence of CP-violation effects (i.e. the
value of δCP), the θ23 octant, the Dirac versus Majorana
neutrino nature, and, finally, the absolute neutrino mass
scale, see Ref. [15] for a recent review on unknowns of
the neutrino sector.

Cosmology can address two out of the above five un-
knowns: the absolute mass scale and the mass ordering.
Through background effects, cosmology is to zeroth-order
sensitive to the absolute neutrino mass scale, that is, to
the quantity:

Mν ≡ mν1 +mν2 +mν3 , (1)

where mνi denotes the mass of the ith neutrino mass
eigenstate. Indeed, the tightest current bounds on the
neutrino mass scale come from cosmological probes, see
for instance [16–23]. More subtle perturbation effects
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make cosmology in principle sensitive to the mass hier-
archy as well (see e.g. [24–29] for comprehensive reviews
on the impact of nonzero neutrino masses on cosmology),
although not with current datasets.

As light massive particles, relic neutrinos are relativis-
tic in the early Universe and contribute to the radiation
energy density. However, when they turn non-relativistic
at late times, their energy density contributes to the total
matter density. Thus, relic neutrinos leave a character-
istic imprint on cosmological observables, altering both
the background evolution and the spectra of matter per-
turbations and Cosmic Microwave Background (CMB)
anisotropies (see [24–29] as well as the recent [30] for
a detailed review on massive neutrinos in cosmology, in
light of both current and future datasets). The effects
of massive neutrinos on cosmological observables will be
discussed in detail in Sec. III.

Cosmological probes are primarily sensitive to the sum
of the three active neutrino masses Mν . The exact distri-
bution of the total mass among the three mass eigenstates
induces sub-percent effects on the different cosmological
observables, which are below the sensitivities of ongo-
ing and near future experiments [31–35]. As a result,
cosmological constraints on Mν are usually obtained by
making the assumption of a fully degenerate mass spec-
trum, with the three neutrinos sharing the total mass
[mνi = Mν/3, with i = 1, 2, 3, which we will later refer
to as 3deg, see Eq.(3)]. Strictly speaking, this is a valid
approximation as long as the mass of the lightest eigen-
state, m0 ≡ m1 [m3] in the case of NH [IH], satisfies:

m0 � |mi −mj | , ∀i, j = 1, 2, 3. (2)

The approximation might fail in capturing the exact be-
haviour of massive neutrinos when Mν ∼ Mν,min, where

Mν,min =
√

∆m2
21 +

√
∆m2

31 ' 0.06 eV [=
√

∆m2
31 +√

∆m2
31 + ∆m2

21 ' 0.1 eV] is the minimal mass allowed
by oscillation measurements in the NH [IH] scenario [10–
14], see Appendix A for detailed discussions. Further-
more, it has been argued that the ability to reach a
robust upper bound on the total neutrino mass below
Mν,min = 0.1 eV would imply having discarded at some
statistical significance the inverted hierarchy scenario.
In this case, one has to provide a rigorous statistical
treatment of the preference for one hierarchy over the
other [36–38]. 3deg repeated

We will be presenting results obtained within the ap-
proximation of three massive degenerate neutrinos. That
is, we consider the following mass scheme, which we refer
to as 3deg :

m1 = m2 = m3 =
Mν

3
(3deg) ,

This approximation has been adopted by the vast ma-
jority of works when Mν is allowed to vary. This in-
cludes the Planck collaboration, which recently obtained
Mν < 0.234 eV at 95% C.L. [40] through a combination
of temperature and low-` polarization anisotropy mea-
surements, within the assumption of a flat ΛCDM+Mν

cosmology. Physically speaking, this choice is dictated
by the observation that the impact of the NH and IH
mass splittings on cosmological data is tiny if one com-
pares the 3deg approximation to the corresponding NH
and IH models with the same value of the total mass
Mν (see Appendix A for further discussions). For the
purpose of comparison with previous work, in Appendix
B we briefly discuss other less physical approximations
which have been introduced in the recent literature, as
well as some of the bounds obtained on Mν within such
approximations.

We present the constraints in light of the most recent
cosmological data publicly available. In particular, we
make use of i) measurements of the temperature and po-
larization anisotropies of the CMB as reported by the
Planck satellite in the 2015 data release; ii) baryon acous-
tic oscillations (BAO) measurements from the SDSS-III
BOSS data release 11 CMASS and LOWZ samples, and
from the Six-degree Field Galaxy Survey (6dFGS) and
WiggleZ surveys; iii) measurements of the galaxy power
spectrum of the CMASS sample from the SDSS-III BOSS
data release 12; iv) local measurements of the Hubble pa-
rameter (H0) from the Hubble Space Telescope; v) the
latest measurement of the optical depth to reionization
(τ) coming from the analysis of the high-frequency chan-
nels of the Planck satellite, and vi) cluster counts from
the observation of the thermal Sunyaev-Zeldovich (SZ)
effect by the Planck satellite.

In addition to providing bounds on Mν , we also use
these bounds to provide a rigorous statistical treatment
of the preference for the NH over the IH. We do so by ap-
plying the simple but rigorous method proposed in [36],
and evaluate both posterior odds for NH against IH, as
well as the C.L. at which current datasets can disfavor
the IH.

The paper is organized as follows. In Sec. II, we de-
scribe our analysis methodology. In Sec. III we instead
provide a careful description of the datasets employed,
complemented with a full explanation of the physical ef-
fects of massive neutrinos on each of them. We showcase
our main results in Sec. IV, with Sec. IV A in partic-
ular devoted to an analysis of the relative constraining
power of shape power spectrum versus geometrical BAO
measurements, whereas in Sec. IV B we provide a rigor-
ous quantification of the exclusion limits on the inverted
hierarchy from current datasets. Finally, we draw our
conclusions in Sec. V.

For the reader who wants to skip to the results: the
most important results of this paper can be found in
Tabs. VI, VII, VIII. The first two of these tables present
the most constraining 95% C.L. bounds on the sum of the
neutrino masses using a combination of CMB (tempera-
ture and polarization), BAO, and other external datasets.
The bounds in Tab. VII have been obtained using also
small-scale CMB polarization data which may be con-
taminated by systematics, yet we present the results as
they are useful for comparing to previous work. Finally
Tab. VIII presents exclusion limits on the Inverted Hi-
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erarchy neutrino mass ordering, which is disfavored at
about 70% C.L. statistical significance.

II. Analysis method

In the following we shall provide a careful description
of the statistical methods employed in order to obtain the
bounds on the sum of the three active neutrino masses
we show in Sec. IV, as well as caveats to our analyses.
Furthermore, we provide a brief description of the statis-
tical method adopted to quantify the exclusion limits on
the IH from our bounds on Mν . For more details on the
latter, we refer the reader to [36] where this method was
originally described.

A. Bounds on the total neutrino mass

In our work, we perform standard Bayesian inference
(see e.g. [41, 42] for recent reviews) to derive constraints
on the sum of the three active neutrino masses. That is,
given a model described by the parameter vector θ, and
a set of data x, we derive posterior probabilities of the
parameters given the data, p(θ|x), according to:

p(θ|x) ∝ L(x|θ)p(θ) , (3)

where L(x|θ) is the likelihood function of the data
given the model parameters, and p(θ) denotes the data-
independent prior. We derive the posteriors using the
Markov Chain Monte Carlo (MCMC) sampler cosmomc
with an efficient sampling method [43, 44]. To assess
the convergence of the generated chains, we employ the
Gelman and Rubin statistics [45] R − 1, which we re-
quire to satisfy R − 1 < 0.01 when the datasets do not
include SZ cluster counts, R − 1 < 0.03 otherwise (this
choice is dictated by time and resource considerations:
runs involving SZ cluster counts are more computation-
ally expensive than those that do not include SZ clusters,
to achieve the same convergence). In this way, the con-
tribution from statistical fluctuations is roughly a few
percent the limits quoted. 1

We work under the assumption of a background flat
ΛCDM Universe, and thus consider the following seven-
dimensional parameter vector:

θ ≡ {Ωbh2,Ωch
2,Θs, τ, ns, log(1010As),Mν} . (4)

Here, Ωbh
2 and Ωch

2 denote the physical baryon and
dark matter energy densities respectively, Θs is the ratio
of the sound horizon to the angular diameter distance

1 Notice that this is a very conservative requirement, as a con-
vergence of 0.05 is typically more than sufficient for the explo-
ration of the posterior of a parameter whose distribution is uni-
modal [46].

at decoupling, τ indicates the optical depth to reioniza-
tion, whereas the details of the primordial density fluctu-
ations are encoded in the amplitude (As) and the spec-
tral index (ns) of its power spectrum at the pivot scale
k? = 0.05 h Mpc−1. Finally, the sum of the three neu-
trino masses is denoted by Mν . For all these parameters,
a uniform prior is assumed unless otherwise specified.

Concerning Mν , we impose the requirement Mν ≥ 0.
Thus, we ignore prior information from oscillation exper-
iments, which, as previously stated, set a lower limit of
Mν,min ∼ 0.06 eV [0.10 eV] for the NH [IH] mass order-
ing. If we instead had chosen not to ignore prior infor-
mation from oscillation experiments, the result would be
a slight shift of the center of mass of our posteriors on
Mν towards higher values. As a consequence of these
shifts, the 95% C.L. upper limits we report would also
be shifted to slightly higher values. Nonetheless, in this
way we can obtain an independent upper limit on Mν

from cosmology alone, while at the same time making the
least amount of assumptions. It also allows us to remain
open to the possibility of cosmological models predicting
a vanishing neutrino density today, or models where the
effect of neutrino masses on cosmological observables is
hidden due to degeneracies with other parameters (see
e.g. [47, 48]). One can get a feeling for the size of the
shifts by comparing our results to those of [19], where a
prior Mν ≥ 0.06 eV was assumed. As we see, the size of
the shifts is small, of O(0.1σ). We summarize the priors
on cosmological parameters, as well as some of the main
nuisance parameters, in Tab. I.

All the bounds on Mν reported in Sec. IV are 95% C.L.
upper limits. These bounds depend more or less strongly
on our assumption of a background flat ΛCDM model,
and would differ if one were to consider extended parame-
ter models, for instance scenarios in which the number of
relativistic degrees of freedom Neff and/or the dark en-
ergy equation of state w are allowed to vary, or if the
assumption of flatness is relaxed, and so on. For re-
cent related studies considering extensions to the minimal
ΛCDM model we refer the reader to e.g. [48–79], as well
as Sec. IV C. For other recent studies which investigate
the effect of systematics or the use of datasets not con-
sidered here (e.g. cross-correlations between CMB and
large-scale structure) see e.g. [80, 81].

B. Model comparison between mass hierarchies

As we discussed previously, several works have argued
that reaching an upper bound on Mν of order 0.1 eV
would imply having discarded the IH at some statisti-
cal significance. In order to quantify the exclusion limits
on the IH, a proper model comparison treatment, thus
rigorously taking into account volume effects, is required.
Various methods which allow the estimation of the exclu-
sion limits on the IH have been devised in the recent lit-
erature, see e.g. [36–38]. Here, we will briefly describe the
simple but rigorous model comparison method which we
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Parameter Prior Name

Ωbh
2 [0.005,0.1]

Ωch
2 [0.01,0.99]

Θs [0.5,10]
τ [0.01,0.8]

0.055 ± 0.009 τ0p055
ns [0.8,1.2]

log(1010As) [2,4]
Mν (eV) [0,3]

H0 (km/s/Mpc) [20,100] (Implicit)
72.5 ± 2.5 H072p5

73.02 ± 1.79 H073p02
1− b [0.1,1.3]
bHF [0,10]
PHF [0,10000]

TABLE I. Priors on cosmological and nuisance parameters
considered in this work. Priors on a parameter p of the form
[A,B] are uniform within the range A < p < B, whereas pri-
ors of the form A ± B are Gaussian with central value and
variance given by A and B, respectively. The first seven rows
refer to the basic parameter vector in Eq.(4). H0 refers to the
Hubble parameter and is a derived parameter, whereas 1− b
is the cluster mass bias parameter, see Sec. III F. The param-
eters bHF and PHF are nuisance parameters used to model the
galaxy power spectrum, see Eq. (12).

will use in our work, proposed by Hannestad and Schwetz
in [36], and based on previous work in [39]. The method
allows the quantification of the statistical significance at
which the IH can be discarded, given the cosmological
bounds on Mν . We refer the reader to the original paper
[36] for further details.

