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Models of gravitational waveforms play a critical role in detecting and characterizing the grav-
itational waves (GWs) from compact binary coalescences. Waveforms from numerical relativity
(NR), while highly accurate, are too computationally expensive to produce to be directly used
with Bayesian parameter estimation tools like Markov-chain-Monte-Carlo and nested sampling. We
propose a Gaussian process regression (GPR) method to generate reduced-order-model waveforms
based only on existing accurate (e.g. NR) simulations. Using a training set of simulated waveforms,
our GPR approach produces interpolated waveforms along with uncertainties across the parameter
space. As a proof of concept, we use a training set of IMRPhenomD waveforms to build a GPR
model in the 2-d parameter space of mass ratio q and equal-and-aligned spin χ1 = χ2. Using a reg-
ular, equally-spaced grid of 120 IMRPhenomD training waveforms in q ∈ [1, 3] and χ1 ∈ [−0.5, 0.5],

the GPR mean approximates IMRPhenomD in this space to mismatches below 4.3 × 10
−5

. Our
approach could in principle use training waveforms directly from numerical relativity. Beyond in-
terpolation of waveforms, we also present a greedy algorithm that utilizes the errors provided by
our GPR model to optimize the placement of future simulations. In a fiducial test case we find that
using the greedy algorithm to iteratively add simulations achieves GPR errors that are ∼ 1 order of
magnitude lower than the errors from using Latin-hypercube or square training grids.

I. INTRODUCTION

The advent of gravitational wave (GW) detections has
reinforced the need for accurate GW waveform models.
The discovery and parameter estimates of the first LIGO
detections were based on matched-filtering techniques
which compared the data with predicted GW waveforms
[1–3]. Parameter estimation (PE) of these events has al-
ready revealed key astrophysical insights [4, 5]. These in-
ferences depend crucially on robust signal detection and
parameter estimation, which in turn depend on accurate
signal modeling.

Ideally, PE studies with matched-filtering analyses
would directly use solutions to Einstein’s equations for
comparison to observed strain data. At present the most
accurate solutions to Einstein’s equations for compact
binary coalescences (CBCs) come from numerical rela-
tivity (NR). Some of these NR simulations have been
compared directly to GW150914 and GW151226, with
excellent agreement [2, 6, 7]. While numerical relativity
solutions are accurate, they can take weeks to months to

compute [6], and thus are prohibitively computationally
expensive for use in PE.

For binary black holes, PE requires waveform models
to cover a 7-d parameter space. For circularized binary
black holes, there are 15 source parameters which need
to be estimated, eight of which are intrinsic to the bi-
nary (each black hole has a 3-d spin vector and a mass).
Circularized binary waveform models need only seven in-
trinsic parameters: the binary’s mass ratio and the two
spin vectors. This is because the system’s total mass
sets the frequency scale for the GW; twice the total
mass implies half the gravitational-wave frequency. A
shift in the binary total mass simply results in a shift
in the gravitational waveform frequency, so waveforms in
practice the strain need only be solved as a function of
the black-hole spins and the binary’s mass ratio. Since
each NR simulation can take many weeks to run, densely
filling the 7-d mass-ratio + spin parameter space with
NR waveforms for matched-filter analyses is inconceiv-
able with current resources.

To circumvent the computational expense of NR sim-
ulations, approximate waveforms (“approximants”, e.g.
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[8–13]) are instead used for PE [4]. These approximants
vary in accuracy, computational expense, source parame-
ter domain, and approximation method, which can limit
the potential breadth of PE searches or result in biased
parameter estimates [14]. The SEOBNRv3 approximant,
for example, is the most complete in that it models a 7-d
intrinsic parameter space for CBCs in the effective one-
body framework, but it has only been calibrated to a few
non-precessing NR simulations and requires significant
computational resources to generate waveforms [15].

Data-driven models exist as well, such as NR sur-
rogates, which fit to existing NR simulations to facili-
tate interpolation of waveforms at new parameter points
[16, 17]. As computational resources for generating NR

waveforms increase, data-driven models can more readily
be used for PE as well as calibration and testing of ap-
proximate models (e.g. [18]). Although recent work has
shown that PE studies can be done directly with NR sim-
ulations [19], robust surrogate and ROM models will still
be highly valuable for an array of tasks beyond PE, such
as calculations of coalescence rates and tests of General
Relativity.

Here we propose a method to obtain reduced-order-
model (ROM) waveforms and “interpolation” uncertain-
ties using only a training set of simulations at a small
number of points in parameter space. The impetus
for using ROMs, which are concise representations of
waveforms, is that our method interpolates between
waveforms “observed” in simulations and hence benefits
computationally from reduced waveform dimensionality.
That is, if a time-series waveform with N points can in-
stead be represented by a list of m < N features, only
m, rather than N , evaluations are required to produce a

gravitational waveform with source parameters ~λ.

For interpolation, we employ a technique known as
Gaussian process regression (GPR). The advantage of a
Gaussian process (GP) method is that it is statistical
and fast. We describe our basic method in §II, which
largely replicates the ROM work of [20], but instead of
using spline interpolation to provide point predictions
we use GPR to provide a statistical interpolation with
uncertainties. The primary application of our method
would be to use NR simulations to train a flexible, NR-
driven GPR waveform model with quantified uncertain-
ties. Although the end goal is to use NR simulations for
training, in this paper we only present a proof of con-
cept. Rather than NR waveforms, we use approximant
waveforms from IMRPhenomD [21] to train and cross-
validate, since they can be generated quickly and for a
wide range of parameter values. §III details the results
of cross-validating GPR models trained on a small num-
ber of IMRPhenomD waveforms with the IMRPhenomD
waveforms themselves. We find that the GPR model,
trained on just a small subsample of IMRPhenomD wave-
forms, is able to reproduce IMRPhenomD waveforms to
excellent accuracy. Future work will implement an NR

training set in the GPR model.

