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Ecole Normale Supérieure, PSL Research University, Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, 75005 Paris, France
3Institut für Physik, Humboldt-Universiät zu Berlin,

Zum Großen Windkanal 6, 12489 Berlin, Germany &
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Dated: September 19, 2017)

Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the
conformal algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions
as well as the inclusion of fermions in four dimensions. The Yangian symmetry results in novel
differential equations for these families of largely unsolved Feynman integrals. Notably, the consid-
ered fishnet graphs in three and four dimensions dominate the correlation functions and scattering
amplitudes in specific double scaling limits of planar, γ-twisted N = 4 super Yang–Mills or ABJM
theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability
of the planar AdS/CFT correspondence.

INTRODUCTION

Feynman diagrams represent the main tool for the
study of complex physical phenomena—from fundamen-
tal interactions of elementary particles to diverse solid
state systems. In spite of the great progress in comput-
ing individual Feynman graphs with multiple loop inte-
grations, examples of exact all-loop results for important
physical quantities (such as amplitudes, correlators, etc.)
are rare in dimensions greater than two. Remarkably,
there exist certain types of planar graphs with a partic-
ularly regular structure, which may be calculable at any
loop order. Examples are the regular tilings of the two-
dimensional plane. These diagrams become accessible
due to their integrability properties, in close analogy to
the quantum integrable one-dimensional Heisenberg spin
chains. Apart from providing new, powerful methods for
the computation of large classes of particular Feynman
graphs, these observations reveal the interplay between
various physical systems and a rich variety of mathemat-
ical aspects related to quantum integrability.

A prime example in the above class of Feynman graphs
are scalar fishnets in four dimensions, built from four-
point vertices connected by massless propagators (cf.
Fig. 1). These represent one of the three regular tilings of
the Euclidean plane and, except for the simplest example,
solving this class of Feynman integrals for generic exter-
nal parameters is an open problem. On the other hand,
these square fishnets are subject to outstanding proper-
ties: Firstly, they feature a (dual) conformal Lie algebra
symmetry, which makes it natural to express them using
conformal cross ratios. They are finite, i.e. free of IR or
UV divergencies, such that their conformal symmetry is
unbroken for generic kinematics. Moreover, A. Zamolod-
chikov demonstrated that scalar fishnet graphs can be
interpreted as integrable vertex models [1]. Further-

FIG. 1. Example of a conformal scalar fishnet Feynman
graph in four dimensions. Filled blobs denote loop integra-
tions, white blobs represent external points xk.

more, in the planar limit fishnet graphs dominate physi-
cal quantities, such as scattering amplitudes and correla-
tors, of the bi-scalar CFT recently found by Ö. Gürdogan
and one of the authors [2] as a specific double-scaling
limit of γ-twisted N = 4 SYM theory. This non-unitary
CFT is defined by the Lagrangian

Lφ = NcTr
(
∂µφ†1∂µφ1 + ∂µφ†2∂µφ2 + ξ2 φ†1φ

†
2φ1φ2

)
. (1)

Its basic physical quantities (anomalous dimensions, cor-
relators etc.) are determined by a very limited number
of Feynman graphs at each loop order and efficiently cal-
culable via integrability [3, 4].

In this letter we add a further remarkable property to
the above list of features of fishnet graphs. We demon-
strate that their conformal symmetry extends to a non-
local Yangian symmetry. This symmetry yields novel dif-
ferential constraint equations for this class of Feynman
integrals. More technical details can be found in the ac-
companying papers [5, 6].

A single scalar fishnet graph of the above type rep-
resents a single-trace correlator of the bi-scalar theory:

K(x1, . . . , xn) = 〈Tr[χ1(x1) . . . χn(xn)]〉. (2)
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FIG. 2. The box integral in momentum (black) and dual
(green) coordinate space. It will be convenient to distinguish
(a) off-shell and (b) on-shell external momenta. Note the
relabelling of coordinates with respect to (3).

Here χk ∈ {φ1, φ2, φ
†
1, φ
†
2} and xi is the spacetime coordi-

nate of the field χi. Importantly, via the relation to this
bi-scalar model, we define a CFT for the all-loop study of
Yangian-invariant correlators and scattering amplitudes,
similar to those appearing in AdS/CFT. After having dis-
cussed the above scalar fishnets in four dimensions, we
will show that the class of Yangian-invariant Feynman
graphs is actually much richer and extends to different
dimensions, particle species and more exotic tilings of the
plane.