Let us again consider the likelihood function L of the
data x given a set of cosmological parameters θ, the
mass of the lightest neutrino m0 = m1 [m3] for NH
[IH], and the discrete parameter H representing the mass
hierarchy, with H = N [I] for NH [IH] respectively:
L(x|θ,m0, H). Then, given the prior(s) on cosmological
parameters p(θ), we define the likelihood marginalized
over cosmological parameters θ assuming a mass hierar-
chy H, EH(m0), as:

EH(m0) ≡
∫
dθ L(x|θ,m0, H)p(θ) = L(x|m0, H) .(5)

Imposing an uniform prior m0 ≥ 0 eV and assuming fac-
torizable priors for the other cosmological parameters it
is not hard to show that, as a consequence of Bayes’ the-
orem, the posterior probability of a mass hierarchy H
given the data x, pH ≡ p(H|x), can be obtained as be-
low:

pH =
p(H)

∫∞
0
dm0 EH(m0)

p(N)
∫∞

0
dm0 EN (m0) + p(I)

∫∞
0
dm0 EI(m0)

, (6)

where p(N) and p(I) denote priors on the NH and IH
respectively, with p(N) + p(I) = 1. The posterior odds
of NH against IH are then given by pN/pI , whereas the
C.L. at which the IH is disfavored, which we refer to as

CLIH, is given by:

CLIH = 1− pI . (7)

The expression in Eq. 6 is correct as long as the as-
sumed prior on m0 is uniform, and the priors on the
other cosmological parameters are factorizable. Different
choices of priors on m0 will of course lead to a larger or
smaller preference for the NH. As an example, [82] con-
sidered the effect of logarithmic priors, showing that this
leads to a strong preference for the NH (see, however,
[83]).

Another valid possibility, which has not explicitly been
considered in the recent literature, is that of performing
model comparison between the two neutrino hierarchies
by imposing an uniform prior on Mν instead of m0. In
this case, it is easy to show that the posterior odds for NH
against IH, pN/pI , is given by (considering for simplicity
the case where NH and IH are assigned equal priors):

pN
pI
≡
∫∞

0.06 eV
dMν E(Mν)∫∞

0.10 eV
dMν E(Mν)

, (8)

where analogously to Eq. (5), we define the marginal like-
lihood E(Mν) as:

EH(Mν) ≡
∫
dθ L(x|θ,Mν , H)p(θ) = L(x|Mν , H) .(9)

It is actually easy to show that in the low-mass region of
parameter space currently favoured by cosmological data,
i.e. Mν . 0.15 eV, the posterior odds for NH against IH
one obtains by choosing a flat prior on Mν [Eq. (8)] or
a flat prior on m0 [Eq. (6)] are to very good approxi-
mation equal. It is also interesting to note that, as is
easily seen from Eq. (8), cosmological data will always
prefer the normal hierarchy over the inverted hierarchy,
simply as a consequence of volume effects: that is, the
volume of parameter space available to the normal hier-
archy (Mν > 0.06 eV) is greater than that available to
the inverted hierarchy (Mν > 0.1 eV). For this reason,
the way the prior volume is weighted plays a crucial role
in determining the preference for one hierarchy over the
other (see discussions in [82, 83]).

In our work, we choose to follow the prescription of [36]
(based on a uniform prior on m0) and hence apply Eq. (6)
to determine the preference for the normal hierarchy over
the inverted one from cosmological data.

III. Datasets and their sensitivity to Mν

We present below a detailed description of the datasets
used in our analyses and their modeling, discussing their
sensitivity to the sum of the active neutrino masses.
For clarity, all the denominations of the combinations of
datasets we consider are summarized in Tab. II. For plots
comparing cosmological observables in the presence or
absence of massive neutrinos, we refer the reader to [24–
29] and especially Fig. 1 of the recent [30].
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A. Cosmic Microwave Background

Neutrinos leave an imprint on the CMB (both at the
background and at the perturbation level) in, at least,
five different ways, extensively explored in the litera-
ture [24–30]:

• By delaying the epoch of matter-radiation equality,
massive neutrinos lead to an enhanced early inte-
grated Sachs-Wolfe (EISW) effect [28]. This effect
is due to the time-variation of gravitational poten-
tials which occurs during the radiation-dominated,
but not during the matter-dominated era, and leads
to an enhancement of the first acoustic peak in par-
ticular. Traditionally this has been the most rele-
vant neutrino mass signature as far as CMB data
is concerned.

• Because of the same delay as above, light (fν < 0.1)
massive neutrinos actually increase the comoving
sound horizon at decoupling rs(zdec), thus increas-
ing the angular size of the sound horizon at decou-
pling Θs and shifting all the peaks to lower multi-
poles `’s [24].

• By suppressing the structure growth on small scales
due to their large thermal velocities (see further de-
tails later in Sec. III B), reducing the lensing poten-
tial and hence the smearing of the high-` multipoles
due to gravitational lensing [84]. This is a promis-
ing route towards determining both the absolute
neutrino mass scale and the neutrino mass hierar-
chy, see e.g. Ref. [85, 86], because it probes the
matter distribution in the linear regime at higher
redshift, and because the unlensed background is
precisely understood. CMB lensing suffers from
systematics as well, although these tend to be of
instrumental origin and hence decrease with higher
resolution. In fact, a combination of CMB-S4 [87–
89] lensing and DESI [90–92] BAO is expected to
achieve an uncertainty on Mν of 0.016 eV [87].

• Massive neutrinos will also lead to a small change
in the diffusion scale, which affects the photon dif-
fusion pattern at high-` multipoles [28], although
again this effect is important only for neutrinos
which are non-relativistic at decoupling, i.e. for
Mν > 0.6 eV.

• Finally, since the enhancement of the first peak due
to the EISW depends, in principle, on the precise
epoch of transition to the non-relativistic regime
of each neutrino species, that is, on the individual
neutrino masses, future CMB-only measurements
such as those of [87–89, 93–102] could, although
only in a very optimistic scenario, provide some
hints to unravel the neutrino mass ordering [28].
Current data instead has no sensitivity to this ef-

fect. 2

Although all the above effects may suggest that the CMB
is exquisitely sensitive to the neutrino mass, in practice,
the shape of the CMB anisotropy spectra is governed by
several parameters, some of which are degenerate among
themselves [103, 104]. We refer the reader to the dedi-
cated study of Ref. [30] (see also [105]).

To assess the impact of massive neutrinos on the CMB,
all characteristic times, scales, and density ratios govern-
ing the shape of the CMB anisotropy spectrum should
be kept fixed, i.e. keeping zeq and the angular di-
ameter distance to last-scattering dA(zdec) fixed. This
would result in: a decrease in the late integrated Sachs-
Wolfe (LISW) effect, which however is poorly constrained
owing to the fact that the relevant multipole range is
cosmic variance limited; a modest change in the dif-
fusion damping scale for Mν & 0.6 eV; and finally, a
∆C`/C` ∼ −(Mν/0.1 eV)% depletion of the amplitude
of the C`’s for 20 . ` . 200, due to a smaller EISW effect,
which also contains a sub-h effect due to the individual
neutrino masses, essentially impossible to detect.

Baseline combinations of datasets used, and
their definitions, I.

Measurements of the CMB temperature, polarization,
and cross-correlation spectra from the Planck 2015 data
release [40, 106] are included. We consider a combina-
tion of the high-` (30 ≤ ` ≤ 2508) TT likelihood, as
well as the low-` (2 ≤ ` ≤ 29) TT likelihood based on
the CMB maps recovered with Commander: we refer to
this combination as PlanckTT . We furthermore include
the Planck polarization data in the low-` (2 ≤ ` ≤ 29)
likelihood, referring to it as lowP . Our baseline model,
consisting of a combination of PlanckTT and lowP, is
referred to as base .

In addition to the above, we also consider the high-`
(30 ≤ ` ≤ 1996) EE and TE likelihood, which we refer
to as highP . In order to ease the comparison of our re-
sults to those previously presented in the literature, we
shall add high-` polarization measurements to our base-
line model separately, referring to the combination of base
and highP as basepol . For the purpose of clarity, we
have summarized our nomenclature of datasets and their
combinations in Tab. II.

All the measurements described above are analyzed by
means of the publicly available Planck likelihoods [107]. 3

2 The effect is below the h level for all multipoles, hence well be-
yond the reach of Planck. The effect will be below the reach
of ground-based Stage-III experiments such as Advanced ACT-
Pol [93, 94], SPT-3G [95], the Simons Array [96] and the Si-
mons Observatory [97]. It will most likely be below the reach
of ground-based Stage-IV experiments such as CMB-S4 [87–89],
or next-generation satellites such as the proposed LiteBIRD [98],
COrE [99, 100], and PIXIE [102].

3 www.cosmos.esa.int/web/planck/pla

http://www.cosmos.esa.int/web/planck/pla
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When considering a prior on the optical depth to reion-
ization τ we shall only consider the TT likelihood in
the multipole range 2 ≤ ` ≤ 29. We do so for avoid-
ing double-counting of information, see Sec. III E. Of
course, these likelihoods depend also on a number of nui-
sance parameters, which should be (and are) marginal-
ized over. These nuisance parameters describe, for in-
stance, residual foreground contamination, calibration,
and beam-leakage (see Refs. [40, 107]).

CMB measurements have been complemented with ad-
ditional probes which will help breaking the parameter
degeneracies discussed. These additional datasets in-
clude large-scale structure probes and direct measure-
ments of the Hubble parameter, and will be described in
what follows. We make the conservative choice of not
including lensing potential measurements, despite mea-
suring Mν via lensing potential reconstruction is the ex-
pected target of the next-generation CMB experiments.
This choice is dictated by the observation that lensing
potential measurements via reconstruction through the
temperature 4-point function are known to be in tension
with the lensing amplitude as constrained by the CMB
power spectra through the Alens parameter [40] (see also
[108–111] for relevant work).

B. Galaxy power spectrum

Once CMB data is used to fix the other cosmological
parameters, the galaxy power spectrum could in princi-
ple be the most sensitive cosmological probe of massive
neutrinos among those exploited here. Sub-eV neutri-
nos behave as a hot dark matter component with large
thermal velocities, clustering only on scales below the
neutrino free-streaming wavenumber kfs [26, 28]:

kfs ' 0.018 Ω1/2
m

(
Mν

1eV

)1/2

h Mpc−1 . (10)

On scales below the free-streaming scale (or, correspond-
ingly, for wavenumbers larger than the free-streaming
wavenumber), neutrinos cannot cluster as their thermal
velocity exceeds the escape velocity of the gravitational
potentials on those scales. Conversely, on scales well
above the free-streaming scale, neutrinos behave as cold
dark matter after the transition to the non-relativistic
regime. Massive neutrinos leave their imprint on the
galaxy power spectrum in several different ways:

• For wavenumbers k > kfs, the power spectrum in
the linear perturbation regime is subject to a scale-
independent reduction by a factor of (1 − fν)2,
where fν ≡ Ων/Ωm is defined as the ratio of the
energy content in neutrinos to that in matter [28].

• In addition, the power-spectrum for wavenumbers
k > kfs is further subject to a scale-dependent step-
like suppression, starting at kfs and saturating at
k ∼ 1 h Mpc−1. This suppression is due to the ab-
sence of neutrino perturbations in the total matter

power spectrum, ultimately due to the fact that
neutrinos do not cluster on scales k > kfs. At
k ∼ 1 h Mpc−1, the suppression reaches a con-
stant amplitude of ∆P (k)/P (k) ' −10fν [28] (the
amplitude of the suppression is independent of red-
shift, however see the point below).

• The growth rate of the dark matter perturbations
is reduced from δ ∝ a to δ ∝ a1− 3

5 fν , due to the
absence of gravitational back-reaction effects from
free-streaming neutrinos. The redshift dependence
of this suppression implies that this effect could be
disentangled from that of a similar suppression in
the primordial power spectrum by measuring the
galaxy power spectrum at several redshifts, which
amounts to measuring the time-dependence of the
neutrino mass effect [28].

• On very large scales (10−3 < k < 10−2), the mat-
ter power spectrum is enhanced by the presence of
massive neutrinos [112].

• As in the case of the EISW effect in the CMB,
the step-like suppression in the matter power spec-
trum carries a non-trivial dependence on the indi-
vidual neutrino masses, as it depends on the time
of the transition to the non-relativistic regime for

each neutrino mass eigenstate [31, 34] (kfs ∝ m1/2
νi ),

and thus is in principle extremely sensitive to the
neutrino mass hierarchy. However, the effect is very
small and very hard to measure, even with the most
ambitious next-generation large-scale structure sur-
veys [32, 33, 35]. Through the same effect, the
lensed CMB as well as the lensing potential power
spectrum could also be sensitive to the neutrino
mass hierarchy.