One major advantage of the use of GPR methods is
that they naturally provide estimates of the errors in the
resulting waveforms. Current waveform approximants
used in LIGO PE are implicitly assumed to be perfect,
although multiple approximants are used to assess sys-
tematic errors. A more refined analysis, leading to im-
proved PE results, would incorporate errors in the wave-
form approximants, especially as a function of location
in parameter space. The GPR methods naturally pro-
vide a statistically consistent estimate of these errors.
[22] and [23] proposed an improvement to PE in which
GPR is used to infer the systematic error on an approxi-
mant over the parameter space. They train their GP on
the systematic errors between approximants and simula-
tions for parameters where simulations exist. The sys-
tematic errors inferred from GPR are then propagated to
the likelihood function used in PE. A proof of concept of
this systematic error interpolation method has only been
done in 1-d, and it requires an existing approximant off of
which to interpolate the errors. In contrast, our method
requires no other approximants. Additionally, we con-
sider both 1- and 2-d in this work, though extending to
more dimensions is straightforward in principle.

A further advantage of GPR methods and the associ-
ated waveform error estimates is that these can be used
to optimize the placement of new simulations which can
be added to the training set. In §IV we describe a method
for estimating where in parameter space the GPR model
has high error, based only on the GPR uncertainties. This
estimate is a natural metric for “greedily” deciding where
new simulations are needed to minimize GPR model er-
rors. In effect, our method will tell you the “optimal”
place in parameter space to run the next simulation. An
iterative procedure of GPR building and NR simulation
leads to an efficient training set and GPR interpolation
based on fewer training points than a naive regular grid.
We outline that iterative procedure here:

1. Use existing (NR) simulations to build a GPR model
with uncertainties.

2. Use GPR uncertainties to estimate where in param-
eter space errors in the GPR model are highest.

3. Generate new simulations at parameter values with
high estimated GPR error and rebuild a GPR model
with the augmented training set that includes the
new simulations.

4. Repeat.

In §V we discuss alternate choices that could be made
with respect to GPR modeling of GWs, as the ideas pre-
sented herein serve more as a framework for GPR GW

models than as an immutable, specific method. We also
consider the evaluation time of GPR models, which vary
in speed depending on the number of training waveforms
and ROM coefficients. We conclude in §VI.
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II. METHOD

A. Outline for building GPR models

To minimize the computational expense of waveform

interpolation at source parameters ~λ, we represent the
waveforms with a ROM. We utilize the method described
in Pürrer [20] (hereafter P14), but other choices for build-
ing ROMs could also be made (e.g. [24]). The steps we
take to create a GPR waveform interpolation model based
on simulations are:

1. Simulate ntrain frequency-domain waveforms at ~λ =

{~λj}ntrain
j=1 to cover the parameter space of interest

for use as the training set.

2. Project waveforms into a reduced-order basis so

that a waveform with parameters ~λ is described

by a list of coefficients {ci(~λ)}mi=1, where m =
dim(basis).

3. Regularize each ci function by subtracting a linear

fit of the training values ci({~λj}) and normalizing.
Define c̃i ≡ Regularize(ci).

4. Assume each c̃i(~λ) is a realization of a Gaussian

process, and use c̃i({~λj}) as the training set to

regress c̃i(~λ) ≈ c̃i,GP(~λ).

5. Transform {c̃i(~λ)} and their uncertainties to the
domain of interest (e.g. frequency domain for LIGO

PE) by applying the reverse of the regularizations
in step 3 and then projecting the coefficients out
of the ROM basis back to the time or frequency
domain. The specific operations to go from the
ROM to the time or frequency domain depend on
which ROM is used.

We discuss all of these steps in detail below.

B. Waveform Generation and Representation

We generate fixed-chirp-mass, frequency-domain IMR-
PhenomD waveforms (with a starting frequency of 20 Hz,
maximum frequency of 1520 Hz, and frequency resolution
of 0.01 Hz) at various source parameter values, and inter-
polate the amplitudes and phases separately onto sparse
frequency grids as in §5.1 of P14[25]. For simplicity, only
the h+ components of the waveforms are considered here,
but the methods presented herein can be identically ap-
plied to h×, or h+ can be used to calculate h× as in
equations 6.14 and 6.15 in P14. For the sparse frequency
grid, we choose an amplitude grid spacing at frequency f

of ∆A = 0.1f and a phase grid spacing of ∆Φ = 0.3f4/3;
P14 found that these grid spacings keep a constant spline
interpolation error at all frequencies. The interpolated
amplitudes and phases are then packed into the columns

of matrices TA, TΦ, and a SVD is performed on each
matrix (see §6 of P14):

TA = VAΣAU
>
A ,

TΦ = VΦΣΦU
>
Φ .

(1)

P14 truncates the V matrices to reduce the dimension-
ality of the ROM, but for simplicity we instead directly
compute projection coefficients c(τ) for each input ampli-
tude or phase τ (amplitude and phase subscripts dropped
for ease of notation):

c(τ) = V >τ. (2)

Each element of c is a function of τ and hence a function
of the input parameters ~λ. The following sections de-
scribe how the elements of c are interpolated across the
parameter space to extract new waveforms with uncer-
tainties.

C. Gaussian Process Regression

GPR is a tool for emulating (i.e., statistically infer-
ring) the behavior of functions of continuous variables.
It is commonly used to predict the output of simulations
which are too expensive to run for many parameter val-
ues (e.g. [26, 27]). In the case of GWs, we wish to infer
new strain waveforms from existing NR simulations. The
basic assumption in GPR is that any finite subset of val-
ues of a process f(~x) have a joint Gaussian distribution
and thus can be described by a mean function ~µ and
covariance function k(~x, ~x′):

f(~x) ∼ GP(~µ,k(~x, ~x′)). (3)

Given a list of known values of a function f =
{f1(~x1), f2(~x2), ...} at ntrain training points X =
{~x1, ~x2, ...}, we can calculate the probability distribu-
tion for f∗ = {f1∗(~x1∗), f2∗(~x2∗), ...} at new points X∗ =
{~x1∗, ~x2∗, ...}, using the definition of a Gaussian process:
the prediction and the known values have a joint Gaus-
sian distribution. If the mean of the GP prior in Equation
3 is zero[28] then:[

f
f∗

]
= N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (4)

where N (m,K) is a multivariate normal distribution
with mean m and covariance matrix K. K(X,X),
K(X,X∗), K(X∗, X), and K(X∗, X∗) are the matrices
of covariances between pairs of training and prediction
points, the elements of which are calculated using the
covariance function k(~x, ~x′). The conditional probability
distribution of f∗ given f is itself Gaussian (see e.g. [29]):

p(f∗|f) =N
(
K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

)
.