THE BOX AND THE YANGIAN

The most elementary representative in the class of fish-
net graphs is the scalar box integral [7], cf. Fig. 2. In fact,
this integral is the only member of this family, which has
been solved explicitly. It is conveniently written in terms
of variables xi which can be related to dual momenta via
pµi = xµi − xµi+1. The scalar box integral then reads

I4 =

∫
d4x0

1

x2
01x

2
02x

2
03x

2
04

, (3)

and evaluates to a combination of logs and dilogs of con-
formal cross ratios [8]. The above box integral (3)—as
well as all fishnet graphs composed from such elemen-
tary boxes—are invariant under the conformal algebra
so(2, 4). On a generic scalar fishnet graph, the conformal
generators are represented via their usual tensor product
representation JA =

∑n
j=1 JAj with the index j labeling

the external legs and the index A enumerating the fol-
lowing differential operators:

D = −ixµ∂µ − i∆, Lµν = ixµ∂ν − ixν∂µ + Sµν , (4)

Pµ = −i∂µ, Kµ = 2xνLνµ − i(xνxν)∂xµ − 2i∆xµ.

As long as we consider only scalars, we have Sµν = 0.
The Yangian Hopf algebra over the conformal algebra

is generated by the above Lie algebra generators and an
additional set of bi-local level-one generators of the form

ĴA = fABC

n∑
k=1

k−1∑
j=1

JCj JBk +

n∑
j=1

vjJ
A
j . (5)

Here fABC denotes the structure constants of the con-
formal algebra and the (a priori undetermined) variables
vj parametrize an external automorphism of the Yangian.
The level-one generators obey the commutation relations
[JA, ĴB ] = fABC ĴC .

The conformal algebra ensures the full Yangian sym-
metry, as soon as invariance under a single level-one gen-
erator and the full level-zero algebra holds. A convenient
choice for demonstrating this invariance is the level-one
momentum generator ĴA ∼ P̂ given by

P̂µ = − i
2

n∑
j<k=1

[
(Lµνj +ηµνDj)Pk,ν−(j ↔ k)

]
+

n∑
j=1

vjP
µ
j .

(6)
We may explicitly act with this generator onto the box
integral (3) to find P̂µI4 =

∑4
j=1(vj + j)Pµj I4. Hence,

fixing the parameters vj according to

vbox
j := −j, (7)

the box integral is indeed Yangian-invariant. Parametriz-
ing the box as I4 = 1

x2
13x

2
24

Φ(u, v), with the conformal

cross ratios u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

, this statement

boils down to the following second order differential equa-
tion,

0 = Φ + (3u− 1)
∂Φ

∂u
+ 3v

∂Φ

∂v
+ (u− 1)u

∂2Φ

∂u2

+ v2 ∂
2Φ

∂v2
+ 2uv

∂2Φ

∂u∂v
, (8)

as well as the same equation with u and v interchanged.
Notably, the above box integral has a cyclic shift sym-

metry xk → xk+1. For vj = 0 with j = 1, . . . , 4, this
symmetry is violated by the level-one generators in (5).
Crucially, the choice of parameters (7) precisely restores
this cyclic symmetry. In the case of the Yangian sym-
metry of tree-level amplitudes in N = 4 SYM theory
(where vj = 0) this cyclicity is only possible due to the
vanishing dual Coxeter number of the underlying Lie al-
gebra psu(2, 2|4). The above example thus shows that a
vanishing dual Coxeter number is not necessary for the
existence of cyclic Yangian invariants.

We will now show that Yangian differential equations,
similar to (8), also hold for generic fishnet graphs.

SCALAR FISHNETS AND MONODROMY

Generic scalar fishnet graphs (cf. Fig. 1) are composed
of the above box diagrams. In order to demonstrate their
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FIG. 3. (a): Monodromy encircling a sample fishnet graph
representing the left hand side of (12). (b): Intermediate step
of the proof of Yangian symmetry.