Notice that, in principle, once CMB data is used to
fix the other cosmological parameters, the galaxy power
spectrum could be the most sensitive probe of neutrino
masses. In practice, the potential of this dataset is lim-
ited by several effects. Galaxy surveys have access to a
region of k-space kmin < k < kmax where the step-like
suppression effect is neither null nor maximal. The min-
imum wavenumber accessible is limited both by signal-
to-noise ratio and by systematics effects, and is typically
of order k ∼ 10−2 h Mpc−1, meaning that the fourth
effect outlined above is currently not appreciable. The
maximum wavenumber accessible is instead limited by
the reliability of the non-linear predictions for the mat-
ter power spectrum.

At any given redshift, there exists a non-linear
wavenumber, above which the galaxy power spectrum
is only useful insofar as one is able to model non-linear
effects, redshift space distortions, and the possible scale-
dependence of the bias (a factor relating the spatial dis-
tribution of galaxies and the underlying dark matter
density field [113]) correctly. The non-linear wavenum-
ber depends not only on the redshift of the sample but
also on other characteristics of the sample itself (e.g.
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whether the galaxies are more or less massive). At
the present time, the non-linear wavenumber is approxi-
mately k = 0.15 h Mpc−1, whereas for the galaxy sample
we will consider (DR12 CMASS, at an effective redshift
of z = 0.57, see footnote 4 for the definition of effective
redshift) we will show that wavenumbers smaller than
k = 0.2 h Mpc−1 are safe against large non-linear correc-
tions (see also Fig. 1, where the galaxy power spectrum
has been evaluated for Mν = 0 eV given that the Coyote
emulator adopted [114–116] does not fully implement cor-
rections due to non-zero neutrino masses on small scales,
and Ref. [23]). 4

The issue of the scale-dependent bias is indeed
more subtle than it might seem, given that neutri-
nos themselves induce a scale-dependent bias [117–
119]. A parametrization of the galaxy power spec-
trum in the presence of massive neutrinos in terms of a
scale-independent bias and a shot-noise component [see
Eq.(12)], which in itself adds two extra nuisance param-
eters, may not capture all the relevant effects at play.
Despite these difficulties, the galaxy power spectrum is
still a very useful dataset as it helps breaking some of
the degeneracies present with CMB-only data, in partic-
ular by improving the determination of Ωmh

2 and ns, the
latter being slightly degenerate with Mν . Moreover, as
we shall show in this paper, the galaxy power spectrum
represents a conservative dataset (see Sec. IV A).

Nonetheless, a great deal of effort is being invested
into determining the scale-dependent bias from cosmolog-
ical datasets. There are several promising routes towards
achieving this, for instance through CMB lensing, galaxy
lensing, cross-correlations of the former with galaxy or
quasar clustering measurements, or higher order corre-
lators of the former datasets, see e.g. Refs. [120–128].
A sensitivity on Mν of 0.023 eV has been forecasted
from a combination of Planck CMB measurements to-
gether with weak lensing shear auto-correlation, galaxy
auto-correlation, and galaxy-shear cross-correlation from
Euclid [129], after marginalization over the bias, with
the figure improving to 0.01 eV after including a weak
lensing-selected cluster sample from Euclid [129–134].
Similar results are expected to be achieved for certain
configurations of the proposed WFIRST survey [135]. It
is worth considering that the sensitivity of these datasets
would be substantially boosted by determining the scale-
dependent bias as discussed above.

A conservative cut-off in wavenumber space, required
in order to avoid non-linearities when dealing with galaxy
power spectrum data, denies access to the modes where
the signature of non-zero Mν is greatest, i.e. those at
high k where the free-streaming suppression effect is most
evident. One is then brought to question the usefulness
of such data when constraining Mν . Actually, the real
power of P (k) rests in its degeneracy breaking ability,

4 The effective redshift consists of the weighted mean redshift of
the galaxies of the sample, with the weights described in [142].

when combined with CMB data. For example, P (k) data
is extremely useful as far as the determination of certain
cosmological parameters is concerned (e.g. ns, which is
degenerate with Mν).

The degeneracy breaking effect of P (k), however, is
most evident when in combination with CMB data. As
an example, let us consider what is usually referred to as
the most significant effect of non-zero Mν on P (k), that
is, a step-like suppression of the small-scale power spec-
trum. This effect is clearest when one increases Mν while
fixing (Ωm, h). However, as we discussed in Sec. III A, the
impact of non-zero Mν on CMB data is best examined
fixing Θs. If one adjusts h in order to keep Θs fixed, and
in addition keeps Ωbh

2 and Ωch
2 fixed, the power spec-

trum will be suppressed on both large and small scales,
i.e. the result will be a global increase in amplitude [136].
In other words, this reverses the fourth effect listed above.
This is just an example of the degeneracy breaking power
of P (k) data in combination with CMB data.

Galaxy clustering measurements are addressed by
means of the Sloan Digital Sky Survey III (SDSS-III;
[137]) Baryon Oscillation Spectroscopic Survey (BOSS;
[138–140]) DR12 [141, 142]. The SDSS-III BOSS DR12
CMASS sample covers an effective volume of Veff ≈
7.4 Gpc3 [143]. It contains 777202 massive galaxies in the
range 0.43 < z < 0.7, at an effective redshift z = 0.57
(see footnote 4 for the definition of effective redshift),
covering 9376.09 deg2 over the sky. Here we consider the
spherically averaged power spectrum of this sample, as
measured by Gil-Maŕın et al. in [144]. We refer to this
dataset as P (k). The measured galaxy power spectrum
P gmeas consists of a convolution of the true galaxy power
spectrum P gtrue with a window function W (ki, kj), which
accounts for correlations between the measurements at
different scales due to the finite size of the survey geom-
etry:

P gmeas(ki) =
∑
j

W (ki, kj)P
g
true(kj) (11)

Thus, at each step of the Monte Carlo, we need to con-
volve the theoretical galaxy power spectrum Pth at the
given point in the parameter space with the window func-
tion, before comparing it with the measured galaxy power
spectrum and constructing the likelihood.

Following previous works [145, 146], we model the the-
oretical galaxy power spectrum as:

Pth = b2HFP
m
HFν(k, z) + P sHF , (12)

where PmHFν denotes the matter power spectrum cal-
culated at each step by the Boltzmann solver camb,
corrected for non-linear effects using the Halofit
method [148, 149]. We make use of the modified ver-
sion of Halofit designed by [150] to improve the treat-
ment of non-linearities in the presence of massive neu-
trinos. In order to reduce the impact of non-linearities
we impose the conservative choice of considering a max-
imum wavenumber kmax = 0.2 h Mpc−1. As we show
in Fig. 1 (for Mν = 0 eV), this region is safe against
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uncertainties due to non-linear evolution, and is also
convenient for comparison with other works which have
adopted a similar maximum wavenumber cutoff. The
smallest wavenumber we are considering is instead of
kmin = 0.03 h Mpc−1, and is determined by the control
over systematics, which dominate at smaller wavenum-
bers. The parameters bHF and P sHF denote the scale-
independent bias and the shot noise contributions: the
former reflects the fact that galaxies are biased tracers
of the underlying dark matter distribution, whereas the
latter arises from the discrete point-like nature of the
galaxies as tracers of the dark matter. We impose flat
priors in the range [0.1, 10] and [0, 10000] respectively for
bHF and P sHF.

Although in this simple model the bias and shot noise
are assumed to be scale-independent, there is no unique
prescription for the form of these quantities. In par-
ticular, concerning the bias, several theoretically well-
motivated scale-dependent functional forms exist in the
literature (such as the Q model of [151], that of [152],
or that of [153] motivated by local primordial non-
Gaussianity). It is beyond the scope of our paper to
explore the impact of different bias function choices on
the neutrino mass bounds. Instead, we simply note that
it is not necessarily true that increasing the number of pa-
rameters governing the bias shape may result in broader
constraints. Indeed, tighter constraints on Mν may arise
in some of the bias parameterizations with more than one
parameter involved, because they might have comparable
effects on the power spectrum.

C. Baryon acoustic oscillations

Prior to the recombination epoch, photons and baryons
in the early Universe behave as a tightly coupled fluid,
whose evolution is determined by the interplay between
the gravitational pull of potential wells, and the restoring
force due to the large pressure of the radiation compo-
nent. The resulting pressure waves which set up, before
freezing at recombination, imprint a characteristic scale
on the late-time matter clustering, in the form of a lo-
calized peak in the two-point correlation function, or a
series of smeared peaks in the power spectrum. This scale
corresponds to the sound horizon at the drag epoch, de-
noted by rs(zdrag), where the drag epoch is defined as
the time when baryons were released from the Compton
drag of photons, see Ref. [154]. Then, rs(zdrag) takes the
form:

rs(zdrag) =

∫ ∞
zdrag

dz
cs(z)

H(z)
, (13)

where cs(z) denotes the sound speed and is given by

cs(z) = c/
√

3(1 +R), with R = 3ρb/4ρr being the ra-
tio of the baryon to photon momentum density. Finally,
the baryon drag epoch zdrag is defined as the redshift
such that the baryon drag optical depth τdrag is equal to

one:

τdrag(ηdrag) =
4

3

Ωr
Ωb

∫ zdrag

0

dz
dη

da

σTxe(z)

1 + z
= 1 , (14)

where σT = 6.65×10−29 m2 denotes the Thomson cross-
section and xe(z) represents the fraction of free electrons.

BAO measurements contain geometrical information
in the sense that, as a “standard ruler” of known and
measured length, they allow for the determination of the
angular diameter distance to the redshift of interest, and
hence make it possible to map out the expansion history
of the Universe after the last scattering. In addition, they
are affected by uncertainties due to the non-linear evolu-
tion of the matter density field to a lesser extent than the
galaxy power spectrum, making them less prone to sys-
tematic effects than the latter. An angle-averaged BAO
measurement constrains the quantity Dv(zeff)/rs(zdrag),
where the dilation scale Dv at the effective redshift of
the survey zeff is a combination of the physical angular
diameter distance DA(z) and the Hubble parameter H(z)
(which control the radial and the tangential separations
within a given cosmology, respectively):

Dv(z) =

[
(1 + z)2DA(z)2 cz

H(z)

] 1
3

. (15)

Dv quantifies the dilation in distances when the fiducial
cosmology is modified. The power of the BAO technique
resides on its ability of resolving the existing degeneracies
present when the CMB data alone is used, in particular
in sharpening the determination of Ωm and of the Hubble
parameter H0, discarding the low values of H0 allowed
by the CMB data.

Massive neutrinos affect both the low-redshift geom-
etry and the growth of structure, and correspondingly
BAO measurements. If we increase Mν , while keeping
Ωbh

2 and Ωch
2 fixed, the expansion rate at early times is

increased, although only for Mν > 0.6 eV. Therefore, in
order to keep fixed the angular scale of the sound hori-
zon at last scattering Θs (which is very well constrained
by the CMB acoustic peak structure), it is necessary to
decrease ΩΛ. As ΩΛ decreases, it is found that H(z)
decreases for z < 1 [155, 156]. It can be shown that an
increase in Mν has a negligible effect on rs(zdrag). Hence,
we conclude that the main effect of massive neutrinos on
BAO measurements is to increase Dv(z)/rs(zdrag) and
decrease H0, as Mν is increased (see [156]). It is worth
noting that there is no parameter degeneracy which can
cancel the effect of a non-zero neutrino mass on BAO
data alone, as far as the minimal ΛCDM+Mν extended
model is concerned [30].

Baseline combinations of datasets used, and
their definitions, II.

In this work, we make use of BAO measurements ex-
tracted from a number of galaxy surveys. When us-
ing BAO measurements in combination with the DR12



9

10-2 10-1102

103

104

105

P
(k

)[
h
−

3
M

p
c

3
]

Halofit Non Linear Matter Power, PHF

Non Linear Matter Power, PNL

(PNL-PHF)/PHF

DR9 data

DR12 data

10-2 10-1

k[h/Mpc]

0.2
0.0
0.2
0.4
0.6
0.8

∆
P
/P

FIG. 1. Top: Non-linear galaxy power spectrum computed using the Halofit method with the camb code [147] (red line) and the
Coyote emulator (blue line) [114–116] at z=0.57 for the ΛCDM best-fit parameters from Planck TT 2015 data and Mν = 0 eV
(given that the emulator does not fully implement corrections due to non-zero neutrino masses on small scales). Green triangle
data points are the clustering measurements from the BOSS DR12 CMASS sample. The error bars are computed from the
diagonal elements Cii of the covariance matrix. For comparison with previous work [23], purple circles represent clustering
measurements from the BOSS Data Release 9 (DR9) CMASS sample. A very slight suppression in power on small scales (large
k) of the DR12 sample compared to the DR9 sample is visible. Note that the binning strategy adopted in DR9 and DR12 is
different. Bottom: Residuals with respect to the non-linear model with Halofit. The orange horizontal line indicates the k
range used in our analysis. As it is visually clear, the k range we choose is safe from large non-linear corrections.