(5)
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With covariances and a training set, f , one can calculate
the conditional mean and covariance of f∗. In GPR, the
entries of the covariance matrices are computed using a
covariance function, or kernel, which is specified by the
user and depends on the application. The kernels are
symmetric and hence only depend on the distance be-
tween points r = |x−x′|. Here we primarily consider the
squared-exponential kernel, but we discuss the choice of
covariance function in §V. A squared-exponential covari-
ance constrains the process to be infinitely mean-square
differentiable[30] and takes the form of a Gaussian:

kSE(~x1, ~x2) = kSE(r = |~x1 − ~x2|) = σ2 exp

(
−1

2
r2/l2

)
.

(6)
where σ and l are hyperparameters of the process and pa-
rameterize the signal variance and length scale, respec-
tively. The hyperparameters of this kernel can be fixed
a priori, but are typically chosen to maximize the hyper-
likelihood, the likelihood of the training data under the
GP prior (Equation 3). Here we instead maximize the
hyperposterior which incorporates prior distributions on
the hyperparameters:

hyperposterior ∝ hyperlikelihood× hyperprior. (7)

The priors on the hyperparameters, or hyperpriors, are
discussed further in §III.

In addition to selection of hyperparameters, one must
choose small values called “nuggets”[31] to add to the di-
agonal of the training points covariance matrix K(X,X)
to ensure numerical stability when computing the condi-
tional covariance. Computation of the conditional covari-
ance can result in a non-positive-semi-definite matrix due
to precision errors when the prior covariance matrix has
large values off-diagonal. These nuggets are described
further in §III.

D. Implementation of GPR-based models

We now return our focus to the training set projection

coefficients ci(~λj) at points ~λj in the input parameter
space. To reconstruct waveforms, P14 interpolates the
training projection coefficients over the parameter space
using a tensor spline interpolation. We instead use GPR

in order to account for uncertainties in the interpola-
tion. Rather than directly interpolate ci, we interpo-
late regularized coefficients c̃i to avoid secular changes of
the coefficient values over the parameter space and al-
low modeling with a zero-mean GP. The training values

ci({~λj}ntrain
j=1 ) are regularized by first subtracting a lin-

ear fit over the parameter space, then normalizing the
residual variance to 1 and removing the mean:

∆ci({~λj}) ≡ ci({~λj})− linfit
(
ci({~λj})

)
c̃i({~λj}) ≡

∆ci({~λj})−mean
(

∆ci({~λj})
)

std
(

∆ci({~λj})
) .

(8)

We then assume that each c̃i is a Gaussian process, and

use c̃i({~λj}) as a training set to regress c̃i({~λ}). Thus for

any point in parameter space ~λ we can predict c̃i(~λ) and

marginal uncertainties δc̃i(~λ) which can then be trans-
formed back to amplitude/phase by applying the reverse

of the transformations used to generate c̃i({~λj}). As-
suming ci is uncorrelated with cj unless i = j, the mean

amplitude A(Fk, ~λ) in the k-th frequency bin and covari-

ance matrix Σkl(~λ) are given by[32]:

A(Fk, ~λ) =
∑
i

V Aki c
A
i,GP(~λ),

ΣAkl(~λ) =
∑
i

V Aki δc
A
i,GP(~λ)V A>il .

(9)

The phase means and covariances, Φ(Fk, ~λ) and ΣΦ
kl(~λ),

can be reconstructed similarly with the corresponding
phase projection coefficients.

To assess the accuracy of our GPR model, we com-
pare reconstructed frequency waveform means from GPR

hGPR(Fk, ~λ) with the waveforms from IMRPhenomD

h(Fk, ~λ) using the mismatch function. The mismatch
between two frequency domain waveforms h1 and h2 is
defined as:

mismatch(h1, h2) =

1− 4

||h1||||h2||

× <
(∫ fmax

fmin

h1(f)h∗2(f)

Sf
df

)
,

(10)

where

||h|| = 4<
(∫ fmax

fmin

h(f)h(f)∗

Sf
df

)
. (11)

fmin and fmax are the minimum and maximum frequen-
cies at which the two waveforms are compared, respec-
tively, and Sf is the noise power spectral density of a GW

detector. In this paper, we use the aLIGO O1 noise curve
2015-10-01_H1_O1_Sensitivity_strain_asd.txt[33].

III. RESULTS

We now implement GPR-based models for three sets of
parameter spaces using the GaussianProcessRegressor
module from scikit-learn[34]:

1. constant zero spin
mass ratio q ∈ [1, 6]

2. equal-and-aligned spin χ1 = χ2 ∈ [−1, 1]
constant q = 1

3. equal-and-aligned spin χ1 = χ2 ∈ [−0.5, 0.5]
q ∈ [1, 3]
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All parameter spaces use waveforms with a constant chirp
mass Mc = 20M�, distance D = 1 Mpc, inclination angle
i = 0, and starting frequency of 20 Hz.
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FIG. 1. Hyperposterior for the first regularized amplitude
coefficient c̃

A
0 as a function of kernel covariance scale σ0 and

length scale l0. The hyperparameter values with largest hy-
perposterior, σ0,max and l0,max, are marked with an X on the
plot and printed at the top.

A. 1-d GPR in Mass Ratio

Beginning with Parameter Space 1, we generate
ntrain = 15 equally spaced IMRPhenomD waveforms
from q = 1 to q = 6 as a proxy for an NR training
set and compute their amplitude and phase projection
coefficients as described in §II B. The i-th coefficient is
then de-trended by removing a linear fit of the 15 train-

ing coefficient values ci({~λj}). The de-trended ci({~λj})
are then normalized by their standard deviation and their
mean is removed. We refer to the de-trended, de-meaned,
normalized coefficients as c̃i and treat each one as a GP:

c̃i ∼ GP(~0,ki(q, q
′)). (12)

The c̃i can be trivially transformed back to ci by reapply-
ing the mean, standard deviation, and linear fit. We take
the covariance function for the i-th coefficient, ki(q, q

′),
to be a squared exponential with hyperparameters σi and
li.