Yangian symmetry, we rephrase the Yangian algebra in
terms of the powerful RTT-formulation. Here, the Yan-
gian generators are packaged into a monodromy matrix

T(u) ' 1+
1

u
J +

1

u2
Ĵ + . . . , (9)

and the algebra relations are formulated via the Yang–
Baxter equation with Yang’s R-matrix R(u) = 1+uP:

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v). (10)

We explicitly solve this RTT-relation by defining the
monodromy as a product of conformal Lax operators [9]

Lk,αβ(u+
k , u

−
k ) = uk 1k,αβ + 1

2Mab
αβ J∆k

k,ab, (11)

each of which obeys (10) with Tk → Lk. Here we pack-
age the inhomogeneities uk and the conformal dimensions
∆k into the symmetric variables u+

k := uk + ∆k−4
2 and

u−k := uk − ∆k

2 . The Jk,ab denote the differential repre-
sentation of the conformal algebra displayed in (4), and
we have Mab = i

4 [Γa,Γb]|upper block, with Γa represent-
ing six-dimensional gamma matrices for R2,4. The Yan-
gian symmetry of the box integral I4 and its n-point gen-
eralizations In now translates into the eigenvalue equa-
tion [10]

T(~u) In = λ(~u) In 1, (12)

where T(~u) denotes the inhomogeneous monodromy

T(~u) = Ln(u+
n , u

−
n )Ln−1(u+

n−1, u
−
n−1) . . .L1(u+

1 , u
−
1 ).

(13)
The choice of parameters u±k depends on the diagram
under consideration. It will be convenient to introduce
the notation [δ+

k , δ
−
k ] := (u+δ+

k , u+δ−k ) and [δk] := u+δk.
By convention we choose the parameters on the boundary
legs at the top to be [1, 2]. Then the parameters on the
right, bottom or left boundary legs have to be [2, 3], [3, 4]
or [4, 5], respectively (see Fig. 3 for an example). The

(a)
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[δ, • ]

=

[ ? , δ]

[δ + 1, • ]

(b)

[δ, δ + 1]

[δ + 1, δ + 2]

= [δ + 2]×
[δ + 1, δ + 1]

(c)

[δ, δ + 1]

=
[δ + 1, δ]

FIG. 4. Rules employed to prove the Yangian invariance.
(a): The intertwining relation (14). (b) and (c): Pulling the
monodromy contour through an integration vertex, cf. (15).

Lax operator defined in (11) acts on an auxiliary and a
quantum space. While the product in (13) is taken in the
auxiliary space, each Lax operator acts on one external
leg of the considered graph (the quantum space).

Proving the invariance statement (12) boils down to
employing the lasso method [5], i.e. to moving the mon-
odromy through a given graph as displayed in Fig. 3. The
most important relation used in this process is the inter-
twining relation for the Lax operator and the x-space
propagator, cf. Fig. 4a:

1

x2
12

L2[δ, • ]L1[ ? , δ + 1] = L2[δ + 1, • ]L1[ ? , δ]
1

x2
12

. (14)

Moreover, we can move a product of Lax operators
through an integration vertex via the following relation,
cf. Fig. 4b:∫

d4x0 L2[δ + 1, δ + 2]L1[δ, δ + 1]
1

x2
01x

2
02x

2
03x

2
04

(15)

= [δ + 2]

∫
d4x0

1

x2
01x

2
02

L0[δ + 1, δ + 1]
1

x2
03x

2
04

.

A third relation of this type is depicted in Fig. 4c. Finally,
the Lax operator and its partially integrated version de-
noted by LT act on a constant function as

Lαβ [δ, δ + 2] · 1 = LTαβ [δ + 2, δ] · 1 = [δ + 2]δαβ . (16)

These rules are sufficient to move the monodromy con-
tour in Fig. 3a through the whole graph to end up with
the eigenvalue on the right hand side of (12). See Fig. 3b
for an intermediate step. The eigenvalue λ(~u) in (12) is
composed of the factors picked up in this process via (15)
and (16), cf. [5] for explicit expressions.
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FIG. 5. Double-box integral with massless external legs.
Dashed black lines represent delta functions δ(x2i,i+1) forcing
the momenta (dotted lines) on shell.