CMASS P (k), we consider data from the Six-degree Field
Galaxy Survey (6dFGS) [157], the WiggleZ survey [158],
and the DR11 LOWZ sample [159], as done in [23]. We
refer to the combination of these three BAO measure-
ments as BAO . When combining BAO with the base
CMB dataset and the DR12 CMASS P (k) measure-
ments, we refer to the combination as basePK . When
combining BAO with the basepol CMB dataset and the
DR12 CMASS P (k) measurements, we refer to the com-
bination as basepolPK . Recall that we have summa-
rized our nomenclature of datasets (including baseline
datasets) and their combinations in Tab. II.

The 6dFGS data consists of a measurement of
rs(zdrag)/DV (z) at z = 0.106 (as per the discussion
above, rs/DV decreases as Mν is increased). The Wig-
gleZ data instead consist of measurements of the acoustic
parameter A(z) at three redshifts: z = 0.44, z = 0.6, and
z = 0.73, where the acoustic parameter is defined as:

A(z) =
100Dv(z)

√
Ωmh2

cz
. (16)

Given the effect of Mν on Dv(z), A(z) will increase as
Mν increases. Finally, the DR11 LOWZ data consists

of a measurement of Dv(z)/rs(zdrag) (which increases as
Mν is increased) at z = 0.32.

Since the BAO feature is measured from the galaxy
two-point correlation function, to avoid double counting
of information, when considering the base and basepol
datasets we do not include the DR11 CMASS BAO mea-
surements, as the DR11 CMASS and DR12 CMASS vol-
umes overlap. However, if we drop the DR12 CMASS
power spectrum from our datasets, we are allowed to add
DR11 CMASS BAO measurements without this leading
to double-counting of information. Therefore, for com-
pleteness, we consider this case as well. Namely, we drop
the DR12 CMASS power spectrum from our datasets,
replacing it with the DR11 CMASS BAO measurement.
This consists of a measurement of Dv(zeff)/rs(zdrag) at
zeff = 0.57.

Baseline combinations of datasets used, and
their definitions, III.

We refer to the combination of the four BAO measure-
ments (6dFGS, WiggleZ, DR11 LOWZ, DR11 CMASS)
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as BAOFULL. We instead refer to the combination of
the base CMB and the BAOFULL datasets with the
nomenclature baseBAO . When high − ` polarization
CMB data is added to this baseBAO dataset, the com-
bination is referred to as basepolBAO , see Tab. II. The
comparison between basePK and baseBAO, as well as be-
tween basepolPK and basepolBAO, gives insight into the
role played by large-scale structure datasets in constrain-
ing neutrino masses. In particular, it allows for an assess-
ment of the relative importance of shape information in
the form of the power spectrum against geometrical infor-
mation in the form of BAO measurements when deriving
the neutrino mass bounds. For clarity, all the denomi-
nations of the combinations of datasets we consider are
summarized in Tab. II.

All the BAO measurements used in this work are tab-
ulated in Tab. III. Note that we do not include BAO
measurements from the DR7 main galaxy sample [160]
or from the cross-correlation of DR11 quasars with the
Lyα forest absorption [161], and hence our results are
not directly comparable to other existing studies which
included these measurements.

D. Hubble parameter measurements

Direct measurements of H0 are very important when
considering bounds on Mν . With CMB data alone, there
exists a strong degeneracy between Mν and H0 (see e.g.
[162]). When Mν is varied, the distance to last scattering
changes as well. Defining ωb ≡ Ωbh

2, ωc ≡ Ωch
2, ωm ≡

Ωmh
2, ωr ≡ Ωrh

2, ων ≡ Ωνh
2, within a flat Universe,

this distance is given by:

χ = c

∫ zdec

0

dz√
ωr(1 + z)4 + ωm(1 + z)3 +

(
1− ωm

h2

) ,(17)

where ωm = ωc + ωb + ων . The structure of the CMB
acoustic peaks leaves little freedom in varying ωc and
ωb. Therefore, for what concerns the distance to the last
scattering, a change in Mν can be compensated essen-
tially only by a change in h or, in other words, by a
change in H0. This suggests that Mν and H0 are strongly
anti-correlated: the effect on the CMB of increasing Mν

can be easily compensated by a decrease in H0, and vice
versa.

In light of the above discussion, we expect a prior on
the Hubble parameter to help pinning down the allowed
values of Mν from CMB data. Here, we consider two dif-
ferent priors on the Hubble parameter. The first prior we
consider is based on a reanalysis of an older measurement
based on the Hubble Space Telescope, the original mea-
surement being H0 = (73.8 ± 2.4) km s−1Mpc−1 [163].
The original measurement showed a ∼ 2.4σ tension
with the value of H0 derived from fitting CMB data
[40, 86]. The reanalysis, conducted by Efstathiou in
Ref. [164], used the revised geometric maser distance
to NGC4258 of Ref. [165] as a distance anchor. This

reanalysis obtains a more conservative value of H0 =
(70.6 ± 3.3) km s−1Mpc−1, which agrees with the ex-
tracted H0 value from CMB-only within 1σ. We refer to
this prior as H070p6.

The second prior we consider is based on the most re-
cent HST 2.4% determination of the Hubble parameter
in Ref. [166]. This measurement benefits from more than
twice the number of Cepheid variables used to calibrate
luminosity distances, with respect to the previous anal-
ysis [163], as well as from improved determinations of
distance anchors. The measured value of the Hubble pa-
rameter is H0 = (73.02 ± 1.79) km s−1Mpc−1, which is
in tension with the CMB-only H0 value by 3σ. We refer
to the corresponding prior as H073p02. 5

A consideration is in order at this point. Given the
strong degeneracy between Mν and H0, we expect the
introduction of the two aforementioned priors (especially
the H073p02 one) to lead to a tighter bound on Mν . At
the same time, we expect this bound to be less reliable
and/or robust. In other words, such a bound would be
quite artificial, as it would be driven by a combination of
the tension between direct and primary CMB determi-
nations of H0 and the strong Mν − H0 degeneracy. We
can therefore expect the fit to degrade when any of the
two aforementioned priors is introduced. We nonethe-
less choose to include these prior for a number of rea-
sons. Firstly, the underlying measurement in [166] has
attracted significant attention and hence it is worth as-
sessing its impact on bounds on Mν , subject to the strict
caveats we discussed, in light of its potential to break
the Mν −H0 degeneracy. Next, our results including the
H0 priors will serve as a warning of the danger of adding
datasets which are inconsistent between each other.

E. Optical depth to reionization

The first generation of galaxies ended the dark ages of
the Universe. These galaxies emitted UV photons which
gradually ionized the neutral hydrogen which had ren-
dered the Universe transparent following the epoch of
recombination, in a process known as reionization (see
e.g. Ref. [168] for a review). So far, it is not entirely
clear when cosmic reionization took place. Cosmological
measurements can constrain the optical depth to reion-
ization τ , which, assuming instantaneous reionization (a
very common useful approximation), can be related to
the redshift of reionization zre.

Early CMB measurements of τ from WMAP favored
an early-reionization scenario (zre = 10.6± 1.1 in the in-
stantaneous reionization approximation [169]), requiring

5 We do not include here the latest 3.8% determination of H0

by the H0LiCOW program. The measurement, based on grav-
itational time delays of three multiply-imaged quasar systems,
yields H0 = 71.9+2.4

−3.0 km s−1Mpc−1 [167].
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the presence of sources of reionization at z & 10. This re-
sult was in tension with observations of Ly-α emitters at
z ' 7 (see e.g. [170–174]), that suggest that reionization
ended by z ' 6. However, the results delivered by the
Planck collaboration in the 2015 public data release, us-
ing the large-scale (low-`) polarization observations of the
Planck Low Frequency Instrument (LFI) [107] in combi-
nation with Planck temperature and lensing data, indi-
cate that τ = 0.066±0.016 [40], corresponding to a signif-
icantly lower value for the redshift of instantaneous reion-
ization: zre = 8.8+1.2

−1.1 (see also [175] for an assessment of
the role of the cleaning procedure on the lower estimate
of τ , and [176] for an alternative indirect method for
measuring large-scale polarization and hence constrain
τ using only small-scale and lensing polarization maps),
and thus reducing the need for high-redshift sources of
reionization [177–181].

The optical depth to reionization is a crucial quan-
tity when considering constraints on the sum of neutrino
masses, the reason being that there exist degeneracies
between τ and Mν (see e.g. [19, 23, 30, 104, 182–184]).
If we consider CMB data only (focusing on the TT spec-
trum), an increase in Mν , which results in a suppression
of structure, reduces the smearing of the damping tail.
This effect can be compensated by an increase in τ . Due
to the well-known degeneracy between As and τ from
CMB temperature data (which is sensitive to the combi-
nation Ase

−2τ ), the value of As should also be increased
accordingly. However, the value of As also determines the
overall amplitude of the matter power spectrum, which
is furthermore affected by the presence of massive neu-
trinos, which reduce the small-scale clustering. If, in
addition to TT data, low-` polarization measurements
are considered, the degeneracy between As and τ will
be largely alleviated and, consequently, also the multiple
ones among the As, τ , and Mν cosmological parameters.

Recently, the Planck collaboration has identified, mod-
eled, and removed previously unaccounted systematic ef-
fects in large angular scale polarization data from the
Planck High Frequency Instrument (HFI) [185] (see also
[186]). Using the new HFI low-` polarization likeli-
hood (that has not been made publicly available by the
Planck collaboration), the constraints on τ have been
considerably improved, with a current determination of
τ = 0.055±0.009 [185], entirely consistent with the value
inferred from LFI.

In this work, we explore the impact on the constraints
on Mν of adding a prior on τ . Specifically, we impose
a Gaussian prior on the optical depth to reionization of
τ = 0.055 ± 0.009, consistent with the results reported
in [185]. We refer to this prior as τ0p055. We expect this
prior to tighten our bounds on Mν . However, a prior on
τ is a proxy for low-` polarization spectra (low-` CEE` ,
CBB` , and CTE` ). Therefore, as previously stated, when
adding a prior on τ , we remove the low-` polarization
data from our datasets, in order to avoid double-counting
information, while keeping low-` temperature data.

F. Planck SZ clusters

The evolution with mass and redshift of galaxy clus-
ters offers a unique probe of both the physical matter
density, Ωm, and the present amplitude of density fluc-
tuations, characterized by the root mean squared of the
linear overdensity in spheres of radius 8 h−1Mpc, σ8, for
a review see e.g. [187]. Both quantities are of crucial
importance when extracting neutrino mass bounds from
large-scale structure, due to the neutrino free-streaming
nature.

CMB measurements are able to map galaxy clusters
via the Sunyaev-Zeldovich (SZ) effect, which consists of
an energy boost to the CMB photons, which are inverse
Compton re-scattered by hot electrons (see e.g. [188–
190]). Therefore, the thermal SZ effect imprints a spec-
tral distortion to CMB photons traveling along the clus-
ter line of sight. The distortion consists of an increase
in intensity for frequencies higher than 220 GHz, and a
decrease for lower frequencies.

We shall here make us of cluster counts from the latest
Planck SZ clusters catalogue, consisting of 439 clusters
detected via their SZ signal [191, 192]. We refer to the
dataset as SZ. The cluster counts function is given by the
number of clusters of a certain mass M within a redshift
range [z, z + dz], i.e. dN/dz:

dN

dz
|M>Mmin = fsky

dV (z)

dz

∫ ∞
Mmin

dM
dn

dM
(M, z) .(18)

The dependence on the underlying cosmological model is
encoded in the differential volume dV/dz:

dV (z)

dz
=

4π

H(z)

∫ z

0

dz′
1

H2(z′)
, (19)

through the dependence of the Hubble parameter H(z)
on the basic cosmological parameters, and further
through the dependence of the cluster mass function
dn/dM (calculated through N-body simulations) on the
parameters Ωm and σ8.

