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We describe in detail the analysis procedure used to derive the first limits from the Haloscope
at Yale Sensitive to Axion CDM (HAYSTAC), a microwave cavity search for cold dark matter
(CDM) axions with masses above 20 µeV. We have introduced several significant innovations to the
axion search analysis pioneered by the Axion Dark Matter eXperiment (ADMX), including optimal
filtering of the individual power spectra that constitute the axion search dataset and a consistent
maximum likelihood procedure for combining and rebinning these spectra. These innovations enable
us to obtain the axion-photon coupling |gγ | excluded at any desired confidence level directly from
the statistics of the combined data.

I. INTRODUCTION

The axion [1, 2] is a hypothetical pseudoscalar field
originally postulated to explain the absence of CP viola-
tion in the theory of quantum chromodynamics (QCD);
light axions (ma . 1 meV) have since been recognized
as attractive candidates for a microscopic description of
cold dark matter (CDM) [3]. Axions constituting our
galactic halo with masses in the range 1 . ma . 50 µeV
may be detected via their resonant conversion into nearly
monochromatic microwave photons in an “axion halo-
scope:” a high-Q cryogenic cavity immersed in a strong
magnetic field and coupled to a low-noise receiver [4].
All haloscope detectors to date have used spectrally re-
solved coherent receivers, in which an axion signal would
appear as an extremely weak but spectrally sharp per-
sistent power excess over the noise floor at frequency
νa = mac

2/h. In practice, the axion mass is unknown, so
the cavity must be tunable. It is typical to assume that
the halo axions are virialized, in which case the spectral
distribution of the conversion power is inherited from the
halo’s kinetic energy distribution, with fractional width
of order
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/c2 ∼ 10−6.
One example of a haloscope detector is the Haloscope

At Yale Sensitive To Axion CDM (HAYSTAC), which
recently demonstrated cosmological sensitivity to halo
axions with ma > 20 µeV for the first time [5]. The
HAYSTAC detector is described in detail in Ref. [6]; the
purpose of the present paper is to provide a detailed
pedagogical account of the analysis procedure used to
generate the exclusion limit reported in Ref. [5]. The
basic framework of our analysis owes much to the pro-
cedure developed by the Axion Dark Matter eXperiment
(ADMX) [7]; we have introduced a number of refinements
that collectively enable us to obtain the relationship be-
tween search sensitivity and confidence directly from the
statistics of the combined data without recourse to Monte
Carlo. These innovations can easily be adapted to the
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analysis of data from other haloscope detectors such as
ADMX and CULTASK [8] and perhaps also to “dielec-
tric haloscopes” like MADMAX [9] and resonant hidden
photon detectors like DM Radio [10].
The remainder of the paper is organized as follows.

Section II briefly reviews the aspects of the HAYSTAC
detector most relevant to understanding the analysis and
describes the axion search data set. Section III presents a
big-picture overview of the analysis procedure, whose dis-
tinct stages are discussed in greater detail in Sec. IV – IX.
In Sec. X we present our limit and conclude with a sum-
mary of our main innovations. Various tangential topics
that are nonetheless important to a full understanding of
the analysis procedure are discussed in appendices.

II. EXPERIMENT

A. Detector

HAYSTAC is sited at the Wright Laboratory of
Yale University, and housed within a cryogen-free dilu-
tion refrigerator integrated with a 9 T superconducting
solenoid. The cavity hangs in the center of the magnet
bore from a gold-plated copper gantry anchored to the
dilution refrigerator’s mixing chamber plate at tempera-
ture TC = 127 mK.
Our current cavity is a 2 L copper-plated stainless

cylinder whose axion-sensitive TM010 mode may be
tuned over the range 3.6 < νc < 5.8 GHz via rotation
of an off-axis copper rod occupying 25% of the cavity
volume. We can also independently adjust the insertion
into the cavity of a thin dielectric shaft and a coaxial an-
tenna, used to fine-tune the mode’s frequency and control
its coupling to the receiver, respectively.
The most notable feature of the HAYSTAC receiver is

its use of a tunable Josephson parametric amplifier (JPA)
as a preamplifier. The JPA is essentially a nonlinear LC
circuit that exhibits parametric gain when driven with
a sufficiently strong microwave pump tone near its reso-
nant frequency. For a small signal detuned completely to
one side of the pump, a JPA acts like a phase-insensitive



2

linear amplifier whose added noise is close to the funda-
mental limits imposed by quantum mechanics [11]. Our
current JPA may be tuned over the range 4.5–6.4 GHz
via application of a small DC magnetic flux bias.
The first element in the receiver signal path is a mi-

crowave switch that allows us to calibrate the cavity
noise by comparison with a known blackbody source at
TH = 775 mK, the temperature of the dilution refriger-
ator’s still plate. Signals at the JPA output are ampli-
fied further at 4 K and room temperature, and down-
converted to an intermediate frequency (IF) band using
an IQ mixer whose local oscillator (LO) is set 780 kHz
above the cavity resonance. After further amplification
and filtering the IF signals are digitized at 25 MS/s.
For the first HAYSTAC data run we scanned over the

range 5.7–5.8 GHz in two continuous passes followed by
several shorter scans to compensate for nonuniform tun-
ing. This nonuniformity was a consequence of fine tuning
with the dielectric shaft and moving the copper rod less
frequently to mitigate imperfection in the rotary tuning
system.

B. Axion search data

A haloscope axion search consists of a sequence of iter-
ations separated by discrete tuning steps, with a cavity
noise measurement of duration τ and various auxiliary
measurements at each iteration.1 We construct and av-
erage power spectra in parallel with acquisition of the
cavity noise timestream data from the HAYSTAC detec-
tor, so only a single heavily averaged power spectrum is
written to disk at each iteration. The auxiliary data con-
sists of vector network analyzer (VNA) measurements of
the cavity mode and JPA gain profile at each step and pe-
riodic Y -factor measurements to calibrate the noise; tem-
peratures and pressures at various points in the cryogenic
system are also logged independently. The purpose of the
auxiliary data is to characterize detector parameters that
can vary during the run, both to define data quality cuts
(Sec. IVA) and optimally rescale spectra (Sec. VIA).
The principal data from the first run consisted of 6936

power spectra with bin width ∆νb = 100 Hz, each ob-
tained from τ = 15 minutes of averaging. We acquired
the first 2244 spectra in winter 2016, and the rest in sum-
mer 2016 following a power outage that damaged the sys-
tem and disrupted operations. Filters limit the usable IF
bandwidth of each spectrum to roughly 2.5 MHz, well
below the 12.5 MHz Nyquist frequency. Fig. 1 shows a
schematic layout of the regions of interest in each spec-
trum.
It may be useful at this point to summarize the rela-

tions between the various frequency scales that will play

1 τ is the axion-sensitive averaging time, not the total data collec-
tion time including inefficiency.
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FIG. 1. Schematic layout illustrating regions of interest in a
typical HAYSTAC power spectrum, reprinted from Ref. [6]
with some inessential elements omitted for clarity. Note that
increasing IF frequency corresponds to decreasing RF fre-
quency because the LO is at higher frequency than the Fourier
components of interest in each spectrum. The JPA gain pro-
file and Lorentzian cavity mode profile are plotted using real
data and a fit to real data, respectively. Both plots have log-
arithmic y-axes; the relative vertical scale is not meaningful.

a role in our subsequent discussions. When appropri-
ately biased, the JPA has about 21 dB peak gain in
a bandwidth ∆νJPA ≈ 2.3 MHz centered on the pump
tone. ∆νJPA is larger than the typical cavity linewidth
∆νc ≈ 500 kHz, which ensures that the total noise re-
ferred to the JPA input remains low over all frequen-
cies of interest in each spectrum. The cavity linewidth
∆νc, which sets the width of the axion-sensitive region
in each spectrum, is in turn much larger than the typical
axion linewidth ∆νa ∼ νa
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/c2 ≈ 5 kHz for a virial-
ized axion in the initial HAYSTAC scan range. Finally,
∆νa ≫ ∆νb, which helps us reject spurious single-bin
features (Sec. IVB) and take the axion lineshape into
account in our analysis (Sec. VIIC). In principle fine
frequency resolution also enables us to search for non-
virialized structure in the axion energy spectrum (see
Sec. VIIA); for the present analysis, we restrict our focus
to virialized axions.

As illustrated in Fig. 1, the dependence of the halo-
scope signal power on the detuning δνa = νc − νa is
Lorentzian with FWHM ∆νc; at δνa = ∆νc, the sig-
nal power is thus down from its peak value by a fac-
tor of 5. Ultimately the quantity we care about is the
signal-to-noise ratio (SNR) throughout the tuning range,
to which individual spectra will contribute in quadrature
[See Eq. (12)]. Including bins further than ∆νc from
the cavity mode in each spectrum in our analysis would
improve the SNR only very marginally. Thus we can re-
strict our focus to an analysis band of full width ≈ 2∆νc
centered on the cavity mode in each spectrum without
appreciably affecting our sensitivity.

During the data run we fit the TM010 resonance in
transmission after each tuning step, and set the LO fre-
quency by adding 780 kHz to the measured mode fre-
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quency and rounding to the nearest 100 Hz.2 We then
set the JPA pump frequency 1.6 MHz below the LO.
Setting the JPA pump frequency at a fixed offset from
the LO instead of the cavity resonance ensures that the
1/∆νb = 10 ms integration time of each subspectrum is
an integer number of periods at the pump frequency, and
thus minimizes spreading of the pump power throughout
the spectrum.3 The analysis band is defined as the set of
bins between 129 kHz and 1.431 MHz in each spectrum;
this is a conservative choice that accounts for variation
of ∆νc over the scan range.

III. ANALYSIS OVERVIEW

The goal of a haloscope analysis is to combine a set of
overlapping axion-sensitive power spectra to produce a
single spectrum that optimizes the SNR throughout the
scan range. Put another way, if there exists an axion
with νa within the scan range and photon coupling |gγ |
sufficiently large, the conversion power should almost al-
ways result in a large excess relative to noise in the bin
corresponding to νa in the final spectrum. The minimum
coupling |gmin

γ | for which this statement will hold is set
primarily by the detector design, but we must still un-
derstand how much the analysis procedure degrades this
intrinsic sensitivity. The analysis should ideally allow us
to write down an explicit expression for |gmin

γ | as a func-
tion of the desired confidence level (which quantifies the
“almost always” in the informal description above).
When we consider how best to combine spectra, one is-

sue that immediately arises is that the shape and normal-
ization of each spectrum depend both on quantities that
affect the SNR (e.g., the system noise temperature), and
quantities that do not (e.g., the net gain of the receiver
chain, including the frequency-dependent attenuation of
all room-temperature components). Rather than try to
tease apart the relevant and irrelevant contributions, we
can remove the spectral baseline entirely using a fit or
filter, then rescale the resulting spectra using parame-
ters extracted from the auxiliary data. In this way we
can properly account for variation in sensitivity among
spectra and within each spectrum.
After baseline removal the bins in each spectrum may

be regarded as samples drawn from a single Gaussian dis-

2 Coercing the LO frequency to the nearest 100 Hz ensures that
the bin boundaries in different spectra are always aligned. As
a result the analysis band is not exactly centered on νc in each
spectrum, but the maximum offset is always < ∆νb.

3 Sinusoidal signals of arbitrary frequency will generally not be
confined to single bins in the spectrum because we do not ap-
ply a window function to the timestream data in the process
of computing the power spectrum of each 10 ms record. The
“rectangular window” (equivalent to not windowing at all) is the
correct choice for a haloscope search as it has the smallest equiv-
alent noise bandwidth. Given the constraint of the rectangular
window, a small bin width ∆νb ≪ ∆νa also ensures that distor-
tion of the axion signal lineshape by the FFT is negligible.

tribution.4 This is a convenient reference point for un-
derstanding the effects of subsequent processing on the
statistics of the spectra. Of course, we need to make
sure that the baseline removal procedure does not fit out
bumps in the spectra on frequency scales comparable to
∆νa, or we will significantly degrade the axion search sen-
sitivity. This point suggests that baseline removal is more
fruitfully regarded as a problem in filter design than a fit-
ting problem, as it has been described in previous ADMX
analyses. The filter perspective will turn out to be quite
useful in understanding the statistics of the spectra.
The task of removing the spectral baseline without ap-

preciably attenuating any axion signal is made tractable
by their different characteristic spectral scales, or in other
words by ∆νc ≫ ∆νa. It is worth noting that this in-
equality is ultimately a consequence of the difficulty of
achieving high cavity Q factors with normal metals at
GHz frequencies; a detector with higher cavity Q and
thus ∆νc ≈ ∆νa would in principle be more sensitive.
Because such a detector has yet to be built, we can ex-
ploit the fact that ∆νc ≫ ∆νa where it simplifies the
analysis.
Because our spectra have ∆νb ≪ ∆νa, the analy-

sis procedure will generally involve taking appropriately
weighted sums both “vertically” (i.e., combining IF bins
from different spectra corresponding to the same RF bin)
and “horizontally” (i.e., combining adjacent bins in the
same spectrum). One of the main innovations of our
analysis procedure is that we use the same maximum
likelihood principle to obtain the optimal weights in both
cases. Various statistical subtleties arise in the latter case
because nearby bins in the same spectrum can be corre-
lated. We will demonstrate below that we understand
the origin of these correlations sufficiently well to obtain
the relationship between |gmin

γ | and the confidence level
from the statistics of the combined data, rather than from
Monte Carlo as in previous ADMX analyses.
In the preceding paragraphs we have emphasized what

we regard as the main themes of this paper, which may
be helpful to keep in mind as we work through the details.
For ease of reference, we have outlined the steps of our
procedure below, and indicated the section of the paper
in which each step is discussed more thoroughly.

1. Use the auxiliary data to identify spectra that ap-
pear to be compromised and cut them from further
analysis (Sec. IVA).

2. Average the remaining raw spectra together aligned
according to IF frequency to identify compro-
mised IF bins and cut them from further analysis
(Sec. IVB). This procedure also yields an estimate

4 The spectra are approximately Gaussian because each spectrum
saved to disk is the average of a large number of subspectra,
so the bin variance is much smaller than the mean squared bin
amplitude. This point is discussed further in Sec. VB.
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of the average shape of the spectral baseline in the
analysis band.

3. Normalize the analysis band in each raw spectrum
to the average baseline, then use a Savitzky-Golay
(SG) filter to remove the remaining spectral struc-
ture in each normalized spectrum (Sec. VA). Then
subtract 1 from each spectrum to obtain a set of di-
mensionless processed spectra described by a single
Gaussian distribution (Sec. VB).

4. Multiply each processed spectrum by the average
noise power per bin and divide by the Lorentzian
axion conversion power profile to obtain a set of
rescaled spectra (Sec. VIA). Construct a single
combined spectrum across the whole scan range by
taking an optimally weighted sum of all the rescaled
spectra (Sec. VI B).

5. Rebin the combined spectrum via a straightfor-
ward extension of the optimal weighted sum from
the previous step to non-overlapping sets of adja-
cent combined spectrum bins (Sec. VII B). Then,
taking into account the expected axion lineshape
(Sec. VIIA), construct the grand spectrum by
adding an optimally weighted sum of adjacent bins
to each bin in the rebinned spectrum (Sec. VIIC).

6. After correcting for the effects of the SG fil-
ter on both the statistics of the grand spectrum
(Sec. VII D) and the SNR (Sec. VIIIA), set a
threshold Θ for which some desired fraction of ax-
ion signals with a given SNR would result in excess
power > Θ. Then flag all bins with excess power
larger than Θ as rescan candidates (Sec. VIII B).

7. Acquire sufficient data around each rescan candi-
date to reproduce the sensitivity at that frequency
in the original grand spectrum (Sec. IXA). Follow
the procedure above, with a few minor differences,
to construct a grand spectrum for the rescan data,
and determine if any candidate exceeds the corre-
sponding threshold (Sec. IXB). If no candidate
exceeds the second threshold, the corrected SNR
obtained in step 6 sets the exclusion limit. Any
persistent candidates can be interrogated manually.

A great deal of notation is introduced in the sections to
follow; we have attempted to simplify it wherever possi-
ble by adopting consistent notational conventions. The
notation used throughout the paper is summarized in
Appendix A for ease of reference.

IV. DATA QUALITY CUTS

A. Cuts on spectra

Our first task is to flag and cut any spectra whose sen-
sitivity to axion conversion we cannot reliably calculate,

due to e.g., large changes in the TM010 mode frequency
νc or the JPA gain during a noise measurement. We
had reason to anticipate both of these effects in the first
HAYSTAC data run: imperfections in the rotary tuning
system noted in Sec. II A resulted in a slow drift of νc
following actuation of the tuning rod, and the JPA gain
is very sensitive to changes in the local magnetic flux.
We sought to mitigate both gain and mode frequency

drifts in the design of the data acquisition procedure (for
example, by controlling the JPA’s flux bias with feed-
back as described in Ref. [6]). However, the mode fre-
quency still occasionally drifts sufficiently far during a
single noise measurement to systematically distort the
subsequent weighting of the spectrum by the Lorentzian
profile of the cavity mode (see Sec. VIA). Likewise, the
flux occasionally drifts sufficiently far that the feedback
system is unable to correct for it; the average JPA gain
in such iterations is reduced and thus the input-referred
noise is systematically higher than what we infer from
periodic in situ noise calibrations.
Cutting measurements compromised by mode fre-

quency drift is straightforward, because we make VNA
measurements of the cavity mode in transmission both
before and after the cavity noise measurement at each
iteration during the data run. Our analysis routine fits
both measurements to Lorentzians and cuts iterations ex-
ceeding the conservative threshold |νc1−νc2| > 60 kHz ≈
∆νc/10 from subsequent analysis.
We flag iterations compromised by gain drifts using

the spectra themselves. The average level of each spec-
trum in a 100 kHz window close to the JPA pump is a
good proxy for the average JPA gain during the noise
measurement, though of course it will also reflect other
changes in the net receiver gain. Another measure of the
average gain accessible in the spectrum is the weak CW
tone used to provide a signal for our flux feedback sys-
tem. We set thresholds for both measures of the average
JPA gain empirically to separate obvious outliers from
the normal variation among spectra. In both cases, the
thresholds were approximately 1 dB below the typical
power averaged across all spectra.5

We also scanned the rest of the auxiliary data for any
other anomalies that might motivate a cut, and observed

5 These thresholds are consistent with independent measurements
indicating that flux feedback holds the JPA gain constant to
within 10% on timescales comparable to τ . Gain fluctuations
during a cavity noise measurement will cause the normalization
of each 10 ms subspectrum averaged by the in situ processing
code to differ, but this variation is correlated across all the bins
in each subspectrum; it affects the precision with which we can
measure the mean noise power, but not the variance of the noise
power within each spectrum, which is the quantity that deter-
mines our sensitivity to excess power on small spectral scales
∆νa ≪ ∆νc. Thus absolute gain stability is not a critical pa-
rameter for haloscope experiments. At our operating gain, the
effect of such small fluctuations on the system noise temperature
is small compared to the uncertainty.
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a narrow (≈ 60 kHz) notch around 5.7046 GHz superim-
posed on measurements of the cavity response in trans-
mission and reflection near this frequency. The absence
of any analogous feature in the corresponding JPA gain
profiles indicates that the notch originates in the cav-
ity, most likely due to the TM010 mode crossing with an
“intruder” TE or TEM mode practically uncoupled to
our antenna. The observation that the precise notch fre-
quency depends on the insertion depth of the dielectric
tuning shaft supports this interpretation. Because we
used the dielectric shaft for fine tuning in our first data
run, the notch frequency appeared to wander back and
forth over a range of a few hundred kHz.
We noticed that the notch was also visible in the spec-

tra around the same frequency, which suggests that the
effective temperature of the intruder mode was lower
than that of the TM010 mode.6 All of these measure-
ments collectively indicate that our basic assumption
of the axion interacting with a single cavity mode fails
around the intruder mode, and neither the VNA mea-
surements of the cavity nor noise calibrations are likely
to be reliable here. To be conservative, we simply cut all
spectra containing any sign of the intruder mode.
Other auxiliary data (such as the JPA-off receiver gain

measurement at each iteration and the fridge tempera-
ture records) did not not prompt us to define additional
cuts. Overall, of the 6936 spectra obtained during our
first data run, we cut 170 from the subsequent analysis, of
which 128 were cut in connection with the intruder mode.
Of the remaining 42 spectra, 33 were cut because of JPA
gain drifts, and 9 because of mode frequency drifts.