OFF- AND ON-SHELL LEGS

Above the external variables xµi were unconstrained.
To interpret the xi as region momenta for a scattering
amplitude with massless on-shell legs, we require p2

k =
(xk − xk+1)2 = 0. Notably, the delta-function imposing
this constraint obeys the same intertwining relation as
the propagator in (14):

δ(x2
12)L2[δ, • ]L1[ ? , δ + 1] = L2[δ + 1, • ]L1[ ? , δ]δ(x2

12).
(17)

We may thus extend the above construction by introduc-
ing dashed lines alias delta functions into the graphs, see
Fig. 5 for the double-box example. Due to (14) and (17),
propagators and delta functions are algebraically inter-
changeable. Hence, we can set external points (cf. Fig. 5)
or internal propagators on shell via insertion of delta
functions. Note, however, that the conformal symmetry
of massless amplitudes typically shows an anomaly-like
behavior for collinear configurations. This can be real-
ized in subtle ways and may require additional contribu-
tions to the symmetry generators, cf. e.g. [11–15]. The
investigation of this point is in progress.

The generalized boundary configurations as displayed
in Fig. 5 require to adapt the inhomogeneities. As
can be seen for that example, the conformal dimension
∆k = δ+

k − δ−k + 2 entering the Lax operator L[δ+
k , δ

−
k ]

corresponds to the number of attached propagators, cf.
[5].

Notably, the central intertwining relation (14) general-
izes to arbitrary powers 2α of the propagator:

1

x2α
12

L2[δ, • ]L1[ ? , δ+α] = L2[δ+α, • ]L1[ ? , δ]
1

x2α
12

. (18)

This allows us to construct Yangian-invariant deforma-
tions of the above correlators and amplitudes. These
represent loop-level analogues of the tree-level amplitude
deformations found in N = 4 SYM and ABJM the-
ory [16, 17]. Here the powers αk of propagators entering
a vertex obey the conformal constraint

∑
k αk = 4.

The theory defined by (1) is known to generate double-

trace interactions Tr(φjφj)Tr(φ†jφ
†
j), Tr(φ1φ2)Tr(φ†1φ

†
2)

and Tr(φ1φ
†
2)Tr(φ2φ

†
1) due to quantum corrections [18].

Note that these do not contribute to the correlator (2) at
leading order in Nc and hence to the considered planar
observables.

INCLUDING FERMIONS

The procedure to obtain integrable quantum field the-
ories as limits of γ-deformed N = 4 SYM theory suggests
to consider more general particle species. Adjusting the
limit appropriately, one may for instance obtain an in-
teraction Lagrangian including scalars and fermions [3]:

Lint
φψ = NcTr

(
ξ2
1φ
†
3φ
†
1φ

3φ1 + ξ2
2φ
†
2φ
†
1φ

2φ1

+
√
ξ1ξ2(ψ̄1φ

1ψ̄4 − ψ1φ†1ψ
4)
)
. (19)

Consider e.g. the following three-loop Feynman graph
built from the above Yukawa vertices:

4

5

3

1

2
0

0′ 0̄

Here dotted lines denote Fermion propagators. The cor-
responding integral reads

Iφψ =

∫
d4x0d4x0̄d4x0′

~P
∂µ̃0̄
µ2

~P
µ̃0̄

∂µ0

~P
∂µ̃

0′
µ0

~P
µ̃0′
µ5

x2
10x

2
30̄
x2

40′
, (20)

where the Fermion propagators are expressed using the
notation

~PA2

A1
=
〈A1|x12|A2]

x4
12

, ~PA2

A1
=

[A2|x12|A1〉
x4

12

. (21)

We employ dummy su(2) spinors with brackets 〈µ| and
[µ̃|, respectively, in order to avoid explicit indices. No-
tably, also the propagators (21) obey intertwining rela-

tions including Lax operators Lf and Lf in the ( 1
2 , 0) and

(0, 1
2 ) representations of the Lorentz group, respectively,

for instance

Lf
2(u+ 3

2 , • )L1( ? , u) ~P
∂µ̃1
µ2 = ~P

∂µ̃1
µ2 L2(u, • )Lf

1( ? , u+ 3
2 ).