The largest source of uncertainty in the interpretation
of cluster counts measurements resides in the masses of
clusters themselves, which in turn can be inferred by X-
ray mass proxies, relying however on the assumption of
hydrostatic equilibrium. This assumption can be vio-
lated by bulk motion or non-thermal sources of pressure,
leading to biases in the derived value of the cluster mass.
Further systematics in the X-ray analyses can arise e.g.
due to instrument calibration or the temperature struc-
ture in the gas. Therefore, it is clear that determinations
of cluster masses carry a significant uncertainty, with a
typical ∆M/M ∼ 10 − 20%, quantified via the cluster
mass bias parameter, 1− b:

MX = (1− b)M500 , (20)

where MX denotes the X-ray extracted cluster mass, and
M500 the true halo mass, defined as the total mass within
a sphere of radius R500, R500 being the radius within
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which the mean overdensity of the cluster is 500 times
the critical density at that redshift.

As the cluster mass bias 1− b is crucial in constraining
the values of Ωm and σ8, and hence the normalization of
the matter power spectrum, it plays an important role
when constraining Mν . We impose an uniform prior on
the cluster mass bias in the range [0.1, 1.3], as done in
Ref. [19], in which it is shown that this choice of 1 − b
leads to the most stringent bounds on the neutrino mass.
There exist as well independent lensing measurements of
the cluster mass bias, as those provided by the Weighing
the Giants project [193], by the Canadian Cluster Com-
parison Project [192], and by CMB lensing [194] (see also
Ref. [195]). However, we shall not make use of 1−b priors
based on these independent measurements, as the result-
ing value of σ8 is in slight tension, at the level of 1-2σ,
with primary CMB measurements (however, see [196]).

The value of σ8 indicated by weak lensing measure-
ments is smaller than that derived from CMB-only
datasets, favoring therefore quite large values of Mν ,
large enough to suppress the small-scale clustering in a
significant way. Therefore, we restrict ourselves to the
case in which the cluster mass bias is allowed to freely
vary between 0.1 and 1.3. It has been shown in [19] that
this choice leads to robust and unbiased neutrino mass
limits. In this way, the addition of the SZ dataset can
be considered truly reliable.

IV. Results on Mν

We begin here by analyzing the results obtained for the
different datasets and their combinations, assessing their
robustness. The constraining power of geometrical ver-
sus shape large-scale structure datasets will be discussed
in Sec. IV A. In Sec. IV B we apply the method of [36]
and described in Sec. II B to quantify the exclusion limits
on the inverted hierarchy given the bounds on Mν pre-
sented in the following. The 95% C.L. upper bounds on
Mν we obtain are summarized in Tabs. IV, V, VI, VII.
The C.L.s at which our most constraining datasets disfa-
vor the Inverted Hierarchy, CLIH, obtained through our
analysis in Sec. IV B, are reported in Tab. VIII.

Table IV shows the results for the more conservative
approach when considering CMB data; namely, by ne-
glecting high-` polarization data. The limits obtained
when the base dataset is considered are very close to
those quoted in Ref. [19], where a three degenerate neu-
trino spectrum with a lower prior on Mν of 0.06 eV was
assumed, whereas we have taken a lower prior of 0 eV.
Our choice is driven by the goal of obtaining independent
bounds on Mν from cosmology alone, making the least
amount of assumptions. This different choice of prior is
the reason for the (small) discrepancy in our 95% C.L.
upper limit on Mν (0.716 eV) and the limit found in
Ref. [19] (0.754 eV), and, in general, in all the bounds we
shall describe in what follows. That is, these discrepan-
cies are due to differences in the volume of the parameter

space explored. When P (k) data are added to the base,
CMB-only dataset, the neutrino mass limits are consid-
erably improved, reaching Mν < 0.299 eV at 95% C.L..

The limits reported in Table IV, while being consis-
tent with those presented in Ref. [23] (obtained with an
older BOSS full shape power spectrum measurement, the
DR9 CMASS P (k)), are slightly less constraining. We at-
tribute this mild slight loss of constraining power to the
fact that the DR12 P (k) appears slightly suppressed on
small scales with respect to the DR9 P (k), see Fig. 1.
This fact, already noticed for previous data releases, can
ultimately be attributed to a very slight change in power
following an increase in the mean galaxy density over
time due to the tiling (observational) strategy of the sur-
vey [198]. The changes are indeed very small, and the
broadband shape of the power spectra for different data
releases in fact agree very well within error bars. A small
suppression in small-scale power, nonetheless, is expected
to favor higher values of Mν , which help explaining the
observed suppression, and this explains the slight differ-
ence between our results and those of Ref. [23].

While the addition of external datasets, such as a
prior on τ or Planck SZ cluster counts, leads to mild
improvements in the constraints on Mν , the tightest
bounds are obtained when considering the H073p02
prior on the Hubble parameter, due to the large ex-
isting degeneracy between H0 and Mν at the CMB
level, and only partly broken via P (k) or BAO measure-
ments. However, as previously discussed, this H073p02
measurement shows a significant tension with CMB es-
timates of the Hubble parameter. 6 Therefore, the
95% C.L. limits on Mν of < 0.164, < 0.140, < 0.136 eV
for the basePK+H073p02, basePK+H073p02+τ0p055
and basePK+H073p02+τ0p055+SZ cases should be re-
garded as the most aggressive limits one can obtain when
considering a prior on H0 and neglecting high-` polar-
ization data. Indeed, when using the H070p6 prior, a
less constraining limit of Mν < 0.219 eV at 95% C.L.
is obtained in the basePK+H070p06 case, value that is
closer to the limits obtained when additional measure-
ments (not related to H0 priors) are added to the basePK
data combination.

The tension between the H073p02 measurement and
primary CMB determinations of H0 implies that the
very strong bounds obtained using such prior are also
the least robust and/or reliable. They are almost en-
tirely driven by the aforementioned tension in combina-
tion with the strong Mν − H0 degeneracy, and hence
are somewhat artificial. We expect in fact the quality
of the fit to deteriorate in the presence of 2 inconsis-
tent datasets (that is, CMB spectra and H0 prior). To
quantify the worsening in fit, we compute the ∆χ2 asso-
ciated to the bestfit, for a given combination of datasets

6 See e.g. Refs. [136, 199–215] for recent works examining this
discrepancy and possible solutions.



13

before and after the addition of the H0 prior. For ex-
ample, for the basePK dataset combination, we find
∆χ2 ≡ χ2

min(basePK+H073p02)−χ2
min(basePK) = +5.2,

confirming as expected a substantial worsening in fit
when the H073p02 prior is added to the basePK dataset.
The above observation reinforces the fact that any bound
on Mν obtained using the H073p02 prior should be inter-
preted with considerable caution, as such bound is most
likely artificial.

Table V shows the equivalent to Tab. IV but including
high-` polarization data. Notice that the limits are con-
siderably tightened. As previously discussed, the tightest
bounds are obtained when the H073p02 prior is consid-
ered. For instance, we obtain Mν < 0.109 eV at 95% C.L.
from the basepolPK+H073p02+τ0p055 data combina-
tion. We caution once more against the very tight bounds
obtained with the H073p02 being most likely artificial.
This is confirmed for example by the ∆χ2

min = +6.4 be-
tween the basepolPK+H073p02 and basepolPK datasets.

A. Geometric vs shape information

In the following, we shall compare the constraining
power of geometrical probes in the form of BAO mea-
surements versus shape probes in the form of power spec-
trum measurements. For that purpose, we shall replace
here the DR12 CMASS P (k) and the BAO datasets by
the BAOFULL dataset, which consists of BAO measure-
ments from the BOSS DR11 (both CMASS and LOWZ
samples) survey, the 6dFGS survey, and the WiggleZ sur-
vey, see Tab. III for more details. The main results of this
section are summarized in Tabs. VI and VII, as well as
Figs. 2 and 3.

Table VI shows the equivalent to the third, fourth,
sixth, eighth and ninth rows of Tab. IV, but with the
shape information from the BOSS DR12 CMASS spec-
trum replaced by the geometrical BAO information from
the BOSS DR11 CMASS measurements. Firstly, we
notice that all the geometrical bounds are, in general,
much more constraining than the shape bounds, as pre-
viously studied and noticed in the literature (see e.g
[162, 216], see also [217, 218] for recent studies on the
subject). These studies have shown that, within the min-
imal ΛCDM+Mν scenario, BAO measurements provide
tighter constraints on Mν than data from the full power
spectrum shape. Nevertheless, it is very important to
assess whether these previous findings still hold with the
improved statistics and accuracy of today’s large-scale
structure data (see the recent Ref. [30] for the expecta-
tions from future galaxy surveys).

We confirm that this finding still holds with current
data. Therefore, current analyses methods of large-
scale structure datasets are such that these are still sen-
sitive to massive neutrinos through background rather
than perturbation effects, despite the latter are in prin-
ciple a much more sensitive probe of the effect of mas-
sive neutrinos on cosmological observables. However, as

we mentioned earlier, this behaviour could be reverted
once we are able to determine the amplitude and scale-
dependence of the galaxy bias through CMB lensing,
cosmic shear, galaxy clustering measurements, and their
cross-correlations (see e.g. [120–128]).

Moreover, it is also worth reminding that BAO mea-
surements do include non-linear information through the
reconstruction procedure, whereas the same informa-
tion is prevented from being used in the power spec-
trum measurements due to the cutoff we imposed at
k = 0.2 h Mpc−1. In order to fully exploit the constrain-
ing power of shape measurements, improvements in our
analyses methods are necessary: in particular, it is nec-
essary to improve our understanding of the non-linear
regime of the galaxy power spectrum in the presence of
massive neutrinos, as well as further our understanding
of the galaxy bias at a theoretical and observational level.

The addition of shape measurements requires at least
two additional nuisance parameters, which in our case
are represented by the bias and shot noise parameters.
These two parameters relate the measured galaxy power
spectrum to the underlying matter power spectrum, the
latter being what one can predict once cosmological pa-
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FIG. 2. Posteriors of Mν obtained with baseline datasets
basePK and baseBAO, in combination with additional ex-
ternal datasets. This allows for a comparison of the con-
straining power of shape information in the form of the full
shape galaxy power spectrum, and geometrical information
in the form of BAO measurements, when CMB full temper-
ature and low-` polarization data are used. To compare the
relative constraining power of shape and geometrical informa-
tion, compare the solid and dashed lines for a given color: red
(basePK against baseBAO), blue (basePK +τ0p055 against
baseBAO+τ0p055), and black (basePK +H073p02 + τ0p055
against baseBAO+H073p02 + τ0p055). The dotted line at
Mν = 0.0986 eV denotes the minimal allowed mass in the IH
scenario. It can be clearly seen that with our current analyses
methods geometrical information supersedes shape informa-
tion in constraining power.
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rameters are known. 7. The prescription we adopted re-
lating the galaxy to the matter power spectrum is among
the simplest choices. However, it is not necessarily true
that more sophisticated choices with more nuisance pa-
rameters would further degrade the constraining power
of shape measurements, particularly if we were to obtain
a handle on the functional form of the scale-dependent
bias [120–128]. On the other hand, it remains true that
the possibility of benefiting from a large number of modes
by increasing the value of kmax (which remains one of
the factors limiting the constraining power of shape in-
formation compared to geometrical one) would require
an exquisite knowledge of non-linear corrections, a topic
which is the subject of many recent investigations par-
ticularly in the scenario where massive neutrinos are
present, see e.g. [117, 118, 219–226]. The conclusion,
however, remains that improvements in our current anal-
yses methods, as well as further theoretical and modeling
advancements, are necessary to exploit the full constrain-
ing power of shape measurements (see also [227–229]).

Finally, we notice that, even without considering the
high-` polarization data, we obtain the very constrain-
ing bound of Mν < 0.114 eV at 95% C.L. for the
baseBAO+H073p02+τ0p055+SZ datasets. We caution
again against the artificialness of bounds obtained using
the H073p02 prior, as the tension with primary CMB
determinations in H0 leads to a degradation in the qual-
ity of fit. Nonetheless, even without considering the
H0 prior, we still obtain a very constraining bound of
Mν < 0.151 eV at 95% C.L. In any case, results adopt-
ing these dataset combinations contribute to reinforcing
the previous (weak) cosmological hints favouring the NH
scenario [23].