To ensure numerical stability in the GPR conditional
covariance matrix calculation, we add a nugget to the
input covariances for each training value. We assume a
constant relative error on the training waveform ampli-
tude of 10−4 at each frequency and transform these errors
to errors in the amplitude coefficients, which are used as
the kernel nugget. For the training phases, the error at
each frequency is kept below the nominal LIGO phase
measurement uncertainty of ∼ 0.1 radians by assuming a
constant error of 0.01 radians at each phase value on the
sparse frequency grid. These errors are projected to the
coefficient errors analogously to the amplitude error case.
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FIG. 2. First two amplitude coefficients for the IMRPhenomD
waveforms and GPR-based waveforms with their residuals.
Top panels: IMRPhenomD coefficient values (red) and GPR
mean coefficient values (black, dashed) for the first two am-
plitude coefficients. The optimized length scales are shown
above the top panels. Although the remaining coefficients are
not shown here, they have similar morphologies. Bottom pan-
els: the fractional residuals (|cAi − cAi,GP|)/cAi (solid) and the

GPR fractional 1σ uncertainties δc
A
i,GP/c

A
i (dashed).

The nugget levels here are chosen for numerical stability
and adequate accuracy, but also roughly correspond to
the resolution errors found in NR simulation studies [6].
In principle, the NR errors as a function of source pa-
rameters could be incorporated into the nugget values to
fully account for the resolutions of different simulations.

To optimize the kernel hyperparameters for each co-
efficient, we use the scipy.optimize implementation
[35] of the Broyden-Fletcher-Goldfarb-Shanno algorithm
fmin_l_bfgs_b [36] to maximize the hyperposterior. We
apply log-normal hyperpriors on σi and li:

log10(σi) ∼ N (0, 0.5)

log10(li) ∼ N
(

log10

(
1

2
width({qj}ntrain

1 )

)
, 1

)
.

(13)

Since the regularized coefficient functions being interpo-
lated have been normalized by their standard deviation,
we expect that σi ∼ 1, motivating the hyperprior on σi
above. We have less information about the length scales a
priori, but we know that they should not be much shorter
than the distance between the closest training points, nor
should they be much larger than the width of the param-
eter space. As such, the normal distribution on log10(li)
is chosen to have a standard deviation of 1 (i.e. 1 order of
magnitude) and peak at half the width of the parameter
space spanned by the training set. Figure 1 shows the
hyperposterior surface for the first amplitude coefficient
as a function of the hyperparameters using the squared-
exponential kernel. The hyperposteriors for other coeffi-
cients are similar in morphology to those shown here.
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FIG. 3. First two phase coefficients for the IMRPhenomD
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the top panels. Although the remaining coefficients are not
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FIG. 4. Example reconstructed GPR amplitude function.
Top: The interpolated GPR mean amplitude vs. frequency
is shown in blue and the IMRPhenomD amplitude is overlaid
in red. Bottom: The IMR-GPR-mean residual amplitude is
shown in red, and the GPR 1σ uncertainty is shown in blue
as a function of frequency. Both errors are normalized to the
IMRPhenomD amplitude.

With optimized hyperparameters, the GP is used to in-
terpolate each regularized coefficient on a grid five times
finer than the training grid. With the GPR model of
the c̃i’s, we can calculate each ci and transform them
back to amplitudes and phases on the sparse frequency
grid. Figures 2 and 3 show the values of the first two
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FIG. 5. Example reconstructed GPR phase function. Top:
The interpolated GPR mean phase vs. frequency is shown in
blue and the IMRPhenomD phase is overlaid in red. Bottom:
The absolute value of the IMR-GPR residual phase is shown
in red, and the GPR 1σ uncertainty is shown in blue as a
function of frequency.

amplitude and phase ci’s, respectively, as a function of
q from IMRPhenomD and from the GPR-based model.
Also shown are the fit residuals, the GPR 1σ uncertain-
ties, and the optimized length scale hyperparameter for
each coefficient function’s GP. Although the GPR errors
do not perfectly match the residuals across the parame-
ter space, they are indicative of the maximum error level
and of the fact that the errors are largest on the edges
of the space. The interpolated coefficients and their un-
certainties are then propagated back to amplitudes and
phases on the sparse frequency grid.

One such example of a GPR-interpolated waveform is
shown in Figures 4 and 5, which show the amplitude and
phase functions, respectively. Notably, the fractional am-
plitude error between the GPR model and IMRPhenomD
waveform is largest at high frequencies, because small er-
rors in the amplitude coefficients combine when projected
back to the sparse frequency grid domain. Nonetheless,
the GPR mean agrees well with the IMRPhenomD model,
and the GPR uncertainties give a reasonable indication
of the true error levels at different frequency bins. Since
PE is done in the frequency domain, these errors do not
need to be propagated to the time domain, although
frequency-domain waveforms can be sampled to create
a distribution of time-domain waveforms if required.

Figure 6 shows the mismatch between the GPR mean
waveform and the IMR waveform at various values of
q. The mismatch increases near the boundaries of the
space where there are fewer nearby training points (train-
ing points shown in dashed black vertical lines). Indeed,
the mismatches and residuals suggest that more training
points (i.e. simulations) are needed towards the edge of
the space of interest. Increasing the number of training
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FIG. 6. Mismatch between the IMRPhenomD waveform and
the GPR mean waveform for different mass ratios assuming a
constant chirp mass and zero spin. The dashed, vertical lines
show the IMRPhenomD training waveform locations used to
build the GPR model.

points typically lowers the mismatches, although it de-
pends on the nugget and hyperparameters used in the
GP. The relative placement of the simulations is also of
interest, which we discuss in §IV.

B. 1-d GPR in equal-and-aligned spin

Following an analogous method to that presented in
§III A, we generate 12 IMRPhenomD waveforms span-
ning equally-spaced equal-and-aligned spin[37] values
from χ = −1 to χ = 1. The chirp mass of Mc = 20M�
and mass ratio q = 1 are held fixed. A GPR-based wave-
form model is built using these waveforms as a training
set, again using a squared-exponential covariance func-
tion to model each c̃i. The hyperpriors on the length
scale and covariance scale are chosen in the same way as
in §III A.