B. Cuts on IF bins

Narrowband interference can contaminate individual
bins in spectra that are otherwise sensitive to axion con-
version. Insofar as the intrinsic linewidth of these inter-
ference features is ≪ ∆νb, a smaller bin width ∆νb helps
reduce the number of contaminated bins that we fail to
flag, whose collective effect is to distort the statistics of
the spectra.
It is useful to distinguish IF interference (resulting in

excess power in the same bins in each spectrum) from RF
interference (which would appear to propagate through
spectra from adjacent tuning steps). RF interference is
more insidious in that it can mimic an axion signal, and
small excesses will be hard to flag until we have already
combined the contributing spectra. Empirically, all of
the most prominent sharp features in HAYSTAC power
spectra are due to IF interference.
The various IF features we observe have no single com-

mon origin. Some prominent features we eliminated dur-

6 As discussed in Ref. [6], the TM010 mode temperature was ac-
tually higher than the fridge temperature during our first data
run due to a poor thermal link to the copper tuning rod.

ing detector commissioning were associated with ground
loops, others with switching power supplies in stepper
motor drivers and other room-temperature electronics.
Other features only appear when the system is cold,
suggesting that cryocooler motors may be responsible.
Single-bin IF features can also arise from small RF sig-
nals at fixed detuning from the LO or pump tones.
We flag the “bad bins” contaminated by IF interfer-

ence using the following procedure. First, we divide the
set of spectra (ordered chronologically) into three approx-
imately equally sized groups. We truncate each spectrum
to the analysis band plus W = 500 bins (50 kHz) on ei-
ther side. We then average all truncated spectra within
each group aligned according to IF frequency; this aver-
aging reveals many sharp features due to IF interference
too small to be visible above the noise floor of individual
spectra. We apply an SG filter with polynomial degree
d = 10 and half-width W to the averaged spectrum to
obtain an estimate of the spectral baseline. The SG filter
is described in more detail in Sec. VA; for our present
purposes it is sufficient to regard it as a low-pass filter
with a very flat passband (i.e., it perfectly preserves fea-
tures on large spectral scales).
Dividing the averaged spectrum by the SG filter output

and subtracting 1 produces a spectrum whose statistics
(in the absence of IF interference) are Gaussian, with
mean 0 and standard deviation σIF = (MIF∆νbτ)

−1/2,
whereMIF ≈ 2200 is the number of spectra in the group.7

The most obvious effect of IF interference is to produce a
surplus of bins with large positive power excess. We flag
all bins that exceed a threshold value of 4.5σIF; in the
14020 bins of the truncated spectrum, we expect on av-
erage only 0.05 bins exceeding this threshold due to sta-
tistical fluctuations. As noted in Sec. II B, the fact that
we do not apply any windowing in the construction of
HAYSTAC power spectra implies that the excess power
associated with narrowband IF interference will not be
entirely confined to isolated bins. To be conservative, for
every set of contiguous bins exceeding the threshold, we
add the 3 adjacent bins on either side to the list of bad
bins. Empirically, while many features due to IF interfer-
ence are indeed quite sharp, others consist of ∼ 30 con-
secutive bins exceeding the threshold. Averaging smaller
numbers of adjacent spectra reveals that these broader
features are the result of narrow IF peaks that wander
back and forth across a range of a few kHz over the course
of the data run.
A second, more subtle effect of IF interference is to

distort the local estimate of the spectral baseline around

7 The procedure used here to flag IF interference is similar to the
baseline removal procedure described in Sec. V with a few key
differences. Here the SG filter is applied to a spectrum that is
more heavily averaged by a factor of MIF, and we do not divide
out the average shape of the spectrum before applying the SG
filter. Both effects imply that the polynomial degree d of the SG
filter must be higher here than in the main analysis.
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FIG. 2. The analysis band in a representative power spectrum at various stages of processing. (a) Black: the raw spectrum,
whose shape is determined by the cavity noise spectrum and the net gain of the receiver. Red: the average baseline, which is the
output of a Savitzky-Golay filter applied to the average of many such spectra (Sec. IVB). (b) Black: the normalized spectrum
obtained by dividing the raw spectrum by the average baseline. Green: the same spectrum after removing bins contaminated
by IF interference. Red: the Savitzky-Golay fit to the residual baseline of this spectrum (Sec. VA). (c) The processed spectrum
obtained by dividing the normalized spectrum by the Savitzky-Golay fit and subtracting 1 (Sec. VB). Gaps in the spectrum are
the result of removing the contaminated bins. (d) The rescaled spectrum obtained by multiplying the processed spectrum by
kBT∆νb/P , where both the noise temperature T and signal power P vary with frequency (Sec. VIA). The combined spectrum
is given by a maximum-likelihood weighted sum of the complete set of rescaled spectra.

any sufficiently large power excess. To mitigate this ef-
fect we repeat the process described above iteratively.
We remove all flagged bins from the averaged spectrum
and apply the SG filter again to obtain a refined base-
line estimate; using this improved baseline we generally
find some additional bins with values exceeding the 4.5σ
threshold; again 3 bins on either side are also flagged.
In practice this procedure takes only 2 or 3 iterations to
converge. The output of this iterative process is a list of
bad bins within the truncated spectrum for each group of
spectra; we also obtain an estimate of the average spec-
tral baseline that we will use in the next stage of the
analysis procedure.

The bad bin lists we obtain from our three distinct
groups of spectra are quite similar: roughly 75% of the
bins that appear on each list also appear on the other two,
and most discrepancies amount to shifting the boundaries
of contiguous sets of bad bins. Because the three lists
appear to describe IF interference that does not change
throughout the run, we combined them into a single final
list of bad bins to be cut from every spectrum. Any
minimal group of 7 consecutive bins is included in the
final list if it appears in two of the three lists and excluded
if it appears on only one list. For all other features the
final list is the union of the three lists. 11% of the bins
in the analysis band (1456 bins) appear on this final list.

Finally, we also want to flag narrowband interference
that would average out in the procedure described above,
so we set an additional threshold in each processed spec-

trum in units of the standard deviation σp (Sec. VB). We
cannot afford to be as aggressive in cutting such features
because Gaussian statistics dictates that roughly 300 bins
will exceed 4.5σp across all 6766 processed spectra. Thus
we set the processed spectrum threshold at 6σp, result-
ing in an additional 0–30 bins cut from each processed
spectrum. The distribution of these bins throughout the
spectra implicates temporally intermittent IF interfer-
ence rather than RF interference.

V. REMOVING THE SPECTRAL BASELINE

A typical raw power spectrum from the HAYSTAC de-
tector, truncated to the analysis band, is shown in black
in Fig. 2(a). As emphasized in Sec. III, the spectral base-
line is in principle the product of the total input-referred
noise (which affects the sensitivity of the axion search)
and the net gain of the receiver (which does not). On
large spectral scales the shape of the baseline is mainly
due to three effects. Rolloff at the low-RF (high-IF; see
Fig. 1) end of the spectrum is due to room-temperature
IF components, rolloff on the high-RF side comes from
the JPA gain profile, and the intermediate region around
the cavity resonance is enhanced by the heightened tem-
perature of the tuning rod [6]. We see that there can be
as much as ∼ 4 dB variation in the “gain” within a single
spectrum.
An average baseline obtained via the process described
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in Sec. IVB is shown in red in Fig. 2(a). Systematic de-
viations of the raw spectrum from the average baseline
indicate that the spectral baseline can change from one
iteration to the next. Such variation is not surprising, as
the JPA is a narrowband amplifier for which gain fluctua-
tions imply bandwidth fluctuations. The excess noise on
resonance also depends on frequency-dependent param-
eters of the cavity mode, and there may be many other
effects that can cause the spectral baseline to vary.
Nonetheless, normalizing each raw spectrum to the av-

erage baseline does reduce the typical variation across
each spectrum from ∼ 4 dB to ∼ 0.5 dB; the normalized
spectrum (which is now dimensionless) is shown in black
in Fig. 2(b). At this point we also remove all the bins
compromised by IF interference from each spectrum. The
normalized spectrum with bad bins removed is shown in
green in Fig. 2(b). Although only the analysis band is
shown in Fig. 2, we actually apply the above steps to the
analysis band plus 500 bins on either side. These extra
bins essentially serve as buffer regions for the SG filter
that we now employ to remove the residual baseline of
each spectrum.

A. The Savitzky-Golay filter

The simplest way to understand the SG filter is as a
polynomial generalization of a moving average character-
ized by two parameters d and W . For each point x0 in
the input sequence (assumed to be much longer than W ),
we fit a polynomial of degree d in a 2W + 1-point win-
dow centered on x0. The value of the SG filter output at
x0 is defined to be the least-squares-optimal polynomial
evaluated at the center of the window, and this process is
repeated for each x0; thus the filter output is a smoothed
version of the input sequence, with edge effects within W
points of either end.
Savitzky and Golay [12] showed that this moving poly-

nomial fit is equivalent to a discrete convolution of the
input sequence with an impulse response that depends
only on d and W . This correspondence implies that we
can fruitfully think about least-squares-smoothing from
the perspective of filtering rather than fitting. The even
symmetry of the SG filter impulse response implies that
only even values of d generate unique filters. We can gain
further insight into the properties of SG filters by consid-
ering their performance in the frequency domain [13]. In
the haloscope analysis considered here, we convolve the
SG filter impulse response with an input sequence which
is itself a power spectrum. Describing the Fourier trans-
form of the SG impulse response as the filter’s “frequency
response” may thus be misleading; we will instead refer
to this Fourier transform as a transfer function in the
“inverse bin domain.”
Two SG filter transfer functions used in the HAYSTAC

analysis are plotted in Fig. 3. In general, SG filters
are low-pass filters with extremely flat passbands and
mediocre stopband attenuation. The 3 dB point that
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FIG. 3. Transfer functions of the Savitzky-Golay filters used
in our analysis. The solid black curve depicts the filter with
W = 500 and d = 4 used in the initial scan analysis; the
dashed blue curve depicts the filter with W = 300 and d = 6
used in the rescan analysis. We exploit the very flat passband
of the filter on large spectral scales for baseline removal. The
behavior of the filter on small spectral scales of 2-50 bins
determines its effects on the axion signal and the statistics of
the grand spectrum.

marks the transition between these two regions scales ap-
proximately linearly with d and approximately inversely
with W . In particular, the 3 dB point for an SG filter
with d = 4 and W = 500 (black solid line in Fig. 3) is
≈ 1/(517 bins). Thus when this filter is applied to one
of the normalized spectra discussed above, features in
the residual baseline on spectral scales sufficiently large
compared to 51.7 kHz will be essentially perfectly pre-
served in the filter output, and features on smaller spec-
tral scales are suppressed to varying degrees. The output
of the SG filter applied to the normalized spectrum in
Fig. 2(b) is shown in red on the same plot. After divid-
ing each normalized spectrum by the corresponding SG
filter output to remove the residual baseline, we can dis-
card the 500 bins at either edge of each spectrum, whose
only purpose has been to keep edge effects out of the
analysis band; all subsequent processing is applied to the
analysis band of each spectrum only.

The design of any digital filter involves some tradeoff
between passband and stopband performance, and we
have seen that SG filters generally sacrifice some stop-
band attenuation to optimize passband flatness. It re-
mains to be shown that this is the correct choice for a
haloscope analysis. To see this, note that appreciable
passband ripple implies the presence of systematic struc-
ture on large scales in the processed spectra. Such struc-
ture in turn implies that we cannot assume all processed
spectrum bins are samples drawn from the same Gaus-
sian distribution (see Sec. VB); thus we cannot construct
a properly normalized measure of excess power in an ar-
bitrary IF bin, which is a central assumption of the rest
of the analysis.

Imperfect stopband attenuation, on the other hand,
implies that features and fluctuations on small spec-
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tral scales are slightly suppressed when we divide each
normalized spectrum by the SG filter output; equiva-
lently, the SG filter slightly attenuates axion signals and
imprints small negative correlations between processed
spectrum bins. We will show that we can quantify both
the filter-induced signal attenuation (Sec. VIII A) and the
effects of correlations on the statistics of the grand spec-
trum in which we ultimately conduct our axion search
(Sec. VIID). Computing the axion search sensitivity di-
rectly from the statistics of the spectra requires a thor-
ough understanding of both effects.8

The above discussion implies that passband flatness is
a more important consideration than stopband attenua-
tion for estimating spectral baselines in a haloscope anal-
ysis, and thus the SG filter is a good choice.9 Acceptable
values of the filter parameters d and W are constrained
by the integration time at each tuning step. Longer inte-
grations make us sensitive to smaller-amplitude system-
atic structure in the baseline on smaller spectral scales,
and we must push the 3 dB point of the SG filter up to-
wards smaller scales to ensure that this structure remains
confined to the passband (see Appendix C for a more de-
tailed discussion). We will see in Sec. IXB that different
values of d and W are appropriate for the analysis of
rescan data.

B. Statistics of the processed spectra

At each data run iteration, the total noise referred to
the receiver input is statistically equivalent to thermal
noise at some effective (possibly frequency-dependent)
temperature; thus the noise voltage distribution is Gaus-
sian, and the fluctuations in each Nyquist-resolution sub-
spectrum will have a χ2 distribution of degree 2. During
data acquisition we average ∆νbτ = 9 × 104 such sub-
spectra together, so the noise power fluctuations about
the slowly varying baseline of each raw spectrum will be
Gaussian by the central limit theorem.
The baseline removal procedure described above

should thus yield a set of flat dimensionless spectra, each
with small Gaussian fluctuations about a mean value of
1. Ultimately, we are interested in excess power (which
may be positive or negative) relative to the average noise
power in each bin, so we subtract 1 from each spectrum
after dividing out the SG filter output. We refer to the

8 The application of SG filters to spectral baseline removal in a
haloscope search was first explored by Ref. [14], which did not
however adopt our frequency-domain approach or consider the
effects of filter-induced correlations. See Ref. [15] for further
discussion of this experiment.

9 An optimal Chebyshev filter with coefficients obtained from the
Parks-McClellan algorithm may be able to achieve better attenu-
ation than the SG filter in the relevant part of the stopband while
retaining the requisite passband flatness. We did not explore this
approach for the present analysis.

set of spectra obtained this way as the processed spectra;
a representative processed spectrum is shown in Fig 2(c).
In the absence of axion conversion, the bins in each

processed spectrum should be samples drawn from a sin-
gle Gaussian distribution with mean µp = 0 and standard
deviation σp = 1/

√
∆νbτ = 3.3 × 10−3. In Fig. 4(a) we

have histogrammed all IF bins from all processed spectra
together in units of σp. The excess power distribution is
indeed Gaussian out to ≈ 5σ, and the excess above 5σ
is likely due to intermittent IF interference slightly too
small to exceed our 6σp threshold (Sec. IVB). These
large single-bin power excesses will be significantly di-
luted when we combine and rebin spectra.
Fig. 4(a) indicates that each bin in each processed spec-

trum may be regarded as a random variable drawn from
the same Gaussian distribution, and this is an important
check on our baseline removal procedure. It does not fol-
low that each spectrum is a sample of Gaussian white
noise, because nearby bins in each spectrum will be cor-
related due to the imperfect stopband attenuation of the
SG filter.
We can observe effects of these correlations if we regard

each spectrum (rather than each bin) as a sample of the
same Gaussian process. Let δpij represent the value of the
jth IF bin in the ith processed spectrum, for i = 1, . . . ,M
and j = 1, . . . , np; M = 6766 and np = 11564 for the first
HAYSTAC run after the cuts discussed in Sec. IV. The
ith processed spectrum has sample mean

µp
i =

1

np

∑

j

δpij (1)

and sample variance

(σp
i )

2
=

1

np − 1

∑

j

(

δpij − µp
i

)2
. (2)

In the absence of correlations, the set of sample means
should be Gaussian distributed about µp with standard
deviation σµ = σp/

√
np, and the set of sample variances

should be Gaussian distributed about (σp)2 with stan-

dard deviation σσ2 =
√

2/(np − 1)(σp)2, again by the
central limit theorem. The presence of negative correla-
tions on small spectral scales will reduce σµ substantially
and also increase σσ2 slightly, without appreciably chang-
ing the mean value of either distribution. Empirically, we
find that σµ is smaller than the above estimate by an or-
der of magnitude, and σσ2 is larger by about 8%.
The distortions of the sample mean and variance dis-

tributions noted above do not themselves affect the ax-
ion search sensitivity. But the correlations responsible
for them are still important, since the remainder of our
analysis procedure will involve taking both horizontal
and vertical weighted sums of processed spectrum bins.
A weighted sum of any number of independent Gaus-
sian random variables is another Gaussian random vari-
able, with mean given by the weighted sum of component
means, and standard deviation given by the quadrature
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FIG. 4. Histograms of HAYSTAC power spectra at various stages of the processing, with each bin in each spectrum normalized
to its expected standard deviation. In each plot, the histogram (black circles) is fit with a Gaussian (red curve), and the
mean µ and standard deviation σ obtained from the fit are displayed. (a) Histogram of all bins δpij/σ

p from all processed
spectra (Sec. VB). There is a surplus of bins at large positive excess power (with a cutoff at 6σp) due to narrowband IF
interference (Sec. IVB). Otherwise, the distribution of bins is Gaussian with the expected standard deviation. (b) Histogram
of all combined spectrum bins δck/σ

c
k (Sec. VIB), demonstrating Gaussian statistics with the expected standard deviation. (c)

Histogram of all grand spectrum bins δgℓ/σ
g
ℓ (Sec. VIIC). The statistics of the spectrum are still Gaussian, but the standard

deviation is reduced by a factor ξ = 0.93 due to small-scale correlations ultimately traceable to the imperfect SG filter stopband
attenuation (Sec. VIID).

weighted sum of component standard deviations. If in-
stead the random variables are jointly normal but corre-
lated, the sum is still Gaussian and has the same mean,
but computing the variance of the sum requires knowl-
edge of the full covariance matrix. We will return to this
point in Sec. VII D.

VI. COMBINING SPECTRA VERTICALLY

The Mnp processed spectrum bins δpij correspond to

nc < Mnp unique RF bins (nc ≈ 1.07 × 106 for the
first HAYSTAC data run). For notational convenience
we define the symbol Γijk = 1 if the jth IF bin in the
ith spectrum is one of the mk bins corresponding to the
kth RF frequency (Γijk = 0 otherwise). Our next task
is to construct a single combined spectrum by taking an
optimally weighted vertical sum of all mk IF bins corre-
sponding to each RF bin k. The mk bins in each sum will
be statistically independent, since each processed spec-
trum contains at most one IF bin to corresponding to
any given RF bin k.
To gain insight into the form of the optimally weighted

sum, let us consider the simple case where all axion con-
version power is confined to a single RF bin k′. Then
each processed spectrum bin with Γijk′ = 1 may be re-
garded as a sample from a Gaussian distribution whose
mean is nonzero. We will initially assume that all of these
bins have the same mean µk′ = 1 but possibly different
standard deviations; of course, all bins with Γijk′ = 0
also share a mean value, namely 0.
This assumption allows us to formulate the require-

ment for an optimally weighted vertical sum more pre-
cisely: for each k we will choose weights that yield the
maximum likelihood (ML) estimate of the true mean
value µk shared by all the contributing bins. ML estima-

tion is briefly summarized in Appendix B. In Sec. VIB
we will see that ML weighting maximizes the SNR among
all choices that yield unbiased estimates of the power ex-
cess.

In practice, the sensitivity of any given processed spec-
trum bin to axion conversion will generally depend on
both i and j, so each of the bins with Γijk′ = 1 is actu-
ally a Gaussian random variable with a different nonzero
mean. Moreover, we saw in Sec. VB that each bin in each
processed spectrum has the same standard deviation σp

– we did not consider axion signals when discussing the
statistics of the processed spectra, but we should expect
the fluctuations of the noise power to be independent of
the presence or absence of axion conversion power.

Evidently the assumption we used above to motivate
the ML-weighted vertical sum was precisely backwards.
We can cast the problem into a form amenable to ML
weighting by rescaling the processed spectra so that ax-
ion conversion would yield the same mean power excess
in any rescaled spectrum bin. Determining the appro-
priate rescaling factor is the subject of the next section.
After rescaling the spectra, we can meaningfully define
ML weights and thus construct the combined spectrum.