Table VII shows the equivalent to Tab. VI but with
the high-` polarization dataset included, i.e. adding the
highP Planck dataset in the analyses. We note that the
results are quite impressive, and it is interesting to ex-
plore how far could one currently get in pushing the
neutrino mass limits by means of the most aggressive
and least conservative datasets. The tightest limits we
find are Mν < 0.093 eV at 95% C.L. using the base-
polBAO+H073p02+τ0p055+SZ dataset, well below the
minimal mass allowed within the IH. Therefore, within
the less-conservative approach illustrated here, especially
due to the use of the H073p02 prior, there exists a weak
preference from present cosmological data for a normal
hierarchical neutrino mass scheme. Neglecting the infor-
mation from the H073p02 prior, which leads to an artifi-
cially tight bound as previously explained, the preference
turns out to be weaker (Mν < 0.118 eV from the basepol-
BAO+τ0p055 dataset combination) but still present.

We end with a consideration, stemming from the obser-

7 Moreover, at least another nuisance parameter is required in or-
der to account for systematics in the measured galaxy power
spectrum, although the impact of this parameter is almost neg-
ligible, as we have checked (see Refs. [23, 146, 198])

0.0 0.1 0.2 0.3 0.4

Mν [eV]

0.0

0.2

0.4

0.6

0.8

1.0

P
/

P
m

a
x

basepolPK

basepolBAO

basepolPK+τ0p055

basepolBAO+τ0p055

basepolPK+H073p02+τ0p055

basepolBAO+H073p02+τ0p055

FIG. 3. As Fig. 2, but with the addition of high-` polarization
anisotropy data. Hence, the datasets considered are the base-
line datasets basePK and baseBAO, and combinations with
external datasets. Once more, it can be clearly seen that
with our current analyses methods geometrical information
supersedes shape information in constraining power.

vation that with our current analyses methods BAO mea-
surements are more constraining than full-shape power
spectrum ones. This suggests that, despite uncertain-
ties in the modeling of the galaxy power spectrum due
to the unknown absolute scale of the latter (in other
words, the size of the bias) and non-linear evolution, the
galaxy power spectrum actually represents a conservative
dataset given that the bounds on Mν obtained using the
corresponding BAO dataset are considerably tighter.

In the remainder of the Section we will be concerned
with providing a proper quantification of the statistical
significance at which we can disfavor the IH, performing
a simple but rigorous model comparison analysis.

B. Exclusion limits on the inverted hierarchy

Here we apply the method of [36] and described in
Sec. II B to determine the statistical significance at which
the inverted hierarchy is disfavored given the bounds
on Mν just obtained. Our results are summarized in
Tab. VIII. In order to quantify the exclusion limits on
the inverted hierarchy, we apply Eq. (6) to our most con-
straining dataset combinations, where the criterion for
choosing these datasets will be explained below.

Note that in Eq. (6) we set p(N) = p(I) = 0.5. That
is, we assign equal priors to NH and IH, which not only
is a reasonable choice when considering only cosmologi-
cal datasets [36], but is also the most uninformative and
most conservative choice when there is no prior knowl-
edge about the hierarchies. In any case, the formalism we
adopt would allow us to introduce informative prior in-
formation on the two hierarchies, i.e. p(N) 6= p(I) 6= 0.5.
It would in this way be possible to include information
from oscillation experiments, which suggest a weak pref-
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erence for the normal hierarchy due to matter effects (see
e.g. [10–14]). Including this weak preference does not
significantly affect our results, precisely because the cur-
rent sensitivity to the neutrino mass hierarchy from both
cosmology and oscillation experiments is extremely weak
(see also e.g. [36]).

We choose to only report the statistical significance
at which the IH is discarded for the most constraining
dataset combinations, that is, those which disfavor the
IH at > 70% C.L.: we have checked that threshold for
reaching a ≈ 70% C.L. exclusion limit of the IH is reached
by datasets combinations which disfavor at 95% C.L. val-
ues of Mν greater than ≈ 0.12 eV. In fact, the most
constraining bound within our conservative scheme, ob-
tained through the baseBAO+τ0p055 combination (thus
disfavoring datasets which exhibit some tension with
CMB or galaxy clustering measurements, for a 95% C.L.
upper limit on Mν of 0.151 eV), falls short of this thresh-
old, and is only able to disfavor the IH at 64% C.L.,
providing posterior odds for NH versus IH of 1.8 : 1.

The hierarchy discrimination is improved when
small-scale polarization is added to the aforemen-
tioned datasets combination, or when the H073p02
prior (and eventually SZ cluster counts) are added
to the same datasets combination, leading to a
71% C.L. and 72% C.L. exclusion of the IH re-
spectively. Similar levels of statistical significance
for the exclusion of the IH are reached when the
datasets combinations basepolPK+H073p02+τ0p055,
basepolPK+H073p02+τ0p055+SZ, and basepol-
BAO+H073p02 are considered, leading to 74% C.L.,
71% C.L., and 72% C.L. exclusion of the IH respectively.
However, it is worth reminding once more that the latter
figures relied on the addition of the H073p02 prior, which
leads to less reliable bounds. It is also worth noting that
our most constraining datasets combination(s), that is,
basepolBAO+H073p02+τ0p055(+SZ ), only provide a
77% C.L. exclusion of the IH.

Our findings are totally consistent with those of [36]
and suggest that an improved sensitivity of cosmological
datasets is required in order to robustly disfavor the IH,
despite current datasets are already able to substantially
reduce the volume of parameter space available within
this mass ordering. In fact, it has been argued in [36]
that a sensitivity of at least ≈ 0.02 eV is required in order
to provide a 95% C.L. exclusion of the IH. Incidentally,
not only does such a sensitivity seem within the reach of
post-2020 experiments [230], but it would also provide a
detection of Mν at a significance of at least 3σ, unless
non-trivial late-Universe effects are at play (see e.g. [47,
48]).

C. Bounds on Mν in extended parameter spaces: a
brief discussion

Thus far we have explored bounds on Mν within the
assumption of a flat background ΛCDM cosmology. We

have used different dataset combinations, and have iden-
tified the baseBAO dataset (leading to an upper limit of
Mν < 0.186 eV) combination as being the one providing
one of the strongest bounds while at the same time be-
ing one of the most robust to systematics and tensions
between datasets.

However, we expect the bounds on Mν to degrade if we
were to open the parameter space: that is, if we were to
vary additional parameters other than the 6 base ΛCDM
parameters and Mν . While there is no substantial indica-
tion for the need to extend the base set of parameters of
the ΛCDM model (see e.g. [232, 233]), one is nonetheless
legitimately brought to wonder about the robustness of
the obtained bounds against extended parameter spaces.

While a detailed study belongs to a follow-up paper in
progress [231], we nonetheless decide to present two ex-
amples of bounds on Mν within minimally extended pa-
rameter spaces. That is, we allow in one case the dark en-
ergy equation of state w to vary within the range [−3, 1]
(parameter space denoted by ΛCDM+Mν+w), and in
the other case the curvature energy density Ωk to vary
freely within the range [−0.3, 0.3] (parameter space de-
noted by ΛCDM+Mν+Ωk). Both parameters are known
to be relatively strongly degenerate with Mν and hence
we can expect our allowing them to vary to lead to less
stringent bounds on Mν . In both cases we consider for
simplicity the baseBAO dataset, for the reasons described
above: therefore, the corresponding bound within the
ΛCDM+Mν parameter space to which we should com-
pare our results to is Mν < 0.186 eV at 95% C.L., as
reported in the first row of Tab. VI.

For the ΛCDM+Mν+w extension, where we leave the
dark energy equation of state w free to vary within
the range [−3, 1], we can expect the bounds on Mν to
broaden due to a well-known degeneracy between Mν and
w [234]. Specifically, an increase in Mν can be compen-
sated by a decrease in w, due to the mutual degeneracy
with Ωm. Our results confirm this expectation. With
the baseBAO data combination we find Mν < 0.313 eV
at 95% C.L., and w = −1.08+0.09

−0.08 at 68% C.L., with

a correlation coefficient between Mν and w of −0.56. 8

The degeneracy between Mν and w is clearly visible in
the triangle plot of Fig. 4.

For the ΛCDM+Mν+Ωk extension, where we leave the
curvature energy density Ωk free to vary within the range
[−0.3, 0.3], we can again expect the bounds on Mν to
broaden due to the three-parameter geometric degener-
acy between h, Ωνh

2 and Ωk [104]. For the baseBAO
data combination we find Mν < 0.299 eV at 95% C.L.,
and Ωk = 0.001+0.003

−0.004 at 68% C.L., with a correlation
coefficient between Mν and Ωk of 0.60. The degeneracy
between Mν and Ωk is clearly visible in the triangle plot
of Fig. 5.

8 The correlation coefficient between two parameters i and j (in
this case i = Mν , j = w)is defined as R = Cij/

√
CiiCjj , with C

the covariance matrix of cosmological parameters.
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FIG. 4. 68% C.L. (dark blue) and 95% C.L. (light blue) joint
posterior distributions in the Mν-w plane, along with their
marginalized posterior distributions, for the baseBAO data
combination (see the caption of Tab. VI for further details).
Ticks on the w-axis of the upper left plot are the same as
those for the lower left plot.

A clarification is in order here: when leaving the dark
energy equation of state w and the curvature energy den-
sity Ωk free to vary, it would be extremely useful to add
supernovae data, given that these are extremely sensi-
tive to these two quantities. We have however chosen
not to do so in order to ease comparison with the bound
Mν < 0.186 eV obtained for the same baseBAO combi-
nation within the ΛCDM+Mν parameter space. More-
over, in this way we are able to reach a conservative con-
clusion concerning the robustness of Mν bounds to the
ΛCDM+Mν+w and ΛCDM+Mν+Ωk parameter spaces,
as the addition of supernovae data would lead to tighter
bounds than the Mν < 0.313 eV and Mν < 0.299 eV
quoted.

Of course, as expected, the bounds on Mν degrade the
moment we consider extended parameter spaces. Given
our discussion in Sec. IV B, this means within the ex-
tended parameter spaces considered the preference for
one hierarchy over another essentially vanishes. How-
ever, the last statement is not necessarily always true:
for instance, in certain models of dynamical dark energy
with specific functional forms of w(z), the constraints
on Mν can get tighter: an example is the holographic
dark energy model, within which bounds on Mν have
been shown to be substantially tighter than within a
ΛCDM Universe [60, 64, 218]. An interesting thing to
note, however, is that within better than 1σ uncertain-
ties (i.e. within ∼ 68% C.L.), both w and Ωk are com-
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FIG. 5. 68% C.L. (dark blue) and 95% C.L. (light blue) joint
posterior distributions in the Mν-Ωk plane, along with their
marginalized posterior distributions, for the baseBAO data
combination (see the caption of Tab. VI for further details).
Ticks on the Ωk-axis of the upper left plot are the same as
those for the lower left plot.

patible with the values to which they are fixed within the
minimal ΛCDM+Mν parameter space, that is, −1 and 0
respectively.

V. Conclusions

Neutrino oscillation experiments provide information
on the two mass splittings governing the solar and atmo-
spheric neutrino transitions, but are unable to measure
the total neutrino mass scale, Mν . The sign of the largest
mass splitting, the atmospheric mass gap, remains un-
known. The two resulting possibilities are the so-called
normal (positive sign) or inverted (negative sign) mass hi-
erarchies. While in the normal hierarchy scheme neutrino
oscillation results set the minimum allowed total neutrino
mass Mν to be approximately equal to Mν,min ∼ 0.06 eV,
in the inverted one this lower limit is Mν,min ∼ 0.1 eV.

Currently, cosmology provides the tightest bounds on
the total neutrino mass Mν , i.e. on the sum of the
three active neutrino states. If these cosmological bounds
turned out to be robustly and significantly smaller than
the minimum allowed in the inverted hierarchy, then one
would indeed determine the neutrino mass hierarchy via
cosmological measurements. In order to prepare our-
selves for the hierarchy extraction, an assessment of the
cosmological neutrino mass limits, studying their robust-
ness against different priors and assumptions concerning



17

the neutrino mass distribution among the three neutrino
mass eigenstates, is mandatory. Moreover, the devel-
opment and application of rigorous model comparison
methods to assess the preference for one hierarchy over
the other is necessary. In this work, we have analyzed
some of the most recent publicly available datasets to
provide updated constraints on the sum of the three ac-
tive neutrino masses, Mν , from cosmology.

One very interesting aspect is whether the informa-
tion concerning the total neutrino mass from the large-
scale structure of the universe in its geometrical form
(i.e. via the BAO signature) supersedes that of full-shape
measurements of the power spectrum. While previous
studies have addressed the question with former galaxy
clustering datasets, it is timely to explore the situation
with current galaxy catalogs, covering much larger vol-
umes, benefiting from smaller error-bars and also from
improved, more accurate descriptions of the mildly non-
linear regime in the matter power spectrum.