The GPR model is evaluated on a grid five times finer
than the training grid and is then compared to the wave-
forms predicted in IMRPhenomD via the mismatch func-
tion. Figure 7 shows the mismatch between the GPR

mean waveform and IMRPhenomD for the 1-d space of
equal-and-aligned spin χ. Similarly to the case of mass-
ratio space, the mismatch between the GPR model and
IMRPhenomD is largest at the boundaries of the training
set. Nevertheless, we are able to achieve low mismatches
with just a few training points in this case.

C. 2-d GPR in equal aligned spin and mass ratio

We again build a training set using IMRPhenomD
waveforms as a proxy for NR simulations in order to train
a GPR-based model, except here we vary two source pa-
rameters: The mass ratio and the value of the equal-and-
aligned spins. The training waveforms are generated on
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χ1 = χ2
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FIG. 7. Mismatch between the IMRPhenomD waveform and
the GPR mean waveform for different equal-and-aligned spin
values assuming a constant chirp mass and equal masses
(q = 1). The dashed, vertical lines show the IMRPhenomD
training waveform locations used to build the GPR model.

a regular grid with 15 points in q and 8 points in χ from
q ∈ [1, 3] and χ ∈ [−0.5, 0.5]. The kernel used here is
simply an overall covariance σ times the product of two
squared-exponential kernels, one for the q dimension and
one for the χ dimension. As such, there are now two
length scale parameters, lq and lχ, as well as the over-
all covariance σ which need to be fit for each coefficient
function. Hyperpriors for the hyperparameters are cho-
sen as in previous sections, and the hyperparameters are
optimized via the hyperposterior. For computational sav-
ings, smaller windows in q and χ are considered here than
in the previous sections. Extending to the full parameter
space would simply require more training points [38]. An-
other option would be to decompose the extended domain
into smaller overlapping patches and build a GPR model
for each patch (e.g. Figure 2 of [39]). Although a regular,
equal-spacing grid leads to reasonable mismatches in this
case, there is no a priori reason to use such a grid, and
in practice the existing simulations will have non-regular
placements throughout the parameter space.

Figure 8 shows the “true” values, interpolations, and

residuals of the first amplitude SVD coefficient cA0 as a
function of q and χ. The top left panel is a color map of
the coefficient values from IMRPhenomD. The top mid-

dle and right panels show cA0,GP and cA0,spline, which are

the interpolations of cA0 with GPR and B-splines, respec-
tively. The bottom panels show the fractional residuals of
the interpolants and the estimated error from GPR. The
residuals between IMRPhenomD and the GPR model
(bottom left panel) for this amplitude coefficient are be-
low the 0.1% level and are comparable to the predicted
GPR uncertainties, providing evidence for the accuracy
and precision of the GPR model. Comparing the bot-
tom left and bottom right panels of Figure 8, the GPR

mean is roughly as accurate at the B-spline interpola-
tion for most coefficients, but the spline does not give
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any information about interpolation errors. The bottom
middle panel shows the GPR-estimated fractional errors
which give an estimate of the maximum true GPR-IMR
residual.

Figure 9 is analogous to the mismatch plots shown
in §III A and §III B, but now in two dimensions. The
black circles denote the IMRPhenomD training points,
and the color map shows the mismatch between the IM-
RPhenomD waveform and the GPR mean waveform at
each point. The mismatches calculated here are all at or
below 4.3× 10−5.

IV. WHERE SHOULD WE RUN THE NEXT
NUMERICAL RELATIVITY SIMULATION?

Two natural questions arise from considering a GP

model: 1) what is the error level of the GPR model for dif-
ferent GW source parameters, and 2) given a pre-existing
set of training waveforms, where is the “optimal” place-
ment of an additional training waveform? Thus far, we
have evaluated the accuracy of our GPR models by com-
puting the mismatch between the GPR model and the
IMRPhenomD, but in practice such comparisons will not
be possible, since the “true waveform” (i.e. NR simulation
results) will be unknown everywhere other than at the ex-
isting simulation points. As such, the mismatch between
the GPR mean and the true waveform cannot be used
to determine the GPR error level nor can it be used as a
parameter of the optimization function which selects new
NR simulation parameters. Instead, we propose using the
GPR posterior uncertainties to guide the overall error es-
timation and training set optimization. Here we present
a simple metric for estimating GPR waveform errors and
for choosing where in parameter space to add a new train-
ing waveform. The basic idea is to estimate the mismatch
between a GPR and NR waveform with the same param-
eters based on the spread of GPR samples. Specifically,
we estimate the GPR-IMR mismatch by computing the
largest mismatch between M GPR samples and the GPR

mean. New accurate waveforms can be added where this
estimated mismatch is large, analogously to the greedy
algorithm 8.1 in [29]. We summarize this training point
placement strategy in Algorithm 1.

Algorithm 1 greedy training point placement

{~λj} ← ntrain initial parameter values, j ∈ [1, ntrain]

{~λ∗
k} ← fine interpolation grid, k ∈ [1, ninterp]

loop

Calculate regularized coefficients c̃i({~λj})
c̃i(~λ

∗
k) ∼ GPR(c̃i({~λj}))

for k ∈ [1, ninterp] do
m← 0, Ok ← 0
for m ∈ [1,M ] do

O ← mismatch(h
mean
GPR (~λ

∗
k), h

sample
GPR (~λ

∗
k))

Ok ← max(O ∪Ok)
~λntrain+1 ← ~λ

∗
[argmaxk(Ok)]

{~λj} ← {~λj} ∪ {~λntrain+1}
ntrain ← ntrain + 1

First, a few training waveforms, preferably on the
boundaries of the parameter space P , are used to seed
a GPR model of the waveforms in P . GPR waveforms
are interpolated on a fine grid in P , and at each grid
point the maximum mismatch between the GPR wave-
form mean and M GPR waveform samples is recorded
(hereafter called Ok for the k-th interpolation point).
Ok at each interpolation grid point is used as a proxy
for the true mismatch between the GPR mean and NR in
order to determine where to generate a new simulation.
By adding a new simulation to the training set at the
point with largest Ok, the greedy algorithm attempts to
minimize error in locations in parameter space with the
largest estimated error.