A. The rescaling procedure

We rescale the processed spectra by multiplying each
spectrum by the mean noise power per bin and dividing
by the signal power. The jth bin in the ith rescaled
spectrum is then

δsij =
kBTij∆νbδ

p
ij

Pij
, (3)
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where Tij is the system noise temperature referred to the
receiver input,10 and Pij is the total conversion power we
expect from an axion signal confined to the jth bin of the
ith spectrum.11

It may be helpful to discuss qualitatively why Eq. (3)
is the appropriate form for the rescaling factor. An axion
signal with any given conversion power will be relatively
suppressed by baseline removal if it happens to appear in
a noisier spectrum or a noisier region of a given spectrum;
multiplying by Tij undoes this suppression. Dividing by
the signal power undoes the relative suppression of con-
version power in spectra that are less sensitive overall
due to e.g. smaller cavity Q, and undoes the Lorentzian
suppression of the conversion power for axions at nonzero
detuning from the cavity resonance.
The net result is that in the absence of noise, the hy-

pothetical single-bin axion signal we have considered will
yield δsij = 1 in each bin with Γijk′ = 1. In the presence
of noise, each of these bins is a Gaussian random vari-
able with mean µs

ij = 1 and every other bin is a Gaussian
random variable with µs

ij = 0. The rescaled spectra are
no longer flat: each bin has a standard deviation

σs
ij =

kBTij∆νbσ
p
i

Pij
. (4)

Note that σs
ij = (R s

ij)
−1, where R s

ij is the SNR for our hy-
pothetical single-bin axion signal (c.f. Eq. (3) in Ref. [6]);
this is completely equivalent to the statement that an ax-
ion signal in any bin of any rescaled spectrum produces a
mean power excess of 1. A representative rescaled spec-
trum is shown in Fig. 2(d). Its overall shape is primarily
due to the Lorentzian cavity mode profile.
We have not yet addressed how we actually obtain val-

ues for Pij and Tij . The axion conversion power [6] may
be expressed as

Pij = U0

(

νci
βi

1 + βi
Ci

QLi

1 + [2(νij − νci)/∆νci]
2

)

, (5)

where

U0 = g2γ
α2

π2

~
3c3ρa
Λ4

2π

µ0
ηLB

2
0V (6)

is a constant with dimensions of energy.

10 We follow the convention of haloscope papers in using “system
noise temperature” to denote the total noise power per unit band-
width, including whatever thermal noise enters the receiver along
with the axion signal.

11 Note that to set a definite normalization for the rescaling factor
we need to assume specific values for the theory parameters we
hope to constrain; the assumption of single-bin signals likewise
amounts to a simple but physically implausible choice of normal-
ization for Pij . The exclusion limit which is the final product of
our analysis will not depend on either arbitrary choice of nor-
malization.

The factors we have absorbed into the definition of
U0 are independent of both i and j and thus only affect
the overall normalization of the rescaled spectra. Here
gγ is a dimensionless number characterizing the strength
of axion-photon coupling in a particular axion model,
α is the fine-structure constant, ρa is the local energy
density of dark matter axions, Λ = 77.6 MeV is a fixed
parameter that encodes the dependence of the axion mass
on hadronic physics,12 ηL is a signal attenuation factor
(see below), B0 = 9 T is the applied magnetic field, and
V = 1.545 L is the cavity volume excluding the tuning
rod.13

The parameters that experiment can constrain are |gγ |
and ρa; it is conventional to fix ρa = 0.45 GeV/cm

3
and

cite the results of any given haloscope search as con-
straints on |gγ |. To set a definite normalization for the
rescaled spectrum, we need to temporarily fix both pa-
rameters, so we set |gγ | = |gKSVZ

γ | = 0.97, corresponding
to the standard KSVZ model [17].
The remaining factors in Eq. (5) are all properties of

the TM010 mode of the cavity that can vary as it is tuned.
The mode has resonant frequency νci, bandwidth ∆νci,
and quality factor QLi = νci/∆νci. Its coupling to the
receiver is parametrized the dimensionless number βi, de-
fined implicitly by QLi = Q0i/(1 + βi), where Q0i is the
unloaded quality factor. The form factor Ci parametrizes
the overlap between the spatial profile of the mode’s elec-
tric field and the applied magnetic field. Finally, νij is
the RF frequency of the jth bin in the ith spectrum.
We use the auxiliary data to obtain values for all these

parameters except the form factor Ci, whose frequency
dependence is obtained from simulations of the cavity
mode. As discussed in Sec. IVA, we made VNA mea-
surements of the cavity mode in transmission both be-
fore and after each cavity noise measurement to cut iter-
ations with excessive drift. For the remaining iterations,
the “before” and “after” measurements are very similar,
so we average them and fit the average to a Lorentzian
to obtain νci and QLi. We also used the VNA to mea-
sure the cavity mode in reflection: the magnitude of the
reflection coefficient on resonance and the net resonant
phase shift together determine βi.
The system noise temperature Tij may be

parametrized in units of quanta as

kBTij = hνci [NT + (Ncav)ij + (NA)ij ] , (7)

where NT is thermal noise at the known mixing cham-
ber temperature TC , Ncav is the excess thermal noise as-

12 The value of Λ used in our analysis comes from a calculation in
chiral perturbation theory (see Ref. [4]). Note also that Λ4 =
χ(T = 0), where χ is the QCD topological susceptibility that
may be calculated on the lattice. A recent lattice calculation
reported in Ref. [16] obtained Λ = 75.6 MeV. With the latter
value the haloscope signal power would be enhanced by 11%.

13 Of course B0 can change in principle, but we operate our magnet
in persistent mode so in practice it is extremely stable over the
course of the run.
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sociated with the elevated tuning rod temperature, and
the receiver added noise NA includes the added noise
of the JPA preamplifier, small contributions from subse-
quent amplifiers, and effective noise associated with loss
between the microwave switch and the JPA.14 We cali-
brate the noise using Y -factor measurements (discussed
in detail in Ref. [6]); in our first data run, Y -factor mea-
surements were repeated every 10 iterations (roughly 3.5
hours).
Assuming a cavity in thermal equilibrium with the

mixing chamber plate of the dilution refrigerator (i.e.,
Ncav = 0), Y -factor measurements are ideal for the
haloscope search noise calibration because they natu-
rally measure NA as defined above, in contrast with
measurements of the SNR improvement from switching
on the preamplifier, which are not sensitive to the loss
contribution. Neither method is sensitive to losses be-
tween the cavity and the microwave switch ( ≈ 0.6 dB
throughout the initial HAYSTAC tuning range), which
nonetheless degrade the axion search SNR. Thus the fac-
tor ηL = 10−0.6/10 = 0.87 must be included explicitly in
Eq. (6).
As already noted above, the cavity was not in ther-

mal equilibrium with the mixing chamber in the first
HAYSTAC data run, and this resulted in a contribu-
tion to the system noise temperature with a roughly
Lorentzian profile centered on νci in each spectrum. In
the presence of this additional unknown noise Ncav, the
Y -factor measurement associated with the ith spectrum
measures not (NA)ij + (Ncav)ij but rather (NA)ij +
Yij/(Yij − Aij)(Ncav)ij , where Y is the measured ratio
of hot/cold noise power spectra and A is the measured
hot/cold gain ratio.15

NA should be independent of the presence of the cavity
mode in the spectrum, and empirically it also exhibits no
systematic dependence on RF frequency. Thus we can
break the degeneracy in Y -factor measurements around
the TM010 resonance by subtracting (N̄A)j , the average
receiver added noise obtained from off-resonance Y -factor
measurements. By doing so we obtain an estimate of
Ncav in each Y -factor measurement throughout the data
run, though this method implies that deviations from N̄A

across spectra are attributed instead to variation in Ncav.
We do expect Ncav to vary across spectra due to vari-

ation in Q and β. Moreover, the effective temperature of
the cavity mode is determined by a competition between
the walls, which are well coupled to the mixing chamber,
and the rod, which was at a higher temperature through-
out the first HAYSTAC data run; the relative strength

14 Technically, NT is a function of frequency evaluated at νci, but
it changes negligibly over our tuning range, so we suppress its i-
dependence. j-dependence due to the finite width of the analysis
band is of course much smaller still.

15 The additional factors multiplying the Ncav term account for the
fact that it contributes only to the cold load noise measurement,
whereas NA contributes to the noise in both the hot load and
the cold load; see also discussion in Ref. [6].

of these contributions will depend on the shape of the
cavity mode and thus on the mode frequency.
Empirically, there were clearly correlations among the

Ncav profiles obtained from nearby Y -factor measure-
ments, but no deterministic frequency dependence strong
enough to justify any particular interpolation scheme.
Thus, we simply set Tij for each spectrum at which we
did not make a Y -factor measurement using the nearest
measured value of Ncav. In Appendix D we estimate the
uncertainty in our exclusion limit resulting from possible
miscalibration of the noise temperature.

B. Constructing the combined spectrum

We have shown that the rescaled spectrum IF bins cor-
responding to each RF bin are independent Gaussian ran-
dom variables with the same mean (1 in the presence of a
single-bin KSVZ axion and 0 in the absence of a signal)
and different variances. To obtain the ML estimate of
this mean value (see Appendix B) we weight each bin by
its inverse variance:

wijk =
Γijk(σ

s
ij)

−2

∑

i′
∑

j′ Γi′j′k(σs
i′j′)

−2
, (8)

where the denominator ensures that the weights are nor-
malized.16 Then the ML estimate of the mean in each
combined spectrum bin k is given by the weighted sum
of contributing bins:

δck=
∑

i

∑

j

wijkδ
s
ij

=

∑

i

∑

j Γijk

(

Pijδ
p
ij/kBTij∆νb(σ

p
i )

2
)

∑

i

∑

j Γijk (Pij/kBTij∆νbσ
p
i )

2 . (9)

The standard deviation of each bin in the combined spec-
trum is the quadrature weighted sum of contributing
standard deviations:

σc
k=

√

∑

i

∑

j

w2
ijk

(

σs
ij

)2

=

√

√

√

√

√

∑

i

∑

j Γijk

(

σs
ij

)−4 (
σs
ij

)2

[

∑

i

∑

j Γijk(σs
ij)

−2
]2

⇒ σc
k=





∑

i

∑

j

Γijk

(

Pij

kBTij∆νbσ
p
i

)2




−1/2

. (10)

16 Many of the expressions to follow contain sums over i and j in
both the numerator and denominator. We will avoid cumber-
some primes through slight abuse of notation by using the same
indices i and j in both sums. k, which is not summed over, is
understood to have the same value in the numerator and denom-
inator. Sums whose upper and lower limits are elided are to be
interpreted as running over all possible values of the index.
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For each k, there are mk nonvanishing contributions to
the sums in the expressions above. In the first HAYSTAC
data run, typical values of mk ranged from 50 to 120
across the combined spectrum due to nonuniform tun-
ing.17

Two numbers are required to characterize the com-
bined spectrum at each frequency: δck and σc

k describe
respectively the actual power excess in each combined
spectrum bin and the power excess we expect from sta-
tistical fluctuations. Absent any axion signals, each δck
should be a Gaussian random variable drawn from a dis-
tribution with mean µc

k = 0 and standard deviation σc
k.

Thus the distribution of normalized bins

δck
σc
k

=

∑

i

∑

j Γijk

(

Pijδ
p
ij/kBTij∆νb(σ

p
i )

2
)

√

∑

i

∑

j Γijk (Pij/kBTij∆νbσ
p
i )

2
(11)

should be Gaussian with zero mean and unit variance;
we can see in Fig. 4(b) that this is indeed the case.18

We can equivalently describe the combined spectrum
by specifying the values of δck/σ

c
k and R c

k = (σc
k)

−1
for

each k. The normalization of the ML weights implies
that, for a single-bin KSVZ axion at frequency k′, µc

k′ = 1
and thus E

[

δck′/σc
k′

]

= R c
k′ . Physically, R c

k is the SNR
that a single-bin KSVZ axion would have in the kth bin
of the combined spectrum (whether or not such an axion
exists). In terms of the SNR, Eq. (10) becomes

R c
k =

√

∑

i

∑

j

Γijk

(

R s
ij

)2
, (12)

which tells us that the SNR in each bin of the combined
spectrum is simply the (unweighted) quadrature sum of
the SNR across contributing bins.

As discussed in Appendix B, the ML estimate of the
mean of a Gaussian distribution also has the smallest
variance among unbiased estimates. The variance of the
mean of a Gaussian distribution is simply proportional
to the variance of the distribution, so equivalently ML
weights yield the smallest σc

k and thus the largest R c
k

among all possible weights that do not systematically
bias δck. Thus, ML weighting is optimal for the haloscope
analysis in a real physically intuitive sense.

17 There are two ∼ MHz-width peaks in the distribution of mk with
peak values of 150 and 200, due to scans in which the tuning
rod was temporarily stuck at a single frequency. mk also drops
precipitously around the frequency of the intruder mode where
we cut spectra (Sec. IVA) and at the edges of the scan range.
On spectral scales small compared to the analysis band width,
mk fluctuates by ±2 due to the presence of missing bins in the
processed spectra.

18 In practice δck/σ
c
k will still appear to have a standard normal

distribution even in the presence of axion conversion, since µc
k 6=

0 in only a few bins.

VII. COMBINING BINS HORIZONTALLY

The parameterization of the combined spectrum in
terms of δck/σ

c
k and R c

k lends itself naturally to identi-
fying axion candidates and setting exclusion limits, via
the procedure outlined in Sec. VIII. However, R c

k is the
(unrealistically large) SNR for an axion signal confined
to a single bin, whereas our goal here is to construct
an analysis tailored to the detection of virialized axions
with ∆νa ≫ ∆νb. Thus, our next task is to determine
an explicit expression for the grand spectrum δgℓ/σ

g
ℓ as a

weighted sum of adjacent combined spectrum bins. As
in Sec. VI, we take the optimal weights to be those that
yield the ML estimate of the mean grand spectrum power
excess, after rescaling to make the expected excess due
to axion conversion uniform across all contributing bins.
The discussion above indicates that ML weights in the
horizontal sum will maximize R g

ℓ , the SNR for a virial-
ized axion signal concentrated in the ℓth grand spectrum
bin.
In the choice of ML weights for the vertical sums that

define the combined spectrum, we have followed the pub-
lished ADMX analysis procedure [7], albeit with a some-
what different approach for pedagogical purposes.19 In
extending ML weighting to horizontal sums of adjacent
bins in the combined spectrum, we are deviating from
the procedure used by ADMX. We discuss the key dif-
ferences between our present approach and the ADMX
procedure further in Sec. VII C.
Though the principles of ML estimation remain valid,

horizontal sums differ from the vertical sums considered
in Sec. VI in two important respects. First, we can no
longer assume that the bins in each sum are independent
random variables; indeed, as noted in Sec. V, we have rea-
son to expect correlations on small spectral scales in the
processed spectra, and thus also in the combined spec-
trum. ML estimation of the mean of a multivariate Gaus-
sian distribution with arbitrary covariance matrix is in
principle straightforward (see Appendix B). In practice,
it requires additional information about off-diagonal ele-
ments of the covariance matrix that are not as easily es-
timated as the variances. In the present analysis, we take
ML weights that neglect correlations as approximations
to the true ML weights, and define the horizontal sum
using expressions appropriate for the uncorrelated case.
We will quantify the effects of correlations in Sec. VII D.
Second, independent of any subtleties involving cor-

relations, we have some additional freedom in how we
define the horizontal sum besides the choice of weights.
The simplest approach is to define each grand spectrum
bin as a ML-weighted sum of all bins within a segment
of length K ≈ ∆νa/∆νb in the combined spectrum, such

19 See also Refs. [18–21] for different presentations of ML weighting
in the ADMX analysis; note that there are a number of errors in
the expressions corresponding to Eqs. (9) and (10) in Refs. [7],
[18], and [19].
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that the segments corresponding to different grand spec-
trum bins do not overlap. The total number of grand
spectrum bins is then ng ≈ nc/K. The disadvantage of
this approach is that the signal power will generally be
split across multiple bins unless νa happens to line up
with our binning. We need to introduce an attenuation
factor ηm (Sec. VIIA) to account for the average effect
of misalignment on the SNR.

We can minimize misalignment effects by allowing the
segments of the combined spectrum corresponding to dif-
ferent grand spectrum bins to overlap: if each such seg-
ment is K bins long, then the first grand spectrum bin
will be a ML-weighted sum of the first through Kth com-
bined spectrum bins, the second grand spectrum bin will
be a ML-weighted sum of the second through (K + 1)th
bins, and so on. But with K ≈ ∆νa/∆νb this procedure
implies a total of ng ≈ nc grand spectrum bins, and thus
the number of statistical rescan candidates (Sec. VIII)
will be larger at any given sensitivity than in the non-
overlapping case; equivalently the total integration time
required to exclude axions of a given coupling will be
longer.

The two approaches considered above may be regarded
as limiting cases of a more general procedure in which
we split the construction of the grand spectrum into two
steps. First we take ML-weighted sums of adjacent bins
in non-overlapping segments of the combined spectrum to
yield a rebinned spectrum with resolution ∆νr = Kr∆νb.
Then we construct the grand spectrum via ML-weighted
sums of adjacent bins in overlapping segments of length
Kg in the rebinned spectrum. Kr and Kg should be
chosen so that the product KrKg ≈ ∆νa/∆νb; it should
be emphasized that we have thus far cited only a very
rough estimate for ∆νa, and we are free to choose Kr

and Kg independently within a reasonable range.

In the two-step procedure described above, the re-
binned spectrum weights and grand spectrum weights are
each obtained from the ML principle, but of course we
must specify a supposed distribution of signal power be-
fore we can define ML weights. The ℓth grand spectrum
bin should be a sum over bins in the rebinned spectrum
frequency range [νℓ, νℓ+Kg−1] weighted so that the SNR
is maximized if νa ≈ νℓ. We will articulate this con-
dition more precisely in Sec. VIIA, but we can already
see that the grand spectrum weights will depend on the
axion lineshape.

The weights used to construct the rebinned spectrum
cannot themselves depend on the lineshape: the above
example demonstrates that any given νℓ will correspond
to the axion mass in one grand spectrum bin and the tail
of the axion power distribution in another. We thus de-
fine weights to yield the ML estimate of the mean power
excess in each bin of the rebinned spectrum assuming the
axion signal distribution is uniform across contributing
combined spectrum bins. As we reduce Kr, the distribu-
tion of signal power on scales smaller than ∆νr becomes
more uniform, and we can also use a finer approximation
to the axion lineshape in the grand spectrum weights.

For the analysis of the first HAYSTAC data run we
used Kr = 10 and Kg = 5, informed by the tradeoffs
noted above. In the next section, we will briefly digress
on the expected axion lineshape and its implications for
the analysis. Then we will construct the rebinned spec-
trum in Sec. VII B and the grand spectrum in Sec. VIIC.