We find that, despite the latest measurements of the
galaxy power spectrum cover a vast volume of our uni-
verse, the BAO signature extracted from comparable
datasets is still more powerful than the full-shape infor-
mation, within the minimal ΛCDM+Mν model studied
here. This statement is expected to change within the
context of extended cosmological models, such as those
with non-zero curvature or a time-dependent dark energy
equation of state, and we reserve this study to future
work [231] (whereas a short discussion on the robustness
of the bounds on Mν within extended parameter spaces
is provided in Appendix B).

The reason for the supremacy of BAO measurements
over shape information is due to the cutoff in k-space im-
posed when treating the power spectrum. This cutoff is
required to avoid the impact of non-linear evolution. It
is worth reminding once more that BAO measurements
contain non-linear information wrapped in with the re-
construction procedure. This same non-linear informa-
tion cannot be used in the power spectrum due to the
choice of the conservative cutoff in k-space. Moreover,
the need for at least two additional nuisance parame-
ters relating the galaxy power spectrum to the under-
lying matter power spectrum further degrades the con-
straining power of the latter. Therefore, the stronger con-
straints obtained through geometrical rather than shape
measurements should not be seen as a limitation of the
constraining power of the latter, rather as a limitation
of methods currently used to analyze these datasets. A
deeper understanding of the non-linear regime of the
galaxy power spectrum in the presence of massive neutri-
nos, as well as further understanding of the galaxy bias
at a theoretical and observational level, are required: it
is worth noting that a lot of effort is being invested into
tackling these issues.

Finally, in this work we have presented the tight-
est up-to-date neutrino mass constraints among those
which can be found in the literature. Neglecting the de-
bated prior on the Hubble constant of H0 = (73.02 ±

1.79) km s−1Mpc−1, the tightest 95% C.L. upper bound
we find is Mν < 0.151 eV (assuming a degenerate spec-
trum), from CMB temperature anisotropies, BAO and τ
measurements. Adding Planck high-` polarization data
tightens the previous bound to Mν < 0.118 eV. Further
improvements are possible if a prior on the Hubble pa-
rameter is also added. In this less conservative approach,
the 95% C.L. neutrino mass upper limit is brought down
to the level of ∼ 0.09 eV, indicating a weak preference for
the normal neutrino hierarchy due to volume effects. Our
work also suggests that we can identify a restricted set
of conservative but robust datasets: this includes CMB
temperature data, as well as BAO measurements and
galaxy power spectrum data, after adequate corrections
for non-linearities. These datasets allow us to identify a
robust upper bound of ∼ 0.15 eV on Mν from cosmolog-
ical data alone.

In addition to providing updated bounds on the to-
tal neutrino mass, we have also performed a simple but
robust model comparison analysis, aimed at quantifying
the exclusion limits on the inverted hierarchy from cur-
rent datasets. Our findings indicate that, despite the
very stringent upper bounds we have just outlined, cur-
rent data is not able to conclusively favor the NH over
the IH. Within our most conservative scheme, we are
able to disfavor the IH with a significance of at most
64% C.L., corresponding to posterior odds of NH over IH
of 1.8 : 1. Even the most constraining and less conserva-
tive datasets combinations are able at most to disfavor
the IH at 77% C.L., with posterior odds of NH against
IH of 3.3 : 1. This suggests that further improvements in
sensitivity, down to the level of 0.02 eV, are required in
order for cosmology to conclusively disfavor the IH. For-
tunately, it looks like a combination of data from near-
future CMB experiments and galaxy surveys should be
able to reach this target.

We conclude that our findings, while unable to robustly
disfavor the inverted neutrino mass ordering, significantly
reduce the volume of parameter space allowed within this
mass hierarchy. The more robustly future bounds will
be able to disfavor the region of parameter space with
Mν > 0.1 eV, the more the IH will be put under pressure
with respect to the NH. In other words future cosmologi-
cal data, in the absence of a neutrino mass detection, are
expected to reinforce the current mild preference for the
normal hierarchy mass ordering. On the other hand, if
the underlying mass hierarchy is the inverted one, a cos-
mological detection of the neutrino mass scale could be
quick approaching. In any case, we expect neutrino cos-
mology to remain an active and exciting field of discovery
in the upcoming years.

Appendix A: The 3deg approximation

Throughout the paper we have presented bounds
within the 3deg approximation of a neutrino mass spec-
trum with three massive degenerate mass eigenstates.
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The choice was motived, as discussed in Sec. I, by the
observations that the NH and IH mass splittings have a
tiny effect on cosmological data, when compared to the
3deg approximation with the same value of the total mass
Mν . Here we discuss the conditions under which this ap-
proximation is mathematically speaking valid. We also
briefly discuss why the 3deg approximation is nonetheless
physically accurate given the sensitivity of current data.

Mathematically speaking, the 3deg approximation is
valid as long as:

m0 � |mi −mj | , ∀i, j = 1, 2, 3 , (21)

where m0 = m1 [m3] in the NH [IH] scenario (see
Sec. I for the definition of the labeling of the three mass
eigenstates). Recall that, according to our convention,
m1 < m2 < m3 [m3 < m1 < m2] in the NH [IH]. There-
fore, the 3deg approximation is strictly speaking valid
when the absolute neutrino mass scale is much larger
than the individual mass splittings. A good candidate
for a figure of merit to quantify the goodness of the 3deg
approximation can then be obtained by considering the
ratio of any given mass difference, over a quantity pro-
portional to the absolute neutrino mass scale. This leads
us to consider the following figure(s) of merit:

ζij ≡
3|mi −mj |

Mν
, (22)

where the indices i, j run over i, j = 1, 2, 3. The figures
of merit ζij quantify the goodness of the 3deg approxi-
mation. In the case where the 3deg approximation were
exact (which, of course, is physically impossible given
the non-zero mass-squared splittings), one would have
ζij = 0. The 3deg approximation, then, can be consid-
ered valid from a practical point of view as long as ζij
is sufficiently small, where the amount of deviation from
ζij = 0 one can tolerate defines what is sufficiently small
and hence the validity criterion for the 3deg approxima-
tion.

In Fig. 6 we plot our figure(s) of merit ζij , for i, j = 1, 2
(red) and i, j = 1, 3 (blue) in Eq. (22) and for the NH
(solid) and IH (dashed) scenarios (see the caption for de-
tails), against the total neutrino mass Mν . We plot the
same quantities, but this time against the lightest neu-
trino mass m0 = m1 [m3] for the NH [IH], in Fig. 7. As
we discussed previously, the 3deg approximation would
be exact if ζij = 0 (which of course cannot be displayed
due to the choice of a logarithmic scale for the y axis).

As we already discussed, the decision of whether or not
3deg is a sensible approximation mathematically speak-
ing depends on the amount of deviation from ζij = 0
that can be tolerated. As an example, from Fig. 6 and
Fig. 7 we see that, considering an indicative value of
Mν ≈ 0.15 eV, the value of ζ13 ≈ 0.4, indicating a ≈ 40%
deviation from the exact 3deg scenario, which can hardly
be considered small.

This indicates that, within the remaining allowed re-
gion of parameter space, the 3deg approximation is math-
ematically speaking not valid. It is worth remarking that
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FIG. 6. Figures of merit ζij , defined in Eq. (22) and which
quantify the goodness of the 3deg approximation, as a func-
tion of the total neutrino mass Mν . ζij = 0 (not displayed
in this plot due to the logarithmic scale on the y axis) cor-
responds to the unphysical case where the 3deg approxima-
tion is exact. The red lines correspond to i, j = 1, 2 [that
is, ζ = 3(m2 − m1)/Mν ], whereas the blue lines correspond
to i, j = 1, 3 [that is, ζ = 3|m3 − m1|/Mν ], with solid and
dashed lines corresponding to the NH and IH scenarios re-
spectively. The solid vertical line at Mν = 0.15 eV represents
the indicative upper limit on Mν of 0.15 eV obtained in our
analysis.
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FIG. 7. As Fig. 6, but with the figures of merit plotted against
the mass of the lightest mass eigenstate m0 = m1 [m3] for NH
[IH]. The solid and dashed vertical lines at ' 0.03 eV and '
0.04 eV respectively represent the masses of m0 corresponding
to the indicative upper limit on Mν of 0.15 eV obtained in our
analysis.

there is a degree of residual model dependency as this
conclusion was reached taking at face value the indicative
upper limit on Mν of ≈ 0.15 eV, which has been derived
under the assumption of a flat ΛCDM background. One
can generically expect the bounds we obtained to be loos-
ened to some extent if considering extended cosmological
scenarios (although this needs not necessarily always be
the case).

A different issue is, instead, whether the 3deg approxi-
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mation is physically appropriate, given the sensitivity of
current and near-future experiments. The issue has been
discussed extensively in the literature, and in particular
in some recent works [23, 38, 105]. It has been argued
that, if Mν > 0.1 eV, future cosmological observations,
while measuring Mν with high accuracy, will not be able
to discriminate between the NH and the IH. In any case,
cosmological measurements in combination with labora-
tory experiments will in this case (Mν > 0.1 eV) play a
key role in unravelling the hierarchy [62]. If Mν < 0.1 eV,
most of the discriminatory power in cosmological data
between the NH and the IH is essentially due to vol-
ume effects: i.e., the fact that oscillation data force
Mν,min ' 0.1 eV in the IH, implying that the IH has
access to a reduced volume of parameter space with re-
spect to the NH.

Another example of the goodness of the 3deg approxi-
mation is provided in [100] considering a combination of
forecasts for COrE, Euclid, and DESI data. Specifically,
[100] considered a fiducial mock dataset generated im-
plementing the full NH or IH, and then studied whether
fitting the fiducial dataset using the 3deg approximation
rather than the “true” NH or IH would lead to substan-
tial biases. The findings suggest that, apart from small
O(0.1σ) reconstruction biases (which can be removed for
Mν < 0.1 eV), the 3deg approximation is able to recover
the fiducial value of Mν (as long as the free parameter
is taken to be consistently either Mν or m0). This sug-
gests that even with near-future cosmological data the
3deg approximation will still be sufficiently accurate for
the purpose of estimating cosmological parameters, and
further validates the goodness of the 3deg approximation
in our work.

The conclusion is that current cosmological datasets
are sensitive to the total neutrino mass Mν rather than to
the individual masses mi, implying that the 3deg approx-
imation is sufficiently precise for the purpose of obtaining
reliable cosmological neutrino mass bounds for the time
being. On the other hand, for future high precision cos-
mological data, which could benefit from increased sensi-
tivity and could reliably have access to non-linear scales
of the matter power spectrum, modelling the mass split-
tings correctly will matter.

In conclusion, although the 3deg approximation is not,
mathematically speaking, valid in the remaining volume
of parameter space, it is physically speaking a good ap-
proximation given the sensitivity of current datasets.
However, quantitative claims about disfavoring the in-
verted hierarchy have to be drawn with care, making use
of rigorous model comparison methods.

Appendix B: The 1mass approximation

As argued in a number of works, the ability to robustly
reach an upper bound on Mν of ≈ 0.1 eV translates more
or less directly into the ability of excluding the inverted
hierarchy at a certain statistical significance, as we quan-

tified in Sec. IV B. In this case it is desirable to check
whether one’s conclusions are affected by assumptions
on the underlying neutrino mass spectrum. Throughout
our paper we have presented bounds on Mν making the
assumption of a spectrum of three massive degenerate
neutrinos, denoted 3deg. As we have argued extensively
(see e.g. Appendix A), given the sensitivity of current
data, this assumption does not to any significant extent
influence the resulting bounds. Nonetheless, it is inter-
esting and timely to investigate the dependence of neu-
trino mass bounds under assumptions of different mass
spectra, which was recently partly done in [23].

Here, as in [23], we consider (in addition to the 3deg
spectrum) the approximation spectrum featuring a single
massive eigenstate carrying the total mass Mν together
with two massless species. We refer to this scheme by
the name 1mass:

m1 = m2 = 0 ,m3 = Mν (1mass) . (23)

The motivation for the 1mass choice is twofold: i) it is
the usual approximation adopted when performing cos-
mological analyses with the total neutrino mass fixed to
Mν,min = 0.06 eV, in order to mimic the minimal mass
scenario in the case of the NH (m1 = 0 eV, m2 � m3),
and ii) it might provide a better description of the under-
lying neutrino mass ordering in the Mν < 0.1 eV mass
region, in which m1 ∼ m2 � m3, although a complete
assessment goes beyond the scope of our work. The latter
is the main motivation for exploring the 1mass approxi-
mation further, given the recent weak cosmological hints
favoring the NH.