As a proof of concept, we apply a computationally
simplified variant of the greedy algorithm to GPR in-
terpolations in the same q–χ space as in §III C. Rather
than determining Ok at every point on a dense inter-
polation grid, we instead partition the space into 100
equally-sized, rectangular domains and determine Ok at
a random point in each domain. These 100 Ok values are
then used to determine training point placement. Ad-
ditionally, at each iteration we add a training waveform
at the ten points with highest Ok of the 100 computed,
rather than just adding one at a time. In the example we
show here, we seed the GPR model with 12 initial wave-
forms: one on each corner of the parameter space and two
equally-spaced training waveforms on each edge. We per-
form 11 iterations (i.e. 122 total training points) of the
greedy algorithm, and compute the mismatch between
the IMR model and the GPR mean just as in §III C. Fig-
ure 10 shows these mismatch values over the parameter
space. Comparing Figure 10 to Figure 9, which have
122 and 120 training points, respectively, we see that the
iterative method results in lower mismatches than the
regular grid across the parameter space. Additionally,
the maximum mismatch over the parameter space in the
iterative case is 9.3 × 10−5, which is an order of magni-
tude lower than the maximum mismatch over the regular
grid of 1.4× 10−3.

To address the question of whether we can estimate the
true mismatches using Ok, we compare the maximum of
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FIG. 9. Mismatch between IMRPhenomD waveforms and
GPR mean waveforms with a regularly-gridded training set.
The black circles show the locations of training waveforms
from IMRPhenomD used to train the GPR. There are 15×8 =
120 training points on this grid, and the maximum mismatch
in the region is 4.3× 10
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FIG. 10. Mismatch between IMRPhenomD waveforms and
GPR mean waveforms with an iteratively-built training set.
The training set shown here was seeded with 12 initial IM-
RPhenomD waveforms and 10 points were added at each it-
eration based on 100 samples of Ok across the space. The
black circles show the locations of training waveforms from
IMRPhenomD used to train the GPR. In this example, 10 it-
erations were performed, yielding 10× 10 + 12 = 122 training
points and a maximum mismatch in the region of 3.4× 10

−5
.
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FIG. 11. Maximum Ok value using the greedy algorithm
and maximum mismatch between the GPR mean and IM-
RPhenomD for different training point schemes and numbers
of training points. For the greedy training point placement,
twelve training waveforms on the boundaries of the space from
IMRPhenomD seed the GPR model at the first iteration. At
each subsequent iteration, the ten points with the highest Ok

(out of 100 points tested) decide the locations for new train-
ing waveforms. The maximum Ok with greedy placement is
shown in blue, and maximum mismatches for greedy, Latin-
hypercube, and square grids are shown in orange, green, and
red, respectively.

mismatch over the parameter space at each iteration in
Figure 11. Using a greedy grid, the maximum Ok value
(blue) tracks the maximum GPR mean-IMR mismatch
(orange) to within an order of magnitude, though the
maximum Ok would likely be higher if more than 100 Ok
samples were taken. On the last iteration, we calculate
Ok on the fine interpolation grid used in §III C rather
than just sampling 100 Ok values. This yields the Ok
map shown in Figure 12. By construction, Ok is rela-
tively constant over the parameter space. Additionally,
the maximum Ok on this finer grid is 9.3 × 10−5, which
bounds the maximum GPR-IMR mismatch of 3.4×10−5,
further suggesting that the maximum Ok value can be
used to estimate the maximum true error level of the
GPR mean. As such, Ok can indicate when a sufficient
number of training waveforms have been used.

It is worth noting that the maximum mismatch of
4.3 × 10−5 on the 120-point regular grid from §III C is
comparable to the maximum mismatch of 3.4× 10−5 us-
ing the 122-point greedy grid. However, this fact does
not indicate that regular training grids are as effective as
greedy grids: On the regular grid, the number of train-
ing points in the q-direction (15) and in the χ-direction
(8) were tuned to achieve low mismatches. In practice
though, such tuning will not be possible since (a) the
true GPR-mean error will not be known at points with-
out simulations, and (b) building different regular grids
for tuning would use significant simulation resources.

To compare the greedy algorithm to other training
point placement schemes, Figure 11 also shows the maxi-

mum mismatch over the q-χ space between GPR and IMR
as a function of the number of training points for a Latin
hypercube (LH) grid (green) and a regular, square grid
(red). For the LH case, a training point is placed at each
corner of the space, and then the space is LH sampled
with multiples of 10 additional training points. In other
words, for each trial, training points are put on the cor-
ners of the space, and a new hypercube with 10× n par-
titions per axis (n ∈ [1, 12]) is constructed and randomly
populated with training points under the constraint that
there is exactly one training point in each row and column
of the hypercube. For the square grid case, an equally-
spaced n×n training grid spanning the space of interest is
created for n ∈ [3, 11]. Examining Figure 11, the greedy
algorithm is able to achieve mismatches considerably be-
low the Latin hypercube or square grid mismatches for
the same numbers of training points, suggesting that the
greedy algorithm is the best simulation placement strat-
egy when the training grid cannot be tuned with trial
and error.

From a theoretical standpoint, it is not surprising
that the greedy grid tends to be more accurate than
these other “pseudo-uniform” sampling techniques. To
see this, consider the conditional covariance Kcond =
K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) from Equa-
tion 5. Note that as the elements of K(X∗, X) get small,
the second term diminishes, making the whole expres-
sion approach the prior covariance K(X∗, X∗). Assum-
ing the training set is relatively uniform over the input
space, points on the edges of the space have fewer nearby
training points and hence result in smaller elements of
K(X∗, X). In the center of the space, there are many
nearby training points, so K(X∗, X) tends to have larger
elements, which decreases the elements of the conditional
covariance. In effect, the GPR model has higher uncer-
tainties near the boundaries when the training points are
uniformly spread out. Neither LH sampling nor square
grids take into account that the GPR uncertainties are
highest near the edges. On the other hand, the greedy
algorithm accounts for the GPR uncertainties and pref-
erentially puts training points near the boundary, as can
be seen in Figures 10 and 12.

We would like to stress that greedy GPR grids are only
optimal when using GPR as the interpolation method.
For other interpolation schemes such a grid can be highly
sub-optimal or even not applicable at all. It is also worth
noting that the choice of GP kernel will affect the greedy
grid properties. For example, the squared-exponential
kernel tends to pile training points near the edges of the
space (akin to e.g. P14 and Field et al. [24]) compared to
the Matern 5/2 kernel (which we discuss in §V). Addi-
tionally, properties of the ROM or surrogate model used
for the GPR could also affect the greedy grid properties.
Despite these limitations, if a GP model with a given
kernel is desired, a greedy grid is an effective strategy for
minimizing errors.