A. The expected axion signal lineshape

Experiments aiming to directly detect non-
gravitational interactions of dark matter must make
assumptions about the local dark matter mass and veloc-
ity distributions. Virialization of the dark matter in the
galactic halo relates these two distributions. Searches
typically assume a virialized halo which is moreover
spherically symmetric and approximately isothermal,
such that the dark matter velocity distribution is very
nearly Maxwellian in the galactic rest frame. Such a
pseudo-isothermal distribution [22] is fully specified by
the values of two parameters, which we can take to be
the local density ρa = 0.45 GeV/cm

3
[23] and the local

circular velocity vc = 220 km/s; the latter is the mode
of the Maxwell-Boltzmann distribution.
It is also possible that some fraction of the dark mat-

ter has not virialized due to cold, high-density streams of
axions that fell into the galaxy relatively recently; such
streams would manifest as sharp features in the spectrum
of a putative haloscope signal. Fixing the values of the
experimental parameters, a haloscope search specifically
targeting non-virialized axions will generally be sensitive
to smaller couplings |gγ | because the signal bandwidth
is smaller, but the converse is not true: the sensitivity
of a search that assumes virialization is not appreciably
degraded if there is non-virialized structure in the true
signal. In this sense virialization is a conservative as-
sumption.20

For the present analysis we assume a fully virialized
pseudo-isothermal halo, emphasizing that its chief virtues
are simplicity and the absence of strong evidence for any
particular alternative; see Ref. [25] for a recent discussion
of alternative halo models in the haloscope search. The
form in which we save the HAYSTAC axion search data
(Sec. II B) enables future searches for nonvirialized fea-
tures with fractional width as small as ∆νb/νa ∼ 2×10−8.
The spectral shape of a haloscope signal is proportional

to the axion kinetic energy distribution. For a pseudo-
isothermal halo in the galactic rest frame, axion velocities

20 The orbital motion of the earth [24] can also shift the frequency
of a non-virialized axion signal by an amount comparable to its
linewidth between repeated scans around the same frequency.
Roughly speaking, searches for non-virialized signals of fractional
width ∆νa/νa . 10−7 must make further assumptions about the
direction of the axion stream unless candidates were rescanned
more frequently than once per week during the acquisition of
the search data set, with correspondingly more stringent require-
ments on the frequency of rescans for narrower signals.
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obey a Maxwell-Boltzmann distribution, and the corre-
sponding kinetic energies have a χ2 distribution of degree
3. As a function of the measured signal frequency ν ≥ νa,
this distribution is

f(ν) =
2√
π

√
ν − νa

(

3

νa 〈β2〉

)3/2

e
− 3(ν−νa)

νa〈β2〉 , (13)

where
〈

β2
〉

=
〈

v2
〉

/c2 and the second moment of the

Maxwell-Boltzmann distribution is
〈

v2
〉

= 3v2c/2 =

(270 km/s)2. In a frame moving relative to the galac-
tic rest frame, the dark matter velocity distribution is
not in general Maxwellian. The motion of a terrestrial
laboratory relative to the galactic halo is dominated by
the orbital velocity of the sun about the center of the
galaxy vs ≈ vc. In the lab frame the spectrum of the
axion signal thus becomes [24]

f ′(ν) =
2√
π

(

√

3

2

1

r

1

νa 〈β2〉

)

sinh

(

3r

√

2(ν − νa)

νa 〈β2〉

)

× exp

(

−3(ν − νa)

νa 〈β2〉 − 3r2

2

)

, (14)

where r = vs/
√

〈v2〉 ≈
√

2/3. Eq. (14) is not a χ2 distri-
bution, but is reasonably well approximated by Eq. (13)
with

〈

β2
〉

→ 1.7
〈

β2
〉

; of course, it approaches Eq. (13)
in the limit r → 0.
We used Eq. (13) where we should have used Eq. (14)

in our original analysis.21 Specific parameter values
cited throughout Sec. VII and VIII assume Eq. (13), as
this was used to derive the exclusion limit published in
Ref. [5], but we emphasize that the formal procedure out-
lined in the present paper is independent of any specific
assumptions about the signal shape. If the spectrum of
the axion signal is actually given by Eq. (14), our exclu-
sion limit will be degraded by ≈ 20% (quantified more
precisely in Appendix E) due to the combination of an ir-
reducible effect from the wider signal bandwidth and the
fact that our analysis was not optimized for this wider
signal, as future HAYSTAC analyses will be.
A haloscope analysis can ultimately depend on the

spectral shape of the axion signal only through the grand
spectrum weights, which in turn can only depend on
slices of f(ν) integrated over the resolution of the re-
binned spectrum ∆νr = Kr∆νb. Thus we define the
integrated signal lineshape to be

Lq(δνr) = Kg

∫ νa+δνr+q∆νr

νa+δνr+(q−1)∆νr

f(ν) dν, (15)

where q = 1, . . . ,Kg, and the misalignment δνr is defined
in the range −z∆νr < δνr ≤ (1− z)∆νr, with 0 < z < 1.
The value of z should be chosen so that for any δνr in
this range, ηc(δνr) =

∑

q Lq(δνr)/K
g is larger than the

21 We thank B. R. Ko for drawing our attention to this point.

value we would obtain by shifting the range over which
the q index is defined up or down by 1.22 Physically, ηc
is the fraction of signal power contained within a grand
spectrum bin; it approaches 1 independent of δνr for Kg

sufficiently large. At any fixed value of Kg, the sum also
depends on δνr and thus on Kr.
We can gain some insight into the considerations that

enter into the choice of Kr and Kg by imagining for the
moment that we take the grand spectrum weights to be
uniform, as in Ref. [7]. Then, with Kr = 1, ηc → 1 as Kg

increases, but the RMS noise power grows as
√
Kg, so

the grand spectrum SNR (∝ ηc/
√
Kg) is maximized at a

finite value of Kg. The SNR is relatively insensitive to
δνr at Kr = 1; as we increase Kr, keeping KrKg fixed,
ηc remains unchanged in the best-case scenario δνr = 0,
but larger misalignments are possible, so dependence of
the SNR on δνr grows more pronounced.
In order to define ML weights for the grand spec-

trum (Sec. VII C), we will need an expression for some
“typical” lineshape L̄q that is independent of misalign-
ment. The best approach is to define L̄q as the av-
erage of Lq(δνr) over the range in which δνr is de-
fined.23 Then the misalignment attenuation can be de-
fined as ηm = SNR({L̄q})/SNR({Lq(δνr = 0)}).24 In
the ML-weighted grand spectrum the SNR is no longer
proportional to ηc (indeed, it asymptotes to a constant
value rather than degrading as we continue to increase
Kg). However, the above prescription for defining ηm
still holds if we use the correct expression for the SNR
[Eq. (D2) in Appendix D]. With Kr = 10 and Kg = 5,
the optimal range for δνr is obtained for z = 0.7, and the
misalignment attenuation is ηm = 0.97.

B. Rebinning the combined spectrum

After choosing the values of Kr and Kg to be used in
the remainder of the analysis, we rescale the combined
spectrum, taking δck → (KrKg)δck and σc

k → (KrKg)σc
k.

This rescaling leaves δck/σ
c
k formally unchanged and takes

R c
k → R c

k/(K
rKg), just what we would have obtained

had we normalized Eq. (5) to a more physically plausible

22 We might naively imagine a symmetric interval (corresponding
to z = 0.5) would be optimal in this sense. In practice, given the
asymmetry of the axion lineshape, there will be more power in
the Kg-bin sum if the lower bound of the integral in the q = 1
bin is detuned below νa than at an equal detuning above νa.
This implies that we should consider z > 0.5; the optimal value
will depend on the choice of Kr and Kg.

23 L̄q has no ℓ index because in practice we evaluated Eq. (15) with
νa = 5.75 GHz both in the limits of integration and within f(ν).
It would be trivial to instead calculate the lineshape with νa = νℓ
in the ℓth grand spectrum bin, but the variation of the lineshape
over the initial HAYSTAC scan range was negligible.

24 With this definition, ηm is a useful figure of merit for comparing
different values of Kr and Kg, but we will not have to explicitly
account for it in our analysis procedure, as the average effect of
misalignment on the SNR is included in the definition of L̄q.
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fraction 1/(KrKg) of the expected KSVZ signal power in
the first place. After this rescaling we expect µc

k′ = 1 if
a KSVZ axion signal deposits a fraction 1/(KrKg) of its
power in the combined spectrum bin k′.
In Sec. VIB we wrote rather verbose expressions for

Eqs. (9) and (10) to make the dependence on physically
meaningful quantities such as Pij explicit. The ML-
weighted sum can be written more succinctly in terms
of

Dc
k =

δck
(σc

k)
2
=

1

KrKg

∑

i

∑

j

Γijk

δsij
(σs

ij)
2
, (16)

which is just the sum in the numerator of Eq. (9) rescaled
by 1/(KrKg) as discussed above. Each Dc

k is a Gaussian
random variable with standard deviation R c

k . We obtain
the ML-weighted rebinned spectrum from

Dr
ℓ =

kf (ℓ)
∑

k=ki(ℓ)

Dc
k (17)

and

(R r
ℓ )

2
=

kf (ℓ)
∑

k=ki(ℓ)

(R c
k )

2
, (18)

where ki(ℓ) = (ℓ − 1)Kr + 1, kf (ℓ) = ℓKr, ℓ = 1, . . . , nr,
and nr ≈ nc/Kr ≈ 1.07 × 105 for the first HAYSTAC
data run.
In the absence of correlations between combined spec-

trum bins, Dr
ℓ is a Gaussian random variable with stan-

dard deviation R r
ℓ . Defining σr

ℓ = (R r
ℓ )

−1 and δrℓ =
Dr

ℓ(σ
r
ℓ)

2 as in the combined spectrum, it follows that each
rebinned spectrum bin δrℓ is a Gaussian random variable
with standard deviation σr

ℓ (and mean µr
ℓ = 0 in the

absence of axion signals). Each δrℓ is the ML-weighted
estimate of the mean power excess in Kr adjacent com-
bined spectrum bins δck if the axion power distribution
is uniform on scales smaller than ∆νr. More precisely,
µr
ℓ′ = 1 if a KSVZ axion deposits a fraction 1/(KrKg) of

its power in each of the Kr adjacent combined spectrum
bins corresponding to the rebinned spectrum bin ℓ′, and
R r

ℓ′ is the SNR for such a signal.
Neglecting small-scale variation in R c

k , Eq. (18) implies
that the SNR in each bin of the rebinned spectrum has
increased by

√
Kr. This is exactly what we should expect

given that the signal power grows roughly linearly with
bandwidth ∆ν (for ∆ν sufficiently small compared to

∆νa) and the RMS noise power grows as
√
∆ν. Empiri-

cally, the RMS variation in σc
k is typically. 1% on 10-bin

scales (and ≈ 3% on 50-bin scales), so the rebinned spec-
trum would not change much if we used uniform weights
instead of ML weights. We will see in Sec. VIIC that
ML weighting of the grand spectrum leads to a larger
improvement relative to an unweighted analysis.
In the absence of correlations, each δrℓ has standard

deviation σr
ℓ, so δrℓ/σ

r
ℓ should have a standard normal

distribution, like the analogous quantity in the combined
spectrum. Empirically, in the first HAYSTAC data run,
δrℓ/σ

r
ℓ was Gaussian with standard deviation ξr = 0.98.

ξr 6= 1 is a consequence of the fact that the expression for
the variance of a sum of Gaussian random variables used
in Eq. (18) does not hold in the presence of correlations,
as noted at the end of Sec. VB.25 An analogous effect
will arise in the construction of the grand spectrum, so
we will defer further discussion of this point to Sec. VII D.

C. Constructing the grand spectrum

To extend the ML-weighted horizontal sum further,
we must account for the fact that, for any given value
of νa, the distribution of axion signal power in the Kg

rebinned spectrum bins containing most of the signal is
nonuniform. Specifically, for a KSVZ axion with νa ≈ νℓ′ ,
we expect µr

ℓ′+q−1 = L̄q for q = 1, . . . ,Kg. As in Sec. VI,
we must rescale the contributing bins so that they all
have the same mean power excess before defining ML
weights. For the ℓth grand spectrum bin, the appropriate
rescaling is obtained by dividing both δrℓ+q−1 and σr

ℓ+q−1

by L̄q, or equivalently by multiplying both Dr
ℓ+q−1 and

R r
ℓ+q−1 by L̄q. The quantities of interest in the ML-

weighted grand spectrum are then given by

R g
ℓ =

√

∑

q

(R r
ℓ+q−1L̄q)2 (19)

and

δgℓ
σg
ℓ

=
Dg

ℓ

R g
ℓ

=

∑

q D
r
ℓ+q−1L̄q

√

∑

q(R
r
ℓ+q−1L̄q)2

, (20)

for ℓ = 1, . . . , ng, and ng ≈ nr.
Neglecting effects of the SG filter stopband, each δgℓ

should be a Gaussian random variable with standard
deviation σg

ℓ = (R g
ℓ )

−1 and mean µg
ℓ . Our definition

of L̄q in Sec. VIIA implies that µg
ℓ′ = 1 (equivalently,

E[δgℓ′/σ
g
ℓ′ ] = R g

ℓ′) for a KSVZ axion signal with aver-
age misalignment in bin ℓ′.26 The small uncertainty
in µg

ℓ′ associated with the range of possible misalign-
ments will contribute to the uncertainty in our exclusion
limit, discussed in Appendix D. Within Kg bins of ℓ′,

25 A similar reduction in the standard deviation following a hori-
zontal sum was observed in Ref. [20], pg. 122, and attributed to
the baseline removal procedure, but not discussed further.

26 Here and elsewhere in this paper, “an axion signal in the grand
spectrum bin ℓ′” should be taken as shorthand for the condition
−0.7∆νr < νℓ′ − νa < 0.3∆νr, where νℓ refers to the frequency
at the lower edge of bin ℓ. For detunings outside this range, the
SNR will be larger in a different grand spectrum bin, and we will
speak of the signal “in” that bin instead.
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0 < µg
ℓ < 1, because the overlapping horizontal sum cor-

relates nearby grand spectrum bins.27 Of course, µg
ℓ = 0

for |ℓ− ℓ′| ≥ Kg.
Empirically, δgℓ/σ

g
ℓ [histogrammed in Fig. 4(c)] has a

Gaussian distribution with mean 0 and standard devia-
tion ξ = 0.93. We saw above that correlations within
each bin of the rebinned spectrum already reduced the
width of the histogram by a factor ξr = 0.98, which im-
plies that the reduction we can attribute specifically to
correlations between different rebinned spectrum bins is
ξg = ξ/ξr = 0.95.
Setting aside the issue of correlations, we can gain fur-

ther insight into the properties of our ML-weighting hor-
izontal sum by considering how it differs from the cor-
responding step in the ADMX haloscope analysis proce-
dure. ADMX analyses tailored to the detection of viri-
alized axions have consistently used ∆νb/∆νa approxi-
mately a factor of 10 larger than in the present analysis
and Kr = 1 (i.e., no rebinning after data combining).
The original ADMX analysis [7, 18, 19] took the grand
spectrum to be an unweighted sum of Kg = 6 combined
spectrum bins. This is not quite the same as setting
L̄q = 1 in Eqs. (19) and (20) because our sums are still
ML-weighted by (σr

ℓ)
−2 in this limit. However, as noted

in Sec. VII B, the variation in σc
k on the relevant scales

is small enough that in practice there is not much differ-
ence.
Thus we will compare our ML analysis to the un-

weighted Kg-bin sum in the limit that σr
ℓ (equivalently

R r
ℓ ) is equal in all contributing bins. In this limit, the

grand spectrum SNR may be written in the form

R g
ℓ = F

(

Kg,∆νr, {L̄q}
)

Kg
√

∆νrR
r
ℓ , (21)

where we have introduced a figure of merit F to encode
the dependence of R g

ℓ on Kr, Kg, and L̄q. It becomes ap-
parent that R g

ℓ only depends on these quantities through
F when we rewrite the rebinned spectrum SNR in the
form

R r
ℓ = [(Pℓ/K

g)/(kBTℓ)]
√

τ/∆νr, (22)

where Pℓ (Tℓ) is an appropriately weighted average of the
total axion conversion power (noise temperature) in all
contributing processed spectrum bins.
For our ML-weighted analysis, we obtain an explicit

expression for F by comparing Eq. (21) to Eq. (19):

FML =

√

1

∆νr

∑

q

(L̄q/Kg)2. (23)

27 It should be emphasized that these correlations are independent
of, and would occur even in the absence of, the correlations be-
tween combined spectrum bins responsible for ξr 6= 1. The im-
plications of these grand spectrum correlations for the analysis
will be discussed further in Sec. VIII B.

The figure of merit for an unweighted sum follows from
Eq. (21) and R g

ℓ =
√
KgηcR

r
ℓ (see Sec. VIIA):

Fuw =
1√

Kg∆νr

∑

q

L̄q/K
g. (24)

For a meaningful comparison between analyses, we
must assume the same underlying signal spectrum f(ν)
in both cases. If we also assume that both analyses are
characterized by the same values of Kg and ∆νr, and
thus the same L̄q, then Fuw is just the mean of L̄q mul-

tiplied by (Kg∆νr)
−1/2, whereas FML is the RMS of L̄q

times the same factor. Thus FML ≥ Fuw independent of
any specific features of the lineshape; this is another way
to understand the improvement in sensitivity from ML
weighting.28

We can also use Eqs. (23) and (24) to compare the
sensitivity of analyses based on the same model f(ν) but
characterized by different ∆νr and/or Kg and thus dif-
ferent L̄q; this is a convenient way to quantify the con-
siderations discussed in Sec. VIIA. For f(ν) given by
Eq. (13), the improvement in the SNR from an optimal
ML-weighted analysis relative to an optimal unweighted
analysis is about 7.5%.29

In more recent ADMX analyses [20, 21, 26, 27], the
grand spectrum is defined as a weighted sum of com-
bined spectrum bins, with weights corresponding to the
coefficients of a Wiener Filter (WF). In our notation, the
WF weight for the bin δrℓ+q−1 is

uWF
q =

L̄2
q

L̄2
q + (σr

ℓ+q−1)
2
, (25)

up to a normalization factor. These weights are ob-
tained as solutions to the least-squares minimization of
the difference between the noisy observations δrℓ+q−1 and

the mean power L̄q independently in each bin. In the
high-SNR limit σr

ℓ+q−1 ≪ L̄q, uWF
q → 1, whereas in

the low-SNR limit, uWF
q → (L̄q/σ

r
ℓ+q−1)

2. In neither

28 Eq. (23) only quantifies the true improvement in the SNR from
a ML analysis if our analysis has assumed the correct signal
lineshape, but insofar as the true signal distribution is closer to
the nominal lineshape than to a “boxcar” of width Kg∆νr, the
ML analysis will still be more sensitive than an unweighted sum.

29 Here “optimal” means the SNR is maximized with respect to
∆νr and Kg (or, for ML weighting, it is sufficiently close to
its asymptotic value). The values of ∆νr and Kg adopted for
the present analysis are not optimal in this sense, and indeed
the SNR for our present analysis is only about 2% better than
the SNR in the optimal unweighted case. However, this opti-
mization does not take into account the fact that the integration
time required for rescans increases as we reduce ∆νr, as empha-
sized at the beginning of Sec. VII. A better comparison would
consider the improvement in SNR for a ML analysis relative to
an unweighted analysis that results in comparable total rescan
time. Our present ML analysis has 11.5% better SNR than the
unweighted analysis with the same ∆νr and Kg.
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limit do they agree with the unnormalized ML weights,30

uML
q = L̄q/(σ

r
ℓ+q−1)

2.

The origin of this discrepancy is the fact that, while
the ML and WF schemes are both based on least-squares
optimization, they are obtained by minimizing the mean
squared error with respect to different quantities: the
ML procedure yields the least-squares optimal estimate
of the mean power excess in the (appropriately rescaled)
contributing bins (and thus results in larger SNR than all
other unbiased analyses, as noted in Sec. VIB), whereas
the WF procedure yields the least-squares optimal esti-
mates of the weights that most robustly undo the smear-
ing of the axion lineshape due to the presence of noise. In
our view, the ML scheme relates more directly to the fun-
damental quantities of interest in the haloscope search.

Finally, we briefly note one more practical difference
between the WF and ML methods: the WF weights de-
pend on the SNR, whereas the ML weights only depend
on the shape of the axion signal independent of any over-
all normalization. In practice the WF should be evalu-
ated at an estimate of the average threshold sensitivity
|gmin

γ | to be obtained from the analysis. In the high-SNR
limit, the WF sum becomes unweighted, and the SNR
improvement from ML weighting may be estimated from
FML/Fuw as noted above.

D. Accounting for correlations

In the discussion above we noted two distinct effects
on the rebinned spectrum [Eqs. (17) and (18)] and grand
spectrum [Eqs. (19) and (20)] due to correlations between
nearby combined spectrum bins. First, we have not used
the correct expression for the variance of a weighted sum
of correlated Gaussian random variables in Eqs. (18) and
(19). Second, in the presence of correlations, the weights
we have used are not actually the optimal ML weights.
The former effect is responsible for ξr, ξg 6= 1; note that it
is completely independent of whether or not the weights
are optimal. We will consider the effect on the vari-
ance first; doing so will allow us to estimate the sum
of off-diagonal elements in the relevant covariance ma-
trices, and thus quantify the deviation from the optimal
weights.

The most general expression for the variance of a

30 Here we are comparing the coefficients of the bins δrℓ+q−1 in

the ML and WF analyses. The ML weights are more properly
defined as the coefficients of the rescaled bins δrℓ+q−1/L̄q. With

this definition the numerator is (L̄q/σr
ℓ+q−1)

2, but there is no

such rescaling step in the WF analysis.

weighted sum of K Gaussian random variables Xq is

Var
(

∑

q

wqXq

)

=
∑

q

w2
q Var(Xq) + · · · (26)

· · ·+ 2
∑

q

q−1
∑

q′=1

wqwq′Cov(Xq, Xq′).