Before proceeding, it is useful to clarify why we have
chosen to focus on results within the 3deg scheme. As
we discussed, it has been observed that the impact of the
NH and IH mass splittings on cosmological data is tiny if
one compares the 3deg approximation to the correspond-
ing NH and IH models with the same value of the total
mass Mν . However, this does not necessarily hold when
the comparison is made between 3deg and 1mass, because
the latter always has two pure dark radiation components
(see footnote 8 for a definition of dark radiation) through-
out the whole expansion history and, in particular, at the
present time (on the other hand, NH and IH can have
at most one pure radiation component at present time,
a situation which occurs in the minimal mass scenario
when m0 = 0 eV and thus only for one specific point in
neutrino mass parameter space) 9. The extra massless

9 Dark radiation consists of any weakly or non-interacting extra
radiation component of the Universe, see e.g. [235] for a review
and [236, 237] for recent relevant work in connection to neutrino
physics. For example, sterile neutrinos may in some models have
contributed as dark radiation, see e.g. [238, 239], or possibly ther-
mally produced cosmological axions [240, 241]. Dark radiation
might also arise in dark sectors with additional relativistic de-
grees of freedom which decouple from the Standard Model as,
for instance, hidden photons (see e.g. [242–253]).
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component(s) present in the 1mass case, but not in the
NH and IH (1mass features only one extra component
compared to the NH and IH if these happen to corre-
spond to the minimal mass scenario where m0 = 0 eV; if
m0 6= 0 eV, 1mass possesses two extra massless compo-
nents), are known to have a non-negligible impact on cos-
mological observables, in particular the CMB anisotropy
spectra [23, 30].

Let us now discuss how the bounds on Mν change
when passing from the 3deg to the 1mass approxima-
tion. We observe that when considering the base dataset
combinations, and extensions thereof (i.e. the combina-
tions considered in Tab. IV, where we report the 3deg re-
sults), the bounds obtained within the 1mass approxima-
tion are typically more constraining than the 3deg ones,
by about ∼ 2 − 8%. For example, the 95% C.L. upper
bound on Mν is tightened from 0.716 eV to 0.658 eV for
the base combination, from 0.299 eV to 0.293 eV for the
base+P(k) combination, and from 0.246 eV to 0.234 eV
for the basePK combination. When small-scale polariza-
tion data is added (see Tab. V for the 3deg results), we
observe a reversal in this behaviour: that is, the bounds
obtained within the 1mass approximation are looser than
the 3deg ones. For example, the 95% C.L. upper bound
on Mν is loosened from 0.485 eV to 0.619 eV for the base-
pol combination, from 0.275 eV to 0.300 eV for the base-
pol+P(k) combination, and from 0.215 eV to 0.228 eV for
the basepolPK combination.

Regarding the baseBAO and basepolBAO dataset com-
binations and extensions thereof (see Tabs. VI, VII for
the 3deg results), no clear trend emerges when passing
from the 3deg to the 1mass approximation, although we
note that the bounds typically degrade slightly: for ex-
ample, the 95% C.L. upper bound on Mν is loosened from
0.186 eV to 0.203 eV for the baseBAO combination, and
from 0.153 eV to 0.155 eV for the basepolBAO combina-
tion.

We choose not to further investigate the reason behind
these tiny but noticeable shifts because, as previously
stated, the 1mass distribution is less “physical”, owing
to the presence of two unphysical dark radiation states.
Instead, we report these numbers in the interest of notic-
ing how these shifts suggest that, at present, cosmological
measurements are starting to become sensitive (albeit in
a very weak manner) to the late-time hot dark matter
versus dark radiation distribution among the neutrino
mass eigenstates, a conclusion which had already been
reached in [23].

One of the reasons underlying the choice of studying
the 1mass approximation is that this scheme might rep-
resent an useful approximation to the minimal mass sce-
nario in the NH. Of course, the possibility that the un-
derlying neutrino hierarchy is inverted is far from being
excluded. This raises the question of whether an analo-
gous scheme, which we refer to as 2mass (already stud-
ied in [23]), might instead approximate the minimal mass

scenario in the IH:

m3 = 0 ,m1 = m2 = Mν/2 (2mass) . (24)
Of course, the previously discussed considerations con-
cerning the non-physicality of the 1mass approximation
(due to the presence of extra pure radiation components)
automatically apply to the 2mass approximation as well.
Moreover, we note that bounds on Mν obtained within
the 2mass approximation (which features one pure radia-
tion state) are always intermediate between those of the
3deg (which features no pure radiation state) and the
1mass (which features two pure radiation states) ones
(see also e.g. [23]). This confirms once more that the
discrepancy between bounds within these three differ-
ent approximations are to be attributed to the impact
of the unphysical pure radiation states on cosmological
observables, in particular the CMB anisotropy spectra.
In conclusion, we remark once more that, while the 3deg
approximation is sufficiently accurate given the precision
of current data, other approximations which introduce
non-physical pure radiation states, such as the 1mass and
2mass ones, are not. Adopting these to obtain bounds on
Mν might instead lead to unphysical shifts in the deter-
mination of cosmological parameters, and hence should
be avoided.
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Dataset Content References

base PlanckTT+lowP [40, 107]
basepol PlanckTT+lowP+highP [40, 107]
P (k) SDSS-III BOSS DR12 CMASS P (k) [144]
BAO BAO from 6dFGS BAO, WiggleZ, SDSS-III BOSS DR11 LOWZ [157–159]

BAOFULL BAO from 6dFGS, WiggleZ, SDSS-III BOSS DR11 LOWZ, SDSS-III BOSS DR11 CMASS [157–159]
basePK base+P (k)+BAO [40, 107, 144, 157–159]

basepolPK basepol+P (k)+BAO [40, 107, 144, 157–159]
baseBAO base+BAOFULL [40, 107, 144, 157–159]

basepolBAO basepol+BAOFULL [40, 107, 144, 157–159]
SZ Planck SZ clusters [191, 192]

TABLE II. Specific datasets and combinations thereof used in this work, and associated references to work where the data is
presented and/or discussed.

Dataset Type of measurement zeff Measurement Reference

6dFGS rs(zdrag)/Dv(zeff) 0.106 0.336± 0.015 Beutler et al., MNRAS 416 (2011) 3017 [157]
WiggleZ A(z) 0.44 0.474± 0.034 Blake et al., MNRAS 418 (2011) 1707 [158]

A(z) 0.60 0.442± 0.020 Blake et al., MNRAS 418 (2011) 1707 [158]
A(z) 0.73 0.424± 0.021 Blake et al., MNRAS 418 (2011) 1707 [158]

BOSS DR11 LOWZ Dv(zeff)/rs(zdrag) 0.32 8.250± 0.170 Anderson et al., MNRAS 441 (2014) 1, 24 [159]
BOSS DR11 CMASS Dv(zeff)/rs(zdrag) 0.57 13.773± 0.134 Anderson et al., MNRAS 441 (2014) 1, 24 [159]

TABLE III. Baryon Acoustic Oscillation measurements considered in this work. From left to right, the columns display the
survey, the type of measurement, the effective redshift, the measurement, and the associated reference.

Dataset Mν (95% C.L.)

base ≡ Planck TT+lowP < 0.716 eV
base+P (k) < 0.299 eV

basePK ≡ base+P (k)+BAO < 0.246 eV
basePK +τ0p055 < 0.205 eV

basePK +SZ < 0.239 eV
basePK +H073p02 < 0.164 eV
basePK +H070p6 < 0.219 eV

basePK +H073p02+τ0p055 < 0.140 eV
basePK +H073p02+τ0p055+SZ < 0.136 eV

TABLE IV. 95% C.L. upper bounds on the sum of the three active neutrino masses Mν . The left column lists the combination
of cosmological datasets adopted. PlanckTT and lowP denote measurements of the CMB full temperature and of the low-`
polarization anisotropies from the Planck satellite 2015 data release, respectively. P (k) denotes the galaxy power spectrum of
the CMASS sample from the SDSS-BOSS data release 12 (DR12), with marginalization over the bias and the shot noise, see
Eq. (12). BAO refers to the combination of BAO measurements from the BOSS data release 11 LOWZ sample, the 6dFGS
survey, and the WiggleZ survey (see Table III). τ0p055 denotes a prior on the optical depth to reionization of τ = 0.055±0.009 as
measured by the Planck HFI. H073p02 and H070p6 denote priors on the Hubble parameter of H0 = 73.02±1.79 km s−1 Mpc−1

and H0 = 70.6 ± 3.3 km s−1 Mpc−1, respectively, based on two different HST data analyses. SZ consists of Planck cluster
counts measurements via thermal Sunyaev-Zeldovich effects. The right column shows the results (95% C.L. upper bounds on
Mν) obtained assuming a degenerate (3deg) mass spectrum.

Dataset Mν (95% C.L.)

basepol ≡ PlanckTT+lowP+highP < 0.485 eV
basepol+P (k) < 0.275 eV

basepolPK≡basepol+P (k)+BAO < 0.215 eV
basepolPK +τ0p055 < 0.177 eV

basepolPK +SZ < 0.208 eV
basepolPK +H073p02 < 0.132 eV
basepolPK +H070p6 < 0.196 eV

basepolPK +H073p02+τ0p055 < 0.109 eV
basepolPK +H073p02+τ0p055+SZ < 0.117 eV

TABLE V. As Tab. IV, but with the addition of highP, referring to the small-scale CMB polarization anisotropies data.
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Dataset Mν (95% C.L.)

baseBAO ≡ PlanckTT+lowP+BAOFULL < 0.186 eV
baseBAO+τ0p055 < 0.151 eV

baseBAO+H073p02 < 0.148 eV
baseBAO+H073p02+τ0p055 < 0.115 eV

baseBAO+H073p02+τ0p055+SZ < 0.114 eV

TABLE VI. As Tab. IV, but with the P (k) and the BAO datasets replaced by the BAOFULL dataset, which comprises
BAO measurements from the BOSS data release 11 (both CMASS and LOWZ samples), the 6dFGS survey, and the WiggleZ
survey (see Tab. III). The relative constraining power of the geometric technique versus the shape approach can be inferred
by comparing the results of the first, second, third, fourth and fifth row to those shown in the third, fourth, sixth, eighth and
ninth rows of Tab. IV, respectively. The result is that, given our current analyses methods, geometrical information is more
powerful than the shape one, see also the main text and Fig. 2.

Dataset Mν (95% C.L.)

basepolBAO ≡ PlanckTT+lowP+highP+BAOFULL < 0.153 eV
basepolBAO+τ0p055 < 0.118 eV

basepolBAO+H073p02 < 0.113 eV
basepolBAO+H073p02+τ0p055 < 0.094 eV

basepolBAO+H073p02+τ0p055+SZ < 0.093 eV

TABLE VII. As Tab. VI, but with the addition of highP, referring to the small-scale CMB polarization anisotropies data. The
relative constraining power of the geometric technique versus the shape approach can be inferred by comparing the results
of the first, second, third, fourth and fifth row to those shown in the third, fourth, sixth, eighth and ninth rows of Tab. V,
respectively. The result is that, given our current analyses methods, geometrical information is more powerful than the shape
one, see also the main text and Fig. 3.

Dataset Mν (95% C.L., 3deg) CLIH pN/pI

basepolPK +H073p02+τ0p055 < 0.109 eV 74% 2.8 : 1
basepolPK +H073p02+τ0p055+SZ < 0.117 eV 71% 2.4 : 1

baseBAO+H073p02+τ0p055 < 0.115 eV 72% 2.6 : 1
baseBAO+H073p02+τ0p055+SZ < 0.114 eV 72% 2.6 : 1

basepolBAO+τ0p055 < 0.118 eV 71% 2.4 : 1
basepolBAO+H073p02 < 0.113 eV 72% 2.6 : 1

basepolBAO+H073p02+τ0p055 < 0.094 eV 77% 3.3 : 1
basepolBAO+H073p02+τ0p055+SZ < 0.093 eV 77% 3.3 : 1

TABLE VIII. Exclusion C.L.s of the Inverted Hierarchy from our most constraining dataset combinations, obtained through
a rigorous model comparison analysis. Only dataset combinations which disfavor the IH at > 70% C.L. are reported. The
first column lists the combination of cosmological datasets adopted, see Tab. II for definitions. The second column reports the
95% C.L. upper limit on Mν , obtained assuming the 3deg spectrum of three massive degenerate neutrinos. The third column
reports CLIH, the C.L. at which the IH is disfavored, calculated via Eq. (7). Finally, the last column shows the relative posterior
odds for NH versus IH, with the posterior probabilities for both mass orderings obtained via Eq. (6).
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