One counter-argument to using Ok to measure the er-
ror is that there could be sharp features in the coefficient



11

1.0 1.5 2.0 2.5 3.0
q

−0.4

−0.2

0.0

0.2

0.4
χ

1
=
χ

2

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

lo
g 1

0
(O

k
)

FIG. 12. Maximum GPR sample-mean mismatch Ok over
20 samples calculated at each point on the fine interpolation
grid based on the same iteratively-built training set shown in
Figure 10. The black circles show the locations of training
waveforms from IMRPhenomD used to train the GPR. The
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FIG. 13. Mismatch between the GPR mean using a Matern
5/2 kernel and IMRPhenomD (blue), and the mismatch esti-
mated using Ok based on 20 GPR samples at each interpola-
tion point (orange).

functions which are not sufficiently sampled by the train-
ing points and hence are poorly interpolated. This could
indeed be true in some cases, but it is an issue that ap-
plies to any interpolation scheme. A benefit of using GPR

is that if sharp features exist, some of which are sampled
by the training points, the hyperparameter optimization
will select shorter length scales and larger covariances and
hence increase the overall coefficient uncertainty across
the space. Additionally, the GPR conditional distribu-
tions are Gaussian, meaning that large excursions from
the mean are not ruled out — they are just less likely.
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FIG. 14. Mismatch between the GPR mean using a squared-
exponential kernel and IMRPhenomD (blue), and the mis-
match estimated using Ok based on 20 GPR samples at each
interpolation point (orange).

V. DISCUSSION

In §III we presented three examples of GPR-based
ROM models trained on a subset of simulated waveforms.
These example models produced accurate mean wave-
forms and quantified uncertainties across the parameter
spaces of interest. §IV showed that further improvements
in speed and accuracy can be made to GPR-based mod-
els through use of the greedy algorithm. Although we
have made specific choices in our implementation, it is
to be emphasized that our method is completely gen-
eral. For example, different ROM or surrogate models
could be used rather than the SVD-based ROM we em-
ploy, hyperparameters could instead be treated as nui-
sance parameters and marginalized over, the GP kernel
could be changed, more sophisticated coefficient regu-
larizations could be applied, and the greedy algorithm
could be modified to incorporate other constraints. We
discuss a few of these possibilities here. First, let us con-
sider using the greedy algorithm with Ok as the metric
for placing new simulations. It is worth emphasizing that
greedy training point placement with Ok does not strictly
result in the smallest possible training set for a desired
error level. Rather, the greedy algorithm attempts to
flatten the error across the parameter space by adding
training points where the error is estimated to be high-
est. A principal limitation to just using Ok to guide
simulations is that it does not encode other constraints
or priorities. Two possible modifications to our greedy
strategy include weighting Ok by the expected simula-
tion cost at certain parameter values and weighting by a
prior on the source population parameters. Future work
will investigate these possibilities. Next we discuss the
kernel functions. The kernel functional form encodes our
assumptions about the smoothness and fluctuations of
a GP. Another common kernel choice, other than the
squared-exponential kernel adopted above, is the Matern
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5/2 covariance:

kν=5/2(r) = σ2

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
, (14)

The squared-exponential covariance constrains the GP

to be infinitely mean-square differentiable, imposing a
strong smoothness condition on the interpolations. The
Matern 5/2 kernel is less restrictive in that it only de-
mands the process be twice mean-square differentiable.
To illustrate the effects of different kernel choices, we
compare with the squared-exponential covariance. For
both the squared-exponential and the Matern 5/2 ker-
nels, we apply Algorithm 1 to build a training set to
interpolate waveforms for q ∈ [1, 6] as in §III A. In each
case, we begin with three training waveforms to seed the
algorithm: one waveform on each end of the space and
one in the center. At each iteration, Ok is calculated on
the fine interpolation grid from §III A and a new point is
placed at the point of highest Ok.

Figure 13 shows the real GPR-IMR mismatch and
the mismatch estimated from Ok using the Matern 5/2
kernel, and Figure 14 shows the same for a squared-
exponential kernel. In both cases, the maximum Ok
over the space bounds the real mismatch, except near
q = 1 where the coefficient functions vary faster than else-
where in the space (see Figures 2 and 3). The squared-
exponential kernel is able to keep the error relatively con-
stant over the space. Additionally, the maximum mis-
match using the squared exponential is about two orders
of magnitude lower than when using the Matern 5/2 ker-
nel. On the other hand, use of the Matern kernel results
in significantly lower error on the interior of the space.
Further study of kernel effects will be required as new
portions of parameter space are explored with the GPR

model. In particular, higher dimensional GPR models
may require more complex kernels, which can be con-
structed by summing or multiplying pre-existing kernel
functions. Additionally, kernels with compact support
should be considered, as they can allow faster GP evalu-
ation and enhanced computational stability.

We now shift our focus to the execution time of gen-
erating GPR waveforms. The examples shown here were
designed to run in less than one day on one computing
node with 16 cores, but future work would make use of
more cores, allowing, for example, a larger ROM basis,
or interpolation and Ok calculation on a finer grid. To
illustrate the scaling of required time and resources with
the number of GP training points, we perform a GPR on
one coefficient in the q-χ space for different numbers of
training values and evaluation points. The numbers of
training and evaluation points determine the sizes of the
matrices that must be multiplied in Equation 5 and hence
the execution time. It is worth noting that K(X,X)−1 or

K(X,X)−1f with optimized hyperparamters can be pre-
calculated, allowing the most computationally intensive
step in the GPR-building to be done just once ahead of
time. We assume here that the optimization and matrix

inversion steps have already been done and simply look
at the evaluation time of a GP.

The timing results are shown in Figure 15, which plots
the conditional GP mean and covariance evaluation time
per coefficient per interpolated point at ninterp points as
a function of the number of training points. That is, we
evaluate the GP mean and covariance at ninterp points
and divide the total time by ninterp to show the time
per interpolated coefficient value. In principle, the total
evaluation time should scale directly with the number of
interpolated points, but Figure 15 indicates that interpo-
lating more points at once gives an overall speedup. This
is due to the overhead in constructing the training-test
covariance matrices in the scikit-learn implementa-
tion of the GPR. This overhead is further evidenced by
the fact that the ninterp = 100 and ninterp = 1000 curves
in Figure 15 converge. Future work will consider alter-
nate GPR implementations to mitigate such overhead,
since typically only single waveform evaluations are re-
quired.