We will apply this expression to obtain the correct
variance (σ̂g

ℓ )
2 of the ℓth grand spectrum bin. With

Xq = δrℓ+q−1/L̄q and the grand spectrum weights used
in Sec. VII C, we obtain

(

σ̂g
ℓ

)2
=
(

σg
ℓ

)2
+ 2
(

σg
ℓ

)4
Kg

∑

q=1

q−1
∑

q′=1

L̄qL̄q′Σ
r
ℓqq′

(σr
ℓ+q−1σ

r
ℓ+q′−1)

2
, (27)

where Σr
ℓqq′ = Cov(δrℓ+q−1, δ

r
ℓ+q′−1), and the factor of

(σg
ℓ )

4 multiplying the second term comes from the nor-
malization of the ML weights. The analogous expression
for the correct variance of the ℓth rebinned spectrum bin
is

(

σ̂r
ℓ

)2
=
(

σr
ℓ

)2
+ 2
(

σr
ℓ

)4
kf (ℓ)
∑

k=ki(ℓ)

k−1
∑

k′=k′

i
(ℓ)

Σc
kk′

(σc
kσ

c
k′ )2

, (28)

with Σc
kk′ = Cov

(

δck, δ
c
k′

)

.
Having established the requisite formalism, we can now

ask whether taking correlations into account explains the
observed reduction of the grand spectrum and rebinned
spectrum standard deviations. We see immediately that
σ̂g
ℓ can be smaller than σg

ℓ if the sum over off-diagonal ele-
ments of the covariance matrix is on average slightly neg-
ative. Formally the ratio σ̂g

ℓ/σ
g
ℓ is frequency-dependent,

but if nonzero Σr
ℓqq′ is a consequence of the stopband

properties of the SG filter, we should expect the corre-
lation matrix ρrℓqq′ = Σr

ℓqq′/(σ
r
ℓ+q−1σ

r
ℓ+q′−1) to depend

only on the bin spacing ∆q = q − q′. Analogous argu-
ments also apply to the ratio σ̂r

ℓ/σ
r
ℓ. Thus we expect

ξg = σ̂g
ℓ/σ

g
ℓ (29)

and

ξr = σ̂r
ℓ/σ

r
ℓ (30)

in the case of filter-induced correlations.
We used a simulation to show that the observed values

of ξr and ξg are indeed fully explained by processed spec-
trum correlations imprinted by the SG filter. Each iter-
ation in the ξg simulation generates a set of m 14020-bin
Gaussian white noise spectra with mean 1 and standard
deviation σp = 1/

√
∆νbτ , multiplies each spectrum by a

random sample baseline derived from data, then uses the
baseline removal procedure described in Sec. V to obtain
a set of simulated processed spectra.31 The m processed

31 The sample baselines used here and in the simulation described
in Sec. VIII A were each obtained by applying a high-order SG
filter (as in Sec. IVB) to the average of about 50 consecutive raw
spectra after removing contaminated bins.
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spectra are averaged without weighting or offsets to ob-
tain a single simulated combined spectrum, in which we
average non-overlapping 10-bin segments. We calculate
the product of each pair of bins with 0 ≤ ∆q ≤ 5 in
the simulated rebinned spectrum. Averaging each such
product over ≈ 500 iterations of the simulation, we ob-
tain reasonably precise estimates of (σr

ℓ)
2 and Σr

ℓqq′ for
each bin ℓ in the rebinned spectrum. Then we calculate
σg
ℓ and σ̂g

ℓ from Eqs. (19) and (27), and ξg from Eq. (29).
We find that ξg = 0.95 is constant throughout the

analysis band, independent of m for values ranging from
m = 1 out to at least m = 400 > max(mk) and inde-
pendent of τ out to at least τ = 900 s.32 From an analo-
gous simulation to quantify the effects of correlations on
the rebinned spectrum we obtain a constant ξr = 0.98.
To verify that the implementation of the simulation was
correct, we calculate the same quantities from the sim-
ulated Gaussian white noise spectra directly (bypassing
the steps where we imprint and then remove the base-
line); we obtain ξg = ξr = 1 as expected for this null
test.
These results demonstrate conclusively that the ob-

served values of ξr and ξg depend only on the stopband
properties of the SG filter. Fig. 3 indicates that the filter-
induced negative correlations increase at larger bin sep-
arations, consistent with the empirical result 1− (ξg)2 >
1 − (ξr)2. The explicit demonstration that ξg and ξr

are independent of m is critical because in the real
data mk varies throughout the combined spectrum: m-
independence implies that nonuniform weighting and fre-
quency offsets between processed spectra will not affect
our results. We conclude that ξr and ξg are frequency-
independent, as indeed the numerical agreement between
the simulated and observed values already indicates.33

It follows that each grand spectrum bin δgℓ is a Gaus-
sian random variable with standard deviation

σ̃g
ℓ = ξσg

ℓ = ξgξrσg
ℓ . (31)

and mean µg
ℓ = 0 in the absence of axion signals. Now

let us suppose there exists a KSVZ axion in bin ℓ′ of
the grand spectrum. If the only effect of the imperfect
SG filter stopband were to correlate the statistical fluc-
tuations of the noise in nearby bins, we would still have
µg
ℓ′ = 1, since the mean of a weighted sum of Gaussian

random variables is independent of whether or not they
are correlated.
However, the imperfect SG filter stopband will also

lead to slight attenuation of any locally correlated power

32 Our simulation and Eq. (29) measure ξg rather than ξ = ξgξr

because we use σr
ℓ rather than σ̂r

ℓ in Eqs. (27) and (19). Note
also that mk is itself an upper bound on the averaging in each
bin, because contributing spectra are not uniformly weighted.

33 The values of ξg and ξr obtained from the real data were un-
changed when we divided the axion search dataset in half in var-
ious ways (winter/summer, high/low RF frequency, upper/lower
half of analysis band) and constructed the grand spectrum sep-
arately from each subset of the data.

excess (e.g., an axion signal) in the raw spectra, so we
should expect µg

ℓ′ = η′ < 1. It follows that δgℓ′/σ̃
g
ℓ′ is a

Gaussian random variable with standard deviation 1 and
mean

R̃ g
ℓ′ = η′/σ̃g

ℓ′ = ηR g
ℓ′ , (32)

where η = η′/ξ. Thus we see that filter-induced sig-

nal attenuation η′ actually only reduces the SNR by the
smaller factor η, because the RMS fluctuations of the
noise power within the axion bandwidth are also reduced.
The procedure we use to quantify η is described in detail
in Sec. VIII A; though formally Eq. (32) allows η > 1,
we will find that η < 1, indicating that the net effect is
indeed reduction of the SNR.

Finally, we can return to the second effect of correla-
tions neglected in the construction of the grand spectrum:
in the presence of correlations, neither the rebinned spec-
trum weights nor the grand spectrum weights are actu-
ally the true ML weights. We are now equipped to show
that in practice deviations from the optimal weights are
negligibly small in both cases.

We noted in Appendix B that the true ML weights in
the presence of correlations are sums over rows of the
inverse covariance matrix. Applying the approximation
in Eq. (B5),34 we find that the (properly normalized) true
ML weights for the grand spectrum are

w̃ℓq=

(

σg
ℓ

)2

2−
(

ξg
)2

[

L̄2
q

(

σr
ℓ+q−1

)2 −
∑

q′ 6=q

L̄qL̄q′Σ
r
ℓqq′

(

σr
ℓ+q−1σ

r
ℓ+q′−1

)2

]

= w0
ℓq + δwℓq. (33)

Up to an overall change in the normalization, w0
ℓq = wℓq,

the ML weights in the absence of correlations. The mean
value of δwℓq just compensates for this rescaling such
that w̃ℓq remain normalized. The typical change in the
relative weighting is given by the standard deviation of
δwℓq, which is easy to calculate given the covariances ob-
tained in our simulation: we find that the RMS fractional
change in the weights is about 5%.

The resulting fractional change in δgℓ will be much
smaller because it is the average ofKg 5% deviations that
are mutually negatively correlated (because the weights
remain normalized). Thus, the systematic effect from ne-
glecting correlations in the grand spectrum ML weights
is small compared to the sources of error we consider in
Appendix D; the analogous effect in the rebinned spec-
trum is smaller still due to the smaller value of 1− (ξr)2.

34 It can be shown using Eq. (27) that the average of the off-

diagonal elements of the correlation matrix is 1.5
[(

ξg
)2

−

1
]

/(Kg − 1) ≈ −0.035, where the numerical factor is due to
lineshape weighting. Thus a first-order approximation is appro-
priate.
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VIII. CANDIDATES AND EXCLUSION

Via the procedure described in the previous sections,
we have condensed our axion search data into the 2ng

numbers δgℓ/σ̃
g
ℓ and R̃ g

ℓ . The statistical fluctuations of
the total noise power result in a standard normal dis-
tribution for the corrected grand spectrum δgℓ/σ̃

g
ℓ in the

absence of axion signals, and a KSVZ axion signal in a
particular bin ℓ′ would displace the mean of δgℓ′/σ̃

g
ℓ′ by

R̃ g
ℓ′ . Now we will explain how we use these quantities to

interrogate the presence of axion conversion power in our
scan range and derive an exclusion limit if there are no
persistent signals.
It should be emphasized that we have no a priori

knowledge of which bin ℓ′ (if any) corresponds to the
axion mass, and the only qualitative difference between
an axion signal and a positive excess power fluctuation
in any given bin is that a true signal should be persistent
across different scans at the same frequency. Thus the
best we can do is set a threshold Θ and define any bin
with δgℓ/σ̃

g
ℓ ≥ Θ as a rescan candidate. In the absence of

grand spectrum correlations, we would expect

Ŝ = ng
[

1− Φ(Θ)
]

(34)

such rescan candidates from statistics alone, where Φ(x)
is the cumulative distribution function of the standard
normal distribution. We can then collect sufficient data
at each rescan frequency to reproduce the sensitivity in
the initial scan (Sec. IXA), and thereby distinguish any
real axion signal from statistical fluctuations (Sec. IXB).
In light of the above discussion, our proximate task

is to determine an appropriate value for Θ. To sim-
plify matters, let us first assume R̃ g

ℓ = RT is constant
throughout the scan range. Perhaps the simplest choice
of threshold is Θ = RT . Taking ng ≈ 1.07 × 105 for
the first HAYSTAC data run and assuming for now that
RT = 5, we obtain Ŝ = 0.03; thus any bin exceeding the
threshold is extremely unlikely to be a statistical fluctua-
tion. The problem with this choice of threshold becomes
clear when we suppose there is an axion signal with SNR
RT in some bin ℓ′: then δgℓ′/σ̃

g
ℓ′ is a Gaussian random vari-

able with mean RT and standard deviation 1. Θ = RT

is a poor choice of threshold because the probability that
δgℓ′/σ̃

g
ℓ′ ≥ Θ is only 50%.

For arbitrary Θ (again assuming a signal with SNR RT

in bin ℓ′), the probability that δgℓ′/σ̃
g
ℓ′ ≥ Θ in the presence

of noise is called the axion search confidence level. If we
require a confidence level ≥ c1 for the initial scan, the
appropriate threshold is

Θ = RT − Φ−1(c1), (35)

and the expected rescan yield Ŝ follows from Eq. (34).
The relationship between all of these quantities is illus-
trated in Fig. 5. In Sec. VIII B we will see that grand
spectrum correlations modify the expected rescan yield
slightly, so we should actually expect S̄ < Ŝ candidates.
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FIG. 5. Schematic illustration of the relationship between the
SNR target RT , rescan threshold Θ, rescan yield Ŝ, and initial
scan confidence level c1. The vertical axis on the left applies
to the solid black curve representing the expected standard
normal distribution of grand spectrum bins δgℓ/σ̃

g
ℓ ; the integral

is the total number of grand spectrum bins ng. The vertical
axis on the right applies to the dashed blue curve, which is
a normalized Gaussian distribution with unit standard devi-
ation and mean RT , and represents the expected distribution
of excess power δg

ℓ′
/σ̃g

ℓ′
in a single grand spectrum bin ℓ′ con-

taining an axion signal. The threshold Θ (dot-dashed vertical

line) intersects both distributions: Ŝ (hatched region) is the
integral of the grand spectrum distribution above Θ, and c1
(gray shaded region) is the integral of the signal distribution
above Θ.

In the above discussion we assumed constant SNR
throughout the scan range, when in fact R̃ g

ℓ varied signifi-
cantly on scales& 1 MHz in the first HAYSTAC data run,
with typical values between 0.7 and 1.2, due to nonuni-
form tuning and frequency-dependence of the cavity Q,
form factor, etc. Recall that R̃ g

ℓ is the SNR for an ax-
ion signal with photon coupling |gγ | = |gKSVZ

γ |, and as
we emphasized in Sec. VIA, our decision to normalize
Eq. (6) to the KSVZ coupling specifically was completely
arbitrary. To obtain a frequency-independent threshold,
we can simply define

Gℓ =
(

RT /R̃
g
ℓ

)1/2

, (36)

from which it follows that RT is the SNR for an axion
with frequency-dependent coupling

|gmin
γ |ℓ = Gℓ|gKSVZ

γ |. (37)

Eqs. (35) – (37) completely determine the confidence
level at which we can exclude axions as a function of the
two-photon coupling |gγ | in each bin of the grand spec-
trum.35 By varying Θ we can adjust the tradeoff between
S̄ (which determines the total time we need to spend ac-
quiring rescan data) and |gmin

γ |ℓ, the minimum coupling

35 In contrast, in most ADMX analyses [7, 18–20, 26] the confidence
level is obtained from Monte Carlo. The Monte Carlo procedure
involves constructing a mock grand spectrum containing a large
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to which our search is sensitive.36 The validity of these
expressions hinges crucially on our ability to regard each
grand spectrum bin as a sample drawn from a Gaussian
distribution with known mean and standard deviation.
We demonstrated in Sec. VII D that we are justified in
treating any bin that does not contain an axion signal
in this way. In Sec. VIII A, we will show that we can
also quantify the mean and standard deviation for any
bin containing an axion signal, thus validating the above
procedure. Then we will return to the choice of threshold
in Sec. VIII B.

A. SG filter-induced attenuation

In Sec. VIID we claimed that with a KSVZ axion sig-
nal in the grand spectrum bin ℓ′, δgℓ′/σ̃

g
ℓ′ is a Gaussian

random variable with mean given by Eq. (32) and stan-
dard deviation 1. Let us consider each of the claims here
more carefully. In writing Eq. (32) we have implicitly as-
sumed that η is frequency-independent. While we could
of course write a similar expression with η → ηℓ, the util-
ity of Eq. (32) lies in the fact that we only need to specify
a single correction factor to know the SNR in each bin. It
is reasonable to expect η′ (and thus η) to be frequency-
independent, as η′ 6= 1 is ultimately a consequence of
the same imperfect SG filter stopband attenuation that
led to frequency-independent ξ 6= 1. We will see more
directly that η is constant below.
In claiming that the distribution of excess power about

the mean value R̃ g
ℓ′ is Gaussian with standard deviation

1, we are only assuming that the statistical fluctuations
of the total noise power in any given bin are independent
of whether or not that bin also includes excess power due
to axion conversion. This is certainly a valid assumption
for the raw data. We quantify η using a simulation which
will also demonstrate explicitly that this assumption still
holds in the grand spectrum.
The simulation we use to quantify η begins by defining

a set of m uniformly spaced simulated mode frequen-
cies νci and a frequency axis for a 14020-bin spectrum
with resolution ∆νb = 100 Hz centered on each mode
frequency. With a tuning step size of 1.402 MHz/m, the
low-frequency end of the last spectrum lines up with the
high-frequency end of the first, and mk (the number of

number of simulated axion signals with known SNR RT , setting a
threshold Θ, and defining c1 as the fraction of simulated axions
flagged as rescan candidates; the simulation may be repeated
many times to determine the behavior of c1 as a function of RT

and/or Θ. This more involved approach was originally adopted
to circumvent the effects of correlations on the horizontal sum,
which we have shown we can quantify.

36 A coupling |gγ |ℓ > |gmin
γ |ℓ corresponds to a signal with SNR >

RT . At any given threshold Θ, a result δg
ℓ′
/σ̃g

ℓ′
< Θ implies

that axions with mass νℓ′ and coupling |gmin
γ |ℓ′ are excluded

with confidence c1, and axions with the same mass but larger
coupling are excluded at higher confidence.

spectra contributing to the kth combined spectrum bin)
will vary from 1 to m over the tuning range. Each spec-
trum is initialized to the expected signal power for an
axion with coupling |gγ | and mass νa near the middle
of the simulated frequency range. The signal power in
the jth bin of the ith spectrum is proportional to the
integral of Eq. (13) over an interval ∆νb around the RF
frequency νk for which Γijk = 1, multiplied by the in-

verse of the rescaling factor defined in Sec. VIA. For
simplicity we take QLi, Ci, βi, and Tij to be the same
for each spectrum i, so that variation in the rescaling
factor only comes from the j-dependence of Tij and the
Lorentzian mode profile.
After the initialization described above, each iteration

of the simulation adds simulated Gaussian white noise
with mean 1 and standard deviation σp to each spec-
trum, and sends the full set of spectra through two anal-
ysis pipelines in parallel. The “standard” analysis mul-
tiplies each spectrum by a random sample baseline (see
Sec. VIID), then applies the baseline removal procedure
of Sec. V to obtain simulated processed spectra, and fi-
nally combines the simulated spectra both vertically and
horizontally, following the procedure of Sec. VI-VII, to
obtain a simulated grand spectrum. The “ideal” analysis
is identical except that it bypasses the steps that imprint
and then remove the baseline; thus we expect no effects
associated with the SG filter in the ideal grand spectrum.
From each iteration, we record the values of the nor-

malized power excess δgℓ /σ
g
ℓ (not δgℓ /σ̃

g
ℓ ) and the uncor-

rected SNR R g
ℓ in ≈ 2Kg bins around νℓ′ ≈ νa in both

the standard and ideal grand spectra. We also record the
value of δgℓ /σ

g
ℓ in a few other bins far from νℓ′ in differ-

ent parts of the standard grand spectrum. The coupling
|gγ | is chosen to yield R g

ℓ′ ≈ 5 for m ≈ 200. We let the
simulation run for ∼ 104 iterations, after which we can
histogram the distribution of any of the recorded bins
across iterations.
We are primarily interested in comparing the excess

power distribution in bin ℓ′ of the standard grand spec-
trum to the excess power distribution in the same bin
of the ideal grand spectrum. This comparison is shown
in Fig. 6. We see that in the ideal grand spectrum, the
fluctuations of the noise power in the bin ℓ′ containing
an axion signal are Gaussian with standard deviation σg

ℓ′ ,
as they would be in any other bin; we can also see that
our standard analysis procedure correctly calculates the
SNR R g

ℓ in the absence of SG filter effects.37

In the standard grand spectrum, we find that the
fluctuations of the noise power in bin ℓ′ are still Gaus-
sian, with a reduced standard deviation σ̃g

ℓ′ = ξσg
ℓ′ and

37 That is, E[δg
ℓ′
/σg

ℓ′
]i = (R g

ℓ′
)i = (R g

ℓ′
)s, where the subscripts

“s” and “i” refer to the standard and ideal analyses, respec-
tively. The calculated values of (R g

ℓ )i and (R g
ℓ )s are nearly equal

in each bin ℓ because they only depend on the measured data
through the distribution of processed spectrum standard devia-
tions (Sec. VB), which is changed only very marginally by the
presence of the SG filter.
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FIG. 6. The results of a simulation to quantify the filter-
induced attenuation η of the axion search SNR for a simu-
lated axion signal with νa = νℓ′ in the presence of Gaussian
white noise. The grand spectrum power excess δgℓ′/σ

g
ℓ′ is ob-

tained in each iteration of the simulation using two different
analysis pipelines. For each analysis, we have histogrammed
the distribution of excess power across iterations of the sim-
ulation (data points) and fit the histogram with a Gaussian
(solid curves); the best-fit mean and standard deviation are
shown on the plot. When the contributing spectra are com-
bined and rebinned directly (blue triangles), the distribution
is Gaussian with standard deviation 1 and mean equal to the
calculated SNR R g

ℓ′ (indicated by the dashed line). When
each contributing spectrum is scaled by an empirical baseline
and the standard analysis procedure is then applied (black
circles), the distribution is still Gaussian but with a smaller
standard deviation ξ = 0.93, equal to the value obtained in
real data. The ratio of the two mean values is η′, from which
we obtain η = η′/ξ = 0.90.