(22)

Here the operators Lf and Lf are defined via (11), but
now with non-zero spin matrices S in (4). Acting on
the above spinors, we have Sf

ρσ = µ · σ+
ρσ · ∂µ and

Sf
ρσ = µ̃ · σ−ρσ · ∂µ̃, where σ±ρσ = i

4 (σ±ρ σ
∓
σ − σ±σ σ∓ρ ) and

σ±µ = (σ0,±σ1,±σ2,±σ3)µ; for more details see [6, 9].
Also in this case proving the Yangian invariance boils
down to pulling the monodromy through propagators and
vertices. The fermionic Lax operators are not propor-
tional to the identity when acting on a constant (cf. (16)

for the scalar case) but cancel via LfLfP ∼ P on the
propagator P .
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If we consider the model (19) and an amplitude that
describes the scattering of both types of fermions and
only the boson φ1, this scattering process corresponds to
a single “brick wall” Feynman graph, whose bulk struc-
ture is given by a regular fishnet lattice consisting of only
Yukawa vertices, e.g.

This type of integrable fishnet is new with respect to the
examples given in [1]. If we also include the other two
types of bosons of (19), each color-ordered amplitude is
represented by a single Yangian-invariant graph with a
mixture of rectangular and hexagonal fishnet structures.

THREE AND SIX DIMENSIONS

Instead of considering the parameter α in (18) as a
deformation in 4d, we may associate it with the space-
time dimension d via α = d−2

2 and replace the four-
dimensional Lax operators Lk by an appropriate d-
dimensional counterpart Ldk, cf. [6]. Then the above off-
shell construction generalizes to the cases of amplitudes
in d = 3 and d = 6 spacetime dimensions built from
scalar six- and three-point vertices, respectively. The
above action of the scalar Lax operator on the vacuum
(16) becomes

Ldαβ [δ, δ + d
2 ] · 1 = Ld Tαβ [δ + d

2 , δ] · 1 = [δ + d
2 ]δαβ . (23)

For d = 3 and d = 6 the scalar graphs form triangular and
hexagonal fishnets, respectively. These complete the set
of regular tilings of the plane—all furnishing Yangian-
invariant scalar Feynman diagrams, cf. Tab. I. Corre-
sponding field theories were recently proposed in [3, 19].
While the three-dimensional triangle graphs arise from
scalar limits of planar, γ-deformed ABJM theory [3], a
six-dimensional “mother” theory is not known.

Due to the dimensionality of the propagators, in three
and six dimensions we cannot use the naive trick to re-
place the propagator by a delta function δ(x2

ij) in order
to go on shell, cf. Tab. I and (17). It is possible, however,
to set up a momentum space Lax formalism to show the
Yangian invariance of on-shell graphs [6].

CONCLUSIONS AND OUTLOOK

The Yangian algebra underlies the Bethe ansatz and
the quantum inverse scattering method. Its finding in
the present context gives hope for the applicability of
similar solution techniques to the largely unsolved class
of fishnet integrals (cf. [20] in this context [21]). In four

Dimension d = 3 d = 4 d = 6

Propagator |xij |−1 |xij |−2 |xij |−4

Scalar
Fishnet

TABLE I. Overview of scalar fishnet graphs.

dimensions merely the box integral is solved [8] and al-
ready the double box is expected to yield complicated
elliptic functions [22]. This renders new insights into the
mathematical structure of fishnet integrals valuable.

The above classes of Feynman graphs define specific
double scaling limits of scattering amplitudes in planar γ-
deformed N = 4 SYM and ABJM theory. This suggests
a set of non-trivial, integrable and non-supersymmetric
CFTs in four dimensions, whose existence puts under-
standing the origins of integrability of the respective
“mother” theories within reach. This finding is also re-
markable since the study of symmetry-invariant subsec-
tors has been crucial for developing the powerful integra-
bility tools for the spectrum of AdS/CFT. In particular,
our results show that cyclic Yangian-invariant scatter-
ing amplitudes exist even if the dual Coxeter number of
the underlying symmetry algebra does not vanish, i.e. for
cases different from the fullN = 4 SYM or ABJM theory.

A further important goal is to establish the Yan-
gian symmetry for the most general double-scaled model
of [2], containing three couplings, three bosons and three
fermions.
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