Note that to build a full GPR waveform, a GP must
be evaluated for each of the ∼ 100 phase and amplitude
coefficients. In the case that the overhead cannot be by-
passed (ninterp = 1, blue curve), it would take ∼ 1 minute
per waveform evaluation, assuming 100 coefficients and
1000 training points. If the overhead can be entirely re-
moved (ninterp = 1000, red curve), each waveform evalua-
tion would instead take ∼ 200ms. This can be compared
to the evaluation time for the spline-based ROM in P14
of ∼ 1 ms depending on the system’s total mass (see
Figure 1 of P14). Further speedups to our model could
be achieved by lowering the number of ROM coefficients,
decreasing the number of training points, or evaluating
the coefficients in parallel. To decrease the number of
training points, domain decomposition could be used as
suggested in §III C. If domains of ∼ 100 training points
were used, the GP evaluation times would fall by over
an order of magnitude (evaluation time goes as n2

train).
Another possibility is to apply the subset of regressors
method, which effectively considers a only a subset of
rows of K(X,X)−1f in Equation 5. This scheme reduces
the size of the matrices multiplied when calculating the
GP conditional mean and covariance (see §8.3.1 in [29]).

As mentioned before, the most expensive step of build-
ing a GPR model is in training, where the hyperpa-
rameters must be optimized and K(X,X) must be in-
verted. The matrix inversion computation time scales
as O(n3

train), since K(X,X) is an ntrain × ntrain matrix
(see e.g. [29]). Given the timescale for generating an NR

waveform, we would not expect more than O(10, 000) NR

waveforms in the near future, so the matrix inversion step
should not be prohibitively expensive, especially since the
kernel for each coefficient can be handled in parallel, and
a O(1000) training set can be optimized on a personal
computer in minutes and only needs to be done once.
Also, as mentioned earlier, smaller domains with fewer
training waveforms can be handled with separate GPR

models or a subset of regressors can be used, mitigating
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FIG. 15. Time to evaluate (mean and variance) one coefficient
per interpolation point in two dimensions as a function of
the number of training points. Times shows are from GP
evaluations on a 2.6GHz Intel E5-2670 CPU.

the need for the inversion of very large covariance matri-
ces.

In this section, we have discussed a few of the practical
and computational challenges for GPR-based GW mod-
els as well as techniques for overcoming these difficulties.
Implementation of GPR models in 3 or more input di-
mensions will require the use of some of these techniques,
hence the consideration of only up to 2 dimensions in this
work. Moving to higher dimensions, we envision needing
domain decomposition, for example, to keep the number
of training waveforms (and thus evaluation times) small.
Beyond building and evaluating such higher-dimensional
models, more strategic cross-validation methods than
those used here will be required to ensure the models’
robustness: dense, rectangular cross-validation grids of
O(50) points per dimension quickly become prohibitive
in higher dimensions. Despite these challenges to higher-
dimensional GPR models, we believe further work on
these models is warranted. Our preliminary studies with
3-d GPR models in the space of mass ratio and un-equal,
aligned spins show that reasonable error levels can be
achieved with few training points, but further validation
beyond the scope of this paper is needed before any con-
crete conclusions can be drawn. Additionally, we em-
phasize that the ultimate strength of these GPR-based
models is their ability to produce quantified interpola-
tion uncertainties which can be propagated to parame-
ter estimates. Although a number of other models exist
(e.g. P14) covering the parameter spaces we have exam-
ined here, GPR waveforms are the only ones that come
with analytic uncertainties that vary with GW frequency
and source parameters. Along with our future work on
3-and-higher dimensional source modeling with GPR, we
hope to introduce methods for neatly incorporating these
waveforms (and uncertainties) into MCMC parameter es-
timation techniques.

VI. CONCLUSIONS

We have demonstrated that Gaussian process regres-
sion can be used to construct reduced-order-model wave-
forms with uncertainties using only a few existing simula-
tions, and that these uncertainties can guide the choice of
future simulations. The overall motivation for such GPR

models is that GPR uncertainties can be propagated to
the parameter estimation of compact binary coalescences
in order to remove bias in estimates due to systematic
waveform errors. Figures 4 and 5 show example am-
plitude and phase functions with uncertainties from the
GPR model.

This work has also shown that GPR can model wave-
forms accurately over a parameter space of interest. Fig-
ures 9 and 10 show that with a sufficient number of train-
ing simulations, the error level of the GP model can be
reduced to levels adequate for parameter estimation with
LIGO data, especially if Algorithm 1 is used to construct
the training set. Such greedy algorithms will be a partic-
ularly useful tool for efficiently choosing the parameters
of new simulations in the nominal 7-d parameter space of
interest to LIGO. Since the methods presented here are
general, they could in principle be applied to other sce-
narios such as eccentric-orbit Laser Interferometer Space
Antenna sources or neutron-star binaries with tidal de-
formability parameters.

Another finding of this work is that the error level of
the GPR model can be estimated from the GPR itself
rather than through cross-validation. Figure 11, which
compares the maximum true GPR error to the maximum
estimated error, demonstrates that the GPR uncertain-
ties can alone be used to estimate the maximum error
level of the GPR model. This allows one to know when
a GPR model has reached a desired error level and does
not require further simulations in the parameter region
of interest.

Finally, we describe future directions for this work. In
the immediate future, GPR models will be applied to
three- or higher-dimensional parameter spaces to test the
robustness of these models as the complexity grows. In
particular, we will see if the ROM coefficient functions
can generally be treated as being uncorrelated. Addi-
tionally, a wider range of kernel functions will be explored
than what has been presented here. In the longer term,
GPR training sets will be built directly from NR sim-
ulations, rather than utilizing a stand-in approximant.
Apart from doing PE studies with an NR-based GPR

model, the model could also be used to validate or study
families of approximants. In sum, GPR models present
an exciting frontier for NR-simulation-driven models of
GW waveforms.
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