ξ = 0.93 as in real data. We also obtain Gaussian fluc-
tuations with standard deviation σ̃g

ℓ in other bins ℓ far
from the axion mass. This provides strong evidence for
the assertion that each δgℓ is a Gaussian random variable
with standard deviation σ̃g

ℓ , whether or not bin ℓ con-
tains an axion signal. Since we histogrammed δgℓ′/σ

g
ℓ′

rather than δgℓ′/σ̃
g
ℓ′ to more directly see the effects of

the SG filter on σg
ℓ′ , the ratio of the two bin ℓ′ excess

power distributions measures η′ rather than η; formally,
E[δgℓ′/σ

g
ℓ′ ]s/E[δgℓ′/σ

g
ℓ′ ]i = (µg

ℓ′)s(R
g
ℓ′)s/(R

g
ℓ′)i = η′. Di-

viding the value of η′ obtained this way by ξ we find
η = 0.90.
This result for η is independent of m out to at least

m = 400 (c.f. the analogous result for ξ from the simu-
lation described in Sec. VIID). It also does not change
if we vary |gγ |2 by ±50%; this linearity implies that we
do not have worry about the simulation reproducing the
precise value of RT to be used in the analysis. Finally,
η is independent of the misalignment of νa relative to
the grand spectrum binning: with arbitrary misalign-
ment E[δgℓ′/σ

g
ℓ′ ]i 6= R g

ℓ′ , but E[δgℓ′/σ
g
ℓ′ ]s always changes

by the same factor.38

38 For the simulation plotted in Fig. 6, we set νa to coincide with
a bin boundary in the rebinned spectrum, and used Lq(δνr =
0) rather than L̄q in the grand spectrum weights. This choice
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FIG. 7. (a) The corrected grand spectrum δgℓ/σ̃
g
ℓ plotted

as a function of frequency νℓ along with the (frequency-
independent) threshold Θ = 3.455. The 28 rescan candidates
are those bins for which δgℓ /σ̃

g
ℓ ≥ Θ; some are hard to see

because of the finite line thickness. (b) In black, the cor-
rected grand spectrum in a small region around the highest-
frequency rescan candidate. The vertical scale is the same as
in (a) and the horizontal scale has been expanded by a fac-
tor of ∼ 500. In blue, the combined spectrum δck/σ

c
k in the

same frequency range. As expected, the large power excess
at the candidate frequency in the grand spectrum is due to
∼ KrKg consecutive combined spectrum bins in which the
power excess is on average slightly positive, rather than a few
combined spectrum bins with extremely high power excess.

Taken together, the results of the simulation are en-
tirely consistent with the interpretation of η 6= 1 as a
result of the imperfect stopband attenuation of the SG
filter. Thus we conclude that Eq. (32) correctly describes
the SNR in each bin of the grand spectrum. Although
we have seen that filter-induced attenuation is a small
effect, we may still ask whether we can avoid this slight
SNR degradation by using different SG filter parameters.
This question is explored further in Appendix C.

B. Setting the threshold

We now return to the question of how we set appro-
priate values for c1 and Θ. In many subfields of particle
physics it is conventional to cite parameter exclusion lim-
its at 90% or 95% confidence. For the analysis of the first
HAYSTAC data run we set c1 = 0.95, for which Eq. (35)
becomes RT −Θ = 1.645.
Given a value for c1, the considerations that enter

made it simpler to confirm E[δg
ℓ′
/σg

ℓ′
]i = R g

ℓ′
and thereby verify

the correct implementation of the analysis procedure (recall that
with the lineshape L̄q, E[δg

ℓ′
/σg

ℓ′
]i = R g

ℓ′
if we average over the

range of possible misalignments, but is not necessarily true for
any given misalignment). We confirmed that we obtain the same
value of η using L̄q in the grand spectrum weights.
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into the choice of Θ are best illustrated with an ex-
plicit example. For the first HAYSTAC data run we
chose Θ = 3.455, corresponding to a threshold SNR of
RT = 5.1. S = 28 grand spectrum bins exceeded this
threshold and were flagged as rescan candidates. The cor-
rected grand spectrum δgℓ/σ̃

g
ℓ and threshold Θ are shown

in Fig. 7. Visual inspection suffices to demonstrate quali-
tatively the important point that many of the candidates
are quite marginal; more precisely 11 of the 28 candidates
exceed the threshold by less than ∆Θ = 0.1, implying
that we could have eliminated all of these candidates at
the cost of a ∆Gℓ/Gℓ = [(RT + ∆Θ)/RT ]

1/2 − 1 ≈ 1%
degradation of our exclusion limit. Conversely, reducing
the threshold by 0.1 would have improved the exclusion
limit by 1% at the cost of 10 additional rescan candidates.
Of course, this strong dependence of the rescan yield

on the threshold is just what we expect from Gaussian
noise statistics.39 It is common for haloscope searches
to set RT = 5 in estimates of the sensitivity that can
be achieved with a given set of design parameters, but
there is nothing special about this choice. In principle, Θ
(and thus RT ) should be chosen to optimize the coupling
sensitivity at fixed total integration time (initial scan plus
rescans). For any haloscope detector using a coherent
receiver, rescans are intrinsically less efficient than the
initial scan, so the time spent on rescans should be a
small fraction of the time spent acquiring the initial scan
data.40 By this criterion, the optimal threshold is higher
still than the value Θ = 3.455 we adopted for the first
HAYSTAC data run.
Thus far in this section we have discussed the real data

rescan yield S(Θ) without reference to any theoretical
model. To confirm that we have obtained a rescan yield
consistent with statistics, we must take into account the
fact that any two grand spectrum bins ℓ and ℓ′ will be
positively correlated if |ℓ− ℓ′| ≤ Kg − 1 because the seg-
ments of the rebinned spectrum contributing to the bins
ℓ and ℓ′ will overlap. These correlations imply that both
real axion signals and statistical fluctuations in the excess
power are likely to result in several adjacent bins exceed-
ing the threshold. We should not define all such bins
as rescan candidates because they are largely redundant.
Thus we add bins to the list of rescan candidates in order
of decreasing excess power, and remove Kg − 1 bins on
either side of each candidate from consideration before
moving on to the next candidate. The values of S(Θ)

39 One consequence of the sensitivity of S to small changes in Θ is
that the rescan lists for even relatively similar analyses (charac-
terized by e.g., slightly different choices of Kr and/or Kg, or WF
instead of ML weights) typically only overlap by ∼ 60− 80%.

40 This is because each measurement improves the SNR in ∼
∆νc/∆νa non-overlapping grand spectrum bins simultaneously.
In the initial scan each of these bins is relevant whereas in rescans
we only care about the SNR within Kg bins of each candidate. In
practice the discrepancy is further exacerbated by the fact that
rescans are more difficult to fully automate than the continuous
initial scan, and thus have worse live-time efficiency.

cited above were obtained using this procedure, which
was originally proposed by Ref. [19].

Recall that Ŝ(Θ) defined by Eq. (34) describes the
expected rescan yield for a grand spectrum whose bins
are samples drawn from a standard normal distribution:
it does not depend on whether or not nearby bins are
correlated provided ng is much larger than the corre-
lation length. Thus, Eq. (34) would correctly describe
the expected rescan yield if we did not exclude the cor-
related bins around each candidate; given that we do
exclude these bins, we should actually expect a rescan
yield S̄(Θ) < Ŝ(Θ). Note also that though the presence
of grand spectrum correlations affects the rescan yield,
it does not affect the initial scan confidence level c1.

41

Our procedure for cutting correlated bins from the rescan
yield will affect the rescan analysis procedure, discussed
in Sec. IXB.
We obtain the Θ-dependence of the expected rescan

yield S̄(Θ) from a simple simulation. We generate a
simulated rebinned spectrum containing Gaussian white
noise, apply the ML-weighted sum of Sec. VIIC to ob-
tain a simulated grand spectrum, and then flag rescan
candidates with the same procedure used for real data,
cutting Kg − 1 bins on either side of each candidate. We
repeat this simulation with different values of Θ between
2.3 and 4.3, and then repeat it ≈ 50 times at our chosen
value of Θ = 3.455 to obtain a range of probable values
for S̄.
From this simulation we obtain S̄(Θ) consistently

smaller than Ŝ(Θ) as expected: at Θ = 3.455, Ŝ = 29.5,
S̄ = 24 ± 5 and S = 28.42 We conclude that the ob-
served rescan yield S is consistent with statistics – by it-
self this result does not disfavor the hypothesis that any
of our candidates could be a real axion signal, since the
expected variation in S̄ is larger than one, and we expect
at most one axion in the data set. To settle the question
one way or another, we now turn to the acquisition and
analysis of rescan data around each candidate.

41 For any value of νa within our scan range, there will be some
grand spectrum bin ℓ′ in which the SNR is maximized, and the
best limits we can set will come from this bin. RT is the SNR
in bin ℓ′ if the axion has mass νa and coupling |gγ | = |gmin

γ |ℓ′
(up to an uncertainty quantified in Appendix D); it follows from
Eq. (35) that if bin ℓ′ does not exceed the threshold Θ, we can
exclude such axions with confidence c1. The non-observation of
excess power above the threshold in adjacent correlated bins just
gives us an additional, strictly less restrictive constraint on the
coupling of the axion with mass νa.

42 The fact that S is closer to Ŝ than S̄ at Θ = 3.455 is just a fluke
made possible by the small candidate statistics at such a large
threshold. At Θ = 2.5, for example, we would have S = 396,
S̄ = 372, and Ŝ = 588. Note that for any value of Θ, Ŝ > S̄ >
Ŝ/Kg, where the latter is the rescan yield we would obtain from
ng/Kg ≈ nc uncorrelated bins (this was also noted by Ref. [19]).
The second inequality gets at the reason (anticipated in Sec. VII)
that we did not take Kr = 1 and Kg = 50 in constructing the
grand spectrum: the number of rescan candidates would be much
larger at comparable sensitivity even after we ensure that no two
candidates fall within Kg bins of each other.
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IX. RESCAN DATA AND ANALYSIS

Three numbers are required to fully characterize each
of the S = 28 candidates obtained from the initial scan
data set: the signal frequency νℓ(s), the threshold cou-
pling Gℓ(s) (relative to the KSVZ coupling), and the
properly normalized power excess δgℓ(s)/σ̃

g
ℓ(s), where ℓ(s)

is the index of the grand spectrum bin that exceeded the
threshold and s = 1, . . . , S. Only the first two quantities
explicitly appear in our subsequent analysis (though of
course the power excess determines whether any given
bin is flagged as a rescan candidate in the first place).

To establish whether any of our rescan candidates is
persistent, we must first determine for each candidate the
rescan time τ∗s required to obtain SNR R∗

T for an axion
signal at frequency νℓ(s) with coupling Gℓ(s). Then we
can acquire rescan data at each candidate frequency. The
considerations that enter into these steps are described
in Sec. IXA.

We can imagine two alternative approaches to process-
ing the rescan data. One possibility is to process the res-
can and initial scan data sets together to produce a sin-
gle combined spectrum, from which we obtain a modified
grand spectrum by following the procedure in Sec. VII.
The extra integration time at each candidate frequency
implies that each R̃ g

ℓ(s) will increase by roughly a fac-

tor of
√
2. Since we are interested in probing the same

value of Gℓ(s), we can impose a higher threshold Θ∗
ℓ(s)

around each candidate. We can thus ensure that a real
axion signal exceeds the new threshold with some desired
confidence c2, while simultaneously greatly reducing the
probability that a statistical fluctuation does so.

Alternatively, we can process the rescan data sepa-
rately, following the procedure of Sec. V – VII to pro-
duce a rescan grand spectrum, and leaving the initial scan
grand spectrum unchanged. The rescan data set should
allow us to set a coincidence threshold Θ∗

ℓ(s) around each

candidate frequency which a real axion signal should ex-
ceed with confidence c2. If c2 ≈ c1, we do not expect
Θ∗

ℓ(s) to be substantially greater than Θ in this case, so

the probability that a statistical fluctuation exceeds the
threshold in any given bin will not change, but it is much
less likely that this should happen in any of the same bins
as in the initial scan.

If no changes to the analysis procedure are required for
rescan data, these two approaches are completely equiva-
lent. Here we take “separate processing” approach, which
is conceptually cleaner in that we process spectra to-
gether whenever we want to improve the coupling sen-
sitivity |gmin

γ | and separately when we want to reproduce

the coupling sensitivity of a previous scan. As we will see
in Sec. IXB, the rescan analysis differs from the initial
scan analysis in a few crucial respects, such that we must
use separate processing to obtain correct expressions for
the coincidence thresholds Θ∗

ℓ(s).

A. Rescan data acquisition

The most efficient way to acquire rescan data at the
candidate frequency νℓ(s) is to take one long measurement
with the axion-sensitive cavity mode fixed at frequency
νcs ≈ νℓ(s). We can calculate the integration time τ∗s re-
quired to obtain SNR R∗

T by starting with an expression
analogous to (22) and using Eqs. (5), (7), (21), (32), and
(36). The result is

τ∗s =
1

1− ε

[

R∗
TkBTsH

(

δνas
)

η∗FMLG2
ℓ(s)U0νcsCsQLs

βs

1+βs

]2

, (38)

where η∗ = 0.76 is the filter-induced attenuation for the
rescan analysis (see Sec. IXB), the noise temperature
Ts is evaluated in the middle of the analysis band, and
we have lumped all dependence on the detuning δνas =
νcs − νℓ(s) into the factor H(δνas) normalized so that
H(0) = 1; we have also assumed that only a fraction
1 − ε of the integration time at each cavity setting νcs
will contribute to improving the SNR at the candidate
frequency.
Eq. (38) indicates that in order to know how long to

integrate at each candidate frequency, we must estimate
the values of the parameters QLs, βs, Cs, and Ts (see
Sec. VIA) and the detuning δνas between the mode and
candidate frequencies. If the true value any of these pa-
rameters during the rescan measurement deviates from
the value we assume in the calculation of τ∗s , the true

SNR R̂∗
ℓ(s) calculated from the rescan data (see Sec. IXB)

will deviate from the target value R∗
T .

This observation motivates the question of what nomi-
nal value to assign to R∗

T in Eq. (38) – there is no a priori

reason we must set R∗
T = RT . Note that R̂∗

ℓ(s) 6= R∗
T for

any given candidate is not a problem provided that the
probability ps of a statistical fluctuation exceeding the
corresponding coincidence threshold Θ∗

ℓ(s) remains ≪ 1.

This probability may be roughly estimated as

ps = nK

[

1− Φ
(

Θ∗
ℓ(s)

)]

, (39)

where

Θ∗
ℓ(s) = R̂∗

ℓ(s) − Φ−1(c2) (40)

and we have defined an effective number of independent
bins 1 < nK < 2Kg − 1 to account for the fact that we
will reject the hypothesis of an axion in bin ℓ(s) only
if δg∗ℓ /σ̃g∗

ℓ exceeds the appropriate coincidence threshold
in neither the original bin ℓ(s) nor any of the (Kg − 1)
correlated bins on either side (see discussion in Sec. IXB).
nK = 1 (nK = 2Kg−1) would correspond to treating the
2Kg− 1 bins associated with each candidate as perfectly
correlated (uncorrelated); the appropriate value is clearly
somewhere in between these two extremes.
We would like to demand that

∑

s ps ≪ 1 in order to
avoid a second round of rescans in the absence of axion
signals. If we assume for now that Θ∗

ℓ(s) will not vary
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too much around the nominal value obtained by taking
R̂∗

ℓ(s) → R∗
T in Eq. (40), we should set

R∗
T = Φ−1

(

1−
[

∑

s

ps/(S × nK)
])

+Φ−1(c2). (41)

For the first HAYSTAC analysis, we estimated nK ≈ Kg

and demanded that simultaneously
∑

s ps ≤ 0.05 and
c2 = 0.95; with these choices, Eq. (41) yields R∗

T = 5.03
(equivalently, Θ∗

ℓ(s) ≈ 3.28).

Next we need to specify how we evaluate the other
parameters that enter into the calculation of τ∗s . For each
candidate we set Ts by averaging Tij over all initial scan
Y -factor measurements i, and evaluating the average in
the IF bin j corresponding to the cavity resonance. The
form factor Cs and the unloaded cavity quality factor
Q0s depend deterministically on the cavity frequency and
thus are easy to accurately estimate; QLs = Q0s/(1+βs)
then follows from our ability to control the cavity-receiver
coupling β by adjusting the antenna insertion. We set
βs = 2 in Eq. (38) for each candidate, to match the
average value of βi throughout the initial scan.43

The detuning δνas is trivial to measure but hard to
control precisely, due to the mode frequency drifts dis-
cussed in Sec. IVA and the backlash inevitably present in
any mechanical tuning system. In practice we acquired
the rescan data starting with the highest-frequency can-
didate and tuning down: for each candidate, we tuned
the TM010 mode ≈ 100−200 kHz above νℓ(s) and waited
20 minutes for the mode frequency to settle before start-
ing the measurement. We proceeded with the measure-
ment only if |δνas| < 150 kHz after this interval. We
set δνas = 0 for each candidate in Eq. (38) for simplic-
ity; since the cavity will be overcoupled and the noise
temperature also decreases for δνas 6= 0, τ∗s is not too
sensitive to small detunings.
Another potentially more serious consequence of mode

frequency drift is that for any given s, some or all of
the processed spectrum bins contributing to the grand
spectrum bin ℓ(s) may happen to coincide with a region
of the analysis band contaminated by IF interference.
We saw in Sec. IVB that 11% of analysis band bins were
contaminated in this way – thus there is a non-negligible
chance that R̂∗

ℓ(s) will be substantially smaller than the

target value R∗
T due to missing bins.

We mitigate this effect by splitting the total integration
time τ∗s required for each candidate across 10 cavity noise
measurements of duration τ∗s /10, and step the LO and
JPA pump frequencies together by 1 kHz (without tuning

43 β ≈ 2 is optimal for a continuous data run because it maximizes
the scan rate for a given sensitivity |gγ | [6]. For a rescan measure-
ment in which we only care about the SNR in a few bins around
νℓ(s), critical coupling (β = 1) is better if δνas ≈ 0 and Ncav = 0.
However, with Ncav 6= 0 the system noise temperature also de-
pends on β: with βs = 1, Ts would systematically underestimate
the true noise temperature in the rescan measurement.

the cavity mode) between measurements. On average, we
expect the candidate to fall in a contaminated part of the
analysis band in about 1 of 10 such measurements: thus
we set ε = 0.1 in Eq. (38).
Finally, unlike the experimental parameters discussed

above, η∗ and FML depend on fixed parameters of the
rescan analysis procedure and cannot change from one
rescan measurement to the next. We will see in Sec. IXB
that while FML will not change in the rescan analysis,
η∗ will not in general be equal to η and thus should be
estimated in advance to avoid systematically biasing τ∗s .
Applying Eq. (38) to the 28 rescan candidates from the

first HAYSTAC data run, we obtained rescan times τ∗s
ranging from 5.8 hours (corresponding to Gℓ(s) = 2.72)
to 17.9 hours (Gℓ(s) = 2.03). We had |νℓ(s) − νℓ(s+1)| <
200 kHz for 3 of the 27 pairs of adjacent candidates: thus
there is a 100 kHz range for νcs in which the condition
|δνas| < 150 kHz can be satisfied simultaneously for both
candidates. In each of these cases, we acquired rescan
data for both candidates together, taking the larger of the
two calculated integration times (which were generally
very similar). Thus we made 25 rescan measurements, for
a total of 282 hours of rescan time (c.f. Mτ = 1692 hours
of initial scan time).44

At each iteration s, after tuning the cavity to the ap-
propriate frequency νcs and setting βs ≈ 2, we used a
LabVIEW program to make 10 cavity noise measure-
ments and acquire auxiliary data. Each cavity noise mea-
surement was saved as an averaged power spectrum with
frequency resolution ∆νb as in the initial scan. The aux-
iliary data at each iteration comprised VNA measure-
ments of the cavity mode in transmission and the JPA
gain profile both before and after the set of cavity noise
measurements, a VNA measurement of the cavity mode
in reflection, and a Y -factor measurement.
We use this auxiliary data to quantify R̂∗

ℓ(s) as de-

scribed in Sec. IXB, and also to flag and cut anoma-
lous iterations as in Sec. IVA. Unlike in the initial scan
analysis we must repeat any iterations we cut at this
stage, to ensure that we have meaningful data around
each rescan candidate. In the first HAYSTAC data
run we had to repeat 6 of our 25 rescan measurements,
in each case because of excessive mode frequency drift
|νc1 − νc2| > 130 kHz.45

44 We will use s to index quantities as associated with each rescan
measurement as well as quantities bs associated with each can-
didate, with the implicit understanding that in three cases, we
will have as = as+1 but bs 6= bs+1

45 Mode frequency drifts were generally larger than in the initial
scan due to a combination of much larger tuning steps between
iterations and much longer integration times. Four rescan mea-
surements had drifts below 130 kHz but above the more con-
servative 60 kHz threshold used in the initial scan. The range
over which the mode drifted was roughly centered on the candi-
date frequency νℓ(s) in these cases, so the systematic deviation
from the correct ML weight for any processed spectrum bin con-
tributing to the combined spectrum around νℓ(s) will be quite
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B. The rescan analysis

Once we have acquired a complete rescan dataset, the
next step is to process and combine all rescan power spec-
tra to produce a single rescan grand spectrum. We begin
by truncating each of our 250 rescan spectra as in Sec. V,
normalizing each spectrum to the average baseline from
the initial scan analysis, and using the list defined in
Sec. IVB to cut bins contaminated by IF interference
from each spectrum.
Next we must use an SG filter to remove the residual

baseline from each spectrum. At this stage it becomes
important that τ∗s /10 > τ even for the smallest value of
τ∗s obtained from Eq. (38); moreover the residual base-
lines for the 10 spectra from each iteration will be very
similar, since we do not tune the cavity or rebias the JPA
between power spectrum measurements. Thus, although
the total averaging at each candidate frequency in the
rescan data is comparable to the total averaging at that
frequency in the initial scan, we should expect the ampli-
tude (relative to σp) of any small-scale systematic struc-
ture in the rescan processed spectra to be enhanced by a
factor ∼

√

τ∗s /τ if we use the same SG filter parameters
as in the initial scan (see also discussion in Appendix C).
We have seen in the preceding sections that the statis-

tics of the initial scan spectra are Gaussian at each stage
of the processing, and in particular that the narrowing of
the histogram of normalized grand spectrum bins δgℓ/σ

g
ℓ

is completely explained by the stopband properties of the
SG filter with parameters d = 4 and W = 500. This good
agreement between the observed and expected statistics
indicates that the amplitude of any small-scale system-
atic structure in the initial scan processed spectra must
be ≪ σp.
The observation that baseline systematics will grow

coherently over at least the single-spectrum integration
time (and likely over the full rescan integration time)
indicates that we cannot necessarily assume systematic
structure will remain negligibly small in the rescan pro-
cessed spectra. Studies of the effects of SG filters on sim-
ulated Gaussian white noise indicate that the parameters
d andW used in the initial scan would produce unaccept-
able deviations from Gaussianity if applied to the rescan
analysis. Thus we used an SG filter with d∗ = 6 and
W ∗ = 300 for the rescan analysis instead; Fig. 3 suggests
that with these parameters we should expect ξ∗ < ξ and
η∗ < η, and we will see below that this is indeed the case.
After applying the SG filter with parameters d∗ and

W ∗ to each rescan spectrum, we verify that the bins in

small. To bound this error we can consider the more extreme
case where the mode frequency initially coincides with the can-
didate frequency and then drifts away slowly over the 10 subse-
quent measurements: with the maximum allowed drift and the
minimum cavity bandwidth ∆νcs, the RMS fractional deviation
from the true combined spectrum ML weights is 13%. As noted
in Sec. VIID, the systematic effect on the combined spectrum
bin values δc∗k and the SNR R c∗

k will be much smaller.

each of the 10 processed spectra at iteration s have the
expected Gaussian distribution with mean 0 and stan-
dard deviation σp∗

s = 1/
√

∆νbτ∗s /10. We then rescale
the spectra to obtain a mean power excess of 1 in any
rescaled spectrum bin in which a KSVZ axion deposits
a fraction 1/(KrKg) of its total conversion power. For-
mally, the required rescaling is given by Eqs. (3) and (4),
with the additional factor of 1/(KrKg) discussed at the
beginning of Sec. VII B absorbed into the definition of the
signal power. Values for the factors in Eq. (5) and Eq. (7)
are obtained from the auxiliary data at each rescan mea-
surement via the procedure described in Sec. VIA; unlike
in the initial scan analysis, no interpolation is required
for T ∗

sj because we made a Y -factor measurement at each

rescan iteration.46

We then follow the procedure of Sec. VIB to construct
a single ML-weighted combined spectrum from the set of
250 rescaled spectra. The frequency axis for the rescan
combined spectrum extends from the smallest candidate
frequency minus 651 kHz (i.e., half the analysis band)
to the largest candidate frequency plus 651 kHz: there
are thus formally a total of 1.02 × 106 combined spec-
trum bins, though about 70% of these bins are empty
because we only took data around candidate frequencies.
The typical spacing between candidate frequencies is such
that most (non-empty) combined spectrum bins k are
obtained by averaging only the mk = 10 spectra from a
single rescan measurement. But the formal procedure of
Sec. VIB also correctly treats the cases where adjacent
candidates are sufficiently close that spectra from differ-
ent iterations overlap, and thus mk > 10. As expected,
the distribution of combined spectrum bins δc∗k /σc∗

k is
Gaussian with mean 0 and standard deviation 1.
Finally, we follow the procedure of Sec. VII B and

Sec. VII C to obtain the rescan grand spectrum. Since
we want to reproduce the initial scan sensitivity with-
out changing any assumptions about the axion signal,
we should use the same values of Kr, Kg, and L̄q in
Eqs. (17), (18), (19), and (20). However, we should ex-
pect ξr∗ 6= ξr and ξg∗ 6= ξg because we have used a dif-
ferent SG filter. Empirically, the distribution of rebinned
spectrum bins δr∗ℓ /σr∗

ℓ is Gaussian with mean 0 and stan-
dard deviation ξr∗ = 0.96, and the distribution of grand
spectrum bins δg∗ℓ /σg∗

ℓ is Gaussian with mean 0 and stan-
dard deviation ξ∗ = 0.83, implying ξg∗ = ξ∗/ξr∗ = 0.86.
As in the initial scan analysis, we are ultimately in-

terested in the quantities δg∗ℓ /σ̃g∗
ℓ = δg∗ℓ /

(

ξ∗σg∗
ℓ

)

and

R̃ g∗
ℓ = η∗R g∗

ℓ that have been corrected for filter effects.
As before, we obtain the value of ξ∗ directly from the
data; the value of η∗ can only be obtained from simu-

46 The j-dependent quantities in the rescaling factor should more
properly be written with an additional index a = 1, . . . , 10 to
account for the fact that the LO frequency varies across the 10
spectra at each iteration s. Apart from this small frequency
offset, the rescaling factor is the same for all the spectra at a
given iteration s.
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lation, but the common origin of ξ∗ and η∗ and good
agreement between the observed and simulated values of
ξ∗ gives us confidence that we have applied the appropri-
ate correction factor.
We validate the observed value of ξ∗ and measure η∗

using simulations very similar to the ones described in
Sec. VIID and Sec. VIIIA, respectively. Formally, the
rescan simulations only differ in two respects: we mul-
tiply each simulated white noise spectrum by the same
sample baseline instead of a random sample baseline, and
we assign the same mode frequency to each spectrum in
the simulation to quantify η∗.47 We reproduced the ob-
served values of ξr∗ and ξ∗ and obtained η∗ = 0.76 from
these simulations; we verified that the results in each case
were independent of the number of averages m and in-
tegration time τ , at least for mτ ≤ 20 hours, and thus
independent of frequency (see discussion in Sec. VIID).
At this point, we have obtained an explicit expression

for the SNR R̃ g∗
ℓ for a KSVZ axion signal in each bin

ℓ of the rescan grand spectrum, whereas we care about
the SNR for an axion signal with the threshold coupling
|gmin

γ |ℓ. Naively we only care about evaluating the SNR
in the S bins ℓ(s) that passed the threshold in the initial
scan, as the hypothesis that an axion signal with cou-
pling |gmin

γ |ℓ is present in any other bin has already been
excluded with confidence c1.
The presence of grand spectrum correlations compli-

cates this picture slightly. If several adjacent bins pass
the threshold together, we associate the candidate with
the bin whose power excess was largest, but in the pres-
ence of fluctuations the bin with larger power excess does
not necessarily have the largest SNR. Thus it is possible
in principle that the rescan candidate we have associated
with bin ℓ(s) actually corresponds to an axion signal in
any of the 2Kg − 1 grand spectrum bins ℓ′(s) correlated
with ℓ(s). To be conservative we require each such hy-
pothesis be rejected with confidence c2 before we can
reject the candidate. The above discussion implies that
we should define

R̂∗
ℓ′(s) = G2

ℓ′(s)R̃
g∗
ℓ′(s) (42)

with ℓ′(s) defined in the range [ℓ(s) − (Kg − 1), ℓ(s) +

(Kg − 1)]. Values of R̂∗
ℓ′(s) in the first HAYSTAC data

run ranged from 4.26 to 7.19, with an average of 5.19.48

47 We did not assign frequency offsets to the spectra in the simula-
tion used to measure ξ in the initial scan analysis (see Sec. VIID).
The fact that we nonetheless obtained the same value of ξ as in
real data indicates that small changes in the baseline shape (asso-
ciated with tuning the cavity or rebiasing the JPA) can suppress
the growth of small-scale systematics substantially, even without
frequency offsets between spectra.

48 The SNR was consistently above 6.4 for all the bins associated
with two adjacent candidates that were separated in frequency
by only 270 kHz: this was above our threshold for acquiring data
for both candidates together, but still close enough that the in-
tegration at each candidate contributed significantly to the SNR

The effects of uncertainty in the factors used to calculate
the rescan SNR are discussed in Appendix D.
The appropriate coincidence threshold Θ∗

ℓ′(s) for each

bin correlated with each candidate is then obtained by
using Eq. (42) in Eq. (40) with the substitution ℓ(s) →
ℓ′(s). In the first HAYSTAC data run, δg∗ℓ′(s)/σ̃

g∗
ℓ′(s) did

not exceed Θ∗
ℓ′(s) for any of the bins ℓ′(s) associated with

any of our S = 28 rescan candidates.49 The final result
of the first HAYSTAC data run is thus a limit on the
axion-photon coupling |gγ |.

X. CONCLUSION

The absence of any persistent candidates in the first
HAYSTAC data run implies that |gmin

γ |ℓ given by Eq. (37)
may be interpreted as an exclusion limit on the dimen-
sionless coupling |gγ | in each bin ℓ in our initial scan
range. The corresponding limit on the physical coupling
|gaγγ | = |gγ |α/(πΛ2)ma that appears in the Lagrangian
is plotted in Fig. 8. Assuming an axion signal lineshape
described by Eq. (13), we excluded |gγ | ≥ 2.3 × |gKSVZ

γ |
on average over the mass range 23.55 < ma < 24.0 µeV.
What confidence should we ascribe to the exclusion

of axions with the threshold coupling |gmin
γ |ℓ? Following

Ref. [19], we initially chose c1 = c2 = 0.95 to ensure the
product c1c2 ≥ 0.9, and interpreted this product as the
net confidence level. But this interpretation is overly con-
servative, because we only acquired and analyzed rescan
data at frequencies that exceeded the initial scan thresh-
old. The hypothesis of an axion signal with the threshold
coupling in any given bin is excluded with confidence c1
if that bin did not exceed the initial scan threshold. In
the bins correlated with each candidate, the appropriate
confidence level is the conditional probability that a true
axion signal would fail to exceed the coincidence thresh-
old, having already exceeded the initial scan threshold;
since the two scans are independent, this probability is
just c2. Thus, our result |gmin

γ |ℓ is properly interpreted

as an exclusion limit at 95% confidence.50

for the other. The average SNR among all other candidates was
5.09, close to our target value R∗

T = 5.03. The RMS variation in

R̂∗

ℓ′(s)
among the bins ℓ′(s) associated with each candidate s was

typically less than 1%, but was ∼ 5% in a few cases where the
candidate frequency was close to a region of the grand spectrum
with reduced exposure due to missing bins.

49 Had we observed a small number of persistent candidates, we
could easily have subjected them to an unambiguous test by re-
peating the rescan measurement with different applied magnetic
fields. It is difficult to imagine any instrumental systematic ca-
pable of mimicking the B2

0 scaling of the axion signal power.
50 We can equivalently interpret this result as a marginally more

sensitive exclusion limit at lower confidence. Our threshold
coupling at 90% confidence would be smaller by a factor of
[(

RT −Φ−1(0.95)+Φ−1(0.9)
)

/RT

]1/2
≈ 0.964. HAYSTAC col-

laborators are also working on developing a Bayesian approach
to the haloscope search analysis, which should offer an alterna-



27

23.6 23.7 23.8 23.9 24.0
0

1

2

3

4

5

6

7

DFSZ

g
a

γγ
 (

1
0

-1
4

G
e

V
-1
)

ma (µeV)

KSVZ

5.70 5.72 5.74 5.76 5.78 5.80
Frequency (GHz)

This work

0 5 10 15 20 25
10

-2

10
-1

10
0

10
1

10
2

ma (µeV)

g
γ

/
g

K
S

V
Z

DFSZ

KSVZ

This work
RBF

UF
ADMX

FIG. 8. The exclusion limit from the first HAYSTAC data run at 95% confidence (see discussion in text), reprinted from Ref. [5].
The light green shaded region is a rough estimate of our uncertainty, discussed in Appendix D. The large notch near 5.704 GHz
is the result of cutting spectra around the intruder mode discussed in Sec. IVA. The narrow notches correspond to frequencies
at which synthetic axion signals were injected during the winter scan (see Appendix F). The inset shows our limit (green)
together with previous haloscope limits from ADMX (magenta, Refs. [25, 26, 28–30], C.L. ≥ 90%) and early experiments at
Brookhaven (RBF, blue, Refs. [31, 32], C.L. = 95%) and the University of Florida (UF, cyan, Ref. [33], C.L. = 95%). For
uniformity of presentation, both RBF and UF limits have been rescaled to ρa = 0.45 GeV/cm3 from their original published
values, where ρa = 0.3 GeV/cm3 was used. The axion model band [34] is shown in yellow.

In this paper, we have described in detail the analysis
procedure used to derive the first limits on cosmic axions
from the HAYSTAC experiment. We have cited specific
examples from the analysis of our first data run, but our
formal procedure may easily be adapted to the analysis
of data from other haloscope detectors.
Throughout the preceding sections we have specifi-

cally emphasized our use of Savitzky-Golay filters to re-
move individual spectral baselines, our quantitative un-
derstanding of how filtering affects the statistics of the
spectra, and our consistent application of maximum-
likelihood weights to both the “vertical” sum of overlap-
ping spectra and the “horizontal” sum of adjacent bins in
the combined spectrum. All of these were innovations of
our approach to the haloscope search analysis; taken to-
gether, they enable us to calculate our search sensitivity
with minimal input from simulation, and obtain the rela-
tionship between sensitivity and confidence level directly
from statistics.
With the results of the first HAYSTAC data run we

demonstrated that a sufficiently low-noise experiment
can reach the QCD axion model band for ma > 20 µeV,
despite the unfavorable scaling of the haloscope signal
power with increasing frequency [6]. A second run to
extend this coverage is presently underway, with an im-
proved thermal link to the tuning rod (and thus signif-

tive prescription for defining rescan candidates and establishing
confidence levels.

icantly reduced Ncav) and a new piezoelectric actuator
with more reliable mechanical performance; these up-
grades will be described in a forthcoming publication
along with new results from the experiment. Ongoing
cavity and amplifier R&D by members of the HAYSTAC
collaboration also indicates several promising avenues for
further improving the scan rate and extending the halo-
scope technique to still higher frequencies [6, 35].
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Appendix A: Notation

Tab. I summarizes the notation used in the formal de-
scription of the HAYSTAC analysis procedure above, and
indicates where each commonly used symbol is first in-
troduced in the text. We have omitted quantities which
are not referenced outside the subsection in which they
are defined, and haloscope physics parameters for which
we have followed the standard notation in the field.
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Symbol Meaning Introduced

∆νb Raw spectrum resolution Sec. II B

δνa Axion/cavity detuning Sec. II B

d SG filter polynomial order Sec. VA

W SG filter window size Sec. VA

M Total no. spectra Sec. VB

ny No. bins in the y spectrum Sec. VB

δyx, δ
y
xz Single-bin power excess Sec. VB

σy
x, σ

y
xz St. dev. of power excess Sec. VB

mk No. spectra contributing to Sec. VI

combined spectrum bin k

Ry
x, R

y
xz Haloscope SNR Sec. VIA

µy
x Mean power excess Sec. VIB

Kr, Kg No. bins in rebinned/grand Sec. VII

spectrum horizontal sum

∆νr Rebinned spectrum resolution Sec. VII

δνr Axion/bin boundary detuning Sec. VIIA

Lq(δνr) Axion signal lineshape Sec. VIIA

L̄q Misalignment-averaged lineshape Sec. VIIA

ηc Signal fraction contained Sec. VIIA

in a grand spectrum bin

ηm Signal attenuation Sec. VIIA

from average misalignment

Dy
x ML-weighted power excess Sec. VIIB

ξr, ξg, ξ Correlation-induced σ reduction Sec. VIIB

FML, Fuw Horizontal sum figure of merit Sec. VIIC

σ̃y
x Corrected power excess st. dev. Sec. VIID

R̃y
x Corrected haloscope SNR Sec. VIID

η′ Correlation-induced signal loss Sec. VIID

η SNR reduction from correlations Sec. VIID

Θ Rescan threshold Sec. VIII

Ŝ Expected rescan yield without

grand spectrum correlations Sec. VIII

RT Threshold SNR target Sec. VIII

c1 Initial scan confidence level Sec. VIII

Gℓ Normalized axion coupling Sec. VIII

S Observed rescan yield Sec. VIIIB

S̄ Expected rescan yield Sec. VIIIB

c2 Rescan confidence level Sec. IX

TABLE I. Commonly used notation.

In Tab. I, the roman superscript y represents one of
the spectrum labels defined in Tab. II and the italic sub-
scripts x and z represent indices defined in Tab. III. We
adhere to these conventions throughout the text: for ex-
ample, R s

ij denotes the SNR for an axion confined to the
jth bin of the ith rescaled spectrum, and the index k

always runs from 1 to nc, the number of bins in the com-
bined spectrum. Primed indices (e.g., k′, ℓ′) are used
throughout the text to single out a particular bin con-
taining a putative axion signal; in Sec. VIID a primed
index is also used to specify the second bin in an expres-
sion for the covariance of nearby bins in a given spectrum.

Superscript Meaning Introduced

p processed spectrum Sec. VB

s rescaled spectrum Sec. VIA

c combined spectrum Sec. VIB

r rebinned spectrum Sec. VIIB

g grand spectrum Sec. VIIC

TABLE II. Spectrum labels.

Index Meaning Introduced

i indexes spectra Sec. VB

j indexes IF bins Sec. VB

k indexes 100 Hz RF bins Sec. VIB

ℓ indexes 1 kHz RF bins Sec. VIIB

q indexes lineshape elements Sec. VIIA

s indexes rescan candidates Sec. IX

TABLE III. Indices.

Finally, in Sec. IX, we use the superscript ∗ to denote
previously defined quantities whose values differ in the
rescan analysis.

Appendix B: Maximum Likelihood Estimation

Taking the discussion at the beginning of Sec. VI as
motivation, we will assume we havem independent Gaus-
sian random variables yk drawn from distributions with
the same mean µ but different variances σ2

k. We are in-
terested in finding an estimate of µ that maximizes the
likelihood function, which is just the joint probability dis-
tribution of the observations yk considered as a function
of µ:

L(µ) = exp

(

−1

2

∑

k

(

yk − µ

σk

)2
)

. (B1)

We can equivalently maximize logL, since the logarithm
is monotonically increasing. So we take

d

dµ
logL =

∑

k

(

yk − µ

σ2
k

)

= 0.

Solving for µ yields

µ =

∑

k yk/σ
2
k

∑

k 1/σ
2
k

, (B2)
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which may be compared to Eq. (9).
If our observations are not independent but rather cor-

related, Eq. (B1) should be replaced with

L(µ) = exp

(

−1

2
(y − µi)

⊺
Σ−1 (y − µi)

)

, (B3)

where i is the m-vector (1, 1, . . . , 1), and Σ is the covari-
ance matrix whose diagonal elements are σ2

k. Maximizing
with respect to µ we obtain

µ =
y⊺Σ−1i

i⊺Σ−1i
. (B4)

We see that the (unnormalized) ML weight for each yk is
a sum over the kth row of Σ−1. A useful approximation
to this sum for sufficiently small correlations is

∑

k

(

Σ−1
)

kk′
≈ 1

σ2
k′



1−
∑

k 6=k′

Σkk′

σ2
k



 , (B5)

where we have neglected all terms that are higher than
first order in the ratio of any off-diagonal element to any
diagonal element of Σ; to first order the normalization is
then just the sum of Eq. (B5) over k′. In Sec. VII we con-
sider ML weighting in the presence of small correlations.
We continue to use Eq. (B2) rather than Eq. (B4), and
argue in Sec. VIID that deviations from the true optimal
weights are acceptably small.
The ML estimate of the mean of a multivariate Gaus-

sian distribution with arbitrary covariance matrix Σ can
also be obtained from a least-squares perspective. To
see this, consider a linear regression model y = µx + ǫ,
where we would like to estimate the slope µ in the pres-
ence of noise ǫ, assumed to be drawn from a Gaussian
distribution with zero mean and covariance matrix Σ.
The generalized least squares (GLS) estimate of µ is the
value that minimizes the mean squared error

χ2(µ) =
1

m
(y − µx)

⊺
Σ−1 (y − µx) . (B6)

For x = i, χ2(µ) ∝ logL, so the estimate that extremizes
either criterion will also extremize the other. This equiv-
alence between the ML and GLS methods requires only
that the statistics of the underlying noise distribution be
Gaussian, and this condition will always be satisfied in
our haloscope analysis. It can be proved that the vari-
ance of the GLS estimator is smaller than the variance
of any other unbiased linear estimator [36].
Finally, we note as an aside that if we allow the ele-

ments of x to vary, and take Σ to be diagonal for sim-
plicity, the least squares estimate of µ becomes

µ =

∑

k xkyk/σ
2
k

∑

k(xk/σk)2
, (B7)

The elements of xk here play the role of the rescaling
factor discussed in Sec. VIA; thus from a least-squares

perspective the rescaling of the spectra need not be re-
garded as a distinct step of the analysis procedure. We
stick to the ML perspective in the text to emphasize the
value of using units in which the expected axion conver-
sion power is 1, and thus the R = σ−1 correspondence
has an intuitive interpretation.

Appendix C: Optimizing SG filter parameters

We discussed the optimization of the SG filter param-
eters d and W briefly at the end of Sec. VA, but it is
instructive to revisit this question after having observed
the filter-induced narrowing ξ of the distribution of grand
spectrum bins (Sec. VIID) and the filter-induced atten-
uation of the SNR (Sec. VIII A). Fig. 3 indicates that
reducing d/W moves the 3 dB point of the SG filter
down towards larger spectral scales and increases the
stopband attenuation on the small spectral scales of in-
terest (≤ KrKg bins). Thus we should expect ξ, η → 1
as we reduce d/W .
However, as noted in Sec. VA, reducing the 3 dB point

of the SG filter invariably moves progressively larger-
amplitude components of the baseline from the filter’s
passband into its stopband. This claim implicitly as-
sumes that the power spectrum of the residual baseline

falls off monotonically towards smaller spectral scales,
and we can confirm this empirically: on small spectral
scales the residual baseline power spectrum follows a
power law distribution with spectral index α ≈ −2.
The largest-amplitude baseline component that is not

removed by the SG filter (and thus remains in the pro-
cessed spectra) will coincide with the first zero of the
filter’s transfer function; let us call the corresponding
bin separation κ. As we reduce d/W at fixed integra-
tion time τ (or increase τ for a given filter), the baseline
amplitude a(κ) will grow relative to the statistical fluc-
tuations σp = 1/

√
∆νbτ . For a(κ)/σp sufficiently large,

the distribution of processed spectrum bins δpij will ap-
pear non-Gaussian. Of course, each bin in each processed
spectrum is still a Gaussian random variable with stan-
dard deviation σp; the apparent breakdown of Gaussian-
ity just indicates that µp

ij = 0 for each bin j has become
a poor approximation given our failure to completely re-
move the spectral baseline.
Even if the distribution of δpij exhibits no signs of non-

Gaussianity, a(κ) 6= 0 implies positive correlations in the
processed spectra on scales ≤ κ/2; since κ > KrKg, this
effect tends to counteract the negative correlations due
to the SG filter stopband alone (i.e., independent of the
spectrum of the baseline). In other words, systematic
effects due to the shape of the baseline grow coherently
in the horizontal sum over adjacent bins. They can also
grow coherently in the vertical sum if themk contributing
spectra have small detunings and similar baselines, as in
the rescan data set (Sec IXB).
Thus, we find that unless a(κ) ≪ 1/

√
∆νbτ , ξ and η

will depend on the integration time τ (and possibly also
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onmk). The simulations discussed in Secs. VII D, VIII A,
and IXB demonstrate that we are safely in the a(κ) ≪
1/

√
∆νbτ regime with filter parameters d,W (d∗,W ∗) for

the initial scan (rescan) analysis.

Appendix D: Parameter uncertainties

The corrected grand spectrum SNR R̃ g
ℓ depends on

many measured parameters whose uncertainties we have
thus far ignored. Here we will quantify the effects of these
uncertainties on the analysis, but first we note that there
is potential for terminological confusion because “confi-
dence level” is a generic statistical term often used to
quantify uncertainty. The axion search confidence level
c1 we have defined in this paper is the probability that an
axion with SNR RT in any given grand spectrum bin will
exceed the threshold – since the value of RT is not fixed
by measurement, c1 is completely independent of param-
eter uncertainties. Rather, uncertainty in R̃ g

ℓ translates
[via Eqs. (36) and (37)] into uncertainty in the threshold
coupling |gmin

γ |ℓ for which we obtain SNR RT in each bin
ℓ.
We can estimate the size of the fractional uncertainty

δ|gmin
γ |/|gmin

γ | in a typical grand spectrum bin by first
noting that

|gmin
γ | ∝

(

Teff

ηφ(δν)ηLC010

)1/2

, (D1)

where we have elided factors without uncertainty and
quantities like QL and B0 that are easily measured with
fractional uncertainty ≤ 1%, and introduced an effective
noise temperature Teff and a function φ(δν) discussed be-
low. It is easy to estimate the error in the factor ηL in-
troduced in Sec. VIA to quantify loss between the cavity
and JPA. We estimated this loss to be −0.60± 0.15 dB,
which implies δηL/ηL ≈ 3.5%.
The filter-induced attenuation η and cavity mode form

factor C010 are both obtained from simulation, and thus
estimating the uncertainty in these parameters is not nec-
essarily straightforward. Nonetheless, our result for η
is very robust against changes in the parameters of the
simulation (see discussion in Sec. VIII A), and this im-
plies a fractional uncertainty of δη/η . 1% which we can
safely neglect. We did not include uncertainty in C010

in our error budget because we did not have a reliable
way to quantify it. Preliminary field profiling measure-
ments suggest that the simulated form factors are reliable
to better than 10%, so a careful treatment of the form
factor uncertainty would likely change our final result
δ|gmin

γ |/|gmin
γ | ≈ 4% by at most a factor of 2 and possibly

much less.
In the denominator of Eq. (D1) we have defined

φ(δν) =

√

∑

q

L̄qLq(δν)/
(

Kg)2 (D2)

to encode the dependence of the SNR on the misalign-
ment δν of the axion mass relative to the lower edge of
the grand spectrum bin in which the SNR is maximized
(see discussion in Sec. VIIA). The misalignment atten-
uation ηm ≈ φ̄/φ(0), where φ̄ is the mean value of φ(δν)
over the range of possible misalignments; note also the
formal similarity of Eq. (D2) to Eq. (23).51 With the
misalignment error δφ defined as the standard deviation
of φ(δν) over this same range, we obtain δφ/φ̄ ≈ 2%.

Finally, in any given grand spectrum bin, the effec-
tive noise temperature Teff is formally given by a ML-
weighted average of Tij across all contributing processed
spectrum bins. Since we are only interested in estimating
the typical fractional uncertainty in the noise tempera-
ture, we make the same approximation we used to set Ts

in the calculation of the rescan time in Sec. IXA: we av-
erage Tij over all spectra and evaluate it in the IF bin j
corresponding to the middle of the analysis band, where
the ML weight is largest.

Taking a typical cavity frequency νc = 5.75 GHz in
the middle of the first HAYSTAC scan range, we can then
write Teff = hνc[NT +Ncav+NA]; the reader is referred to
Sec. VIA for the definition of these additive contributions
and to Ref. [6] for detailed discussion of the noise cali-
bration procedure. Briefly, we obtain NA = 1.35 ± 0.05
quanta from off-resonance Y -factor measurements and
Ncav = 1.00 ± 0.17 quanta from the average of all Y -
factor measurements during the data run. Even allowing
for a ±20 mK uncertainty in the calibration of the mix-
ing chamber thermometer, the uncertainty in NT = 0.63
remains negligibly small, in part because the nominal
HAYSTAC operating temperature TC = 127 mK is suf-
ficiently far into the Wien limit that NT depends only
weakly on the physical temperature, and in part because
errors in different contributions to the total noise Teff are
somewhat anti-correlated. Negative correlations arise be-
cause increasing any of the additive terms in Teff while
holding the others constant would reduce the measured
value of the hot/cold noise power ratio Y .

Adding the uncertainties cited in the above para-
graph in quadrature and using kBTeff ≈ 3hνc we obtain
δTeff/Teff ≈ 6%. This estimate (dominated by the vari-
ation in measurements of Ncav) is conservative in that
we have neglected the fact that δNA and δNcav are nega-
tively correlated, and because we have included the RMS
systematic variation of Ncav across the tuning range in
the “uncertainty” δNcav. Miscalibration of the still ther-
mometer would need to be larger than ±20 mK to affect
our estimate of δTeff.

Combining the results of the preceding paragraphs, we

51 Formally, ηm as defined in Sec. VII A is obtained by replacing
each Lq(δν) by its average value L̄q and then normalizing to
φ(0), which is not quite the same because φ is not linear in Lq .
In practice, the difference is negligible.
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obtain

δ|gmin
γ |

|gmin
γ | ≈

√

√

√

√

(

1

2

δTeff

Teff

)2

+

(

1

2

δφ

φ̄

)2

+

(

1

2

δηL
ηL

)2

≈ 4%.

This result (represented by the light green shaded region
in Fig. 8) should be interpreted as a rough estimate of
the uncertainty in our exclusion limit, not a formal 1σ
error bar on the threshold coupling |gmin

γ |ℓ in each bin.
We should also consider the effects of miscalibrating

the SNR in the rescan analysis. We can distinguish be-
tween “global” effects (e.g., overall miscalibration of the
system noise temperature or uncertainty in ηL) and ef-
fects confined to the rescan analysis (e.g., miscalibration
of η∗ or mode frequency drifts in particular rescan mea-
surements). The former affect R̃ g∗

ℓ and R̃ g
ℓ in the same

way: thus they do not change the candidate SNR R̂∗
ℓ′(s)

obtained from Eq. (42), and cannot change the results of
the rescan analysis.
Conversely, miscalibration of R̃ g∗

ℓ relative to R̃ g
ℓ

around any given candidate s implies that we have either
underestimated or overestimated R̂∗

ℓ′(s), which in turn

implies that the coincidence thresholds Θ∗
ℓ′(s) we imposed

on the bins correlated with ℓ(s) were either unnecessarily
low or too high. Clearly, the latter possibility is the one
that should concern us: it implies that relative miscali-
bration of the rescan SNR can cause the probability that
we miss a real persistent signal to exceed 1− c2.
Empirically, in the first HAYSTAC data run, we could

reduce each R̂∗
ℓ′(s) by 17% before any of the (2Kg − 1)S

bins we examined exceeded the corresponding thresh-
old.52 All of the parameter uncertainties whose contribu-
tions to δ|gmin

γ |/|gmin
γ | we have considered in this section

are global effects to which the coincidence thresholds are
insensitive. We conclude that miscalibration of R̃ g∗

ℓ rel-

ative to R̃ g
ℓ by more than 17% is extremely unlikely. A

more formal way to account for the possibility of rela-
tive miscalibration is to require a rescan confidence level
c2 > c1; we will adopt this approach in future HAYSTAC
analyses.

Appendix E: Effects of a wider lineshape

As noted in Sec. VII A, the analysis presented in this
paper has assumed the spectral distribution of axion con-
version power is given by Eq. (13) instead of Eq. (14),
but we should actually expect the latter distribution in
a terrestrial experiment if the halo axions are fully viri-
alized with a pseudo-isothermal density profile and RMS
velocity

√

〈v2〉 = 270 km/s.

52 The first bin to do so had δg∗ℓ /σ̃g∗
ℓ = 2.7. Among S × nK inde-

pendent bins, we expect 0.5 bins with power excess this large, so
the observation of one should not be surprising.

-2 0 2 4 6 8

10
0

10
1

10
2

10
3

C
o
u
n
t

Normalized power excess

µ = 3.92
σ = 1.00

µ = 3.04
σ = 0.93

FIG. 9. The results of a simulation to quantify the reduc-
tion in SNR for an axion signal with the wider lineshape
of Eq. (14). As in Fig. 6, the distribution of excess power
δgℓ′/σ

g
ℓ′ in a grand spectrum bin ℓ′ containing an axion sig-

nal is histogrammed over iterations of the simulation; the two
histograms correspond to two different analysis pipelines. Pa-
rameters obtained from Gaussian fits to the both histograms
are displayed on the plot. The SNR R g

ℓ′
= 5.66 calculated

assuming the narrower lineshape of Eq. (13) is indicated by
the dashed vertical line. With an analysis that neglects SG
filter effects (blue triangles), the distribution is Gaussian with
standard deviation 1 and mean smaller than R g

ℓ′ by a factor
ζ0 = 0.69. From the analysis that takes into account effects
of the SG filter (black circles), we obtain an additional SNR
attenuation factor ηlab = 0.84. The net reduction of the cor-
rected grand spectrum SNR R̃ g

ℓ′ is thus ζ = (ηlab/η)ζ0 = 0.64.

To quantify the degradation of our exclusion limit
|gmin

γ |ℓ for an axion signal with the lab frame spec-
tral distribution f ′(ν), we repeated the simulation of
Sec. VIIIA, using Eq. (14) instead of Eq. (13) for the
simulated axion signal but leaving the lineshape L̄q used
in both the “standard” and “ideal” analysis pipelines
unchanged. As in Sec. VIIIA, the main results of the
simulation are two histograms (corresponding to the two
analysis pipelines) representing the excess power distri-
bution in the grand spectrum bin ℓ′ best aligned with the
simulated axion signal. These histograms are plotted in
Fig. 9.
We see that the mean value of the ideal analysis his-

togram E[δgℓ′/σ
g
ℓ′ ]i is no longer equal to the calculated

SNR R g
ℓ′ represented by the dashed vertical line. This is

unsurprising, as R g
ℓ′ is still calculated using the lineshape

L̄q obtained by integrating Eq. (13). Thus, neglecting SG
filter effects, the ratio

ζ0 = E[δgℓ′/σ
g
ℓ′ ]i/R

g
ℓ′ = 0.69 (E1)

quantifies the reduction in SNR we should expect when
we use an analysis optimized for signals with spectral
distribution f(ν) to search for signals governed by the
wider lab frame distribution f ′(ν).
Next we can consider how ζ0 is modified by the im-

perfect SG filter stopband. From the width of the his-
togram obtained from the standard analysis, we obtain
ξ = 0.93, as we should expect given that we have not
changed the parameters of the horizontal sum. Com-
paring the two histograms in Fig. 9, we obtain ηlab =
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E[δgℓ′/σ
g
ℓ′ ]s/

(

ξE[δgℓ′/σ
g
ℓ′ ]i
)

= 0.83 [c.f. η = 0.90 obtained
in Sec. VIII A assuming the narrower distribution f(ν)].
The result ηlab < η is also expected, as the SG filter
stopband attenuation gets worse towards larger spectral
scales (See Fig. 3). The net reduction of the corrected

KSVZ SNR R̃ g
ℓ′ is thus

ζ = (ηlab/η)ζ0 = 0.64. (E2)

Equivalently, at fixed RT , |gγ | is increased by a factor
1/

√
ζ = 1.25. Since we cannot change the threshold in

a reanalysis of a completed run without acquiring more
rescan data, we conclude that our published exclusion
limit |gmin

γ |ℓ is degraded by 25% for axion signals with
spectrum given by Eq. (14). The modified limits still cut
into the allowed parameter space for viable KSVZ and
DFSZ models [34, 37]; thus the qualitative conclusions of
Ref. [5] remain unchanged.
It should be emphasized that the value of ζ0 derived

from simulation above arises from the combination of two
conceptually distinct effects. First, f ′(ν) is wider than
f(ν), and thus any analysis assuming the former will be
less sensitive for a given noise temperature. Second, our
analysis used values of Kg and L̄q appropriate for the
distribution f(ν), so the horizontal sum is not optimally
weighted if the true signal spectrum is f ′(ν). With Kr =
10, Kg = 7, and f(ν) → f ′(ν) in Eq. (15), we can obtain
ζ0 = 0.78 analytically using Eq. (23); simulation confirms
this value and indicates that ηlab is unchanged. Thus we
should expect ζ = 0.72 for an analysis optimized for the
wider signal distribution, or equivalently |gγ | larger than
our present limit by 18%, up to changes in other factors
affecting the SNR.

Appendix F: Synthetic axion injections

In Fig. 8 we can see seven small notches in which
|gmin

γ |ℓ increases sharply over a very narrow range. These
notches arise because we injected synthetic axion signals
into the cavity at ten random frequencies during the ini-
tial data acquisition period in winter 2016, and cut data
around each such signal before combining data from the
winter and summer runs.
In the two lowest-frequency notches, |gmin

γ |ℓ increases

by about a factor of 21/4 because roughly half the data
contributing to the SNR at these frequencies was ac-
quired during the winter run. At higher frequencies, a
larger fraction of the data came from the summer run,
and thus the depth of the notches gets progressively
smaller. In particular, the effects of cutting data from the
winter run around two injected signals above 5.76 GHz
are not visible at the resolution of Fig. 8. The last in-
jected signal happened to fall in the range where we cut
spectra around an intruder mode (see Sec. IVA), so it is
also not visible in Fig. 8.
The procedure we used to generate axion-like signals in

HAYSTAC is summarized in Refs. [5] and [6]. Our goal
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FIG. 10. Results of a direct measurement of the scaling of
RMS noise σy with integration time τ in HAYSTAC, demon-
strating that σy ∝ τ−1/2 as expected out to at least 24 hours.

in injecting these signals into the experiment was not to
demonstrate an alternative approach to calibrating the
search sensitivity, as obtaining sufficiently good statistics
would entail polluting our spectrum with a large number
of synthetic axions. Instead, we used synthetic signal in-
jections as a simple fail-safe check on our data acquisition
and analysis procedures, to verify that faint narrowband
signals injected into the cavity did indeed result in large
excess power in the expected grand spectrum bins.

We decided on a nominal signal power of 10−22 W,
roughly equal to the expected conversion power for an
axion with |gγ | = 4|gKSVZ

γ | and sufficiently far above our
target sensitivity to allow us to immediately establish
the presence or absence of excess power with only a sin-
gle pass over the tuning range. Due to a miscalculation,
we set the power lower than this by a factor of 2.5 for the
three highest-frequency signals, and moreover the expo-
sure was lowest at these frequencies in the winter run:
thus the expected SNR for these three signals was ≈ 1.5.
We observed excess power consistent with this estimate
(though of course also consistent with the absence of a
signal) at these three frequencies. After correcting the
signal power, we observed δgℓ/σ̃

g
ℓ > 5 in all bins corre-

sponding to the remaining injected signals.

Having demonstrated to our satisfaction that our anal-
ysis procedure can detect real axion-like signals, we opted
not to inject signals during the summer run. Before con-
structing the combined spectrum used in the final analy-
sis, we cut RF bins around each injected signal in which
we expect more than 1% of the peak power given the
measured signal lineshape.

Appendix G: Scaling with integration time

On paper the expected SNR in a haloscope search is
∝ √

τ , due to the τ−1/2 scaling of the RMS noise power in
each bin expected from Gaussian statistics. The observed
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standard normal distribution of the combined spectrum
power excess δck/σ

c
k in both the initial scan and rescan

analyses implicitly indicates that the RMS noise contin-
ues to decrease in this way with increasing averaging. We
also demonstrated more directly that this τ−1/2 scaling
holds for real data out to τ > max(τ∗s ) with a dedicated
measurement described below.

For this measurement, we acquired 24 hours of noise
data at a single frequency with the JPA gain maintained
by feedback as in the data run. The data was saved to
disk as a set of 17280 raw spectra obtained from τ0 =
5 s of averaging each. In offline analysis we removed
bins contaminated by known IF interference, divided by
the average baseline as in Sec. V, and averaged every 10

adjacent spectra. We used this set of m = 1728 averaged
spectra to probe the behavior of the RMS noise σy as
a function of the integration time τk = 10kτ0, for k =
1, . . . ,m.
To measure σy(τ), we apply a Savitzky-Golay filter

with parameters d∗ and W ∗ to each of the m averages.
Then for each k = 1, . . . ,m we average k filtered spectra
and take σy(τk) to be the sample standard deviation of
all bins in this k-spectrum average. We expect σy(τ) =
1/

√
∆νbτ – formally σy = σp considered as a function

of the integration time τ ; we call this quantity σy in
analogy to the Allan deviation, a time-domain measure
of the dependence of the RMS noise on τ . The measured
values of σy(τk) (plotted in Fig. 10) exhibit this expected
behavior out to at least τ = 24 hours.
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